summaryrefslogtreecommitdiff
path: root/theories/Init/Wf.v
blob: fde70225f0acfb47bf0b4fbb471b6bf52706d670 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Wf.v 8642 2006-03-17 10:09:02Z notin $ i*)

(** This module proves the validity of
    - well-founded recursion (also called course of values)
    - well-founded induction

    from a well-founded ordering on a given set *)

Set Implicit Arguments.

Require Import Notations.
Require Import Logic.
Require Import Datatypes.

(** Well-founded induction principle on [Prop] *)

Section Well_founded.

 Variable A : Type.
 Variable R : A -> A -> Prop.

 (** The accessibility predicate is defined to be non-informative *)

 Inductive Acc (x: A) : Prop :=
     Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.

 Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y.
  destruct 1; trivial.
 Defined.

  (** Informative elimination :
     [let Acc_rec F = let rec wf x = F x wf in wf] *)

 Section AccRecType.
  Variable P : A -> Type.
  Variable F : forall x:A,
    (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.

  Fixpoint Acc_rect (x:A) (a:Acc x) {struct a} : P x :=
    F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (Acc_inv a h)).

 End AccRecType.

 Definition Acc_rec (P:A -> Set) := Acc_rect P.

 (** A simplified version of [Acc_rect] *)

 Section AccIter.
  Variable P : A -> Type.
  Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.

  Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x :=
    F (fun (y:A) (h:R y x) => Acc_iter (Acc_inv a h)).

 End AccIter.

 (** A relation is well-founded if every element is accessible *)

 Definition well_founded := forall a:A, Acc a.

 (** Well-founded induction on [Set] and [Prop] *)

 Hypothesis Rwf : well_founded.

 Theorem well_founded_induction_type :
  forall P:A -> Type,
    (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
 Proof.
  intros; apply (Acc_iter P); auto.
 Defined.

 Theorem well_founded_induction :
  forall P:A -> Set,
    (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
 Proof.
  exact (fun P:A -> Set => well_founded_induction_type P).
 Defined.

 Theorem well_founded_ind :
  forall P:A -> Prop,
    (forall x:A, (forall y:A, R y x -> P y) -> P x) -> forall a:A, P a.
 Proof.
  exact (fun P:A -> Prop => well_founded_induction_type P).
 Defined.

(** Building fixpoints  *) 

 Section FixPoint.

  Variable P : A -> Type.
  Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.

  Notation Fix_F := (Acc_iter P F) (only parsing). (* alias *)

  Definition Fix (x:A) := Acc_iter P F (Rwf x).

  (** Proof that [well_founded_induction] satisfies the fixpoint equation. 
      It requires an extra property of the functional *)

  Hypothesis
    F_ext :
      forall (x:A) (f g:forall y:A, R y x -> P y),
        (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.

  Scheme Acc_inv_dep := Induction for Acc Sort Prop.

  Lemma Fix_F_eq :
   forall (x:A) (r:Acc x),
     F (fun (y:A) (p:R y x) => Fix_F y (Acc_inv r p)) = Fix_F x r.
  Proof. 
   destruct r using Acc_inv_dep; auto.
  Qed.

  Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
  Proof.
   intro x; induction (Rwf x); intros.
   rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
   apply F_ext; auto.
  Qed.

  Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
  Proof.
   intro x; unfold Fix in |- *.
   rewrite <- (Fix_F_eq (x:=x)).
   apply F_ext; intros.
   apply Fix_F_inv.
  Qed.

 End FixPoint.

End Well_founded. 

(** A recursor over pairs *)

Section Well_founded_2.

  Variables A B : Set.
  Variable R : A * B -> A * B -> Prop.

  Variable P : A -> B -> Type. 
  Variable
    F :
      forall (x:A) (x':B),
        (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x'.

  Fixpoint Acc_iter_2 (x:A) (x':B) (a:Acc R (x, x')) {struct a} : 
   P x x' :=
    F
      (fun (y:A) (y':B) (h:R (y, y') (x, x')) =>
         Acc_iter_2 (x:=y) (x':=y') (Acc_inv a (y, y') h)).

  Hypothesis Rwf : well_founded R.

  Theorem well_founded_induction_type_2 :
   (forall (x:A) (x':B),
      (forall (y:A) (y':B), R (y, y') (x, x') -> P y y') -> P x x') ->
   forall (a:A) (b:B), P a b.
  Proof.
   intros; apply Acc_iter_2; auto.
  Defined.

End Well_founded_2.

Notation Fix_F := Acc_iter (only parsing). (* compatibility *)