summaryrefslogtreecommitdiff
path: root/theories/Numbers/DecimalNat.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Numbers/DecimalNat.v')
-rw-r--r--theories/Numbers/DecimalNat.v302
1 files changed, 302 insertions, 0 deletions
diff --git a/theories/Numbers/DecimalNat.v b/theories/Numbers/DecimalNat.v
new file mode 100644
index 00000000..5ffe1688
--- /dev/null
+++ b/theories/Numbers/DecimalNat.v
@@ -0,0 +1,302 @@
+(************************************************************************)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
+(************************************************************************)
+
+(** * DecimalNat
+
+ Proofs that conversions between decimal numbers and [nat]
+ are bijections. *)
+
+Require Import Decimal DecimalFacts Arith.
+
+Module Unsigned.
+
+(** A few helper functions used during proofs *)
+
+Definition hd d :=
+ match d with
+ | Nil => 0
+ | D0 _ => 0
+ | D1 _ => 1
+ | D2 _ => 2
+ | D3 _ => 3
+ | D4 _ => 4
+ | D5 _ => 5
+ | D6 _ => 6
+ | D7 _ => 7
+ | D8 _ => 8
+ | D9 _ => 9
+end.
+
+Definition tl d :=
+ match d with
+ | Nil => d
+ | D0 d | D1 d | D2 d | D3 d | D4 d | D5 d | D6 d | D7 d | D8 d | D9 d => d
+end.
+
+Fixpoint usize (d:uint) : nat :=
+ match d with
+ | Nil => 0
+ | D0 d => S (usize d)
+ | D1 d => S (usize d)
+ | D2 d => S (usize d)
+ | D3 d => S (usize d)
+ | D4 d => S (usize d)
+ | D5 d => S (usize d)
+ | D6 d => S (usize d)
+ | D7 d => S (usize d)
+ | D8 d => S (usize d)
+ | D9 d => S (usize d)
+ end.
+
+(** A direct version of [to_little_uint], not tail-recursive *)
+Fixpoint to_lu n :=
+ match n with
+ | 0 => Decimal.zero
+ | S n => Little.succ (to_lu n)
+ end.
+
+(** A direct version of [of_little_uint] *)
+Fixpoint of_lu (d:uint) : nat :=
+ match d with
+ | Nil => 0
+ | D0 d => 10 * of_lu d
+ | D1 d => 1 + 10 * of_lu d
+ | D2 d => 2 + 10 * of_lu d
+ | D3 d => 3 + 10 * of_lu d
+ | D4 d => 4 + 10 * of_lu d
+ | D5 d => 5 + 10 * of_lu d
+ | D6 d => 6 + 10 * of_lu d
+ | D7 d => 7 + 10 * of_lu d
+ | D8 d => 8 + 10 * of_lu d
+ | D9 d => 9 + 10 * of_lu d
+ end.
+
+(** Properties of [to_lu] *)
+
+Lemma to_lu_succ n : to_lu (S n) = Little.succ (to_lu n).
+Proof.
+ reflexivity.
+Qed.
+
+Lemma to_little_uint_succ n d :
+ Nat.to_little_uint n (Little.succ d) =
+ Little.succ (Nat.to_little_uint n d).
+Proof.
+ revert d; induction n; simpl; trivial.
+Qed.
+
+Lemma to_lu_equiv n :
+ to_lu n = Nat.to_little_uint n zero.
+Proof.
+ induction n; simpl; trivial.
+ now rewrite IHn, <- to_little_uint_succ.
+Qed.
+
+Lemma to_uint_alt n :
+ Nat.to_uint n = rev (to_lu n).
+Proof.
+ unfold Nat.to_uint. f_equal. symmetry. apply to_lu_equiv.
+Qed.
+
+(** Properties of [of_lu] *)
+
+Lemma of_lu_eqn d :
+ of_lu d = hd d + 10 * of_lu (tl d).
