(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* True | Qq n d => if BigN.eq_bool d BigN.zero then False else True end. Definition of_Q q: t := match q with x # y => Qq (BigZ.of_Z x) (BigN.of_N (Npos y)) end. Definition of_Qc q := of_Q (this q). Definition to_Q (q: t) := match q with Qz x => BigZ.to_Z x # 1 |Qq x y => BigZ.to_Z x # Z2P (BigN.to_Z y) end. Definition to_Qc q := !!(to_Q q). Notation "[[ x ]]" := (to_Qc x). Notation "[ x ]" := (to_Q x). Theorem spec_to_Q: forall q: Q, [of_Q q] = q. intros (x,y); simpl. rewrite BigZ.spec_of_Z; simpl. rewrite (BigN.spec_of_pos); auto. Qed. Theorem spec_to_Qc: forall q, [[of_Qc q]] = q. intros (x, Hx); unfold of_Qc, to_Qc; simpl. apply Qc_decomp; simpl. intros; rewrite spec_to_Q; auto. Qed. Definition opp (x: t): t := match x with | Qz zx => Qz (BigZ.opp zx) | Qq nx dx => Qq (BigZ.opp nx) dx end. Theorem wf_opp: forall x, wf x -> wf (opp x). intros [zx | nx dx]; unfold opp, wf; auto. Qed. Theorem spec_opp: forall q, ([opp q] = -[q])%Q. intros [z | x y]; simpl. rewrite BigZ.spec_opp; auto. rewrite BigZ.spec_opp; auto. Qed. Theorem spec_oppc: forall q, [[opp q]] = -[[q]]. intros q; unfold Qcopp, to_Qc, Q2Qc. apply Qc_decomp; intros _ _; unfold this. rewrite spec_opp. rewrite <- Qred_opp. rewrite Qred_involutive; auto. Qed. (* Les fonctions doivent assurer que si leur arguments sont valides alors le resultat est correct et valide (si c'est un Q) *) Definition compare (x y: t) := match x, y with | Qz zx, Qz zy => BigZ.compare zx zy | Qz zx, Qq ny dy => BigZ.compare (BigZ.mul zx (BigZ.Pos dy)) ny | Qq nx dx, Qz zy => BigZ.compare nx (BigZ.mul zy (BigZ.Pos dx)) | Qq nx dx, Qq ny dy => BigZ.compare (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) end. Theorem spec_compare: forall q1 q2, wf q1 -> wf q2 -> compare q1 q2 = ([q1] ?= [q2])%Q. intros [z1 | x1 y1] [z2 | x2 y2]; unfold Qcompare, compare, to_Q, Qnum, Qden, wf. repeat rewrite Zmult_1_r. generalize (BigZ.spec_compare z1 z2); case BigZ.compare; intros H; auto. rewrite H; rewrite Zcompare_refl; auto. rewrite Zmult_1_r. generalize (BigN.spec_eq_bool y2 BigN.zero); case BigN.eq_bool. intros _ _ HH; case HH. rewrite BigN.spec_0; intros HH _ _. rewrite Z2P_correct; auto with zarith. 2: generalize (BigN.spec_pos y2); auto with zarith. generalize (BigZ.spec_compare (z1 * BigZ.Pos y2) x2)%bigZ; case BigZ.compare; rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto. rewrite H; rewrite Zcompare_refl; auto. generalize (BigN.spec_eq_bool y1 BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH _ _. rewrite Z2P_correct; auto with zarith. 2: generalize (BigN.spec_pos y1); auto with zarith. rewrite Zmult_1_r. generalize (BigZ.spec_compare x1 (z2 * BigZ.Pos y1))%bigZ; case BigZ.compare; rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto. rewrite H; rewrite Zcompare_refl; auto. generalize (BigN.spec_eq_bool y1 BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH1. generalize (BigN.spec_eq_bool y2 BigN.zero); case BigN.eq_bool. intros _ _ HH; case HH. rewrite BigN.spec_0; intros HH2 _ _. repeat rewrite Z2P_correct. 2: generalize (BigN.spec_pos y1); auto with zarith. 2: generalize (BigN.spec_pos y2); auto with zarith. generalize (BigZ.spec_compare (x1 * BigZ.Pos y2) (x2 * BigZ.Pos y1))%bigZ; case BigZ.compare; repeat rewrite BigZ.spec_mul; simpl; intros H; apply sym_equal; auto. rewrite H; rewrite Zcompare_refl; auto. Qed. Theorem spec_comparec: forall q1 q2, wf q1 -> wf q2 -> compare q1 q2 = ([[q1]] ?= [[q2]]). unfold Qccompare, to_Qc. intros q1 q2 Hq1 Hq2; rewrite spec_compare; simpl; auto. apply Qcompare_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition norm n d: t := if BigZ.eq_bool n BigZ.zero then zero else let gcd := BigN.gcd (BigZ.to_N n) d in if BigN.eq_bool gcd BigN.one then Qq n d else let n := BigZ.div n (BigZ.Pos gcd) in let d := BigN.div d gcd in if BigN.eq_bool d BigN.one then Qz n else Qq n d. Theorem wf_norm: forall n q, (BigN.to_Z q <> 0)%Z -> wf (norm n q). intros p q; unfold norm, wf; intros Hq. assert (Hp := BigN.spec_pos (BigZ.to_N p)). match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; auto; rewrite BigZ.spec_0; intros H1. simpl; auto. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_1. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_1. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. set (a := BigN.to_Z (BigZ.to_N p)). set (b := (BigN.to_Z q)). assert (F: (0 < Zgcd a b)%Z). case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto. intros HH1; case Hq; apply (Zgcd_inv_0_r _ _ (sym_equal HH1)). rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto; fold a; fold b. intros H; case Hq; fold b. rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. rewrite H; auto with zarith. assert (F1:= Zgcd_is_gcd a b); inversion F1; auto. Qed. Theorem spec_norm: forall n q, ((0 < BigN.to_Z q)%Z -> [norm n q] == [Qq n q])%Q. intros p q; unfold norm; intros Hq. assert (Hp := BigN.spec_pos (BigZ.to_N p)). match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; auto; rewrite BigZ.spec_0; intros H1. red; simpl; rewrite H1; ring. case (Zle_lt_or_eq _ _ Hp); clear Hp; intros Hp. case (Zle_lt_or_eq _ _ (Zgcd_is_pos (BigN.to_Z (BigZ.to_N p)) (BigN.to_Z q))); intros H4. 2: generalize Hq; rewrite (Zgcd_inv_0_r _ _ (sym_equal H4)); auto with zarith. 2: red; simpl; auto with zarith. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_1; intros H2. apply Qeq_refl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_1. red; simpl. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. rewrite Zmult_1_r. rewrite Z2P_correct; auto with zarith. rewrite spec_to_N; intros; rewrite Zgcd_div_swap; auto. rewrite H; ring. intros H3. red; simpl. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. assert (F: (0 < BigN.to_Z (q / BigN.gcd (BigZ.to_N p) q)%bigN)%Z). rewrite BigN.spec_div; auto with zarith. rewrite BigN.spec_gcd. apply Zgcd_div_pos; auto. rewrite BigN.spec_gcd; auto. rewrite Z2P_correct; auto. rewrite Z2P_correct; auto. rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; auto with zarith. rewrite spec_to_N; apply Zgcd_div_swap; auto. case H1; rewrite spec_to_N; rewrite <- Hp; ring. Qed. Theorem spec_normc: forall n q, (0 < BigN.to_Z q)%Z -> [[norm n q]] = [[Qq n q]]. intros n q H; unfold to_Qc, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_norm; auto. Qed. Definition add (x y: t): t := match x, y with | Qz zx, Qz zy => Qz (BigZ.add zx zy) | Qz zx, Qq ny dy => Qq (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy | Qq nx dx, Qz zy => Qq (BigZ.add nx (BigZ.mul zy (BigZ.Pos dx))) dx | Qq nx dx, Qq ny dy => let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in let d := BigN.mul dx dy in Qq n d end. Theorem wf_add: forall x y, wf x -> wf y -> wf (add x y). intros [zx | nx dx] [zy | ny dy]; unfold add, wf; auto. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul. intros H1 H2 H3. case (Zmult_integral _ _ H1); auto with zarith. Qed. Theorem spec_add x y: wf x -> wf y -> ([add x y] == [x] + [y])%Q. intros [x | nx dx] [y | ny dy]; unfold Qplus; simpl. rewrite BigZ.spec_add; repeat rewrite Zmult_1_r; auto. intros; apply Qeq_refl; auto. assert (F1:= BigN.spec_pos dy). rewrite Zmult_1_r. generalize (BigN.spec_eq_bool dy BigN.zero); case BigN.eq_bool. intros _ _ HH; case HH. rewrite BigN.spec_0; intros HH _ _. rewrite Z2P_correct; auto with zarith. rewrite BigZ.spec_add; rewrite BigZ.spec_mul. simpl; apply Qeq_refl. generalize (BigN.spec_eq_bool dx BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH _ _. assert (F1:= BigN.spec_pos dx). rewrite Zmult_1_r; rewrite Pmult_1_r. simpl; rewrite Z2P_correct; auto with zarith. rewrite BigZ.spec_add; rewrite BigZ.spec_mul; simpl. apply Qeq_refl. generalize (BigN.spec_eq_bool dx BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH1. generalize (BigN.spec_eq_bool dy BigN.zero); case BigN.eq_bool. intros _ _ HH; case HH. rewrite BigN.spec_0; intros HH2 _ _. assert (Fx: (0 < BigN.to_Z dx)%Z). generalize (BigN.spec_pos dx); auto with zarith. assert (Fy: (0 < BigN.to_Z dy)%Z). generalize (BigN.spec_pos dy); auto with zarith. rewrite BigZ.spec_add; repeat rewrite BigN.spec_mul. red; simpl. rewrite Zpos_mult_morphism. repeat rewrite Z2P_correct; auto. repeat rewrite BigZ.spec_mul; simpl; auto. apply Zmult_lt_0_compat; auto. Qed. Theorem spec_addc x y: wf x -> wf y -> [[add x y]] = [[x]] + [[y]]. intros x y H1 H2; unfold to_Qc. apply trans_equal with (!! ([x] + [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_add; auto. unfold Qcplus, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qplus_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition add_norm (x y: t): t := match x, y with | Qz zx, Qz zy => Qz (BigZ.add zx zy) | Qz zx, Qq ny dy => norm (BigZ.add (BigZ.mul zx (BigZ.Pos dy)) ny) dy | Qq nx dx, Qz zy => norm (BigZ.add (BigZ.mul zy (BigZ.Pos dx)) nx) dx | Qq nx dx, Qq ny dy => let n := BigZ.add (BigZ.mul nx (BigZ.Pos dy)) (BigZ.mul ny (BigZ.Pos dx)) in let d := BigN.mul dx dy in norm n d end. Theorem wf_add_norm: forall x y, wf x -> wf y -> wf (add_norm x y). intros [zx | nx dx] [zy | ny dy]; unfold add_norm; auto. intros HH1 HH2; apply wf_norm. generalize HH2; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros HH1 HH2; apply wf_norm. generalize HH1; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros HH1 HH2; apply wf_norm. rewrite BigN.spec_mul; intros HH3. case (Zmult_integral _ _ HH3). generalize HH1; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. generalize HH2; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. Qed. Theorem spec_add_norm x y: wf x -> wf y -> ([add_norm x y] == [x] + [y])%Q. intros x y H1 H2; rewrite <- spec_add; auto. generalize H1 H2; unfold add_norm, add, wf; case x; case y; clear H1 H2. intros; apply Qeq_refl. intros p1 n p2 _. generalize (BigN.spec_eq_bool n BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH _. match goal with |- [norm ?X ?Y] == _ => apply Qeq_trans with ([Qq X Y]); [apply spec_norm | idtac] end. generalize (BigN.spec_pos n); auto with zarith. simpl. repeat rewrite BigZ.spec_add. repeat rewrite BigZ.spec_mul; simpl. apply Qeq_refl. intros p1 n p2. generalize (BigN.spec_eq_bool p2 BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH _ _. match goal with |- [norm ?X ?Y] == _ => apply Qeq_trans with ([Qq X Y]); [apply spec_norm | idtac] end. generalize (BigN.spec_pos p2); auto with zarith. simpl. repeat rewrite BigZ.spec_add. repeat rewrite BigZ.spec_mul; simpl. rewrite Zplus_comm. apply Qeq_refl. intros p1 q1 p2 q2. generalize (BigN.spec_eq_bool q2 BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH1 _. generalize (BigN.spec_eq_bool q1 BigN.zero); case BigN.eq_bool. intros _ HH; case HH. rewrite BigN.spec_0; intros HH2 _. match goal with |- [norm ?X ?Y] == _ => apply Qeq_trans with ([Qq X Y]); [apply spec_norm | idtac] end; try apply Qeq_refl. rewrite BigN.spec_mul. apply Zmult_lt_0_compat. generalize (BigN.spec_pos q2); auto with zarith. generalize (BigN.spec_pos q1); auto with zarith. Qed. Theorem spec_add_normc x y: wf x -> wf y -> [[add_norm x y]] = [[x]] + [[y]]. intros x y Hx Hy; unfold to_Qc. apply trans_equal with (!! ([x] + [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_add_norm; auto. unfold Qcplus, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qplus_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition sub x y := add x (opp y). Theorem wf_sub x y: wf x -> wf y -> wf (sub x y). intros x y Hx Hy; unfold sub; apply wf_add; auto. apply wf_opp; auto. Qed. Theorem spec_sub x y: wf x -> wf y -> ([sub x y] == [x] - [y])%Q. intros x y Hx Hy; unfold sub; rewrite spec_add; auto. rewrite spec_opp; ring. apply wf_opp; auto. Qed. Theorem spec_subc x y: wf x -> wf y -> [[sub x y]] = [[x]] - [[y]]. intros x y Hx Hy; unfold sub; rewrite spec_addc; auto. rewrite spec_oppc; ring. apply wf_opp; auto. Qed. Definition sub_norm x y := add_norm x (opp y). Theorem