summaryrefslogtreecommitdiff
path: root/theories/Numbers/Rational/BigQ/QvMake.v
blob: 4523e2410c387ea6189f8032a9540103e440944d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*            Benjamin Gregoire, Laurent Thery, INRIA, 2007             *)
(************************************************************************)

(*i $Id: QvMake.v 11027 2008-06-01 13:28:59Z letouzey $ i*)

Require Import Bool.
Require Import ZArith.
Require Import Znumtheory.
Require Import BigNumPrelude.
Require Import Arith.
Require Export BigN.
Require Export BigZ.
Require Import QArith.
Require Import Qcanon.
Require Import Qpower.
Require Import QMake_base.

Module Qv.

 Import BinInt Zorder.
 Open Local Scope Q_scope.
 Open Local Scope Qc_scope.

 (** The notation of a rational number is either an integer x,
     interpreted as itself or a pair (x,y) of an integer x and a naturel
     number y interpreted as x/y. All functions maintain the invariant
     that y is never zero. *)

 Definition t := q_type.

 Definition zero: t := Qz BigZ.zero.
 Definition one: t := Qz BigZ.one.
 Definition minus_one: t := Qz BigZ.minus_one.

 Definition of_Z x: t := Qz (BigZ.of_Z x).

 Definition wf x := 
  match x with
  | Qz _ => True
  | Qq n d => if BigN.eq_bool d BigN.zero then False else True
  end.

 Definition of_Q q: t := 
 match q with x # y =>
  Qq (BigZ.of_Z x) (BigN.of_N (Npos y))
 end.

 Definition of_Qc q := of_Q (this q).

 Definition to_Q (q: t) := 
 match q with 
  Qz x => BigZ.to_Z x # 1
 |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z y)
 end.

 Definition to_Qc q := !!(to_Q q).

 Notation "[[ x ]]" := (to_Qc x).

 Notation "[ x ]" := (to_Q x).

 Theorem spec_to_Q: forall q: Q, [of_Q q] = q.
 intros (x,y); simpl.
 rewrite BigZ.spec_of_Z; simpl.
 rewrite (BigN.spec_of_pos); auto.
 Qed.

 Theorem spec_to_Qc: forall q, [[of_Qc q]] = q.
 intros (x, Hx); unfold of_Qc, to_Qc; simpl.
 apply Qc_decomp; simpl.
 intros; rewrite spec_to_Q; auto.
 Qed.

 Definition opp (x: t): t :=
  match x with
  | Qz zx => Qz (BigZ.opp zx)
  | Qq nx dx => Qq (BigZ.opp nx) dx
  end.

 Theorem wf_opp: forall x, wf x -> wf (opp x).
 intros [zx | nx dx]; unfold opp, wf; auto.
 Qed.

 Theorem spec_opp: forall q, ([opp q] = -[q])%Q.
 intros [z | x y]; simpl.
 rewrite BigZ.spec_opp; auto.
 rewrite BigZ.spec_opp; auto.
 Qed.

 Theorem spec_oppc: forall q, [[opp q]] = -[[q]].
 intros q; unfold Qcopp, to_Qc, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 rewrite spec_opp.
 rewrite <- Qred_opp.
 rewrite Qred_involutive; auto.
 Qed.

 (* Les fonctions doivent assurer que si leur arguments sont valides alors
    le resultat est correct et valide (si c'est un Q) 
 *)

 Definition compare (x y: t) :=
  match x, y with
  | Qz zx, Qz zy => BigZ.compare zx zy
  | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny
  | Qq nx dx, Qz zy => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx))  
  | Qq nx dx, Qq ny dy => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx))
  end.

 Theorem spec_compare: forall q1 q2, wf q1 -> wf q2 ->
  compare q1 q2 = ([q1] ?= [q2])%Q.
 intros [z1 | x1 y1] [z2 | x2 y2]; 
   unfold Qcompare, compare, to_Q, Qnum, Qden, wf.
 repeat rewrite Zmult_1_r.
 generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto.
 rewrite H; rewrite Zcompare_refl; auto.
 rewrite Zmult_1_r.
 generalize (BigN.spec_eq_bool y2 BigN.zero);
   case BigN.eq_bool.
   intros _ _ HH; case HH.
 rewrite BigN.spec_0; intros HH _ _.
 rewrite Z2P_correct; auto with zarith.
  2: generalize (BigN.spec_pos y2); auto with zarith.
 generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare;
   rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
 rewrite H; rewrite Zcompare_refl; auto.
 generalize (BigN.spec_eq_bool y1 BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH _ _.
 rewrite Z2P_correct; auto with zarith.
  2: generalize (BigN.spec_pos y1); auto with zarith.
 rewrite Zmult_1_r.
 generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
   rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
 rewrite H; rewrite Zcompare_refl; auto.
 generalize (BigN.spec_eq_bool y1 BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH1. 
 generalize (BigN.spec_eq_bool y2 BigN.zero);
   case BigN.eq_bool.
   intros _ _ HH; case HH.
 rewrite BigN.spec_0; intros HH2 _ _.
 repeat rewrite Z2P_correct.
  2: generalize (BigN.spec_pos y1); auto with zarith.
  2: generalize (BigN.spec_pos y2); auto with zarith.
 generalize (BigZ.spec_compare (x1 * BigZ.Pos y2) 
                               (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare;
   repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto.
 rewrite H; rewrite Zcompare_refl; auto.
 Qed.

