summaryrefslogtreecommitdiff
path: root/theories/IntMap/Map.v
blob: da1fa99e6bc976a473e5d138957d51e6658893c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
(*i 	$Id: Map.v,v 1.7.2.1 2004/07/16 19:31:04 herbelin Exp $	 i*)

(** Definition of finite sets as trees indexed by adresses *)

Require Import Bool.
Require Import Sumbool.
Require Import ZArith.
Require Import Addr.
Require Import Adist.
Require Import Addec.


Section MapDefs.

(** We define maps from ad to A. *)
  Variable A : Set.  

  Inductive Map : Set :=
    | M0 : Map
    | M1 : ad -> A -> Map
    | M2 : Map -> Map -> Map.

  Inductive option : Set :=
    | NONE : option
    | SOME : A -> option.

  Lemma option_sum : forall o:option, {y : A | o = SOME y} + {o = NONE}.
  Proof.
    simple induction o. right. reflexivity.
    left. split with a. reflexivity.
  Qed.

  (** The semantics of maps is given by the function [MapGet].
      The semantics of a map [m] is a partial, finite function from
      [ad] to [A]: *)

  Fixpoint MapGet (m:Map) : ad -> option :=
    match m with
    | M0 => fun a:ad => NONE
    | M1 x y => fun a:ad => if ad_eq x a then SOME y else NONE
    | M2 m1 m2 =>
        fun a:ad =>
          match a with
          | ad_z => MapGet m1 ad_z
          | ad_x xH => MapGet m2 ad_z
          | ad_x (xO p) => MapGet m1 (ad_x p)
          | ad_x (xI p) => MapGet m2 (ad_x p)
          end
    end.

  Definition newMap := M0.

  Definition MapSingleton := M1.

  Definition eqm (g g':ad -> option) := forall a:ad, g a = g' a.

  Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => NONE).
  Proof.
    simpl in |- *. unfold eqm in |- *. trivial.
  Qed.

  Lemma MapSingleton_semantics :
   forall (a:ad) (y:A),
     eqm (MapGet (MapSingleton a y))
       (fun a':ad => if ad_eq a a' then SOME y else NONE).
  Proof.
    simpl in |- *. unfold eqm in |- *. trivial.
  Qed.

  Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = SOME y.
  Proof.
    unfold MapGet in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
  Qed.

  Lemma M1_semantics_2 :
   forall (a a':ad) (y:A), ad_eq a a' = false -> MapGet (M1 a y) a' = NONE.
  Proof.
    intros. simpl in |- *. rewrite H. reflexivity.
  Qed.

  Lemma Map2_semantics_1 :
   forall m m':Map,
     eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (ad_double a)).
  Proof.
    unfold eqm in |- *. simple induction a; trivial.
  Qed.

  Lemma Map2_semantics_1_eq :
   forall (m m':Map) (f:ad -> option),
     eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (ad_double a)).
  Proof.
    unfold eqm in |- *.
    intros.
    rewrite <- (H (ad_double a)).
    exact (Map2_semantics_1 m m' a).
  Qed.

  Lemma Map2_semantics_2 :
   forall m m':Map,
     eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (ad_double_plus_un a)).
  Proof.
    unfold eqm in |- *. simple induction a; trivial.
  Qed.

  Lemma Map2_semantics_2_eq :
   forall (m m':Map) (f:ad -> option),
     eqm (MapGet (M2 m m')) f ->
     eqm (MapGet m') (fun a:ad => f (ad_double_plus_un a)).
  Proof.
    unfold eqm in |- *.
    intros.
    rewrite <- (H (ad_double_plus_un a)).
    exact (Map2_semantics_2 m m' a).
  Qed.

  Lemma MapGet_M2_bit_0_0 :
   forall a:ad,
     ad_bit_0 a = false ->
     forall m m':Map, MapGet (M2 m m') a = MapGet m (ad_div_2 a).
  Proof.
    simple induction a; trivial. simple induction p. intros. discriminate H0.
    trivial.
    intros. discriminate H.
  Qed.

