(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* A -> Map | M2 : Map -> Map -> Map. Inductive option : Set := | NONE : option | SOME : A -> option. Lemma option_sum : forall o:option, {y : A | o = SOME y} + {o = NONE}. Proof. simple induction o. right. reflexivity. left. split with a. reflexivity. Qed. (** The semantics of maps is given by the function [MapGet]. The semantics of a map [m] is a partial, finite function from [ad] to [A]: *) Fixpoint MapGet (m:Map) : ad -> option := match m with | M0 => fun a:ad => NONE | M1 x y => fun a:ad => if ad_eq x a then SOME y else NONE | M2 m1 m2 => fun a:ad => match a with | ad_z => MapGet m1 ad_z | ad_x xH => MapGet m2 ad_z | ad_x (xO p) => MapGet m1 (ad_x p) | ad_x (xI p) => MapGet m2 (ad_x p) end end. Definition newMap := M0. Definition MapSingleton := M1. Definition eqm (g g':ad -> option) := forall a:ad, g a = g' a. Lemma newMap_semantics : eqm (MapGet newMap) (fun a:ad => NONE). Proof. simpl in |- *. unfold eqm in |- *. trivial. Qed. Lemma MapSingleton_semantics : forall (a:ad) (y:A), eqm (MapGet (MapSingleton a y)) (fun a':ad => if ad_eq a a' then SOME y else NONE). Proof. simpl in |- *. unfold eqm in |- *. trivial. Qed. Lemma M1_semantics_1 : forall (a:ad) (y:A), MapGet (M1 a y) a = SOME y. Proof. unfold MapGet in |- *. intros. rewrite (ad_eq_correct a). reflexivity. Qed. Lemma M1_semantics_2 : forall (a a':ad) (y:A), ad_eq a a' = false -> MapGet (M1 a y) a' = NONE. Proof. intros. simpl in |- *. rewrite H. reflexivity. Qed. Lemma Map2_semantics_1 : forall m m':Map, eqm (MapGet m) (fun a:ad => MapGet (M2 m m') (ad_double a)). Proof. unfold eqm in |- *. simple induction a; trivial. Qed. Lemma Map2_semantics_1_eq : forall (m m':Map) (f:ad -> option), eqm (MapGet (M2 m m')) f -> eqm (MapGet m) (fun a:ad => f (ad_double a)). Proof. unfold eqm in |- *. intros. rewrite <- (H (ad_double a)). exact (Map2_semantics_1 m m' a). Qed. Lemma Map2_semantics_2 : forall m m':Map, eqm (MapGet m') (fun a:ad => MapGet (M2 m m') (ad_double_plus_un a)). Proof. unfold eqm in |- *. simple induction a; trivial. Qed. Lemma Map2_semantics_2_eq : forall (m m':Map) (f:ad -> option), eqm (MapGet (M2 m m')) f -> eqm (MapGet m') (fun a:ad => f (ad_double_plus_un a)). Proof. unfold eqm in |- *. intros. rewrite <- (H (ad_double_plus_un a)). exact (Map2_semantics_2 m m' a). Qed. Lemma MapGet_M2_bit_0_0 : forall a:ad, ad_bit_0 a = false -> forall m m':Map, MapGet (M2 m m') a = MapGet m (ad_div_2 a). Proof. simple induction a; trivial. simple induction p. intros. discriminate H0. trivial. intros. discriminate H. Qed. Lemma MapGet_M2_bit_0_1 : forall a:ad, ad_bit_0 a = true -> forall m m':Map, MapGet (M2 m m') a = MapGet m' (ad_div_2 a). Proof. simple induction a. intros. discriminate H. simple induction p. trivial. intros. discriminate H0. trivial. Qed. Lemma MapGet_M2_bit_0_if : forall (m m':Map) (a:ad), MapGet (M2 m m') a = (if ad_bit_0 a then MapGet m' (ad_div_2 a) else MapGet m (ad_div_2 a)). Proof. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H. apply MapGet_M2_bit_0_1; assumption. intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption. Qed. Lemma MapGet_M2_bit_0 : forall (m m' m'':Map) (a:ad), (if ad_bit_0 a then MapGet (M2 m' m) a else MapGet (M2 m m'') a) = MapGet m (ad_div_2 a). Proof. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite H. apply MapGet_M2_bit_0_1; assumption. intro H. rewrite H. apply MapGet_M2_bit_0_0; assumption. Qed. Lemma Map2_semantics_3 : forall m m':Map, eqm (MapGet (M2 m m')) (fun a:ad => match ad_bit_0 a with | false => MapGet m (ad_div_2 a) | true => MapGet m' (ad_div_2 a) end). Proof. unfold eqm in |- *. simple induction a; trivial. simple induction p; trivial. Qed. Lemma Map2_semantics_3_eq : forall (m m':Map) (f f':ad -> option), eqm (MapGet m) f -> eqm (MapGet m') f' -> eqm (MapGet (M2 m m')) (fun a:ad => match ad_bit_0 a with | false => f (ad_div_2 a) | true => f' (ad_div_2 a) end). Proof. unfold eqm in |- *. intros. rewrite <- (H (ad_div_2 a)). rewrite <- (H0 (ad_div_2 a)). exact (Map2_semantics_3 m m' a). Qed. Fixpoint MapPut1 (a:ad) (y:A) (a':ad) (y':A) (p:positive) {struct p} : Map := match p with | xO p' => let m := MapPut1 (ad_div_2 a) y (ad_div_2 a') y' p' in match ad_bit_0 a with | false => M2 m M0 | true => M2 M0 m end | _ => match ad_bit_0 a with | false => M2 (M1 (ad_div_2 a) y) (M1 (ad_div_2 a') y') | true => M2 (M1 (ad_div_2 a') y') (M1 (ad_div_2 a) y) end end. Lemma MapGet_if_commute : forall (b:bool) (m m':Map) (a:ad), MapGet (if b then m else m') a = (if b then MapGet m a else MapGet m' a). Proof. intros. case b; trivial. Qed. (*i Lemma MapGet_M2_bit_0_1' : (m,m',m'',m''':Map) (a:ad) (MapGet (if (ad_bit_0 a) then (M2 m m') else (M2 m'' m''')) a)= (MapGet (if (ad_bit_0 a) then m' else m'') (ad_div_2 a)). Proof. Intros. Rewrite (MapGet_if_commute (ad_bit_0 a)). Rewrite (MapGet_if_commute (ad_bit_0 a)). Cut (ad_bit_0 a)=false\/(ad_bit_0 a)=true. Intros. Elim H. Intros. Rewrite H0. Apply MapGet_M2_bit_0_0. Assumption. Intros. Rewrite H0. Apply MapGet_M2_bit_0_1. Assumption. Case (ad_bit_0 a); Auto. Qed. i*) Lemma MapGet_if_same : forall (m:Map) (b:bool) (a:ad), MapGet (if b then m else m) a = MapGet m a. Proof. simple induction b; trivial. Qed. Lemma MapGet_M2_bit_0_2 : forall (m m' m'':Map) (a:ad), MapGet (if ad_bit_0 a then M2 m m' else M2 m' m'') a = MapGet m' (ad_div_2 a). Proof. intros. rewrite MapGet_if_commute. apply MapGet_M2_bit_0. Qed. Lemma MapPut1_semantics_1 : forall (p:positive) (a a':ad) (y y':A), ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a = SOME y. Proof. simple induction p. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1. intros. simpl in |- *. rewrite MapGet_M2_bit_0_2. apply H. rewrite <- ad_xor_div_2. rewrite H0. reflexivity. intros. unfold MapPut1 in |- *. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1. Qed. Lemma MapPut1_semantics_2 : forall (p:positive) (a a':ad) (y y':A), ad_xor a a' = ad_x p -> MapGet (MapPut1 a y a' y' p) a' = SOME y'. Proof. simple induction p. intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_2 a a' p0 H0). rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1. intros. simpl in |- *. rewrite (ad_same_bit_0 a a' p0 H0). rewrite MapGet_M2_bit_0_2. apply H. rewrite <- ad_xor_div_2. rewrite H0. reflexivity. intros. unfold MapPut1 in |- *. rewrite (ad_neg_bit_0_1 a a' H). rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_1. Qed. Lemma MapGet_M2_both_NONE : forall (m m':Map) (a:ad), MapGet m (ad_div_2 a) = NONE -> MapGet m' (ad_div_2 a) = NONE -> MapGet (M2 m m') a = NONE. Proof. intros. rewrite (Map2_semantics_3 m m' a). case (ad_bit_0 a); assumption. Qed. Lemma MapPut1_semantics_3 : forall (p:positive) (a a' a0:ad) (y y':A), ad_xor a a' = ad_x p -> ad_eq a a0 = false -> ad_eq a' a0 = false -> MapGet (MapPut1 a y a' y' p) a0 = NONE. Proof. simple induction p. intros. unfold MapPut1 in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption. rewrite (ad_neg_bit_0_2 a a' p0 H0) in H3. rewrite (negb_intro (ad_bit_0 a')). rewrite (negb_intro (ad_bit_0 a0)). rewrite