 Theorem spec_comparec: forall q1 q2, wf q1 -> wf q2 ->
  compare q1 q2 = ([[q1]] ?= [[q2]]).
 unfold Qccompare, to_Qc. 
 intros q1 q2 Hq1 Hq2; rewrite spec_compare; simpl; auto.
 apply Qcompare_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

 Definition norm n d: t :=
  if BigZ.eq_bool n BigZ.zero then zero
  else
    let gcd := BigN.gcd (BigZ.to_N n) d in
    if BigN.eq_bool gcd BigN.one then Qq n d
    else	
      let n := BigZ.div n (BigZ.Pos gcd) in
      let d := BigN.div d gcd in
      if BigN.eq_bool d BigN.one then Qz n
      else Qq n d.

 Theorem wf_norm: forall n q,
   (BigN.to_Z q <> 0)%Z -> wf (norm n q).
 intros p q; unfold norm, wf; intros Hq.
 assert (Hp := BigN.spec_pos (BigZ.to_N p)).
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; auto; rewrite BigZ.spec_0; intros H1.
 simpl; auto.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_1.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_1.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 set (a := BigN.to_Z (BigZ.to_N p)).
 set (b := (BigN.to_Z q)).
 assert (F: (0 < Zgcd a b)%Z).
   case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
   intros HH1; case Hq; apply (Zgcd_inv_0_r _ _ (sym_equal HH1)).
 rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto; fold a; fold b.
 intros H; case Hq; fold b.
 rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
 rewrite H; auto with zarith.
 assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
 Qed.
 
 Theorem spec_norm: forall n q, 
    ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n q])%Q.
 intros p q; unfold norm; intros Hq.
 assert (Hp := BigN.spec_pos (BigZ.to_N p)).
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; auto; rewrite BigZ.spec_0; intros H1.
   red; simpl; rewrite H1; ring.
 case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp.
 case (Zle_lt_or_eq _ _ 
      (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4.
 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith.
 2: red; simpl; auto with zarith.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_1; intros H2.
   apply Qeq_refl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_1.
 red; simpl.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
 rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
 rewrite Zmult_1_r.
 rewrite Z2P_correct; auto with zarith.
 rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto.
 rewrite H; ring.
 intros H3.
 red; simpl.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
 assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z).
   rewrite BigN.spec_div; auto with zarith.
   rewrite BigN.spec_gcd.
   apply Zgcd_div_pos; auto.
   rewrite BigN.spec_gcd; auto.
 rewrite Z2P_correct; auto.
 rewrite Z2P_correct; auto.
 rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith.
 rewrite spec_to_N; apply Zgcd_div_swap; auto.
 case H1; rewrite spec_to_N; rewrite <- Hp; ring.
 Qed.

 Theorem spec_normc: forall n q, 
    (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n q]].
 intros n q H; unfold to_Qc, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_norm; auto.
 Qed.
      
 Definition add (x y: t): t :=
  match x, y with
  | Qz zx, Qz zy => Qz (BigZ.add zx zy)
  | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy
  | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx
  | Qq nx dx, Qq ny dy => 
    let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
    let d := BigN.mul dx dy in
    Qq n d
  end.

 Theorem wf_add: forall x y, wf x -> wf y -> wf (add x y).
 intros [zx | nx dx] [zy | ny dy]; unfold add, wf; auto.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
 intros H1 H2 H3.
 case (Zmult_integral _ _ H1); auto with zarith.
 Qed.