  Lemma MapGet_M2_bit_0_1 :
   forall a:ad,
     ad_bit_0 a = true ->
     forall m m':Map, MapGet (M2 m m') a = MapGet m' (ad_div_2 a).
  Proof.
    simple induction a. intros. discriminate H.
    simple induction p. trivial.
    intros. discriminate H0.
    trivial.
  Qed.

  Lemma MapGet_M2_bit_0_if :
   forall (m m':Map) (a:ad),
     MapGet (M2 m m') a =
     (if ad_bit_0 a then MapGet m' (ad_div_2 a) else MapGet m (ad_div_2 a)).
  Proof.
    intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
    apply MapGet_M2_bit_0_1; assumption.
    intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
  Qed.

  Lemma MapGet_M2_bit_0 :
   forall (m m' m'':Map) (a:ad),
     (if ad_bit_0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) =
     MapGet m (ad_div_2 a).
  Proof.
    intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H.
    apply MapGet_M2_bit_0_1; assumption.
    intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption.
  Qed.

  Lemma Map2_semantics_3 :
   forall m m':Map,
     eqm (MapGet (M2 m m'))
       (fun a:ad =>
          match ad_bit_0 a with
          | false => MapGet m (ad_div_2 a)
          | true => MapGet m' (ad_div_2 a)
          end).
  Proof.
    unfold eqm in |- *.
    simple induction a; trivial.
    simple induction p; trivial.
  Qed.

  Lemma Map2_semantics_3_eq :
   forall (m m':Map) (f f':ad -> option),
     eqm (MapGet m) f ->
     eqm (MapGet m') f' ->
     eqm (MapGet (M2 m m'))
       (fun a:ad =>
          match ad_bit_0 a with
          | false => f (ad_div_2 a)
          | true => f' (ad_div_2 a)
          end).
  Proof.
    unfold eqm in |- *.
    intros.
    rewrite <- (H (ad_div_2 a)).
    rewrite <- (H0 (ad_div_2 a)).
    exact (Map2_semantics_3 m m' a).
  Qed.

  Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} :
   Map :=
    match p with
    | xO p' =>
        let m := MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p' in
        match ad_bit_0 a with
        | false => M2 m M0
        | true => M2 M0 m
        end
    | _ =>
        match ad_bit_0 a with
        | false => M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y')
        | true => M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y)
        end
    end.

  Lemma MapGet_if_commute :
   forall (b:bool) (m m':Map) (a:ad),
     MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a).
  Proof.
    intros. case b; trivial.
  Qed.

  (*i
  Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map)
      (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m'' m''')) a)=
             (MapGet (if (ad_bit_0 a) then m' else m'') (ad_div_2 a)).
  Proof.
    Intros. Rewrite (MapGet_if_commute (ad_bit_0 a)). Rewrite (MapGet_if_commute (ad_bit_0 a)).
    Cut (ad_bit_0 a)=false\/(ad_bit_0 a)=true. Intros. Elim H. Intros. Rewrite H0.
    Apply MapGet_M2_bit_0_0. Assumption.
    Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption.
    Case (ad_bit_0 a); Auto.
  Qed.
  i*)

  Lemma MapGet_if_same :
   forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a.
  Proof.
    simple induction b; trivial.
  Qed.

  Lemma MapGet_M2_bit_0_2 :
   forall (m m' m'':Map) (a:ad),
     MapGet (if ad_bit_0 a then M2 m m' else M2 m' m'') a =
     MapGet m' (ad_div_2 a).
  Proof.
    intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0.
  Qed.

  Lemma MapPut1_semantics_1 :
   forall (p:positive) (a a':ad) (y y':A),
     ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a = SOME y.
  Proof.
    simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
    intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- ad_xor_div_2. rewrite H0.
    reflexivity.
    intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
  Qed.

  Lemma MapPut1_semantics_2 :
   forall (p:positive) (a a':ad) (y y':A),
     ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a' = SOME y'.
  Proof.
    simple induction p. intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_2 a a' p0 H0).
    rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
    intros. simpl in |- *. rewrite (ad_same_bit_0 a a' p0 H0). rewrite MapGet_M2_bit_0_2.
    apply H. rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
    intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_1 a a' H). rewrite if_negb.
    rewrite MapGet_M2_bit_0_2. apply M1_semantics_1.
  Qed.