H3. reflexivity. intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_neg_bit_0_2 a a' p0 H0). rewrite H4. rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2. apply M1_semantics_2; assumption. intro; case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2; assumption. intros. simpl in |- *. elim (ad_neq a a0 H1). intro. rewrite H3. rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity. intro. elim (ad_neq a' a0 H2). intro. rewrite (ad_same_bit_0 a a' p0 H0). rewrite H4. rewrite if_negb. rewrite MapGet_M2_bit_0_2. reflexivity. intro. cut (ad_xor (ad_div_2 a) (ad_div_2 a') = ad_x p0). intro. case (ad_bit_0 a); apply MapGet_M2_both_NONE; trivial; apply H; assumption. rewrite <- ad_xor_div_2. rewrite H0. reflexivity. intros. simpl in |- *. elim (ad_neq a a0 H0). intro. rewrite H2. rewrite if_negb. rewrite MapGet_M2_bit_0_2. apply M1_semantics_2. apply ad_div_bit_neq. assumption. rewrite (ad_neg_bit_0_1 a a' H) in H2. rewrite (negb_intro (ad_bit_0 a')). rewrite (negb_intro (ad_bit_0 a0)). rewrite H2. reflexivity. intro. elim (ad_neq a' a0 H1). intro. rewrite (ad_neg_bit_0_1 a a' H). rewrite H3. rewrite (negb_elim (ad_bit_0 a0)). rewrite MapGet_M2_bit_0_2. apply M1_semantics_2; assumption. intro. case (ad_bit_0 a); apply MapGet_M2_both_NONE; apply M1_semantics_2; assumption. Qed. Lemma MapPut1_semantics : forall (p:positive) (a a':ad) (y y':A), ad_xor a a' = ad_x p -> eqm (MapGet (MapPut1 a y a' y' p)) (fun a0:ad => if ad_eq a a0 then SOME y else if ad_eq a' a0 then SOME y' else NONE). Proof. unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0). exact (MapPut1_semantics_1 p a a' y y' H). intro H0. rewrite H0. elim (sumbool_of_bool (ad_eq a' a0)). intro H1. rewrite <- (ad_eq_complete _ _ H1). rewrite (ad_eq_correct a'). exact (MapPut1_semantics_2 p a a' y y' H). intro H1. rewrite H1. exact (MapPut1_semantics_3 p a a' a0 y y' H H0 H1). Qed. Lemma MapPut1_semantics' : forall (p:positive) (a a':ad) (y y':A), ad_xor a a' = ad_x p -> eqm (MapGet (MapPut1 a y a' y' p)) (fun a0:ad => if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE). Proof. unfold eqm in |- *. intros. rewrite (MapPut1_semantics p a a' y y' H a0). elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete a a0 H0). rewrite (ad_eq_comm a' a). rewrite (ad_xor_eq_false a a' p H). reflexivity. intro H0. rewrite H0. reflexivity. Qed. Fixpoint MapPut (m:Map) : ad -> A -> Map := match m with | M0 => M1 | M1 a y => fun (a':ad) (y':A) => match ad_xor a a' with | ad_z => M1 a' y' | ad_x p => MapPut1 a y a' y' p end | M2 m1 m2 => fun (a:ad) (y:A) => match a with | ad_z => M2 (MapPut m1 ad_z y) m2 | ad_x xH => M2 m1 (MapPut m2 ad_z y) | ad_x (xO p) => M2 (MapPut m1 (ad_x p) y) m2 | ad_x (xI p) => M2 m1 (MapPut m2 (ad_x p) y) end end. Lemma MapPut_semantics_1 : forall (a:ad) (y:A) (a0:ad), MapGet (MapPut M0 a y) a0 = MapGet (M1 a y) a0. Proof. trivial. Qed. Lemma MapPut_semantics_2_1 : forall (a:ad) (y y':A) (a0:ad), MapGet (MapPut (M1 a y) a y') a0 = (if ad_eq a a0 then SOME y' else NONE). Proof. simpl in |- *. intros. rewrite (ad_xor_nilpotent a). trivial. Qed. Lemma MapPut_semantics_2_2 : forall (a a':ad) (y y':A) (a0 a'':ad), ad_xor a a' = a'' -> MapGet (MapPut (M1 a y) a' y') a0 = (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE). Proof. simple induction a''. intro. rewrite (ad_xor_eq _ _ H). rewrite MapPut_semantics_2_1. case (ad_eq a' a0); trivial. intros. simpl in |- *. rewrite H. rewrite (MapPut1_semantics p a a' y y' H a0). elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0). rewrite (ad_eq_comm a' a). rewrite (ad_xor_eq_false _ _ _ H). reflexivity. intro H0. rewrite H0. reflexivity. Qed. Lemma MapPut_semantics_2 : forall (a a':ad) (y y':A) (a0:ad), MapGet (MapPut (M1 a y) a' y') a0 = (if ad_eq a' a0 then SOME y' else if ad_eq a a0 then SOME y else NONE). Proof. intros. apply MapPut_semantics_2_2 with (a'' := ad_xor a a'); trivial. Qed. Lemma MapPut_semantics_3_1 : forall (m m':Map) (a:ad) (y:A), MapPut (M2 m m') a y = (if ad_bit_0 a then M2 m (MapPut m' (ad_div_2 a) y) else M2 (MapPut m (ad_div_2 a) y) m'). Proof. simple induction a. trivial. simple induction p; trivial. Qed. Lemma MapPut_semantics : forall (m:Map) (a:ad) (y:A), eqm (MapGet (MapPut m a y)) (fun a':ad => if ad_eq a a' then SOME y else MapGet m a'). Proof. unfold eqm in |- *. simple induction m. exact MapPut_semantics_1. intros. unfold MapGet at 2 in |- *. apply MapPut_semantics_2; assumption. intros. rewrite MapPut_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a0). elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite H2. rewrite (H0 (ad_div_2 a) y (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity. intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity. intro H2. rewrite H2. rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq a0 a H2 H1). reflexivity. intro H1. rewrite H1. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite H2. rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity. intro H2. rewrite H2. rewrite (H (ad_div_2 a) y (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq a a0 H3). reflexivity. intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq a a0 H3 H1). reflexivity. Qed. Fixpoint MapPut_behind (m:Map) : ad -> A -> Map := match m with | M0 => M1 | M1 a y => fun (a':ad) (y':A) => match ad_xor a a' with | ad_z => m | ad_x p => MapPut1 a y a' y' p end | M2 m1 m2 => fun (a:ad) (y:A) => match a with | ad_z => M2 (MapPut_behind m1 ad_z y) m2 | ad_x xH => M2 m1 (MapPut_behind m2 ad_z y) | ad_x (xO p) => M2 (MapPut_behind m1 (ad_x p) y) m2 | ad_x (xI p) => M2 m1 (MapPut_behind m2 (ad_x p) y) end end. Lemma MapPut_behind_semantics_3_1 : forall (m m':Map) (a:ad) (y:A), MapPut_behind (M2 m m') a y = (if ad_bit_0 a then M2 m (MapPut_behind m' (ad_div_2 a) y) else M2 (MapPut_behind m (ad_div_2 a) y) m'). Proof. simple induction a. trivial. simple induction p; trivial. Qed. Lemma MapPut_behind_as_before_1 : forall a a' a0:ad, ad_eq a' a0 = false -> forall y y':A, MapGet (MapPut (M1 a y) a' y') a0 = MapGet (MapPut_behind (M1 a y) a' y') a0. Proof. intros a a' a0. simpl in |- *. intros H y y'. elim (ad_sum (ad_xor a a')). intro H0. elim H0. intros p H1. rewrite H1. reflexivity. intro H0. rewrite H0. rewrite (ad_xor_eq _ _ H0). rewrite (M1_semantics_2 a' a0 y H). exact (M1_semantics_2 a' a0 y' H). Qed. Lemma MapPut_behind_as_before : forall (m:Map) (a:ad) (y:A) (a0:ad), ad_eq a a0 = false -> MapGet (MapPut m a y) a0 = MapGet (MapPut_behind m a y) a0. Proof. simple induction m. trivial. intros a y a' y' a0 H. exact (MapPut_behind_as_before_1 a a' a0 H y y'). intros. rewrite MapPut_semantics_3_1. rewrite MapPut_behind_semantics_3_1. elim (sumbool_of_bool (ad_bit_0 a)). intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H3. rewrite H3. apply H0. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2). intro H3. rewrite H3. reflexivity. intro H2. rewrite H2. rewrite MapGet_M2_bit_0_if. rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a0)). intro H3. rewrite H3. reflexivity. intro H3. rewrite H3. apply H. rewrite <- H3 in H2. exact (ad_div_bit_neq a a0 H1 H2). Qed. Lemma MapPut_behind_new : forall (m:Map) (a:ad) (y:A), MapGet (MapPut_behind m a y) a = match MapGet m a with | SOME y' => SOME y' | _ => SOME y end. Proof. simple induction m. simpl in |- *. intros. rewrite (ad_eq_correct a). reflexivity. intros. elim (ad_sum (ad_xor a a1)). intro H. elim H. intros p H0. simpl in |- *. rewrite H0. rewrite (ad_xor_eq_false a a1 p). exact (MapPut1_semantics_2 p a a1 a0 y H0). assumption. intro H. simpl in |- *. rewrite H. rewrite <- (ad_xor_eq _ _ H). rewrite (ad_eq_correct a). exact (M1_semantics_1 a a0). intros. rewrite MapPut_behind_semantics_3_1. rewrite (MapGet_M2_bit_0_if m0 m1 a). elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_1 a H1). exact (H0 (ad_div_2 a) y). intro H1. rewrite H1. rewrite (MapGet_M2_bit_0_0 a H1). exact (H (ad_div_2 a) y). Qed. Lemma MapPut_behind_semantics : forall (m:Map) (a:ad) (y:A), eqm (MapGet (MapPut_behind m a y)) (fun a':ad => match MapGet m a' with | SOME y' => SOME y' | _ => if ad_eq a a' then SOME y else NONE end). Proof. unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_complete _ _ H). apply MapPut_behind_new. intro H. rewrite H. rewrite <- (MapPut_behind_as_before m a y a0 H). rewrite (MapPut_semantics m a y a0). rewrite H. case (MapGet m a0); trivial. Qed. Definition makeM2 (m m':Map) := match m, m' with | M0, M0 => M0 | M0, M1 a y => M1 (ad_double_plus_un a) y | M1 a y, M0 => M1 (ad_double a) y | _, _ => M2 m m' end. Lemma makeM2_M2 : forall m m':Map, eqm (MapGet (makeM2 m m')) (MapGet (M2 m m')). Proof. unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_bit_0 a)). intro H. rewrite (MapGet_M2_bit_0_1 a H m m'). case m'. case m. reflexivity. intros a0 y. simpl in |- *. rewrite (ad_bit_0_1_not_double a H a0). reflexivity. intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity. assumption. case m. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double_plus_un a H). rewrite (ad_eq_correct a). reflexivity. intro H0. rewrite H0. rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. rewrite (ad_not_div_2_not_double_plus_un a a0 H0). reflexivity. intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity. assumption. intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_1. reflexivity. assumption. intros m1 m2. unfold makeM2 in |- *. cut (MapGet (M2 m (M2 m1 m2)) a = MapGet (M2 m1 m2) (ad_div_2 a)). case m; trivial. exact (MapGet_M2_bit_0_1 a H m (M2 m1 m2)). intro H. rewrite (MapGet_M2_bit_0_0 a H m m'). case m. case m'. reflexivity. intros a0 y. simpl in |- *. rewrite (ad_bit_0_0_not_double_plus_un a H a0). reflexivity. intros m1 m2. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity. assumption. case m'. intros a0 y. simpl in |- *. elim (sumbool_of_bool (ad_eq a0 (ad_div_2 a))). intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0). rewrite (ad_div_2_double a H). rewrite (ad_eq_correct a). reflexivity. intro H0. rewrite H0. rewrite (ad_eq_comm (ad_double a0) a). rewrite (ad_eq_comm a0 (ad_div_2 a)) in H0. rewrite (ad_not_div_2_not_double a a0 H0). reflexivity. intros a0 y0 a1 y1. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity. assumption. intros m1 m2 a0 y. unfold makeM2 in |- *. rewrite MapGet_M2_bit_0_0. reflexivity. assumption. intros m1 m2. unfold makeM2 in |- *. exact (MapGet_M2_bit_0_0 a H (M2 m1 m2) m'). Qed. Fixpoint MapRemove (m:Map) : ad -> Map := match m with | M0 => fun _:ad => M0 | M1 a y => fun a':ad => match ad_eq a a' with | true => M0 | false => m end | M2 m1 m2 => fun a:ad => if ad_bit_0 a then makeM2 m1 (MapRemove m2 (ad_div_2 a)) else makeM2 (MapRemove m1 (ad_div_2 a)) m2 end. Lemma MapRemove_semantics : forall (m:Map) (a:ad), eqm (MapGet (MapRemove m a)) (fun a':ad => if ad_eq a a' then NONE else MapGet m a'). Proof. unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (ad_eq a a0); trivial. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a1 a2)). intro H. rewrite H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. reflexivity. intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H) in H0. exact (M1_semantics_2 a a2 a0 H0). intro H. elim (sumbool_of_bool (ad_eq a a1)). intro H0. rewrite H0. rewrite H. rewrite <- (ad_eq_complete _ _ H0) in H. rewrite H. reflexivity. intro H0. rewrite H0. rewrite H. reflexivity. intros. change (MapGet (if ad_bit_0 a then makeM2 m0 (MapRemove m1 (ad_div_2 a)) else makeM2 (MapRemove m0 (ad_div_2 a)) m1) a0 = (if ad_eq a a0 then NONE else MapGet (M2 m0 m1) a0)) in |- *. elim (sumbool_of_bool (ad_bit_0 a)). intro H1. rewrite H1. rewrite (makeM2_M2 m0 (MapRemove m1 (ad_div_2 a)) a0). elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite MapGet_M2_bit_0_1. rewrite (H0 (ad_div_2 a) (ad_div_2 a0)). elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity. intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). reflexivity. assumption. intro H2. rewrite (MapGet_M2_bit_0_0 a0 H2 m0 (MapRemove m1 (ad_div_2 a))). rewrite (ad_eq_comm a a0). rewrite (ad_bit_0_neq _ _ H2 H1). rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). reflexivity. intro H1. rewrite H1. rewrite (makeM2_M2 (MapRemove m0 (ad_div_2 a)) m1 a0). elim (sumbool_of_bool (ad_bit_0 a0)). intro H2. rewrite MapGet_M2_bit_0_1. rewrite (MapGet_M2_bit_0_1 a0 H2 m0 m1). rewrite (ad_bit_0_neq a a0 H1 H2). reflexivity. assumption. intro H2. rewrite MapGet_M2_bit_0_0. rewrite (H (ad_div_2 a) (ad_div_2 a0)). rewrite (MapGet_M2_bit_0_0 a0 H2 m0 m1). elim (sumbool_of_bool (ad_eq a a0)). intro H3. rewrite H3. rewrite (ad_div_eq _ _ H3). reflexivity. intro H3. rewrite H3. rewrite <- H2 in H1. rewrite (ad_div_bit_neq _ _ H3 H1). reflexivity. assumption. Qed. Fixpoint MapCard (m:Map) : nat := match m with | M0 => 0 | M1 _ _ => 1 | M2 m m' => MapCard m + MapCard m' end. Fixpoint MapMerge (m:Map) : Map -> Map := match m with | M0 => fun m':Map => m' | M1 a y => fun m':Map => MapPut_behind m' a y | M2 m1 m2 => fun m':Map => match m' with | M0 => m | M1 a' y' => MapPut m a' y' | M2 m'1 m'2 => M2 (MapMerge m1 m'1) (MapMerge m2 m'2) end end. Lemma MapMerge_semantics : forall m m':Map, eqm (MapGet (MapMerge m m')) (fun a0:ad => match MapGet m' a0 with | SOME y' => SOME y' | NONE => MapGet m a0 end). Proof. unfold eqm in |- *. simple induction m. intros. simpl in |- *. case (MapGet m' a); trivial. intros. simpl in |- *. rewrite (MapPut_behind_semantics m' a a0 a1). reflexivity. simple induction m'. trivial. intros. unfold MapMerge in |- *. rewrite (MapPut_semantics (M2 m0 m1) a a0 a1). elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1). rewrite (M1_semantics_1 a1 a0). reflexivity. intro H1. rewrite H1. rewrite (M1_semantics_2 a a1 a0 H1). reflexivity. intros. cut (MapMerge (M2 m0 m1) (M2 m2 m3) = M2 (MapMerge m0 m2) (MapMerge m1 m3)). intro. rewrite H3. rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if m2 m3 a). rewrite (MapGet_M2_bit_0_if m0 m1 a). case (ad_bit_0 a); trivial. reflexivity. Qed. (** [MapInter], [MapRngRestrTo], [MapRngRestrBy], [MapInverse] not implemented: need a decidable equality on [A]. *) Fixpoint MapDelta (m:Map) : Map -> Map := match m with | M0 => fun m':Map => m' | M1 a y => fun m':Map => match MapGet m' a with | NONE => MapPut m' a y | _ => MapRemove m' a end | M2 m1 m2 => fun m':Map => match m' with | M0 => m | M1 a' y' => match MapGet m a' with | NONE => MapPut m a' y' | _ => MapRemove m a' end | M2 m'1 m'2 => makeM2 (MapDelta m1 m'1) (MapDelta m2 m'2) end end. Lemma MapDelta_semantics_comm : forall m m':Map, eqm (MapGet (MapDelta m m')) (MapGet (MapDelta m' m)). Proof. unfold eqm in |- *. simple induction m. simple induction m'; reflexivity. simple induction m'. reflexivity. unfold MapDelta in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite <- (ad_eq_complete _ _ H). rewrite (M1_semantics_1 a a2). rewrite (M1_semantics_1 a a0). simpl in |- *. rewrite (ad_eq_correct a). reflexivity. intro H. rewrite (M1_semantics_2 a a1 a0 H). rewrite (ad_eq_comm a a1) in H. rewrite (M1_semantics_2 a1 a a2 H). rewrite (MapPut_semantics (M1 a a0) a1 a2 a3). rewrite (MapPut_semantics (M1 a1 a2) a a0 a3). elim (sumbool_of_bool (ad_eq a a3)). intro H0. rewrite H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite H. rewrite (ad_eq_complete _ _ H0). rewrite (M1_semantics_1 a3 a0). reflexivity. intro H0. rewrite H0. rewrite (M1_semantics_2 a a3 a0 H0). elim (sumbool_of_bool (ad_eq a1 a3)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1). exact (M1_semantics_1 a3 a2). intro H1. rewrite H1. exact (M1_semantics_2 a1 a3 a2 H1). intros. reflexivity. simple induction m'. reflexivity. reflexivity. intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a). rewrite (makeM2_M2 (MapDelta m2 m0) (MapDelta m3 m1) a). rewrite (MapGet_M2_bit_0_if (MapDelta m0 m2) (MapDelta m1 m3) a). rewrite (MapGet_M2_bit_0_if (MapDelta m2 m0) (MapDelta m3 m1) a). rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). reflexivity. Qed. Lemma MapDelta_semantics_1_1 : forall (a:ad) (y:A) (m':Map) (a0:ad), MapGet (M1 a y) a0 = NONE -> MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = NONE. Proof. intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H. intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption. rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial. Qed. Lemma MapDelta_semantics_1 : forall (m m':Map) (a:ad), MapGet m a = NONE -> MapGet m' a = NONE -> MapGet (MapDelta m m') a = NONE. Proof. simple induction m. trivial. exact MapDelta_semantics_1_1. simple induction m'. trivial. intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1). apply MapDelta_semantics_1_1; trivial. intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a). rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5. apply H0. rewrite (MapGet_M2_bit_0_1 a H5 m0 m1) in H3. exact H3. rewrite (MapGet_M2_bit_0_1 a H5 m2 m3) in H4. exact H4. intro H5. rewrite H5. apply H. rewrite (MapGet_M2_bit_0_0 a H5 m0 m1) in H3. exact H3. rewrite (MapGet_M2_bit_0_0 a H5 m2 m3) in H4. exact H4. Qed. Lemma MapDelta_semantics_2_1 : forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A), MapGet (M1 a y) a0 = NONE -> MapGet m' a0 = SOME y0 -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0. Proof. intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite (ad_eq_complete _ _ H1) in H. rewrite (M1_semantics_1 a0 y) in H. discriminate H. intro H1. case (MapGet m' a). rewrite (MapPut_semantics m' a y a0). rewrite H1. assumption. rewrite (MapRemove_semantics m' a a0). rewrite H1. trivial. Qed. Lemma MapDelta_semantics_2_2 : forall (a:ad) (y:A) (m':Map) (a0:ad) (y0:A), MapGet (M1 a y) a0 = SOME y0 -> MapGet m' a0 = NONE -> MapGet (MapDelta (M1 a y) m') a0 = SOME y0. Proof. intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_eq_complete _ _ H1). rewrite H0. rewrite (MapPut_semantics m' a0 y a0). rewrite (ad_eq_correct a0). rewrite (M1_semantics_1 a0 y) in H. simple inversion H. assumption. intro H1. rewrite (M1_semantics_2 a a0 y H1) in H. discriminate H. Qed. Lemma MapDelta_semantics_2 : forall (m m':Map) (a:ad) (y:A), MapGet m a = NONE -> MapGet m' a = SOME y -> MapGet (MapDelta m m') a = SOME y. Proof. simple induction m. trivial. exact MapDelta_semantics_2_1. simple induction m'. intros. discriminate H2. intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1). apply MapDelta_semantics_2_2; assumption. intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a). rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5. apply H0. rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption. rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption. intro H5. rewrite H5. apply H. rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption. rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption. Qed. Lemma MapDelta_semantics_3_1 : forall (a0:ad) (y0:A) (m':Map) (a:ad) (y y':A), MapGet (M1 a0 y0) a = SOME y -> MapGet m' a = SOME y' -> MapGet (MapDelta (M1 a0 y0) m') a = NONE. Proof. intros. unfold MapDelta in |- *. elim (sumbool_of_bool (ad_eq a0 a)). intro H1. rewrite (ad_eq_complete a0 a H1). rewrite H0. rewrite (MapRemove_semantics m' a a). rewrite (ad_eq_correct a). reflexivity. intro H1. rewrite (M1_semantics_2 a0 a y0 H1) in H. discriminate H. Qed. Lemma MapDelta_semantics_3 : forall (m m':Map) (a:ad) (y y':A), MapGet m a = SOME y -> MapGet m' a = SOME y' -> MapGet (MapDelta m m') a = NONE. Proof. simple induction m. intros. discriminate H. exact MapDelta_semantics_3_1. simple induction m'. intros. discriminate H2. intros. rewrite (MapDelta_semantics_comm (M2 m0 m1) (M1 a a0) a1). exact (MapDelta_semantics_3_1 a a0 (M2 m0 m1) a1 y' y H2 H1). intros. simpl in |- *. rewrite (makeM2_M2 (MapDelta m0 m2) (MapDelta m1 m3) a). rewrite MapGet_M2_bit_0_if. elim (sumbool_of_bool (ad_bit_0 a)). intro H5. rewrite H5. apply (H0 m3 (ad_div_2 a) y y'). rewrite <- (MapGet_M2_bit_0_1 a H5 m0 m1). assumption. rewrite <- (MapGet_M2_bit_0_1 a H5 m2 m3). assumption. intro H5. rewrite H5. apply (H m2 (ad_div_2 a) y y'). rewrite <- (MapGet_M2_bit_0_0 a H5 m0 m1). assumption. rewrite <- (MapGet_M2_bit_0_0 a H5 m2 m3). assumption. Qed. Lemma MapDelta_semantics : forall m m':Map, eqm (MapGet (MapDelta m m')) (fun a0:ad => match MapGet m a0, MapGet m' a0 with | NONE, SOME y' => SOME y' | SOME y, NONE => SOME y | _, _ => NONE end). Proof. unfold eqm in |- *. intros. elim (option_sum (MapGet m' a)). intro H. elim H. intros a0 H0. rewrite H0. elim (option_sum (MapGet m a)). intro H1. elim H1. intros a1 H2. rewrite H2. exact (MapDelta_semantics_3 m m' a a1 a0 H2 H0). intro H1. rewrite H1. exact (MapDelta_semantics_2 m m' a a0 H1 H0). intro H. rewrite H. elim (option_sum (MapGet m a)). intro H0. elim H0. intros a0 H1. rewrite H1. rewrite (MapDelta_semantics_comm m m' a). exact (MapDelta_semantics_2 m' m a a0 H H1). intro H0. rewrite H0. exact (MapDelta_semantics_1 m m' a H0 H). Qed. Definition MapEmptyp (m:Map) := match m with | M0 => true | _ => false end. Lemma MapEmptyp_correct : MapEmptyp M0 = true. Proof. reflexivity. Qed. Lemma MapEmptyp_complete : forall m:Map, MapEmptyp m = true -> m = M0. Proof. simple induction m; trivial. intros. discriminate H. intros. discriminate H1. Qed. (** [MapSplit] not implemented: not the preferred way of recursing over Maps (use [MapSweep], [MapCollect], or [MapFold] in Mapiter.v. *) End MapDefs.