summaryrefslogtreecommitdiff
path: root/theories/Init/Wf.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Wf.v')
-rw-r--r--[-rwxr-xr-x]theories/Init/Wf.v99
1 files changed, 50 insertions, 49 deletions
diff --git a/theories/Init/Wf.v b/theories/Init/Wf.v
index 7ab3723d..fde70225 100755..100644
--- a/theories/Init/Wf.v
+++ b/theories/Init/Wf.v
@@ -6,61 +6,59 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Set Implicit Arguments.
-
-(*i $Id: Wf.v,v 1.17.2.1 2004/07/16 19:31:04 herbelin Exp $ i*)
+(*i $Id: Wf.v 8642 2006-03-17 10:09:02Z notin $ i*)
(** This module proves the validity of
- well-founded recursion (also called course of values)
- well-founded induction
- from a well-founded ordering on a given set *)
+ from a well-founded ordering on a given set *)
+
+Set Implicit Arguments.
Require Import Notations.
Require Import Logic.
Require Import Datatypes.
-(** Well-founded induction principle on Prop *)
+(** Well-founded induction principle on [Prop] *)
Section Well_founded.
- Variable A : Set.
+ Variable A : Type.
Variable R : A -> A -> Prop.
(** The accessibility predicate is defined to be non-informative *)
- Inductive Acc : A -> Prop :=
- Acc_intro : forall x:A, (forall y:A, R y x -> Acc y) -> Acc x.
+ Inductive Acc (x: A) : Prop :=
+ Acc_intro : (forall y:A, R y x -> Acc y) -> Acc x.
Lemma Acc_inv : forall x:A, Acc x -> forall y:A, R y x -> Acc y.
destruct 1; trivial.
Defined.
- (** the informative elimination :
+ (** Informative elimination :
[let Acc_rec F = let rec wf x = F x wf in wf] *)
Section AccRecType.
Variable P : A -> Type.
- Variable
- F :
- forall x:A,
- (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
+ Variable F : forall x:A,
+ (forall y:A, R y x -> Acc y) -> (forall y:A, R y x -> P y) -> P x.
Fixpoint Acc_rect (x:A) (a:Acc x) {struct a} : P x :=
- F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (x:=y) (Acc_inv a h)).
+ F (Acc_inv a) (fun (y:A) (h:R y x) => Acc_rect (Acc_inv a h)).
End AccRecType.
Definition Acc_rec (P:A -> Set) := Acc_rect P.
- (** A simplified version of Acc_rec(t) *)
+ (** A simplified version of [Acc_rect] *)
Section AccIter.
- Variable P : A -> Type.
+ Variable P : A -> Type.
Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
Fixpoint Acc_iter (x:A) (a:Acc x) {struct a} : P x :=
- F (fun (y:A) (h:R y x) => Acc_iter (x:=y) (Acc_inv a h)).
+ F (fun (y:A) (h:R y x) => Acc_iter (Acc_inv a h)).
End AccIter.
@@ -68,7 +66,7 @@ Section Well_founded.
Definition well_founded := forall a:A, Acc a.
- (** well-founded induction on Set and Prop *)
+ (** Well-founded induction on [Set] and [Prop] *)
Hypothesis Rwf : well_founded.
@@ -95,47 +93,48 @@ Section Well_founded.
(** Building fixpoints *)
-Section FixPoint.
+ Section FixPoint.
-Variable P : A -> Set.
-Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
-
-Fixpoint Fix_F (x:A) (r:Acc x) {struct r} : P x :=
- F (fun (y:A) (p:R y x) => Fix_F (x:=y) (Acc_inv r p)).
+ Variable P : A -> Type.
+ Variable F : forall x:A, (forall y:A, R y x -> P y) -> P x.
-Definition Fix (x:A) := Fix_F (Rwf x).
+ Notation Fix_F := (Acc_iter P F) (only parsing). (* alias *)
-(** Proof that [well_founded_induction] satisfies the fixpoint equation.
- It requires an extra property of the functional *)
+ Definition Fix (x:A) := Acc_iter P F (Rwf x).
-Hypothesis
- F_ext :
- forall (x:A) (f g:forall y:A, R y x -> P y),
- (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.
+ (** Proof that [well_founded_induction] satisfies the fixpoint equation.
+ It requires an extra property of the functional *)
-Scheme Acc_inv_dep := Induction for Acc Sort Prop.
+ Hypothesis
+ F_ext :
+ forall (x:A) (f g:forall y:A, R y x -> P y),
+ (forall (y:A) (p:R y x), f y p = g y p) -> F f = F g.
-Lemma Fix_F_eq :
- forall (x:A) (r:Acc x),
- F (fun (y:A) (p:R y x) => Fix_F (Acc_inv r p)) = Fix_F r.
-destruct r using Acc_inv_dep; auto.
-Qed.
+ Scheme Acc_inv_dep := Induction for Acc Sort Prop.
-Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F r = Fix_F s.
-intro x; induction (Rwf x); intros.
-rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
-apply F_ext; auto.
-Qed.
+ Lemma Fix_F_eq :
+ forall (x:A) (r:Acc x),
+ F (fun (y:A) (p:R y x) => Fix_F y (Acc_inv r p)) = Fix_F x r.
+ Proof.
+ destruct r using Acc_inv_dep; auto.
+ Qed.
+ Lemma Fix_F_inv : forall (x:A) (r s:Acc x), Fix_F x r = Fix_F x s.
+ Proof.
+ intro x; induction (Rwf x); intros.
+ rewrite <- (Fix_F_eq r); rewrite <- (Fix_F_eq s); intros.
+ apply F_ext; auto.
+ Qed.
-Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
-intro x; unfold Fix in |- *.
-rewrite <- (Fix_F_eq (x:=x)).
-apply F_ext; intros.
-apply Fix_F_inv.
-Qed.
+ Lemma Fix_eq : forall x:A, Fix x = F (fun (y:A) (p:R y x) => Fix y).
+ Proof.
+ intro x; unfold Fix in |- *.
+ rewrite <- (Fix_F_eq (x:=x)).
+ apply F_ext; intros.
+ apply Fix_F_inv.
+ Qed.
-End FixPoint.
+ End FixPoint.
End Well_founded.
@@ -169,3 +168,5 @@ Section Well_founded_2.
Defined.
End Well_founded_2.
+
+Notation Fix_F := Acc_iter (only parsing). (* compatibility *)