(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* emptyBag | a :: l => munion (singletonBag a) (list_contents l) end. Lemma list_contents_app : forall l m:list A, meq (list_contents (l ++ m)) (munion (list_contents l) (list_contents m)). Proof. simple induction l; simpl in |- *; auto with datatypes. intros. apply meq_trans with (munion (singletonBag a) (munion (list_contents l0) (list_contents m))); auto with datatypes. Qed. (** * [permutation]: definition and basic properties *) Definition permutation (l m:list A) := meq (list_contents l) (list_contents m). Lemma permut_refl : forall l:list A, permutation l l. Proof. unfold permutation in |- *; auto with datatypes. Qed. Lemma permut_sym : forall l1 l2 : list A, permutation l1 l2 -> permutation l2 l1. Proof. unfold permutation, meq; intros; apply sym_eq; trivial. Qed. Lemma permut_tran : forall l m n:list A, permutation l m -> permutation m n -> permutation l n. Proof. unfold permutation in |- *; intros. apply meq_trans with (list_contents m); auto with datatypes. Qed. Lemma permut_cons : forall l m:list A, permutation l m -> forall a:A, permutation (a :: l) (a :: m). Proof. unfold permutation in |- *; simpl in |- *; auto with datatypes. Qed. Lemma permut_app : forall l l' m m':list A, permutation l l' -> permutation m m' -> permutation (l ++ m) (l' ++ m'). Proof. unfold permutation in |- *; intros. apply meq_trans with (munion (list_contents l) (list_contents m)); auto using permut_cons, list_contents_app with datatypes. apply meq_trans with (munion (list_contents l') (list_contents m')); auto using permut_cons, list_contents_app with datatypes. apply meq_trans with (munion (list_contents l') (list_contents m)); auto using permut_cons, list_contents_app with datatypes. Qed. Lemma permut_add_inside : forall a l1 l2 l3 l4, permutation (l1 ++ l2) (l3 ++ l4) -> permutation (l1 ++ a :: l2) (l3 ++ a :: l4). Proof. unfold permutation, meq in *; intros. generalize (H a0); clear H. do 4 rewrite list_contents_app. simpl. destruct (eqA_dec a a0); simpl; auto with arith. do 2 rewrite <- plus_n_Sm; f_equal; auto. Qed. Lemma permut_add_cons_inside : forall a l l1 l2, permutation l (l1 ++ l2) -> permutation (a :: l) (l1 ++ a :: l2). Proof. intros; replace (a :: l) with (nil ++ a :: l); trivial; apply permut_add_inside; trivial. Qed. Lemma permut_middle : forall (l m:list A) (a:A), permutation (a :: l ++ m) (l ++ a :: m). Proof. intros; apply permut_add_cons_inside; auto using permut_sym, permut_refl. Qed. Lemma permut_sym_app : forall l1 l2, permutation (l1 ++ l2) (l2 ++ l1). Proof. intros l1 l2; unfold permutation, meq; intro a; do 2 rewrite list_contents_app; simpl; auto with arith. Qed. Lemma permut_rev : forall l, permutation l (rev l). Proof. induction l. simpl; trivial using permut_refl. simpl. apply permut_add_cons_inside. rewrite <- app_nil_end. trivial. Qed. (** * Some inversion results. *) Lemma permut_conv_inv : forall e l1 l2, permutation (e :: l1) (e :: l2) -> permutation l1 l2. Proof. intros e l1 l2; unfold permutation, meq; simpl; intros H a; generalize (H a); apply plus_reg_l. Qed. Lemma permut_app_inv1 : forall l l1 l2, permutation (l1 ++ l) (l2 ++ l) -> permutation l1 l2. Proof. intros l l1 l2; unfold permutation, meq; simpl; intros H a; generalize (H a); clear H. do 2 rewrite list_contents_app. simpl. intros; apply plus_reg_l with (multiplicity (list_contents l) a). rewrite plus_comm; rewrite H; rewrite plus_comm. trivial. Qed. Lemma permut_app_inv2 : forall l l1 l2, permutation (l ++ l1) (l ++ l2) -> permutation l1 l2. Proof. intros l l1 l2; unfold permutation, meq; simpl; intros H a; generalize (H a); clear H. do 2 rewrite list_contents_app. simpl. intros; apply plus_reg_l with (multiplicity (list_contents l) a). trivial. Qed. Lemma permut_remove_hd : forall l l1 l2 a, permutation (a :: l) (l1 ++ a :: l2) -> permutation l (l1 ++ l2). Proof. intros l l1 l2 a; unfold permutation, meq; simpl; intros H a0; generalize (H a0); clear H. do 2 rewrite list_contents_app; simpl; intro H. apply plus_reg_l with (if eqA_dec a a0 then 1 else 0). rewrite H; clear H. symmetry; rewrite plus_comm. repeat rewrite <- plus_assoc; f_equal. apply plus_comm. Qed. End defs. (** For compatibilty *) Notation permut_right := permut_cons. Unset Implicit Arguments.