 Theorem spec_add x y: wf x -> wf y ->
  ([add x y] == [x] + [y])%Q.
 intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl.
 rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto.
  intros; apply Qeq_refl; auto.
 assert (F1:= BigN.spec_pos dy).
 rewrite Zmult_1_r.
 generalize (BigN.spec_eq_bool dy BigN.zero);
   case BigN.eq_bool.
   intros _ _ HH; case HH.
 rewrite BigN.spec_0; intros HH _ _.
 rewrite Z2P_correct; auto with zarith.
 rewrite BigZ.spec_add; rewrite BigZ.spec_mul.
 simpl; apply Qeq_refl.
 generalize (BigN.spec_eq_bool dx BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH _ _.
 assert (F1:= BigN.spec_pos dx).
 rewrite Zmult_1_r; rewrite Pmult_1_r.
 simpl; rewrite Z2P_correct; auto with zarith.
 rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl.
 apply Qeq_refl.
 generalize (BigN.spec_eq_bool dx BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH1.
 generalize (BigN.spec_eq_bool dy BigN.zero);
   case BigN.eq_bool.
   intros _ _ HH; case HH.
 rewrite BigN.spec_0; intros HH2 _ _.
 assert (Fx: (0 < BigN.to_Z dx)%Z).
   generalize (BigN.spec_pos dx); auto with zarith.
 assert (Fy: (0 < BigN.to_Z dy)%Z).
   generalize (BigN.spec_pos dy); auto with zarith.
 rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul.
 red; simpl.
 rewrite Zpos_mult_morphism.
 repeat rewrite Z2P_correct; auto.
 repeat rewrite BigZ.spec_mul; simpl; auto.
 apply Zmult_lt_0_compat; auto.
 Qed.

 Theorem spec_addc x y: wf x -> wf y ->
  [[add x y]] = [[x]] + [[y]].
 intros x y H1 H2; unfold to_Qc.
 apply trans_equal with (!! ([x] + [y])).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_add; auto.
 unfold Qcplus, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

 Definition add_norm (x y: t): t := 
  match x, y with
  | Qz zx, Qz zy => Qz (BigZ.add zx zy)
  | Qz zx, Qq ny dy => 
    norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy 
  | Qq nx dx, Qz zy =>
    norm (BigZ.add (BigZ.mul zy (BigZ.Pos dx)) nx) dx
  | Qq nx dx, Qq ny dy =>
    let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in
    let d := BigN.mul dx dy in
    norm n d 
  end.

 Theorem wf_add_norm: forall x y, wf x -> wf y -> wf (add_norm x y).
 intros [zx | nx dx] [zy | ny dy]; unfold add_norm; auto.
 intros HH1 HH2; apply wf_norm.
 generalize HH2; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros HH1 HH2; apply wf_norm.
 generalize HH1; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros HH1 HH2; apply wf_norm.
 rewrite BigN.spec_mul; intros HH3.
 case (Zmult_integral _ _ HH3).
 generalize HH1; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 generalize HH2; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 Qed.

 Theorem spec_add_norm x y: wf x -> wf y ->
  ([add_norm x y] == [x] + [y])%Q.
 intros x y H1 H2; rewrite <- spec_add; auto.
 generalize H1 H2; unfold add_norm, add, wf; case x; case y; clear H1 H2.
  intros; apply Qeq_refl.
 intros p1 n p2 _.
 generalize (BigN.spec_eq_bool n BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH _.
 match goal with |- [norm ?X ?Y] == _ =>
  apply Qeq_trans with ([Qq X Y]);
  [apply spec_norm | idtac]
 end.
 generalize (BigN.spec_pos n); auto with zarith.
 simpl.
 repeat rewrite BigZ.spec_add.
 repeat rewrite BigZ.spec_mul; simpl.
 apply Qeq_refl.
 intros p1 n p2.
 generalize (BigN.spec_eq_bool p2 BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH _ _.
 match goal with |- [norm ?X ?Y] == _ =>
  apply Qeq_trans with ([Qq X Y]);
  [apply spec_norm | idtac]
 end.
 generalize (BigN.spec_pos p2); auto with zarith.
 simpl.
 repeat rewrite BigZ.spec_add.
 repeat rewrite BigZ.spec_mul; simpl.
 rewrite Zplus_comm.
 apply Qeq_refl.
 intros p1 q1 p2 q2.
 generalize (BigN.spec_eq_bool q2 BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH1 _.
 generalize (BigN.spec_eq_bool q1 BigN.zero);
   case BigN.eq_bool.
   intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH2 _.
 match goal with |- [norm ?X ?Y] == _ =>
  apply Qeq_trans with ([Qq X Y]);
  [apply spec_norm | idtac]
 end; try apply Qeq_refl.
 rewrite BigN.spec_mul.
 apply Zmult_lt_0_compat.
  generalize (BigN.spec_pos q2); auto with zarith.
  generalize (BigN.spec_pos q1); auto with zarith.
 Qed.