+Proof.
+ induction d; simpl; trivial.
+Qed.
+
+Ltac simpl_of_lu :=
+ match goal with
+ | |- context [ of_lu (?f ?x) ] =>
+ rewrite (of_lu_eqn (f x)); simpl hd; simpl tl
+ end.
+
+Lemma of_lu_succ d :
+ of_lu (Little.succ d) = S (of_lu d).
+Proof.
+ induction d; trivial.
+ simpl_of_lu. rewrite IHd. simpl_of_lu.
+ now rewrite Nat.mul_succ_r, <- (Nat.add_comm 10).
+Qed.
+
+Lemma of_to_lu n :
+ of_lu (to_lu n) = n.
+Proof.
+ induction n; simpl; trivial. rewrite of_lu_succ. now f_equal.
+Qed.
+
+Lemma of_lu_revapp d d' :
+of_lu (revapp d d') =
+ of_lu (rev d) + of_lu d' * 10^usize d.
+Proof.
+ revert d'.
+ induction d; intro d'; simpl usize;
+ [ simpl; now rewrite Nat.mul_1_r | .. ];
+ unfold rev; simpl revapp; rewrite 2 IHd;
+ rewrite <- Nat.add_assoc; f_equal; simpl_of_lu; simpl of_lu;
+ rewrite Nat.pow_succ_r'; ring.
+Qed.
+
+Lemma of_uint_acc_spec n d :
+ Nat.of_uint_acc d n = of_lu (rev d) + n * 10^usize d.
+Proof.
+ revert n. induction d; intros;
+ simpl Nat.of_uint_acc; rewrite ?Nat.tail_mul_spec, ?IHd;
+ simpl rev; simpl usize; rewrite ?Nat.pow_succ_r';
+ [ simpl; now rewrite Nat.mul_1_r | .. ];
+ unfold rev at 2; simpl revapp; rewrite of_lu_revapp;
+ simpl of_lu; ring.
+Qed.
+
+Lemma of_uint_alt d : Nat.of_uint d = of_lu (rev d).
+Proof.
+ unfold Nat.of_uint. now rewrite of_uint_acc_spec.
+Qed.
+
+(** First main bijection result *)
+
+Lemma of_to (n:nat) : Nat.of_uint (Nat.to_uint n) = n.
+Proof.
+ rewrite to_uint_alt, of_uint_alt, rev_rev. apply of_to_lu.
+Qed.
+
+(** The other direction *)
+
+Lemma to_lu_tenfold n : n<>0 ->
+ to_lu (10 * n) = D0 (to_lu n).
+Proof.
+ induction n.
+ - simpl. now destruct 1.
+ - intros _.
+ destruct (Nat.eq_dec n 0) as [->|H]; simpl; trivial.
+ rewrite !Nat.add_succ_r.
+ simpl in *. rewrite (IHn H). now destruct (to_lu n).
+Qed.
+
+Lemma of_lu_0 d : of_lu d = 0 <-> nztail d = Nil.
+Proof.
+ induction d; try simpl_of_lu; try easy.
+ rewrite Nat.add_0_l.
+ split; intros H.
+ - apply Nat.eq_mul_0_r in H; auto.
+ rewrite IHd in H. simpl. now rewrite H.
+ - simpl in H. destruct (nztail d); try discriminate.
+ now destruct IHd as [_ ->].
+Qed.
+
+Lemma to_of_lu_tenfold d :
+ to_lu (of_lu d) = lnorm d ->
+ to_lu (10 * of_lu d) = lnorm (D0 d).
+Proof.
+ intro IH.
+ destruct (Nat.eq_dec (of_lu d) 0) as [H|H].
+ - rewrite H. simpl. rewrite of_lu_0 in H.
+ unfold lnorm. simpl. now rewrite H.
+ - rewrite (to_lu_tenfold _ H), IH.
+ rewrite of_lu_0 in H.