  Lemma MapGet_M2_both_NONE :
   forall (m m':Map) (a:ad),
     MapGet m (ad_div_2 a) = NONE ->
     MapGet m' (ad_div_2 a) = NONE -> MapGet (M2 m m') a = NONE.
  Proof.
    intros. rewrite (Map2_semantics_3 m m' a). 
    case (ad_bit_0 a); assumption.
  Qed.
 
  Lemma MapPut1_semantics_3 :
   forall (p:positive) (a a' a0:ad) (y y':A),
     ad_xor a a' = ad_x p ->
     ad_eq a a0 = false ->
     ad_eq a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = NONE.
  Proof.
    simple induction p. intros. unfold MapPut1 in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
    rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
    rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. rewrite (negb_intro (ad_bit_0 a')).
    rewrite (negb_intro (ad_bit_0 a0)). rewrite H3. reflexivity.
    intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_neg_bit_0_2 a a' p0 H0). rewrite H4.
    rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
    apply M1_semantics_2; assumption.
    intro; case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
     assumption.
    intros. simpl in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb.
    rewrite MapGet_M2_bit_0_2. reflexivity.
    intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_same_bit_0 a a' p0 H0). rewrite H4.
    rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity.
    intro. cut (ad_xor (ad_div_2 a) (ad_div_2 a') = ad_x p0). intro.
    case (ad_bit_0 a); apply MapGet_M2_both_NONE; trivial; apply H;
     assumption.
    rewrite <- ad_xor_div_2. rewrite H0. reflexivity.
    intros. simpl in |- *. elim (ad_neq a a0 H0). intro. rewrite H2. rewrite if_negb.
    rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption.
    rewrite (ad_neg_bit_0_1 a a' H) in H2. rewrite (negb_intro (ad_bit_0 a')).
    rewrite (negb_intro (ad_bit_0 a0)). rewrite H2. reflexivity.
    intro. elim (ad_neq a' a0 H1). intro. rewrite (ad_neg_bit_0_1 a a' H). rewrite H3.
    rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2.
    apply M1_semantics_2; assumption.
    intro. case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2;
  assumption.
  Qed.

  Lemma MapPut1_semantics :
   forall (p:positive) (a a':ad) (y y':A),
     ad_xor a a' = ad_x p ->
     eqm (MapGet (MapPut1 a y a' y' p))
       (fun a0:ad =>
          if ad_eq a a0
          then SOME y
          else if ad_eq a' a0 then SOME y' else NONE).
  Proof.
    unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
    rewrite <- (ad_eq_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H).
    intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq a' a0)). intro H1.
    rewrite <- (ad_eq_complete _ _ H1). rewrite (ad_eq_correct a').
    exact (MapPut1_semantics_2 p a a' y y' H).
    intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1).
  Qed.

  Lemma MapPut1_semantics' :
   forall (p:positive) (a a':ad) (y y':A),
     ad_xor a a' = ad_x p ->
     eqm (MapGet (MapPut1 a y a' y' p))
       (fun a0:ad =>
          if ad_eq a' a0
          then SOME y'
          else if ad_eq a a0 then SOME y else NONE).
  Proof.
    unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0).
    elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0.
    rewrite <- (ad_eq_complete a a0 H0). rewrite (ad_eq_comm a' a).
    rewrite (ad_xor_eq_false a a' p H). reflexivity.
    intro H0. rewrite H0. reflexivity.
  Qed.

  Fixpoint MapPut (m:Map) : ad -> A -> Map :=
    match m with
    | M0 => M1
    | M1 a y =>
        fun (a':ad) (y':A) =>
          match ad_xor a a' with
          | ad_z => M1 a' y'
          | ad_x p => MapPut1 a y a' y' p
          end
    | M2 m1 m2 =>
        fun (a:ad) (y:A) =>
          match a with
          | ad_z => M2 (MapPut m1 ad_z y) m2
          | ad_x xH => M2 m1 (MapPut m2 ad_z y)
          | ad_x (xO p) => M2 (MapPut m1 (ad_x p) y) m2
          | ad_x (xI p) => M2 m1 (MapPut m2 (ad_x p) y)
          end
    end.

