summaryrefslogtreecommitdiff
path: root/test-suite/success/vm_univ_poly.v
blob: 58fa39743d32a814fe84a1eb81d2d08c41971637 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
(* Basic tests *)
Polymorphic Definition pid {T : Type} (x : T) : T := x.
(*
Definition _1 : pid true = true :=
  @eq_refl _ true <: pid true = true.

Polymorphic Definition a_type := Type.

Definition _2 : a_type@{i} = Type@{i} :=
  @eq_refl _ Type@{i} <: a_type@{i} = Type@{i}.

Polymorphic Definition FORALL (T : Type) (P : T -> Prop) : Prop :=
  forall x : T, P x.

Polymorphic Axiom todo : forall {T:Type}, T -> T.

Polymorphic Definition todo' (T : Type) := @todo T.

Definition _3 : @todo'@{Set} = @todo@{Set} :=
  @eq_refl _ (@todo@{Set}) <: @todo'@{Set} = @todo@{Set}.
*)

(* Inductive Types *)
Inductive sumbool (A B : Prop) : Set :=
| left : A -> sumbool A B
| right : B -> sumbool A B.

Definition x : sumbool True False := left _ _ I.

Definition sumbool_copy {A B : Prop} (H : sumbool A B) : sumbool A B :=
  match H with
  | left _ _ x => left _ _ x
  | right _ _ x => right _ _ x
  end.

Definition _4 : sumbool_copy x = x :=
  @eq_refl _ x <: sumbool_copy x = x.

(* Polymorphic Inductive Types *)
Polymorphic Inductive poption@{i} (T : Type@{i}) : Type@{i} :=
| PSome : T -> poption@{i} T
| PNone : poption@{i} T.

Polymorphic Definition poption_default@{i} {T : Type@{i}} (p : poption@{i} T) (x : T) : T :=
  match p with
  | @PSome _ y => y
  | @PNone _ => x
  end.

Polymorphic Inductive plist@{i} (T : Type@{i}) : Type@{i} :=
| pnil
| pcons : T -> plist@{i} T -> plist@{i} T.

Arguments pnil {_}.
Arguments pcons {_} _ _.

Polymorphic Definition pmap@{i j}
            {T : Type@{i}} {U : Type@{j}} (f : T -> U) :=
  fix pmap (ls : plist@{i} T) : plist@{j} U :=
    match ls with
    | @pnil _ => @pnil _
    | @pcons _ l ls => @pcons@{j} U (f l) (pmap@{i j} ls)
    end.

Universe Ubool.
Inductive tbool : Type@{Ubool} := ttrue | tfalse.


Eval vm_compute in pmap pid (pcons true (pcons false pnil)).
Eval vm_compute in pmap (fun x => match x with
                                  | pnil => true
                                  | pcons _ _ => false
                                  end) (pcons pnil (pcons (pcons false pnil) pnil)).
Eval vm_compute in pmap (fun x => x -> Type) (pcons tbool (pcons (plist tbool) pnil)).

Polymorphic Inductive Tree@{i} (T : Type@{i}) : Type@{i} :=
| Empty
| Branch : plist@{i} (Tree@{i} T) -> Tree@{i} T.

Polymorphic Definition pfold@{i u}
            {T : Type@{i}} {U : Type@{u}} (f : T -> U -> U) :=
  fix pfold (acc : U) (ls : plist@{i} T) : U :=
    match ls with
    | pnil => acc
    | pcons a b => pfold (f a acc) b
    end.

Polymorphic Inductive nat@{i} : Type@{i} :=
| O
| S : nat -> nat.

Polymorphic Fixpoint nat_max@{i} (a b : nat@{i}) : nat@{i} :=
  match a , b with
  | O , b => b
  | a , O => a
  | S a , S b => S (nat_max a b)
  end.

Polymorphic Fixpoint height@{i} {T : Type@{i}} (t : Tree@{i} T) : nat@{i} :=
  match t return nat@{i} with
  | Empty _ => O
  | Branch _ ls => S@{i} (pfold@{i i} nat_max O (pmap height ls))
  end.

Polymorphic Fixpoint repeat@{i} {T : Type@{i}} (n : nat@{i}) (v : T) : plist@{i} T :=
  match n return plist@{i} T with
  | O => pnil
  | S n => pcons@{i} v (repeat n v)
  end.

Polymorphic Fixpoint big_tree@{i} (n : nat@{i}) : Tree@{i} nat@{i} :=
  match n with
  | O => @Empty nat@{i}
  | S n' => Branch@{i} nat@{i} (repeat@{i} n' (big_tree@{i} n'))
  end.

Eval compute in height (big_tree (S (S (S O)))).

Let big := S (S (S (S (S O)))).
Polymorphic Definition really_big@{i} := (S@{i} (S (S (S (S (S (S (S (S (S O)))))))))).

Time Definition _5 : height (@Empty nat) = O :=
  @eq_refl nat O <: height (@Empty nat) = O.

Time Definition _6 : height@{Set} (@Branch nat pnil) = S O :=
  @eq_refl nat@{Set} (S@{Set} O@{Set}) <: @eq nat@{Set} (height@{Set} (@Branch@{Set} nat@{Set} (@pnil@{Set} (Tree@{Set} nat@{Set})))) (S@{Set} O@{Set}).

Time Definition _7 : height (big_tree big) = big :=
  @eq_refl nat big <: height (big_tree big) = big.

Time Definition _8 : height (big_tree really_big) = really_big :=
 @eq_refl nat@{Set} (S@{Set}
        (S@{Set}
           (S@{Set}
              (S@{Set}
                 (S@{Set}
                    (S@{Set} (S@{Set} (S@{Set} (S@{Set} (S@{Set} O@{Set}))))))))))
 <:
 @eq nat@{Set}
   (@height nat@{Set} (big_tree really_big@{Set}))
   really_big@{Set}.