 Theorem spec_add_normc x y: wf x -> wf y ->
  [[add_norm x y]] = [[x]] + [[y]].
 intros x y Hx Hy; unfold to_Qc.
 apply trans_equal with (!! ([x] + [y])).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_add_norm; auto.
 unfold Qcplus, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qplus_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

 Definition sub x y := add x (opp y).

 Theorem wf_sub x y: wf x -> wf y -> wf (sub x y).
 intros x y Hx Hy; unfold sub; apply wf_add; auto.
 apply wf_opp; auto.
 Qed.

 Theorem spec_sub x y: wf x -> wf y ->
  ([sub x y] == [x] - [y])%Q.
 intros x y Hx Hy; unfold sub; rewrite spec_add; auto.
 rewrite spec_opp; ring.
 apply wf_opp; auto.
 Qed.

 Theorem spec_subc x y: wf x -> wf y ->
   [[sub x y]] = [[x]] - [[y]].
 intros x y Hx Hy; unfold sub; rewrite spec_addc; auto.
 rewrite spec_oppc; ring.
 apply wf_opp; auto.
 Qed.

 Definition sub_norm x y := add_norm x (opp y).

 Theorem wf_sub_norm x y: wf x -> wf y -> wf (sub_norm x y).
 intros x y Hx Hy; unfold sub_norm; apply wf_add_norm; auto.
 apply wf_opp; auto.
 Qed.

 Theorem spec_sub_norm x y: wf x -> wf y ->
  ([sub_norm x y] == [x] - [y])%Q.
 intros x y Hx Hy; unfold sub_norm; rewrite spec_add_norm; auto.
 rewrite spec_opp; ring.
 apply wf_opp; auto.
 Qed.

 Theorem spec_sub_normc x y: wf x -> wf y ->
   [[sub_norm x y]] = [[x]] - [[y]].
 intros x y Hx Hy; unfold sub_norm; rewrite spec_add_normc; auto.
 rewrite spec_oppc; ring.
 apply wf_opp; auto.
 Qed.

 Definition mul (x y: t): t :=
  match x, y with
  | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
  | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy
  | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx
  | Qq nx dx, Qq ny dy => 
    Qq (BigZ.mul nx ny) (BigN.mul dx dy)
  end.

 Theorem wf_mul: forall x y, wf x -> wf y -> wf (mul x y).
 intros [zx | nx dx] [zy | ny dy]; unfold mul, wf; auto.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
 intros H1 H2 H3.
 case (Zmult_integral _ _ H1); auto with zarith.
 Qed.

 Theorem spec_mul x y: wf x -> wf y -> ([mul x y] == [x] * [y])%Q.
 intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl.
 rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto.
  intros; apply Qeq_refl; auto.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros _ _ HH; case HH.
 rewrite BigN.spec_0; intros HH1 _ _.
 rewrite BigZ.spec_mul; apply Qeq_refl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros _ HH; case HH.
 rewrite BigN.spec_0; intros HH1 _ _.
 rewrite BigZ.spec_mul; rewrite Pmult_1_r.
 apply Qeq_refl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros _ HH; case HH.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 intros _ _ _ HH; case HH.
 rewrite BigN.spec_0; intros H1 H2 _ _.
 rewrite BigZ.spec_mul; rewrite BigN.spec_mul.
 assert (tmp: 
  (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z).
  intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith.
 rewrite tmp; auto.
 apply Qeq_refl.
  generalize (BigN.spec_pos dx); auto with zarith.
  generalize (BigN.spec_pos dy); auto with zarith.
 Qed.

 Theorem spec_mulc x y: wf x -> wf y ->
  [[mul x y]] = [[x]] * [[y]].
 intros x y Hx Hy; unfold to_Qc.
 apply trans_equal with (!! ([x] * [y])).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_mul; auto.
 unfold Qcmult, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

 Definition mul_norm (x y: t): t := 
  match x, y with
  | Qz zx, Qz zy => Qz (BigZ.mul zx zy)
  | Qz zx, Qq ny dy =>
    if BigZ.eq_bool zx BigZ.zero then zero
    else	
      let gcd := BigN.gcd (BigZ.to_N zx) dy in
      if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy
      else 
        let zx := BigZ.div zx (BigZ.Pos gcd) in
        let d := BigN.div dy gcd in
        if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny)
        else Qq (BigZ.mul zx ny) d
  | Qq nx dx, Qz zy =>   
    if BigZ.eq_bool zy BigZ.zero then zero
    else	
      let gcd := BigN.gcd (BigZ.to_N zy) dx in
      if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx
      else 
        let zy := BigZ.div zy (BigZ.Pos gcd) in
        let d := BigN.div dx gcd in
        if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx)
        else Qq (BigZ.mul zy nx) d
  | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy)
  end.