  Lemma MapPut_semantics_1 :
   forall (a:ad) (y:A) (a0:ad),
     MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0.
  Proof.
    trivial.
  Qed.

  Lemma MapPut_semantics_2_1 :
   forall (a:ad) (y y':A) (a0:ad),
     MapGet (MapPut (M1 a y) a y') a0 =
     (if ad_eq a a0 then SOME y' else NONE).
  Proof.
    simpl in |- *. intros. rewrite (ad_xor_nilpotent a). trivial.
  Qed.

  Lemma MapPut_semantics_2_2 :
   forall (a a':ad) (y y':A) (a0 a'':ad),
     ad_xor a a' = a'' ->
     MapGet (MapPut (M1 a y) a' y') a0 =
     (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
  Proof.
    simple induction a''. intro. rewrite (ad_xor_eq _ _ H). rewrite MapPut_semantics_2_1.
    case (ad_eq a' a0); trivial.
    intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0).
    elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0).
    rewrite (ad_eq_comm a' a). rewrite (ad_xor_eq_false _ _ _ H). reflexivity.
    intro H0. rewrite H0. reflexivity.
  Qed.

  Lemma MapPut_semantics_2 :
   forall (a a':ad) (y y':A) (a0:ad),
     MapGet (MapPut (M1 a y) a' y') a0 =
     (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE).
  Proof.
    intros. apply MapPut_semantics_2_2 with (a'' := ad_xor a a'); trivial.
  Qed.

  Lemma MapPut_semantics_3_1 :
   forall (m m':Map) (a:ad) (y:A),
     MapPut (M2 m m') a y =
     (if ad_bit_0 a
      then M2 m (MapPut m' (ad_div_2 a) y)
      else M2 (MapPut m (ad_div_2 a) y) m').
  Proof.
    simple induction a. trivial.
    simple induction p; trivial.
  Qed.

  Lemma MapPut_semantics :
   forall (m:Map) (a:ad) (y:A),
     eqm (MapGet (MapPut m a y))
       (fun a':ad => if ad_eq a a' then SOME y else MapGet m a').
  Proof.
    unfold eqm in |- *. simple induction m. exact MapPut_semantics_1.
    intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption.
    intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0).
    elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if.
    elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite H2.
    rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)).
    intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
    intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
    intro H2. rewrite H2. rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq a0 a H2 H1).
    reflexivity.
    intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)).
    intro H2. rewrite H2. rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
    intro H2. rewrite H2. rewrite (H (ad_div_2 a) y (ad_div_2 a0)).
    elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3.
    rewrite (ad_div_eq a a0 H3). reflexivity.
    intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq a a0 H3 H1). reflexivity.
  Qed.

  Fixpoint MapPut_behind (m:Map) : ad -> A -> Map :=
    match m with
    | M0 => M1
    | M1 a y =>
        fun (a':ad) (y':A) =>
          match ad_xor a a' with
          | ad_z => m
          | ad_x p => MapPut1 a y a' y' p
          end
    | M2 m1 m2 =>
        fun (a:ad) (y:A) =>
          match a with
          | ad_z => M2 (MapPut_behind m1 ad_z y) m2
          | ad_x xH => M2 m1 (MapPut_behind m2 ad_z y)
          | ad_x (xO p) => M2 (MapPut_behind m1 (ad_x p) y) m2
          | ad_x (xI p) => M2 m1 (MapPut_behind m2 (ad_x p) y)
          end
    end.

  Lemma MapPut_behind_semantics_3_1 :
   forall (m m':Map) (a:ad) (y:A),
     MapPut_behind (M2 m m') a y =
     (if ad_bit_0 a
      then M2 m (MapPut_behind m' (ad_div_2 a) y)
      else M2 (MapPut_behind m (ad_div_2 a) y) m').
  Proof.
    simple induction a. trivial.
    simple induction p; trivial.
  Qed.

