summaryrefslogtreecommitdiff
path: root/theories/Numbers/NatInt/NZGcd.v
blob: 42bee3151249bfc0dd153656cdc083c6ba596658 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(** Greatest Common Divisor *)

Require Import NZAxioms NZMulOrder.

(** Interface of a gcd function, then its specification on naturals *)

Module Type Gcd (Import A : Typ).
 Parameter Inline gcd : t -> t -> t.
End Gcd.

Module Type NZGcdSpec (A : NZOrdAxiomsSig')(B : Gcd A).
 Import A B.
 Definition divide n m := exists p, m == p*n.
 Local Notation "( n | m )" := (divide n m) (at level 0).
 Axiom gcd_divide_l : forall n m, (gcd n m | n).
 Axiom gcd_divide_r : forall n m, (gcd n m | m).
 Axiom gcd_greatest : forall n m p, (p | n) -> (p | m) -> (p | gcd n m).
 Axiom gcd_nonneg : forall n m, 0 <= gcd n m.
End NZGcdSpec.

Module Type DivideNotation (A:NZOrdAxiomsSig')(B:Gcd A)(C:NZGcdSpec A B).
 Import A B C.
 Notation "( n | m )" := (divide n m) (at level 0).
End DivideNotation.

Module Type NZGcd (A : NZOrdAxiomsSig) := Gcd A <+ NZGcdSpec A.
Module Type NZGcd' (A : NZOrdAxiomsSig) :=
 Gcd A <+ NZGcdSpec A <+ DivideNotation A.

(** Derived properties of gcd *)

Module NZGcdProp
 (Import A : NZOrdAxiomsSig')
 (Import B : NZGcd' A)
 (Import C : NZMulOrderProp A).

(** Results concerning divisibility*)

Instance divide_wd : Proper (eq==>eq==>iff) divide.
Proof.
 unfold divide. intros x x' Hx y y' Hy.
 setoid_rewrite Hx. setoid_rewrite Hy. easy.
Qed.

Lemma divide_1_l : forall n, (1 | n).
Proof.
 intros n. exists n. now nzsimpl.
Qed.

Lemma divide_0_r : forall n, (n | 0).
Proof.
 intros n. exists 0. now nzsimpl.
Qed.

Hint Rewrite divide_1_l divide_0_r : nz.

Lemma divide_0_l : forall n, (0 | n) -> n==0.
Proof.
 intros n (m,Hm). revert Hm. now nzsimpl.
Qed.

Lemma eq_mul_1_nonneg : forall n m,
 0<=n -> n*m == 1 -> n==1 /\ m==1.
Proof.
 intros n m Hn H.
 le_elim Hn.
 destruct (lt_ge_cases m 0) as [Hm|Hm].
 generalize (mul_pos_neg n m Hn Hm). order'.
 le_elim Hm.
 apply le_succ_l in Hn. rewrite <- one_succ in Hn.
 le_elim Hn.
 generalize (lt_1_mul_pos n m Hn Hm). order.
 rewrite <- Hn, mul_1_l in H. now split.
 rewrite <- Hm, mul_0_r in H. order'.
 rewrite <- Hn, mul_0_l in H. order'.
Qed.

Lemma eq_mul_1_nonneg' : forall n m,
 0<=m -> n*m == 1 -> n==1 /\ m==1.
Proof.
 intros n m Hm H. rewrite mul_comm in H.
 now apply and_comm, eq_mul_1_nonneg.
Qed.

Lemma divide_1_r_nonneg : forall n, 0<=n -> (n | 1) -> n==1.
Proof.
 intros n Hn (m,Hm). symmetry in Hm.
 now apply (eq_mul_1_nonneg' m n).
Qed.

Lemma divide_refl : forall n, (n | n).
Proof.
 intros n. exists 1. now nzsimpl.
Qed.

Lemma divide_trans : forall n m p, (n | m) -> (m | p) -> (n | p).
Proof.
 intros n m p (q,Hq) (r,Hr). exists (r*q).
 now rewrite Hr, Hq, mul_assoc.
Qed.

