summaryrefslogtreecommitdiff
path: root/theories/Numbers/DecimalNat.v
blob: 5ffe1688b54769aae8f3683a90405f2e4c91d7f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(** * DecimalNat

    Proofs that conversions between decimal numbers and [nat]
    are bijections. *)

Require Import Decimal DecimalFacts Arith.

Module Unsigned.

(** A few helper functions used during proofs *)

Definition hd d :=
 match d with
 | Nil => 0
 | D0 _ => 0
 | D1 _ => 1
 | D2 _ => 2
 | D3 _ => 3
 | D4 _ => 4
 | D5 _ => 5
 | D6 _ => 6
 | D7 _ => 7
 | D8 _ => 8
 | D9 _ => 9
end.

Definition tl d :=
 match d with
 | Nil => d
 | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
end.

Fixpoint usize (d:uint) : nat :=
  match d with
  | Nil => 0
  | D0 d => S (usize d)
  | D1 d => S (usize d)
  | D2 d => S (usize d)
  | D3 d => S (usize d)
  | D4 d => S (usize d)
  | D5 d => S (usize d)
  | D6 d => S (usize d)
  | D7 d => S (usize d)
  | D8 d => S (usize d)
  | D9 d => S (usize d)
  end.

(** A direct version of [to_little_uint], not tail-recursive *)
Fixpoint to_lu n :=
 match n with
 | 0 => Decimal.zero
 | S n => Little.succ (to_lu n)
 end.

(** A direct version of [of_little_uint] *)
Fixpoint of_lu (d:uint) : nat :=
  match d with
  | Nil => 0
  | D0 d => 10 * of_lu d
  | D1 d => 1 + 10 * of_lu d
  | D2 d => 2 + 10 * of_lu d
  | D3 d => 3 + 10 * of_lu d
  | D4 d => 4 + 10 * of_lu d
  | D5 d => 5 + 10 * of_lu d
  | D6 d => 6 + 10 * of_lu d
  | D7 d => 7 + 10 * of_lu d
  | D8 d => 8 + 10 * of_lu d
  | D9 d => 9 + 10 * of_lu d
  end.

(** Properties of [to_lu] *)

Lemma to_lu_succ n : to_lu (S n) = Little.succ (to_lu n).
Proof.
 reflexivity.
Qed.

Lemma to_little_uint_succ n d :
 Nat.to_little_uint n (Little.succ d) =
  Little.succ (Nat.to_little_uint n d).
Proof.
 revert d; induction n; simpl; trivial.
Qed.

Lemma to_lu_equiv n :
  to_lu n = Nat.to_little_uint n zero.
Proof.
 induction n; simpl; trivial.
 now rewrite IHn, <- to_little_uint_succ.
Qed.

Lemma to_uint_alt n :
 Nat.to_uint n = rev (to_lu n).
Proof.
 unfold Nat.to_uint. f_equal. symmetry. apply to_lu_equiv.
Qed.

(** Properties of [of_lu] *)

Lemma of_lu_eqn d :
 of_lu d = hd d + 10 * of_lu (tl d).
Proof.
 induction d; simpl; trivial.
Qed.

Ltac simpl_of_lu :=
 match goal with
 | |- context [ of_lu (?f ?x) ] =>
   rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
 end.

Lemma of_lu_succ d :
 of_lu (Little.succ d) = S (of_lu d).
Proof.
 induction d; trivial.
 simpl_of_lu. rewrite IHd. simpl_of_lu.
 now rewrite Nat.mul_succ_r, <- (Nat.add_comm 10).
Qed.

Lemma of_to_lu n :
 of_lu (to_lu n) = n.
Proof.
 induction n; simpl; trivial. rewrite of_lu_succ. now f_equal.
Qed.

Lemma of_lu_revapp d d' :
of_lu (revapp d d') =
 of_lu (rev d) + of_lu d' * 10^usize d.
Proof.
 revert d'.
 induction d; intro d'; simpl usize;
 [ simpl; now rewrite Nat.mul_1_r | .. ];
 unfold rev; simpl revapp; rewrite 2 IHd;
 rewrite <- Nat.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
 rewrite Nat.pow_succ_r'; ring.
Qed.

Lemma of_uint_acc_spec n d :
 Nat.of_uint_acc d n = of_lu (rev d) + n * 10^usize d.
Proof.
 revert n. induction d; intros;
 simpl Nat.of_uint_acc; rewrite ?Nat.tail_mul_spec, ?IHd;
 simpl rev; simpl usize; rewrite ?Nat.pow_succ_r';
 [ simpl; now rewrite Nat.mul_1_r | .. ];
 unfold rev at 2; simpl revapp; rewrite of_lu_revapp;
 simpl of_lu; ring.
Qed.

Lemma of_uint_alt d : Nat.of_uint d = of_lu (rev d).
Proof.
 unfold Nat.of_uint. now rewrite of_uint_acc_spec.
Qed.