  Lemma MapPut_behind_as_before_1 :
   forall a a' a0:ad,
     ad_eq a' a0 = false ->
     forall y y':A,
       MapGet (MapPut (M1 a y) a' y') a0 =
       MapGet (MapPut_behind (M1 a y) a' y') a0.
  Proof.
    intros a a' a0. simpl in |- *. intros H y y'. elim (ad_sum (ad_xor a a')). intro H0. elim H0.
    intros p H1. rewrite H1. reflexivity.
    intro H0. rewrite H0. rewrite (ad_xor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H).
    exact (M1_semantics_2 a' a0 y' H).
  Qed.

  Lemma MapPut_behind_as_before :
   forall (m:Map) (a:ad) (y:A) (a0:ad),
     ad_eq a a0 = false ->
     MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0.
  Proof.
    simple induction m. trivial.
    intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y').
    intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1.
    elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if.
    rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H3.
    rewrite H3. apply H0. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
    intro H3. rewrite H3. reflexivity.
    intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if.
    elim (sumbool_of_bool (ad_bit_0 a0)). intro H3. rewrite H3. reflexivity.
    intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2).
  Qed.

  Lemma MapPut_behind_new :
   forall (m:Map) (a:ad) (y:A),
     MapGet (MapPut_behind m a y) a =
     match MapGet m a with
     | SOME y' => SOME y'
     | _ => SOME y
     end.
  Proof.
    simple induction m. simpl in |- *. intros. rewrite (ad_eq_correct a). reflexivity.
    intros. elim (ad_sum (ad_xor a a1)). intro H. elim H. intros p H0. simpl in |- *.
    rewrite H0. rewrite (ad_xor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0).
    assumption.
    intro H. simpl in |- *. rewrite H. rewrite <- (ad_xor_eq _ _ H). rewrite (ad_eq_correct a).
    exact (M1_semantics_1 a a0).
    intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a).
    elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1).
    exact (H0 (ad_div_2 a) y).
    intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (ad_div_2 a) y).
  Qed.

  Lemma MapPut_behind_semantics :
   forall (m:Map) (a:ad) (y:A),
     eqm (MapGet (MapPut_behind m a y))
       (fun a':ad =>
          match MapGet m a' with
          | SOME y' => SOME y'
          | _ => if ad_eq a a' then SOME y else NONE
          end).
  Proof.
    unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H.
    rewrite (ad_eq_complete _ _ H). apply MapPut_behind_new.
    intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H).
    rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial.
  Qed.

  Definition makeM2 (m m':Map) :=
    match m, m' with
    | M0, M0 => M0
    | M0, M1 a y => M1 (ad_double_plus_un a) y
    | M1 a y, M0 => M1 (ad_double a) y
    | _, _ => M2 m m'
    end.

  Lemma makeM2_M2 :
   forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')).
  Proof.
    unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H.
    rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity.
    intros a0 y. simpl in |- *. rewrite (ad_bit_0_1_not_double a H a0). reflexivity.
    intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
    assumption.
    case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))).
    intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double_plus_un a H).
    rewrite (ad_eq_correct a). reflexivity.
    intro H0. rewrite H0. rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0.
    rewrite (ad_not_div_2_not_double_plus_un a a0 H0). reflexivity.
    intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
    assumption.
    intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity.
    assumption.
    intros m1 m2. unfold makeM2 in |- *.
    cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (ad_div_2 a)). 
    case m; trivial.
    exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)).
    intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity.
    intros a0 y. simpl in |- *. rewrite (ad_bit_0_0_not_double_plus_un a H a0). reflexivity.
    intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
    assumption.
    case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). intro H0.
    rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double a H).
    rewrite (ad_eq_correct a). reflexivity.
    intro H0. rewrite H0. rewrite (ad_eq_comm (ad_double a0) a).
    rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. rewrite (ad_not_div_2_not_double a a0 H0).
    reflexivity.
    intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
    assumption.
    intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity.
    assumption.
    intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m').
  Qed.

  Fixpoint MapRemove (m:Map) : ad -> Map :=
    match m with
    | M0 => fun _:ad => M0
    | M1 a y =>
        fun a':ad => match ad_eq a a' with
                     | true => M0
                     | false => m
                     end
    | M2 m1 m2 =>
        fun a:ad =>
          if ad_bit_0 a
          then makeM2 m1 (MapRemove m2 (ad_div_2 a))
          else makeM2 (MapRemove m1 (ad_div_2 a)) m2
    end.