wf_sub_norm x y: wf x -> wf y -> wf (sub_norm x y). intros x y Hx Hy; unfold sub_norm; apply wf_add_norm; auto. apply wf_opp; auto. Qed. Theorem spec_sub_norm x y: wf x -> wf y -> ([sub_norm x y] == [x] - [y])%Q. intros x y Hx Hy; unfold sub_norm; rewrite spec_add_norm; auto. rewrite spec_opp; ring. apply wf_opp; auto. Qed. Theorem spec_sub_normc x y: wf x -> wf y -> [[sub_norm x y]] = [[x]] - [[y]]. intros x y Hx Hy; unfold sub_norm; rewrite spec_add_normc; auto. rewrite spec_oppc; ring. apply wf_opp; auto. Qed. Definition mul (x y: t): t := match x, y with | Qz zx, Qz zy => Qz (BigZ.mul zx zy) | Qz zx, Qq ny dy => Qq (BigZ.mul zx ny) dy | Qq nx dx, Qz zy => Qq (BigZ.mul nx zy) dx | Qq nx dx, Qq ny dy => Qq (BigZ.mul nx ny) (BigN.mul dx dy) end. Theorem wf_mul: forall x y, wf x -> wf y -> wf (mul x y). intros [zx | nx dx] [zy | ny dy]; unfold mul, wf; auto. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul. intros H1 H2 H3. case (Zmult_integral _ _ H1); auto with zarith. Qed. Theorem spec_mul x y: wf x -> wf y -> ([mul x y] == [x] * [y])%Q. intros [x | nx dx] [y | ny dy]; unfold Qmult; simpl. rewrite BigZ.spec_mul; repeat rewrite Zmult_1_r; auto. intros; apply Qeq_refl; auto. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros _ _ HH; case HH. rewrite BigN.spec_0; intros HH1 _ _. rewrite BigZ.spec_mul; apply Qeq_refl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros _ HH; case HH. rewrite BigN.spec_0; intros HH1 _ _. rewrite BigZ.spec_mul; rewrite Pmult_1_r. apply Qeq_refl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros _ HH; case HH. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros _ _ _ HH; case HH. rewrite BigN.spec_0; intros H1 H2 _ _. rewrite BigZ.spec_mul; rewrite BigN.spec_mul. assert (tmp: (forall a b, 0 < a -> 0 < b -> Z2P (a * b) = (Z2P a * Z2P b)%positive)%Z). intros [|a|a] [|b|b]; simpl; auto; intros; apply False_ind; auto with zarith. rewrite tmp; auto. apply Qeq_refl. generalize (BigN.spec_pos dx); auto with zarith. generalize (BigN.spec_pos dy); auto with zarith. Qed. Theorem spec_mulc x y: wf x -> wf y -> [[mul x y]] = [[x]] * [[y]]. intros x y Hx Hy; unfold to_Qc. apply trans_equal with (!! ([x] * [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_mul; auto. unfold Qcmult, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qmult_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition mul_norm (x y: t): t := match x, y with | Qz zx, Qz zy => Qz (BigZ.mul zx zy) | Qz zx, Qq ny dy => if BigZ.eq_bool zx BigZ.zero then zero else let gcd := BigN.gcd (BigZ.to_N zx) dy in if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zx ny) dy else let zx := BigZ.div zx (BigZ.Pos gcd) in let d := BigN.div dy gcd in if BigN.eq_bool d BigN.one then Qz (BigZ.mul zx ny) else Qq (BigZ.mul zx ny) d | Qq nx dx, Qz zy => if BigZ.eq_bool zy BigZ.zero then zero else let gcd := BigN.gcd (BigZ.to_N zy) dx in if BigN.eq_bool gcd BigN.one then Qq (BigZ.mul zy nx) dx else let zy := BigZ.div zy (BigZ.Pos gcd) in let d := BigN.div dx gcd in if BigN.eq_bool d BigN.one then Qz (BigZ.mul zy nx) else Qq (BigZ.mul zy nx) d | Qq nx dx, Qq ny dy => norm (BigZ.mul nx ny) (BigN.mul dx dy) end. Theorem wf_mul_norm: forall x y, wf x -> wf y -> wf (mul_norm x y). intros [zx | nx dx] [zy | ny dy]; unfold mul_norm; auto. intros HH1 HH2. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; auto. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_1; rewrite BigZ.spec_0. intros H1 H2; unfold wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_0. set (a := BigN.to_Z (BigZ.to_N zx)). set (b := (BigN.to_Z dy)). assert (F: (0 < Zgcd a b)%Z). case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto. intros HH3; case H2; rewrite spec_to_N; fold a. rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring. rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto. intros H. generalize HH2; simpl wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_0; intros HH; case HH; fold b. rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. rewrite H; auto with zarith. assert (F1:= Zgcd_is_gcd a b); inversion F1; auto. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_1; rewrite BigN.spec_gcd. intros HH1 H1 H2. match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; auto. rewrite BigN.spec_1; rewrite BigN.spec_gcd. intros HH1 H1 H2. match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; auto. rewrite BigZ.spec_0. intros HH2. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. set (a := BigN.to_Z (BigZ.to_N zy)). set (b := (BigN.to_Z dx)). assert (F: (0 < Zgcd a b)%Z). case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); auto. intros HH3; case HH2; rewrite spec_to_N; fold a. rewrite (Zgcd_inv_0_l _ _ (sym_equal HH3)); try ring. rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto. intros H; unfold wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_0. rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a; fold b; auto. intros HH; generalize H1; simpl wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. rewrite BigN.spec_0. intros HH3; case HH3; fold b. rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. rewrite HH; auto with zarith. assert (F1:= Zgcd_is_gcd a b); inversion F1; auto. intros HH1 HH2; apply wf_norm. rewrite BigN.spec_mul; intros HH3. case (Zmult_integral _ _ HH3). generalize HH1; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. generalize HH2; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. Qed. Theorem spec_mul_norm x y: wf x -> wf y -> ([mul_norm x y] == [x] * [y])%Q. intros x y Hx Hy; rewrite <- spec_mul; auto. unfold mul_norm, mul; generalize Hx Hy; case x; case y; clear Hx Hy. intros; apply Qeq_refl. intros p1 n p2 Hx Hy. match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H. rewrite BigZ.spec_mul; rewrite H; red; auto. assert (F: (0 < BigN.to_Z (BigZ.to_N p2))%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p2))); auto. intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring. assert (F1: (0 < BigN.to_Z n)%Z). generalize Hy; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto. intros _ HH; case HH. rewrite BigN.spec_0; generalize (BigN.spec_pos n); auto with zarith. set (a := BigN.to_Z (BigZ.to_N p2)). set (b := BigN.to_Z n). assert (F2: (0 < Zgcd a b )%Z). case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto. generalize F; fold a; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_1; try rewrite BigN.spec_gcd; fold a b; intros H1. intros; apply Qeq_refl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_1. rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith; fold a b; intros H2. red; simpl. repeat rewrite BigZ.spec_mul. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. rewrite Z2P_correct; auto with zarith. rewrite spec_to_N; fold a; fold b. rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc. rewrite (Zmult_comm (BigZ.to_Z p1)). repeat rewrite Zmult_assoc. rewrite Zgcd_div_swap; auto with zarith. rewrite H2; ring. repeat rewrite BigZ.spec_mul. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. intros H2; red; simpl. repeat rewrite BigZ.spec_mul. rewrite Z2P_correct; auto with zarith. rewrite (spec_to_N p2); fold a b. rewrite Z2P_correct; auto with zarith. repeat rewrite <- Zmult_assoc. rewrite (Zmult_comm (BigZ.to_Z p1)). repeat rewrite Zmult_assoc. rewrite Zgcd_div_swap; auto; try ring. case (Zle_lt_or_eq _ _ (BigN.spec_pos (n / BigN.gcd (BigZ.to_N p2) n))%bigN); rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. intros H3. apply False_ind; generalize F1. generalize Hy; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; auto with zarith. intros HH; case HH; fold b. rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. rewrite <- H3; ring. assert (FF:= Zgcd_is_gcd a b); inversion FF; auto. intros p1 p2 n Hx Hy. match goal with |- context[BigZ.eq_bool ?X ?Y] => generalize (BigZ.spec_eq_bool X Y); case BigZ.eq_bool end; unfold zero, to_Q; repeat rewrite