Instance divide_reflexive : Reflexive divide | 5 := divide_refl.
Instance divide_transitive : Transitive divide | 5 := divide_trans.

(** Due to sign, no general antisymmetry result *)

Lemma divide_antisym_nonneg : forall n m,
 0<=n -> 0<=m -> (n | m) -> (m | n) -> n == m.
Proof.
 intros n m Hn Hm (q,Hq) (r,Hr).
 le_elim Hn.
 destruct (lt_ge_cases q 0) as [Hq'|Hq'].
 generalize (mul_neg_pos q n Hq' Hn). order.
 rewrite Hq, mul_assoc in Hr. symmetry in Hr.
 apply mul_id_l in Hr; [|order].
 destruct (eq_mul_1_nonneg' r q) as [_ H]; trivial.
 now rewrite H, mul_1_l in Hq.
 rewrite <- Hn, mul_0_r in Hq. now rewrite <- Hn.
Qed.

Lemma mul_divide_mono_l : forall n m p, (n | m) -> (p * n | p * m).
Proof.
 intros n m p (q,Hq). exists q. now rewrite mul_shuffle3, Hq.
Qed.

Lemma mul_divide_mono_r : forall n m p, (n | m) -> (n * p | m * p).
Proof.
 intros n m p (q,Hq). exists q. now rewrite mul_assoc, Hq.
Qed.

Lemma mul_divide_cancel_l : forall n m p, p ~= 0 ->
 ((p * n | p * m) <-> (n | m)).
Proof.
 intros n m p Hp. split.
 intros (q,Hq). exists q. now rewrite mul_shuffle3, mul_cancel_l in Hq.
 apply mul_divide_mono_l.
Qed.

Lemma mul_divide_cancel_r : forall n m p, p ~= 0 ->
 ((n * p | m * p) <-> (n | m)).
Proof.
 intros. rewrite 2 (mul_comm _ p). now apply mul_divide_cancel_l.
Qed.

Lemma divide_add_r : forall n m p, (n | m) -> (n | p) -> (n | m + p).
Proof.
 intros n m p (q,Hq) (r,Hr). exists (q+r).
 now rewrite mul_add_distr_r, Hq, Hr.
Qed.

Lemma divide_mul_l : forall n m p, (n | m) -> (n | m * p).
Proof.
 intros n m p (q,Hq). exists (q*p). now rewrite mul_shuffle0, Hq.
Qed.

Lemma divide_mul_r : forall n m p, (n | p) -> (n | m * p).
Proof.
 intros n m p. rewrite mul_comm. apply divide_mul_l.
Qed.

Lemma divide_factor_l : forall n m, (n | n * m).
Proof.
 intros. apply divide_mul_l, divide_refl.
Qed.

Lemma divide_factor_r : forall n m, (n | m * n).
Proof.
 intros. apply divide_mul_r, divide_refl.
Qed.

Lemma divide_pos_le : forall n m, 0 < m -> (n | m) -> n <= m.
Proof.
 intros n m Hm (q,Hq).
 destruct (le_gt_cases n 0) as [Hn|Hn]. order.
 rewrite Hq.
 destruct (lt_ge_cases q 0) as [Hq'|Hq'].
 generalize (mul_neg_pos q n Hq' Hn). order.
 le_elim Hq'.
 rewrite <- (mul_1_l n) at 1. apply mul_le_mono_pos_r; trivial.
 now rewrite one_succ, le_succ_l.
 rewrite <- Hq', mul_0_l in Hq. order.
Qed.

(** Basic properties of gcd *)

Lemma gcd_unique : forall n m p,
 0<=p -> (p|n) -> (p|m) ->
 (forall q, (q|n) -> (q|m) -> (q|p)) ->
 gcd n m == p.
Proof.
 intros n m p Hp Hn Hm H.
 apply divide_antisym_nonneg; trivial. apply gcd_nonneg.
 apply H. apply gcd_divide_l. apply gcd_divide_r.
 now apply gcd_greatest.
Qed.