 Theorem wf_mul_norm: forall x y, wf x -> wf y -> wf (mul_norm x y).
 intros [zx | nx dx] [zy | ny dy]; unfold mul_norm; auto.
 intros HH1 HH2.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto;
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; auto.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_1; rewrite BigZ.spec_0.
 intros H1 H2; unfold wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_0.
 set (a := BigN.to_Z (BigZ.to_N zx)).
 set (b := (BigN.to_Z dy)).
 assert (F: (0 < Zgcd a b)%Z).
   case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
   intros HH3; case H2; rewrite spec_to_N; fold a.
   rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
 rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
 intros H.
 generalize HH2; simpl wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_0; intros HH; case HH; fold b.
 rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
 rewrite H; auto with zarith.
 assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_1; rewrite BigN.spec_gcd.
 intros HH1 H1 H2.
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; auto.
 rewrite BigN.spec_1; rewrite BigN.spec_gcd.
 intros HH1 H1 H2.
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; auto.
 rewrite BigZ.spec_0.
 intros HH2.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 set (a := BigN.to_Z (BigZ.to_N zy)).
 set (b := (BigN.to_Z dx)).
 assert (F: (0 < Zgcd a b)%Z).
   case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto.
   intros HH3; case HH2; rewrite spec_to_N; fold a.
   rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring.
 rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
 intros H; unfold wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_0.
 rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto.
 intros HH; generalize H1; simpl wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 rewrite BigN.spec_0.
 intros HH3; case HH3; fold b.
 rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
 rewrite HH; auto with zarith.
 assert (F1:= Zgcd_is_gcd a b); inversion F1; auto.
 intros HH1 HH2; apply wf_norm.
 rewrite BigN.spec_mul; intros HH3.
 case (Zmult_integral _ _ HH3).
 generalize HH1; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 generalize HH2; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto.
 Qed.

