(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* t -> t. End Gcd. Module Type NZGcdSpec (A : NZOrdAxiomsSig')(B : Gcd A). Import A B. Definition divide n m := exists p, m == p*n. Local Notation "( n | m )" := (divide n m) (at level 0). Axiom gcd_divide_l : forall n m, (gcd n m | n). Axiom gcd_divide_r : forall n m, (gcd n m | m). Axiom gcd_greatest : forall n m p, (p | n) -> (p | m) -> (p | gcd n m). Axiom gcd_nonneg : forall n m, 0 <= gcd n m. End NZGcdSpec. Module Type DivideNotation (A:NZOrdAxiomsSig')(B:Gcd A)(C:NZGcdSpec A B). Import A B C. Notation "( n | m )" := (divide n m) (at level 0). End DivideNotation. Module Type NZGcd (A : NZOrdAxiomsSig) := Gcd A <+ NZGcdSpec A. Module Type NZGcd' (A : NZOrdAxiomsSig) := Gcd A <+ NZGcdSpec A <+ DivideNotation A. (** Derived properties of gcd *) Module NZGcdProp (Import A : NZOrdAxiomsSig') (Import B : NZGcd' A) (Import C : NZMulOrderProp A). (** Results concerning divisibility*) Instance divide_wd : Proper (eq==>eq==>iff) divide. Proof. unfold divide. intros x x' Hx y y' Hy. setoid_rewrite Hx. setoid_rewrite Hy. easy. Qed. Lemma divide_1_l : forall n, (1 | n). Proof. intros n. exists n. now nzsimpl. Qed. Lemma divide_0_r : forall n, (n | 0). Proof. intros n. exists 0. now nzsimpl. Qed. Hint Rewrite divide_1_l divide_0_r : nz. Lemma divide_0_l : forall n, (0 | n) -> n==0. Proof. intros n (m,Hm). revert Hm. now nzsimpl. Qed. Lemma eq_mul_1_nonneg : forall n m, 0<=n -> n*m == 1 -> n==1 /\ m==1. Proof. intros n m Hn H. le_elim Hn. destruct (lt_ge_cases m 0) as [Hm|Hm]. generalize (mul_pos_neg n m Hn Hm). order'. le_elim Hm. apply le_succ_l in Hn. rewrite <- one_succ in Hn. le_elim Hn. generalize (lt_1_mul_pos n m Hn Hm). order. rewrite <- Hn, mul_1_l in H. now split. rewrite <- Hm, mul_0_r in H. order'. rewrite <- Hn, mul_0_l in H. order'. Qed. Lemma eq_mul_1_nonneg' : forall n m, 0<=m -> n*m == 1 -> n==1 /\ m==1. Proof. intros n m Hm H. rewrite mul_comm in H. now apply and_comm, eq_mul_1_nonneg. Qed. Lemma divide_1_r_nonneg : forall n, 0<=n -> (n | 1) -> n==1. Proof. intros n Hn (m,Hm). symmetry in Hm. now apply (eq_mul_1_nonneg' m n). Qed. Lemma divide_refl : forall n, (n | n). Proof. intros n. exists 1. now nzsimpl. Qed. Lemma divide_trans : forall n m p, (n | m) -> (m | p) -> (n | p). Proof. intros n m p (q,Hq) (r,Hr). exists (r*q). now rewrite Hr, Hq, mul_assoc. Qed. Instance divide_reflexive : Reflexive divide | 5 := divide_refl. Instance divide_transitive : Transitive divide | 5 := divide_trans. (** Due to sign, no general antisymmetry result *) Lemma divide_antisym_nonneg : forall n m, 0<=n -> 0<=m -> (n | m) -> (m | n) -> n == m. Proof. intros n m Hn Hm (q,Hq) (r,Hr). le_elim Hn. destruct (lt_ge_cases q 0) as [Hq'|Hq']. generalize (mul_neg_pos q n Hq' Hn). order. rewrite Hq, mul_assoc in Hr. symmetry in Hr. apply mul_id_l in Hr; [|order]. destruct (eq_mul_1_nonneg' r q) as [_ H]; trivial. now rewrite H, mul_1_l in Hq. rewrite <- Hn, mul_0_r in Hq. now rewrite <- Hn. Qed. Lemma mul_divide_mono_l : forall n m p, (n | m) -> (p * n | p * m). Proof. intros n m p (q,Hq). exists q. now rewrite mul_shuffle3, Hq. Qed. Lemma mul_divide_mono_r : forall n m p, (n | m) -> (n * p | m * p). Proof. intros n m p (q,Hq). exists q. now rewrite mul_assoc, Hq. Qed. Lemma mul_divide_cancel_l : forall n m p, p ~= 0 -> ((p * n | p * m) <-> (n | m)). Proof. intros n m p Hp. split. intros (q,Hq). exists q. now rewrite mul_shuffle3, mul_cancel_l in Hq. apply mul_divide_mono_l. Qed. Lemma mul_divide_cancel_r : forall n m p, p ~= 0 -> ((n * p | m * p) <-> (n | m)). Proof. intros. rewrite 2 (mul_comm _ p). now apply mul_divide_cancel_l. Qed. Lemma divide_add_r : forall n m p, (n | m) -> (n | p) -> (n | m + p). Proof. intros n m p (q,Hq) (r,Hr). exists (q+r). now rewrite mul_add_distr_r, Hq, Hr. Qed. Lemma divide_mul_l : forall n m p, (n | m) -> (n | m * p). Proof. intros n m p (q,Hq). exists (q*p). now rewrite mul_shuffle0, Hq. Qed. Lemma divide_mul_r : forall n m p, (n | p) -> (n | m * p). Proof. intros n m p. rewrite mul_comm. apply divide_mul_l. Qed. Lemma divide_factor_l : forall n m, (n | n * m). Proof. intros. apply divide_mul_l, divide_refl. Qed. Lemma divide_factor_r : forall n m, (n | m * n). Proof. intros. apply divide_mul_r, divide_refl. Qed. Lemma divide_pos_le : forall n m, 0 < m -> (n | m) -> n <= m. Proof. intros n m Hm (q,Hq). destruct (le_gt_cases n 0) as [Hn|Hn]. order. rewrite Hq. destruct (lt_ge_cases q 0) as [Hq'|Hq']. generalize (mul_neg_pos q n Hq' Hn). order. le_elim Hq'. rewrite <- (mul_1_l n) at 1. apply mul_le_mono_pos_r; trivial. now rewrite one_succ, le_succ_l. rewrite <- Hq', mul_0_l in Hq. order. Qed. (** Basic properties of gcd *) Lemma gcd_unique : forall n m p, 0<=p -> (p|n) -> (p|m) -> (forall q, (q|n) -> (q|m) -> (q|p)) -> gcd n m == p. Proof. intros n m p Hp Hn Hm H. apply divide_antisym_nonneg; trivial. apply gcd_nonneg. apply H. apply gcd_divide_l. apply gcd_divide_r. now apply gcd_greatest. Qed. Instance gcd_wd : Proper (eq==>eq==>eq) gcd. Proof. intros x x' Hx y y' Hy. apply gcd_unique. apply gcd_nonneg. rewrite Hx. apply gcd_divide_l. rewrite Hy. apply gcd_divide_r. intro. rewrite Hx, Hy. apply gcd_greatest. Qed. Lemma gcd_divide_iff : forall n m p, (p | gcd n m) <-> (p | n) /\ (p | m). Proof. intros. split. split. transitivity (gcd n m); trivial using gcd_divide_l. transitivity (gcd n m); trivial using gcd_divide_r. intros (H,H'). now apply gcd_greatest. Qed. Lemma gcd_unique_alt : forall n m p, 0<=p -> (forall q, (q|p) <-> (q|n) /\ (q|m)) -> gcd n m == p. Proof. intros n m p Hp H. apply gcd_unique; trivial. apply H. apply divide_refl. apply H. apply divide_refl. intros. apply H. now split. Qed. Lemma gcd_comm : forall n m, gcd n m == gcd m n. Proof. intros. apply gcd_unique_alt; try apply gcd_nonneg. intros. rewrite and_comm. apply gcd_divide_iff. Qed. Lemma gcd_assoc : forall n m p, gcd n (gcd m p) == gcd (gcd n m) p. Proof. intros. apply gcd_unique_alt; try apply gcd_nonneg. intros. now rewrite !gcd_divide_iff, and_assoc. Qed. Lemma gcd_0_l_nonneg : forall n, 0<=n -> gcd 0 n == n. Proof. intros. apply gcd_unique; trivial. apply divide_0_r. apply divide_refl. Qed. Lemma gcd_0_r_nonneg : forall n, 0<=n -> gcd n 0 == n. Proof. intros. now rewrite gcd_comm, gcd_0_l_nonneg. Qed. Lemma gcd_1_l : forall n, gcd 1 n == 1. Proof. intros. apply gcd_unique; trivial using divide_1_l, le_0_1. Qed. Lemma gcd_1_r : forall n, gcd n 1 == 1. Proof. intros. now rewrite gcd_comm, gcd_1_l. Qed. Lemma gcd_diag_nonneg : forall n, 0<=n -> gcd n n == n. Proof. intros. apply gcd_unique; trivial using divide_refl. Qed. Lemma gcd_eq_0_l : forall n m, gcd n m == 0 -> n == 0. Proof. intros. generalize (gcd_divide_l n m). rewrite H. apply divide_0_l. Qed. Lemma gcd_eq_0_r : forall n m, gcd n m == 0 -> m == 0. Proof. intros. apply gcd_eq_0_l with n. now rewrite gcd_comm. Qed. Lemma gcd_eq_0 : forall n m, gcd n m == 0 <-> n == 0 /\ m == 0. Proof. intros. split. split. now apply gcd_eq_0_l with m. now apply gcd_eq_0_r with n. intros (EQ,EQ'). rewrite EQ, EQ'. now apply gcd_0_r_nonneg. Qed. Lemma gcd_mul_diag_l : forall n m, 0<=n -> gcd n (n*m) == n. Proof. intros n m Hn. apply gcd_unique_alt; trivial. intros q. split. split; trivial. now apply divide_mul_l. now destruct 1. Qed. Lemma divide_gcd_iff : forall n m, 0<=n -> ((n|m) <-> gcd n m == n). Proof. intros n m Hn. split. intros (q,Hq). rewrite Hq. rewrite mul_comm. now apply gcd_mul_diag_l. intros EQ. rewrite <- EQ. apply gcd_divide_r. Qed. End NZGcdProp.