  Lemma MapRemove_semantics :
   forall (m:Map) (a:ad),
     eqm (MapGet (MapRemove m a))
       (fun a':ad => if ad_eq a a' then NONE else MapGet m a').
  Proof.
    unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (ad_eq a a0); trivial.
    intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a1 a2)). intro H. rewrite H.
    elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. reflexivity.
    intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0).
    intro H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. rewrite H.
    rewrite <- (ad_eq_complete _ _ H0) in H. rewrite H. reflexivity.
    intro H0. rewrite H0. rewrite H. reflexivity.
    intros. change
   (MapGet
      (if ad_bit_0 a
       then makeM2 m0 (MapRemove m1 (ad_div_2 a))
       else makeM2 (MapRemove m0 (ad_div_2 a)) m1) a0 =
    (if ad_eq a a0 then NONE else MapGet (M2 m0 m1) a0)) 
  in |- *.
    elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1.
    rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). elim (sumbool_of_bool (ad_bit_0 a0)).
    intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (ad_div_2 a) (ad_div_2 a0)).
    elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3).
    reflexivity.
    intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1).
    rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity.
    assumption.
    intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))).
    rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq _ _ H2 H1).
    rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity.
    intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0).
    elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite MapGet_M2_bit_0_1.
    rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity.
    assumption.
    intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (ad_div_2 a) (ad_div_2 a0)).
    rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (ad_eq a a0)). intro H3.
    rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity.
    intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity.
    assumption.
  Qed.

  Fixpoint MapCard (m:Map) : nat :=
    match m with
    | M0 => 0
    | M1 _ _ => 1
    | M2 m m' => MapCard m + MapCard m'
    end.

  Fixpoint MapMerge (m:Map) : Map -> Map :=
    match m with
    | M0 => fun m':Map => m'
    | M1 a y => fun m':Map => MapPut_behind m' a y
    | M2 m1 m2 =>
        fun m':Map =>
          match m' with
          | M0 => m
          | M1 a' y' => MapPut m a' y'
          | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2)
          end
    end.

  Lemma MapMerge_semantics :
   forall m m':Map,
     eqm (MapGet (MapMerge m m'))
       (fun a0:ad =>
          match MapGet m' a0 with
          | SOME y' => SOME y'
          | NONE => MapGet m a0
          end).
  Proof.
    unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial.
    intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity.
    simple induction m'. trivial.
    intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1).
    elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1).
    rewrite (M1_semantics_1 a1 a0). reflexivity.
    intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity.
    intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)).
    intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)).
    rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a).
    rewrite (MapGet_M2_bit_0_if m0 m1 a). case (ad_bit_0 a); trivial.
    reflexivity.
  Qed.

  (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse] 
      not implemented: need a decidable equality on [A]. *)

  Fixpoint MapDelta (m:Map) : Map -> Map :=
    match m with
    | M0 => fun m':Map => m'
    | M1 a y =>
        fun m':Map =>
          match MapGet m' a with
          | NONE => MapPut m' a y
          | _ => MapRemove m' a
          end
    | M2 m1 m2 =>
        fun m':Map =>
          match m' with
          | M0 => m
          | M1 a' y' =>
              match MapGet m a' with
              | NONE => MapPut m a' y'
              | _ => MapRemove m a'
              end
          | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2)
          end
    end.

  Lemma MapDelta_semantics_comm :
   forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)).
  Proof.
    unfold eqm in |- *. simple induction m. simple induction m'; reflexivity.
    simple induction m'. reflexivity.
    unfold MapDelta in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H.
    rewrite <- (ad_eq_complete _ _ H). rewrite (M1_semantics_1 a a2).
    rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (ad_eq_correct a). reflexivity.
    intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (ad_eq_comm a a1) in H.
    rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3).
    rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (ad_eq a a3)).
    intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite H.
    rewrite (ad_eq_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity.
    intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0).
    elim (sumbool_of_bool (ad_eq a1 a3)). intro H1. rewrite H1.
    rewrite (ad_eq_complete _ _ H1). exact (M1_semantics_1 a3 a2).
    intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1).
    intros. reflexivity.
    simple induction m'. reflexivity.
    reflexivity.
    intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
    rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a).
    rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a).
    rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a).
    rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). reflexivity.
  Qed.