 Theorem spec_mul_norm x y: wf x -> wf y ->
  ([mul_norm x y] == [x] * [y])%Q.
 intros x y Hx Hy; rewrite <- spec_mul; auto.
 unfold mul_norm, mul; generalize Hx Hy; case x; case y; clear Hx Hy.
  intros; apply Qeq_refl.
 intros p1 n p2 Hx Hy.
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
 rewrite BigZ.spec_mul; rewrite H; red; auto.
 assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z).
  case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto.
  intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
 assert (F1: (0 < BigN.to_Z n)%Z).
  generalize Hy; simpl.
  match goal with  |- context[BigN.eq_bool ?X ?Y] => 
    generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
  end; auto.
  intros _ HH; case HH.
  rewrite BigN.spec_0; generalize (BigN.spec_pos n); auto with zarith.
 set (a := BigN.to_Z (BigZ.to_N p2)).
 set (b := BigN.to_Z n).
 assert (F2: (0 < Zgcd a b )%Z).
   case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
   generalize F; fold a; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_1; try rewrite BigN.spec_gcd; 
  fold a b; intros H1.
  intros; apply Qeq_refl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_1.
 rewrite BigN.spec_div; rewrite BigN.spec_gcd;
   auto with zarith; fold a b; intros H2.
 red; simpl.
 repeat rewrite BigZ.spec_mul.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 rewrite Z2P_correct; auto with zarith.
 rewrite spec_to_N; fold a; fold b.
 rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
 rewrite (Zmult_comm (BigZ.to_Z p1)).
 repeat rewrite Zmult_assoc.
 rewrite Zgcd_div_swap; auto with zarith.
 rewrite H2; ring.
 repeat rewrite BigZ.spec_mul.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 intros H2; red; simpl.
 repeat rewrite BigZ.spec_mul.
 rewrite Z2P_correct; auto with zarith.
 rewrite (spec_to_N p2); fold a b.
 rewrite Z2P_correct; auto with zarith.
 repeat rewrite <- Zmult_assoc.
 rewrite (Zmult_comm (BigZ.to_Z p1)).
 repeat rewrite Zmult_assoc.
 rewrite Zgcd_div_swap; auto; try ring.
 case (Zle_lt_or_eq _ _
       (BigN.spec_pos  (n / 
                         BigN.gcd (BigZ.to_N p2) 
                                  n))%bigN);
 rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 intros H3.
 apply False_ind; generalize F1.
 generalize Hy; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; auto with zarith.
 intros HH; case HH; fold b.
 rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
 rewrite <- H3; ring.
 assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
 intros p1 p2 n Hx Hy.
 match goal with  |- context[BigZ.eq_bool ?X ?Y] => 
   generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool
 end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H.
 rewrite BigZ.spec_mul; rewrite H; red; simpl; ring.
 set (a := BigN.to_Z (BigZ.to_N p1)).
 set (b := BigN.to_Z n).
 assert (F: (0 < a)%Z).
  case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto.
  intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring.
 assert (F1: (0 < b)%Z).
  generalize Hx; unfold wf.
  match goal with  |- context[BigN.eq_bool ?X ?Y] => 
    generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
  end; rewrite BigN.spec_0; auto with zarith.
  generalize (BigN.spec_pos n); fold b; auto with zarith.
 assert (F2: (0 < Zgcd a b)%Z).
   case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto.
   generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; fold a b; intros H1.
  intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_1.
 rewrite BigN.spec_div; rewrite BigN.spec_gcd;
   auto with zarith.
 fold a b; intros H2.
 red; simpl.
 repeat rewrite BigZ.spec_mul.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd;
   fold a b; auto with zarith.
 rewrite Z2P_correct; auto with zarith.
 rewrite spec_to_N; fold a b.
 rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc.
 rewrite (Zmult_comm (BigZ.to_Z p2)).
 repeat rewrite Zmult_assoc.
 rewrite Zgcd_div_swap; auto with zarith.
 rewrite H2; ring.
 intros H2.
 red; simpl.
 repeat rewrite BigZ.spec_mul.
 rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 rewrite Z2P_correct; auto with zarith.
 rewrite (spec_to_N p1); fold a b.
 case (Zle_lt_or_eq _ _
       (BigN.spec_pos  (n / BigN.gcd (BigZ.to_N p1) n))%bigN); intros F3.
 rewrite Z2P_correct; auto with zarith.
 rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; 
   fold a b; auto with zarith.
 repeat rewrite <- Zmult_assoc.
 rewrite (Zmult_comm (BigZ.to_Z p2)).
 repeat rewrite Zmult_assoc.
 rewrite Zgcd_div_swap; auto; try ring.
 apply False_ind; generalize F1.
 rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto.
 generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b;
   auto with zarith.
 intros HH; rewrite <- HH; auto with zarith.
 assert (FF:= Zgcd_is_gcd a b); inversion FF; auto.
 intros p1 n1 p2 n2 Hn1 Hn2.
 match goal with |- [norm ?X ?Y] == _ =>
  apply Qeq_trans with ([Qq X Y]);
  [apply spec_norm | idtac]
 end; try  apply Qeq_refl.
 rewrite BigN.spec_mul.
 apply Zmult_lt_0_compat.
 generalize Hn1; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; auto with zarith.
 generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
 generalize Hn2; simpl.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; auto with zarith.
 generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith.
 Qed.

 Theorem spec_mul_normc x y: wf x -> wf y ->
   [[mul_norm x y]] = [[x]] * [[y]].
 intros x y Hx Hy; unfold to_Qc.
 apply trans_equal with (!! ([x] * [y])).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_mul_norm; auto.
 unfold Qcmult, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

 Definition inv (x: t): t := 
  match x with
  | Qz (BigZ.Pos n) => 
    if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n
  | Qz (BigZ.Neg n) => 
    if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n
  | Qq (BigZ.Pos n) d => 
    if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n
  | Qq (BigZ.Neg n) d => 
    if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n
  end.


 Theorem wf_inv: forall x, wf x -> wf (inv x).
 intros [ zx | nx dx]; unfold inv, wf; auto.
 case zx; clear zx.
 intros nx.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
 intros nx.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 intros _ HH; case HH.
 intros H1 _.
 case nx; clear nx.
 intros nx.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; simpl; auto.
 intros nx.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; simpl; auto.
 Qed.