Instance gcd_wd : Proper (eq==>eq==>eq) gcd.
Proof.
 intros x x' Hx y y' Hy.
 apply gcd_unique.
 apply gcd_nonneg.
 rewrite Hx. apply gcd_divide_l.
 rewrite Hy. apply gcd_divide_r.
 intro. rewrite Hx, Hy. apply gcd_greatest.
Qed.

Lemma gcd_divide_iff : forall n m p,
  (p | gcd n m) <-> (p | n) /\ (p | m).
Proof.
 intros. split. split.
 transitivity (gcd n m); trivial using gcd_divide_l.
 transitivity (gcd n m); trivial using gcd_divide_r.
 intros (H,H'). now apply gcd_greatest.
Qed.

Lemma gcd_unique_alt : forall n m p, 0<=p ->
 (forall q, (q|p) <-> (q|n) /\ (q|m)) ->
 gcd n m == p.
Proof.
 intros n m p Hp H.
 apply gcd_unique; trivial.
 apply H. apply divide_refl.
 apply H. apply divide_refl.
 intros. apply H. now split.
Qed.

Lemma gcd_comm : forall n m, gcd n m == gcd m n.
Proof.
 intros. apply gcd_unique_alt; try apply gcd_nonneg.
 intros. rewrite and_comm. apply gcd_divide_iff.
Qed.

Lemma gcd_assoc : forall n m p, gcd n (gcd m p) == gcd (gcd n m) p.
Proof.
 intros. apply gcd_unique_alt; try apply gcd_nonneg.
 intros. now rewrite !gcd_divide_iff, and_assoc.
Qed.

Lemma gcd_0_l_nonneg : forall n, 0<=n -> gcd 0 n == n.
Proof.
 intros. apply gcd_unique; trivial.
 apply divide_0_r.
 apply divide_refl.
Qed.

Lemma gcd_0_r_nonneg : forall n, 0<=n -> gcd n 0 == n.
Proof.
 intros. now rewrite gcd_comm, gcd_0_l_nonneg.
Qed.

Lemma gcd_1_l : forall n, gcd 1 n == 1.
Proof.
 intros. apply gcd_unique; trivial using divide_1_l, le_0_1.
Qed.

Lemma gcd_1_r : forall n, gcd n 1 == 1.
Proof.
 intros. now rewrite gcd_comm, gcd_1_l.
Qed.

Lemma gcd_diag_nonneg : forall n, 0<=n -> gcd n n == n.
Proof.
 intros. apply gcd_unique; trivial using divide_refl.
Qed.

Lemma gcd_eq_0_l : forall n m, gcd n m == 0 -> n == 0.
Proof.
 intros.
 generalize (gcd_divide_l n m). rewrite H. apply divide_0_l.
Qed.

Lemma gcd_eq_0_r : forall n m, gcd n m == 0 -> m == 0.
Proof.
 intros. apply gcd_eq_0_l with n. now rewrite gcd_comm.
Qed.

Lemma gcd_eq_0 : forall n m, gcd n m == 0 <-> n == 0 /\ m == 0.
Proof.
 intros. split. split.
 now apply gcd_eq_0_l with m.
 now apply gcd_eq_0_r with n.
 intros (EQ,EQ'). rewrite EQ, EQ'. now apply gcd_0_r_nonneg.
Qed.

Lemma gcd_mul_diag_l : forall n m, 0<=n -> gcd n (n*m) == n.
Proof.
 intros n m Hn. apply gcd_unique_alt; trivial.
 intros q. split. split; trivial. now apply divide_mul_l.
 now destruct 1.
Qed.

Lemma divide_gcd_iff : forall n m, 0<=n -> ((n|m) <-> gcd n m == n).
Proof.
 intros n m Hn. split. intros (q,Hq). rewrite Hq.
 rewrite mul_comm. now apply gcd_mul_diag_l.
 intros EQ. rewrite <- EQ. apply gcd_divide_r.
Qed.

End NZGcdProp.