+ unfold lnorm. simpl. now destruct (nztail d).
+Qed.
+
+Lemma to_of_lu d : to_lu (of_lu d) = lnorm d.
+Proof.
+ induction d; [ reflexivity | .. ];
+ simpl_of_lu;
+ rewrite ?Nat.add_succ_l, Nat.add_0_l, ?to_lu_succ, to_of_lu_tenfold
+ by assumption;
+ unfold lnorm; simpl; now destruct nztail.
+Qed.
+
+(** Second bijection result *)
+
+Lemma to_of (d:uint) : Nat.to_uint (Nat.of_uint d) = unorm d.
+Proof.
+ rewrite to_uint_alt, of_uint_alt, to_of_lu.
+ apply rev_lnorm_rev.
+Qed.
+
+(** Some consequences *)
+
+Lemma to_uint_inj n n' : Nat.to_uint n = Nat.to_uint n' -> n = n'.
+Proof.
+ intro EQ.
+ now rewrite <- (of_to n), <- (of_to n'), EQ.
+Qed.
+
+Lemma to_uint_surj d : exists n, Nat.to_uint n = unorm d.
+Proof.
+ exists (Nat.of_uint d). apply to_of.
+Qed.
+
+Lemma of_uint_norm d : Nat.of_uint (unorm d) = Nat.of_uint d.
+Proof.
+ unfold Nat.of_uint. now induction d.
+Qed.
+
+Lemma of_inj d d' :
+ Nat.of_uint d = Nat.of_uint d' -> unorm d = unorm d'.
+Proof.
+ intros. rewrite <- !to_of. now f_equal.
+Qed.
+
+Lemma of_iff d d' : Nat.of_uint d = Nat.of_uint d' <-> unorm d = unorm d'.
+Proof.
+ split. apply of_inj. intros E. rewrite <- of_uint_norm, E.
+ apply of_uint_norm.
+Qed.
+
+End Unsigned.
+
+(** Conversion from/to signed decimal numbers *)
+
+Module Signed.
+
+Lemma of_to (n:nat) : Nat.of_int (Nat.to_int n) = Some n.
+Proof.
+ unfold Nat.to_int, Nat.of_int, norm. f_equal.
+ rewrite Unsigned.of_uint_norm. apply Unsigned.of_to.
+Qed.
+
+Lemma to_of (d:int)(n:nat) : Nat.of_int d = Some n -> Nat.to_int n = norm d.
+Proof.
+ unfold Nat.of_int.
+ destruct (norm d) eqn:Hd; intros [= <-].
+ unfold Nat.to_int. rewrite Unsigned.to_of. f_equal.
+ revert Hd; destruct d; simpl.
+ - intros [= <-]. apply unorm_invol.
+ - destruct (nzhead d); now intros [= <-].
+Qed.
+
+Lemma to_int_inj n n' : Nat.to_int n = Nat.to_int n' -> n = n'.
+Proof.
+ intro E.
+ assert (E' : Some n = Some n').
+ { now rewrite <- (of_to n), <- (of_to n'), E. }
+ now injection E'.
+Qed.
+
+Lemma to_int_pos_surj d : exists n, Nat.to_int n = norm (Pos d).
+Proof.
+ exists (Nat.of_uint d). unfold Nat.to_int. now rewrite Unsigned.to_of.
+Qed.
+
+Lemma of_int_norm d : Nat.of_int (norm d) = Nat.of_int d.
+Proof.
+ unfold Nat.of_int. now rewrite norm_invol.
+Qed.
+
+Lemma of_inj_pos d d' :
+ Nat.of_int (Pos d) = Nat.of_int (Pos d') -> unorm d = unorm d'.
+Proof.
+ unfold Nat.of_int. simpl. intros [= H]. apply Unsigned.of_inj.
+ now rewrite <- Unsigned.of_uint_norm, H, Unsigned.of_uint_norm.
+Qed.
+
+End Signed.