 Theorem spec_inv x: wf x ->
   ([inv x] == /[x])%Q.
 intros [ [x | x] _ | [nx | nx] dx]; unfold inv.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H.
  unfold zero, to_Q; rewrite BigZ.spec_0.
 unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
 assert (F: (0 < BigN.to_Z x)%Z).
   case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
 unfold to_Q; rewrite BigZ.spec_1.
 red; unfold Qinv; simpl.
 generalize F; case BigN.to_Z; auto with zarith.
 intros p Hp; discriminate Hp.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H.
  unfold zero, to_Q; rewrite BigZ.spec_0.
 unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
 assert (F: (0 < BigN.to_Z x)%Z).
   case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith.
 red; unfold Qinv; simpl.
 generalize F; case BigN.to_Z; simpl; auto with zarith.
 intros p Hp; discriminate Hp.
 simpl wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H1.
 intros HH; case HH.
 intros _.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H.
  unfold zero, to_Q; rewrite BigZ.spec_0.
 unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
 assert (F: (0 < BigN.to_Z nx)%Z).
   case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
 red; unfold Qinv; simpl.
 rewrite Z2P_correct; auto with zarith.
 generalize F; case BigN.to_Z; auto with zarith.
 intros p Hp; discriminate Hp.
 generalize (BigN.spec_pos dx); auto with zarith.
 simpl wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H1.
 intros HH; case HH.
 intros _.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; rewrite BigN.spec_0; intros H.
  unfold zero, to_Q; rewrite BigZ.spec_0.
 unfold BigZ.to_Z; rewrite H; apply Qeq_refl.
 assert (F: (0 < BigN.to_Z nx)%Z).
   case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith.
 red; unfold Qinv; simpl.
 rewrite Z2P_correct; auto with zarith.
 generalize F; case BigN.to_Z; auto with zarith.
 simpl; intros. 
 match goal with  |- (?X = Zneg ?Y)%Z => 
   replace (Zneg Y) with (Zopp (Zpos Y));
   try rewrite Z2P_correct; auto with zarith
 end.
 rewrite Zpos_mult_morphism; 
   rewrite Z2P_correct; auto with zarith; try ring.
 generalize (BigN.spec_pos dx); auto with zarith.
 intros p Hp; discriminate Hp.
 generalize (BigN.spec_pos dx); auto with zarith.
 Qed.

 Theorem spec_invc x: wf x ->
   [[inv x]] =  /[[x]].
 intros x Hx; unfold to_Qc.
 apply trans_equal with (!! (/[x])).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_inv; auto.
 unfold Qcinv, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qinv_comp; apply Qeq_sym; apply Qred_correct.
 Qed.


 Definition div x y := mul x (inv y).

 Theorem wf_div x y: wf x -> wf y -> wf (div x y).
 intros x y Hx Hy; unfold div; apply wf_mul; auto.
 apply wf_inv; auto.
 Qed.

 Theorem spec_div x y: wf x -> wf y ->
  ([div x y] == [x] / [y])%Q.
 intros x y Hx Hy; unfold div; rewrite spec_mul; auto.
 unfold Qdiv; apply Qmult_comp.
 apply Qeq_refl.
 apply spec_inv; auto.
 apply wf_inv; auto.
 Qed.

 Theorem spec_divc x y: wf x -> wf y ->
   [[div x y]] = [[x]] / [[y]].
 intros x y Hx Hy; unfold div; rewrite spec_mulc; auto.
 unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
 apply spec_invc; auto. 
 apply wf_inv; auto.
 Qed.

 Definition div_norm x y := mul_norm x (inv y).

 Theorem wf_div_norm x y: wf x -> wf y -> wf (div_norm x y).
 intros x y Hx Hy; unfold div_norm; apply wf_mul_norm; auto.
 apply wf_inv; auto.
 Qed.

 Theorem spec_div_norm x y: wf x -> wf y ->
  ([div_norm x y] == [x] / [y])%Q.
 intros x y Hx Hy; unfold div_norm; rewrite spec_mul_norm; auto.
 unfold Qdiv; apply Qmult_comp.
 apply Qeq_refl.
 apply spec_inv; auto.
 apply wf_inv; auto.
 Qed.

 Theorem spec_div_normc x y: wf x -> wf y ->
   [[div_norm x y]] = [[x]] / [[y]].
 intros x y Hx Hy; unfold div_norm; rewrite spec_mul_normc; auto.
 unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto.
 apply spec_invc; auto.
 apply wf_inv; auto.
 Qed.

 Definition square (x: t): t :=
  match x with
  | Qz zx => Qz (BigZ.square zx)
  | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx)
  end.

 Theorem wf_square: forall x, wf x -> wf (square x).
 intros [ zx | nx dx]; unfold square, wf; auto.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 rewrite BigN.spec_square; intros H1 H2; case H2.
 case (Zmult_integral _ _ H1); auto.
 Qed.

 Theorem spec_square x: wf x -> ([square x] == [x] ^ 2)%Q.
 intros [ x | nx dx]; unfold square.
 intros _.
 red; simpl; rewrite BigZ.spec_square; auto with zarith.
 unfold wf.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 intros _ HH; case HH.
 intros H1 _.
 red; simpl; rewrite BigZ.spec_square; auto with zarith.
 assert (F: (0 < BigN.to_Z dx)%Z).
   case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
 assert (F1 : (0 < BigN.to_Z (BigN.square dx))%Z).
   rewrite BigN.spec_square; apply Zmult_lt_0_compat;
     auto with zarith.
 rewrite Zpos_mult_morphism.
 repeat rewrite Z2P_correct; auto with zarith.
 rewrite BigN.spec_square; auto with zarith.
 Qed.