(** First main bijection result *)

Lemma of_to (n:nat) : Nat.of_uint (Nat.to_uint n) = n.
Proof.
 rewrite to_uint_alt, of_uint_alt, rev_rev. apply of_to_lu.
Qed.

(** The other direction *)

Lemma to_lu_tenfold n : n<>0 ->
 to_lu (10 * n) = D0 (to_lu n).
Proof.
 induction n.
 - simpl. now destruct 1.
 - intros _.
   destruct (Nat.eq_dec n 0) as [->|H]; simpl; trivial.
   rewrite !Nat.add_succ_r.
   simpl in *. rewrite (IHn H). now destruct (to_lu n).
Qed.

Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
Proof.
 induction d; try simpl_of_lu; try easy.
 rewrite Nat.add_0_l.
 split; intros H.
 - apply Nat.eq_mul_0_r in H; auto.
   rewrite IHd in H. simpl. now rewrite H.
 - simpl in H. destruct (nztail d); try discriminate.
   now destruct IHd as [_ ->].
Qed.

Lemma to_of_lu_tenfold d :
 to_lu (of_lu d) = lnorm d ->
 to_lu (10 * of_lu d) = lnorm (D0 d).
Proof.
 intro IH.
 destruct (Nat.eq_dec (of_lu d) 0) as [H|H].
 - rewrite H. simpl. rewrite of_lu_0 in H.
   unfold lnorm. simpl. now rewrite H.
 - rewrite (to_lu_tenfold _ H), IH.
   rewrite of_lu_0 in H.
   unfold lnorm. simpl. now destruct (nztail d).
Qed.

Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
Proof.
 induction d; [ reflexivity | .. ];
 simpl_of_lu;
 rewrite ?Nat.add_succ_l, Nat.add_0_l, ?to_lu_succ, to_of_lu_tenfold
  by assumption;
 unfold lnorm; simpl; now destruct nztail.
Qed.

(** Second bijection result *)

Lemma to_of (d:uint) : Nat.to_uint (Nat.of_uint d) = unorm d.
Proof.
 rewrite to_uint_alt, of_uint_alt, to_of_lu.
 apply rev_lnorm_rev.
Qed.

(** Some consequences *)

Lemma to_uint_inj n n' : Nat.to_uint n = Nat.to_uint n' -> n = n'.
Proof.
 intro EQ.
 now rewrite <- (of_to n), <- (of_to n'), EQ.
Qed.

Lemma to_uint_surj d : exists n, Nat.to_uint n = unorm d.
Proof.
 exists (Nat.of_uint d). apply to_of.
Qed.

Lemma of_uint_norm d : Nat.of_uint (unorm d) = Nat.of_uint d.
Proof.
 unfold Nat.of_uint. now induction d.
Qed.

Lemma of_inj d d' :
 Nat.of_uint d = Nat.of_uint d' -> unorm d = unorm d'.
Proof.
 intros. rewrite <- !to_of. now f_equal.
Qed.

Lemma of_iff d d' : Nat.of_uint d = Nat.of_uint d' <-> unorm d = unorm d'.
Proof.
 split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
 apply of_uint_norm.
Qed.

End Unsigned.

(** Conversion from/to signed decimal numbers *)

Module Signed.

Lemma of_to (n:nat) : Nat.of_int (Nat.to_int n) = Some n.
Proof.
 unfold Nat.to_int, Nat.of_int, norm. f_equal.
 rewrite Unsigned.of_uint_norm. apply Unsigned.of_to.
Qed.

Lemma to_of (d:int)(n:nat) : Nat.of_int d = Some n -> Nat.to_int n = norm d.
Proof.
 unfold Nat.of_int.
 destruct (norm d) eqn:Hd; intros [= <-].
 unfold Nat.to_int. rewrite Unsigned.to_of. f_equal.
 revert Hd; destruct d; simpl.
 - intros [= <-]. apply unorm_invol.
 - destruct (nzhead d); now intros [= <-].
Qed.

Lemma to_int_inj n n' : Nat.to_int n = Nat.to_int n' -> n = n'.
Proof.
 intro E.
 assert (E' : Some n = Some n').
 { now rewrite <- (of_to n), <- (of_to n'), E. }
 now injection E'.
Qed.

Lemma to_int_pos_surj d : exists n, Nat.to_int n = norm (Pos d).
Proof.
 exists (Nat.of_uint d). unfold Nat.to_int. now rewrite Unsigned.to_of.
Qed.

Lemma of_int_norm d : Nat.of_int (norm d) = Nat.of_int d.
Proof.
 unfold Nat.of_int. now rewrite norm_invol.
Qed.

Lemma of_inj_pos d d' :
 Nat.of_int (Pos d) = Nat.of_int (Pos d') -> unorm d = unorm d'.
Proof.
 unfold Nat.of_int. simpl. intros [= H]. apply Unsigned.of_inj.
 now rewrite <- Unsigned.of_uint_norm, H, Unsigned.of_uint_norm.
Qed.

End Signed.