BigZ.spec_0; intros H. rewrite BigZ.spec_mul; rewrite H; red; simpl; ring. set (a := BigN.to_Z (BigZ.to_N p1)). set (b := BigN.to_Z n). assert (F: (0 < a)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos (BigZ.to_N p1))); auto. intros H1; case H; rewrite spec_to_N; rewrite <- H1; ring. assert (F1: (0 < b)%Z). generalize Hx; unfold wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; auto with zarith. generalize (BigN.spec_pos n); fold b; auto with zarith. assert (F2: (0 < Zgcd a b)%Z). case (Zle_lt_or_eq _ _ (Zgcd_is_pos a b)); intros H3; auto. generalize F; rewrite (Zgcd_inv_0_l _ _ (sym_equal H3)); auto with zarith. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_1; rewrite BigN.spec_gcd; fold a b; intros H1. intros; repeat rewrite BigZ.spec_mul; rewrite Zmult_comm; apply Qeq_refl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_1. rewrite BigN.spec_div; rewrite BigN.spec_gcd; auto with zarith. fold a b; intros H2. red; simpl. repeat rewrite BigZ.spec_mul. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. rewrite Z2P_correct; auto with zarith. rewrite spec_to_N; fold a b. rewrite Zmult_1_r; repeat rewrite <- Zmult_assoc. rewrite (Zmult_comm (BigZ.to_Z p2)). repeat rewrite Zmult_assoc. rewrite Zgcd_div_swap; auto with zarith. rewrite H2; ring. intros H2. red; simpl. repeat rewrite BigZ.spec_mul. rewrite BigZ.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. rewrite Z2P_correct; auto with zarith. rewrite (spec_to_N p1); fold a b. case (Zle_lt_or_eq _ _ (BigN.spec_pos (n / BigN.gcd (BigZ.to_N p1) n))%bigN); intros F3. rewrite Z2P_correct; auto with zarith. rewrite BigN.spec_div; simpl; rewrite BigN.spec_gcd; fold a b; auto with zarith. repeat rewrite <- Zmult_assoc. rewrite (Zmult_comm (BigZ.to_Z p2)). repeat rewrite Zmult_assoc. rewrite Zgcd_div_swap; auto; try ring. apply False_ind; generalize F1. rewrite (Zdivide_Zdiv_eq (Zgcd a b) b); auto. generalize F3; rewrite BigN.spec_div; rewrite BigN.spec_gcd; fold a b; auto with zarith. intros HH; rewrite <- HH; auto with zarith. assert (FF:= Zgcd_is_gcd a b); inversion FF; auto. intros p1 n1 p2 n2 Hn1 Hn2. match goal with |- [norm ?X ?Y] == _ => apply Qeq_trans with ([Qq X Y]); [apply spec_norm | idtac] end; try apply Qeq_refl. rewrite BigN.spec_mul. apply Zmult_lt_0_compat. generalize Hn1; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; auto with zarith. generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith. generalize Hn2; simpl. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; auto with zarith. generalize (BigN.spec_pos n1) (BigN.spec_pos n2); auto with zarith. Qed. Theorem spec_mul_normc x y: wf x -> wf y -> [[mul_norm x y]] = [[x]] * [[y]]. intros x y Hx Hy; unfold to_Qc. apply trans_equal with (!! ([x] * [y])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_mul_norm; auto. unfold Qcmult, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qmult_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition inv (x: t): t := match x with | Qz (BigZ.Pos n) => if BigN.eq_bool n BigN.zero then zero else Qq BigZ.one n | Qz (BigZ.Neg n) => if BigN.eq_bool n BigN.zero then zero else Qq BigZ.minus_one n | Qq (BigZ.Pos n) d => if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Pos d) n | Qq (BigZ.Neg n) d => if BigN.eq_bool n BigN.zero then zero else Qq (BigZ.Neg d) n end. Theorem wf_inv: forall x, wf x -> wf (inv x). intros [ zx | nx dx]; unfold inv, wf; auto. case zx; clear zx. intros nx. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul. intros nx. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0; rewrite BigN.spec_mul. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. intros _ HH; case HH. intros H1 _. case nx; clear nx. intros nx. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; simpl; auto. intros nx. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; simpl; auto. Qed. Theorem spec_inv x: wf x -> ([inv x] == /[x])%Q. intros [ [x | x] _ | [nx | nx] dx]; unfold inv. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H. unfold zero, to_Q; rewrite BigZ.spec_0. unfold BigZ.to_Z; rewrite H; apply Qeq_refl. assert (F: (0 < BigN.to_Z x)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. unfold to_Q; rewrite BigZ.spec_1. red; unfold Qinv; simpl. generalize F; case BigN.to_Z; auto with zarith. intros p Hp; discriminate Hp. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H. unfold zero, to_Q; rewrite BigZ.spec_0. unfold BigZ.to_Z; rewrite H; apply Qeq_refl. assert (F: (0 < BigN.to_Z x)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos x)); auto with zarith. red; unfold Qinv; simpl. generalize F; case BigN.to_Z; simpl; auto with zarith. intros p Hp; discriminate Hp. simpl wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H1. intros HH; case HH. intros _. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H. unfold zero, to_Q; rewrite BigZ.spec_0. unfold BigZ.to_Z; rewrite H; apply Qeq_refl. assert (F: (0 < BigN.to_Z nx)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith. red; unfold Qinv; simpl. rewrite Z2P_correct; auto with zarith. generalize F; case BigN.to_Z; auto with zarith. intros p Hp; discriminate Hp. generalize (BigN.spec_pos dx); auto with zarith. simpl wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H1. intros HH; case HH. intros _. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; rewrite BigN.spec_0; intros H. unfold zero, to_Q; rewrite BigZ.spec_0. unfold BigZ.to_Z; rewrite H; apply Qeq_refl. assert (F: (0 < BigN.to_Z nx)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos nx)); auto with zarith. red; unfold Qinv; simpl. rewrite Z2P_correct; auto with zarith. generalize F; case BigN.to_Z; auto with zarith. simpl; intros. match goal with |- (?X = Zneg ?Y)%Z => replace (Zneg Y) with (Zopp (Zpos Y)); try rewrite Z2P_correct; auto with zarith end. rewrite Zpos_mult_morphism; rewrite Z2P_correct; auto with zarith; try ring. generalize (BigN.spec_pos dx); auto with zarith. intros p Hp; discriminate Hp. generalize (BigN.spec_pos dx); auto with zarith. Qed. Theorem spec_invc x: wf x -> [[inv x]] = /[[x]]. intros x Hx; unfold to_Qc. apply trans_equal with (!! (/[x])). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_inv; auto. unfold Qcinv, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qinv_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition div x y := mul x (inv y). Theorem wf_div x y: wf x -> wf y -> wf (div x y). intros x y Hx Hy; unfold div; apply wf_mul; auto. apply wf_inv; auto. Qed. Theorem spec_div x y: wf x -> wf y -> ([div x y] == [x] / [y])%Q. intros x y Hx Hy; unfold div; rewrite spec_mul; auto. unfold Qdiv; apply Qmult_comp. apply Qeq_refl. apply spec_inv; auto. apply wf_inv; auto. Qed. Theorem spec_divc x y: wf x -> wf y -> [[div x y]] = [[x]] / [[y]]. intros x y Hx Hy; unfold div; rewrite spec_mulc; auto. unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. apply spec_invc; auto. apply wf_inv; auto. Qed. Definition div_norm x y := mul_norm x (inv y). Theorem wf_div_norm x y: wf x -> wf y -> wf (div_norm x y). intros x y Hx Hy; unfold div_norm; apply wf_mul_norm; auto. apply wf_inv; auto. Qed. Theorem spec_div_norm x y: wf x -> wf y -> ([div_norm x y] == [x] / [y])%Q. intros x y Hx Hy; unfold div_norm; rewrite spec_mul_norm; auto. unfold Qdiv; apply Qmult_comp. apply Qeq_refl. apply spec_inv; auto. apply wf_inv; auto. Qed. Theorem spec_div_normc x y: wf x -> wf y -> [[div_norm x y]] = [[x]] / [[y]]. intros x y Hx Hy; unfold div_norm; rewrite spec_mul_normc; auto. unfold Qcdiv; apply f_equal2 with (f := Qcmult); auto. apply spec_invc; auto. apply wf_inv; auto. Qed. Definition square (x: t): t := match x with | Qz zx => Qz (BigZ.square zx) | Qq nx dx => Qq (BigZ.square nx) (BigN.square dx) end. Theorem wf_square: forall x, wf x -> wf (square x). intros [ zx | nx dx]; unfold square, wf; auto. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. rewrite BigN.spec_square; intros H1 H2; case H2. case (Zmult_integral _ _ H1); auto. Qed. Theorem spec_square x: wf x -> ([square x] == [x] ^ 2)%Q. intros [ x | nx dx]; unfold square. intros _. red; simpl; rewrite BigZ.spec_square; auto with zarith. unfold wf. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. intros _ HH; case HH. intros H1 _. red; simpl; rewrite BigZ.spec_square; auto with zarith. assert (F: (0 < BigN.to_Z dx)%Z). case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith. assert (F1 : (0 < BigN.to_Z (BigN.square dx))%Z). rewrite BigN.spec_square; apply Zmult_lt_0_compat; auto with zarith. rewrite Zpos_mult_morphism. repeat rewrite Z2P_correct; auto with zarith. rewrite BigN.spec_square; auto with zarith. Qed. Theorem spec_squarec x: wf x -> [[square x]] = [[x]]^2. intros x Hx; unfold to_Qc. apply trans_equal with (!! ([x]^2)). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_square; auto. simpl Qcpower. replace (!! [x] * 1) with (!![x]); try ring. simpl. unfold Qcmult, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. apply Qmult_comp; apply Qeq_sym; apply Qred_correct. Qed. Definition power_pos (x: t) p: t := match x with | Qz zx => Qz (BigZ.power_pos zx p) | Qq nx dx => Qq (BigZ.power_pos nx p) (BigN.power_pos dx p) end. Theorem wf_power_pos: forall x p, wf x -> wf (power_pos x p). intros [ zx | nx dx] p; unfold power_pos, wf; auto. repeat match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. rewrite BigN.spec_power_pos; simpl. intros H1 H2 _. case (Zle_lt_or_eq _ _ (BigN.spec_pos dx)); auto with zarith. intros H3; generalize (Zpower_pos_pos _ p H3); auto with zarith. Qed. Theorem spec_power_pos x p: wf x -> ([power_pos x p] == [x] ^ Zpos p)%Q. Proof. intros [x | nx dx] p; unfold power_pos. intros _; unfold power_pos; red; simpl. generalize (Qpower_decomp p (BigZ.to_Z x) 1). unfold Qeq; simpl. rewrite Zpower_pos_1_l; simpl Z2P. rewrite Zmult_1_r. intros H; rewrite H. rewrite BigZ.spec_power_pos; simpl; ring. unfold wf. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. intros _ HH; case HH. intros H1 _. assert (F1: (0 < BigN.to_Z dx)%Z). generalize (BigN.spec_pos dx); auto with zarith. assert (F2: (0 < BigN.to_Z dx ^ ' p)%Z). unfold Zpower; apply Zpower_pos_pos; auto. unfold power_pos; red; simpl. rewrite Z2P_correct; rewrite BigN.spec_power_pos; auto. generalize (Qpower_decomp p (BigZ.to_Z nx) (Z2P (BigN.to_Z dx))). unfold Qeq; simpl. repeat rewrite Z2P_correct; auto. unfold Qeq; simpl; intros HH. rewrite HH. rewrite BigZ.spec_power_pos; simpl; ring. Qed. Theorem spec_power_posc x p: wf x -> [[power_pos x p]] = [[x]] ^ nat_of_P p. intros x p Hx; unfold to_Qc. apply trans_equal with (!! ([x]^Zpos p)). unfold Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete; apply spec_power_pos; auto. pattern p; apply Pind; clear p. simpl; ring. intros p Hrec. rewrite nat_of_P_succ_morphism; simpl Qcpower. rewrite <- Hrec. unfold Qcmult, Q2Qc. apply Qc_decomp; intros _ _; unfold this. apply Qred_complete. assert (F: [x] ^ ' Psucc p == [x] * [x] ^ ' p). simpl; generalize Hx; case x; simpl; clear x Hx Hrec. intros x _; simpl; repeat rewrite Qpower_decomp; simpl. red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P. rewrite Pplus_one_succ_l. rewrite Zpower_pos_is_exp. rewrite Zpower_pos_1_r; auto. intros nx dx. match goal with |- context[BigN.eq_bool ?X ?Y] => generalize (BigN.spec_eq_bool X Y); case BigN.eq_bool end; auto; rewrite BigN.spec_0. intros _ HH; case HH. intros H1 _. assert (F1: (0 < BigN.to_Z dx)%Z). generalize (BigN.spec_pos dx); auto with zarith. simpl; repeat rewrite Qpower_decomp; simpl. red; simpl; repeat rewrite Zpower_pos_1_l; simpl Z2P. rewrite Pplus_one_succ_l. rewrite Zpower_pos_is_exp. rewrite Zpower_pos_1_r; auto. repeat rewrite Zpos_mult_morphism. repeat rewrite Z2P_correct; auto. 2: apply Zpower_pos_pos; auto. 2: apply Zpower_pos_pos; auto. rewrite Zpower_pos_is_exp. rewrite Zpower_pos_1_r; auto. rewrite F. apply Qmult_comp; apply Qeq_sym; apply Qred_correct. Qed. End Qv.