 Theorem spec_squarec x: wf x -> [[square x]] =  [[x]]^2.
 intros x Hx; unfold to_Qc.
 apply trans_equal with (!! ([x]^2)).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_square; auto.
 simpl Qcpower.
 replace (!! [x] * 1) with (!![x]); try ring.
 simpl.
 unfold Qcmult, Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete.
 apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
 Qed.


 Definition power_pos (x: t) p: t :=
  match x with
  | Qz zx => Qz (BigZ.power_pos zx p)
  | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p)
  end.

 Theorem wf_power_pos: forall x p, wf x -> wf (power_pos x p).
 intros [ zx | nx dx] p; unfold power_pos, wf; auto.
 repeat match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 rewrite BigN.spec_power_pos; simpl.
 intros H1 H2 _.
 case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith.
 intros H3; generalize (Zpower_pos_pos _ p H3); auto with zarith.
 Qed.

 Theorem spec_power_pos x p: wf x -> ([power_pos x p] == [x] ^ Zpos p)%Q.
 Proof.
 intros [x | nx dx] p; unfold power_pos.
   intros _; unfold power_pos; red; simpl.
   generalize (Qpower_decomp p (BigZ.to_Z x) 1).
   unfold Qeq; simpl.
   rewrite Zpower_pos_1_l; simpl Z2P.
   rewrite Zmult_1_r.
   intros H; rewrite H.
   rewrite BigZ.spec_power_pos; simpl; ring.
 unfold wf.
 match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
 end; auto; rewrite BigN.spec_0.
 intros _ HH; case HH.
 intros H1 _.
 assert (F1: (0 < BigN.to_Z dx)%Z).
     generalize (BigN.spec_pos dx); auto with zarith.
 assert (F2: (0 < BigN.to_Z dx  ^ ' p)%Z).
  unfold Zpower; apply Zpower_pos_pos; auto.
 unfold power_pos; red; simpl.
 rewrite Z2P_correct; rewrite BigN.spec_power_pos; auto.
 generalize (Qpower_decomp p (BigZ.to_Z nx) 
               (Z2P (BigN.to_Z dx))).
 unfold Qeq; simpl.
 repeat rewrite Z2P_correct; auto.
 unfold Qeq; simpl; intros HH.
 rewrite HH.
 rewrite BigZ.spec_power_pos; simpl; ring.
 Qed.

 Theorem spec_power_posc x p: wf x ->
   [[power_pos x p]] = [[x]] ^ nat_of_P p.
 intros x p Hx; unfold to_Qc.
 apply trans_equal with (!! ([x]^Zpos p)).
 unfold Q2Qc.
 apply Qc_decomp; intros _ _; unfold this.
 apply Qred_complete; apply spec_power_pos; auto.
 pattern p; apply Pind; clear p.
 simpl; ring.
 intros p Hrec.
 rewrite nat_of_P_succ_morphism; simpl Qcpower.
 rewrite <- Hrec.
 unfold Qcmult, Q2Qc.
 apply Qc_decomp; intros _ _;
 unfold this.
 apply Qred_complete.
 assert (F: [x] ^ ' Psucc p == [x] *   [x] ^ ' p).
  simpl; generalize Hx; case x; simpl; clear x Hx Hrec.
  intros x _; simpl; repeat rewrite Qpower_decomp; simpl.
  red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
  rewrite Pplus_one_succ_l.
  rewrite Zpower_pos_is_exp.
  rewrite Zpower_pos_1_r; auto.
  intros nx dx.
  match goal with  |- context[BigN.eq_bool ?X ?Y] => 
   generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool
  end; auto; rewrite BigN.spec_0.
  intros _ HH; case HH.
  intros H1 _.
  assert (F1: (0 < BigN.to_Z dx)%Z).
     generalize (BigN.spec_pos dx); auto with zarith.
  simpl; repeat rewrite Qpower_decomp; simpl.
  red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P.
  rewrite Pplus_one_succ_l.
  rewrite Zpower_pos_is_exp.
  rewrite Zpower_pos_1_r; auto.
  repeat rewrite Zpos_mult_morphism.
  repeat rewrite Z2P_correct; auto.
  2: apply Zpower_pos_pos; auto.
  2: apply Zpower_pos_pos; auto.
  rewrite Zpower_pos_is_exp.
  rewrite Zpower_pos_1_r; auto.
 rewrite F.
 apply Qmult_comp; apply Qeq_sym; apply Qred_correct.
 Qed.

End Qv.