  Lemma MapDelta_semantics_1_1 :
   forall (a:ad) (y:A) (m':Map) (a0:ad),
     MapGet (M1 a y) a0 = NONE ->
     MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = NONE.
  Proof.
    intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
    rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
    intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
    rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
  Qed.

  Lemma MapDelta_semantics_1 :
   forall (m m':Map) (a:ad),
     MapGet m a = NONE ->
     MapGet m' a = NONE -> MapGet (MapDelta m m') a = NONE.
  Proof.
    simple induction m. trivial.
    exact MapDelta_semantics_1_1.
    simple induction m'. trivial.
    intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
    apply MapDelta_semantics_1_1; trivial.
    intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
    rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
    apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3.
    rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4.
    intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3.
    rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4.
  Qed.

  Lemma MapDelta_semantics_2_1 :
   forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
     MapGet (M1 a y) a0 = NONE ->
     MapGet m' a0 = SOME y0 -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
  Proof.
    intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
    rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H.
    intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption.
    rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial.
  Qed.

  Lemma MapDelta_semantics_2_2 :
   forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A),
     MapGet (M1 a y) a0 = SOME y0 ->
     MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0.
  Proof.
    intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1.
    rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_eq_complete _ _ H1).
    rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (ad_eq_correct a0).
    rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption.
    intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H.
  Qed.

  Lemma MapDelta_semantics_2 :
   forall (m m':Map) (a:ad) (y:A),
     MapGet m a = NONE ->
     MapGet m' a = SOME y -> MapGet (MapDelta m m') a = SOME y.
  Proof.
    simple induction m. trivial.
    exact MapDelta_semantics_2_1.
    simple induction m'. intros. discriminate H2.
    intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
    apply MapDelta_semantics_2_2; assumption.
    intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
    rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
    apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
    rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
    intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
    rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
  Qed.

  Lemma MapDelta_semantics_3_1 :
   forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A),
     MapGet (M1 a0 y0) a = SOME y ->
     MapGet m' a = SOME y' -> MapGet (MapDelta (M1 a0 y0) m') a = NONE.
  Proof.
    intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a0 a)). intro H1.
    rewrite (ad_eq_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a).
    rewrite (ad_eq_correct a). reflexivity.
    intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H.
  Qed.

  Lemma MapDelta_semantics_3 :
   forall (m m':Map) (a:ad) (y y':A),
     MapGet m a = SOME y ->
     MapGet m' a = SOME y' -> MapGet (MapDelta m m') a = NONE.
  Proof.
    simple induction m. intros. discriminate H.
    exact MapDelta_semantics_3_1.
    simple induction m'. intros. discriminate H2.
    intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1).
    exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1).
    intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a).
    rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5.
    apply (H0 m3 (ad_div_2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption.
    rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption.
    intro H5. rewrite H5. apply (H m2 (ad_div_2 a) y y').
    rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption.
    rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption.
  Qed.

  Lemma MapDelta_semantics :
   forall m m':Map,
     eqm (MapGet (MapDelta m m'))
       (fun a0:ad =>
          match MapGet m a0, MapGet m' a0 with
          | NONE, SOME y' => SOME y'
          | SOME y, NONE => SOME y
          | _, _ => NONE
          end).
  Proof.
    unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0.
    rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2.
    exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0).
    intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0).
    intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1.
    rewrite H1. rewrite (MapDelta_semantics_comm m m' a).
    exact (MapDelta_semantics_2 m' m a a0 H H1).
    intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H).
  Qed.

  Definition MapEmptyp (m:Map) := match m with
                                  | M0 => true
                                  | _ => false
                                  end.

  Lemma MapEmptyp_correct : MapEmptyp M0 = true.
  Proof.
    reflexivity.
  Qed.

  Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0.
  Proof.
    simple induction m; trivial. intros. discriminate H.
    intros. discriminate H1.
  Qed.

  (** [MapSplit] not implemented: not the preferred way of recursing over Maps
      (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *)

End MapDefs.