summaryrefslogtreecommitdiff
path: root/test-suite/bugs/closed/4089.v
blob: fc1c504f14ab7fc3d63bd76d1578953881c3a890 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
Unset Strict Universe Declaration.
Require Import TestSuite.admit.
(* -*- mode: coq; coq-prog-args: ("-indices-matter") -*- *)
(* File reduced by coq-bug-finder from original input, then from 6522 lines to 318 lines, then from 1139 lines to 361 lines *)
(* coqc version 8.5beta1 (February 2015) compiled on Feb 23 2015 18:32:3 with OCaml 4.01.0
   coqtop version cagnode15:/afs/csail.mit.edu/u/j/jgross/coq-8.5,v8.5 (ebfc19d792492417b129063fb511aa423e9d9e08) *)
Open Scope type_scope.

Global Set Universe Polymorphism.
Module Export Datatypes.

Set Implicit Arguments.

Record prod (A B : Type) := pair { fst : A ; snd : B }.

Notation "x * y" := (prod x y) : type_scope.
Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope.

End Datatypes.
Module Export Specif.

Set Implicit Arguments.

Record sig {A} (P : A -> Type) := exist { proj1_sig : A ; proj2_sig : P proj1_sig }.

Notation sigT := sig (only parsing).
Notation existT := exist (only parsing).

Notation "{ x : A  & P }" := (sigT (fun x:A => P)) : type_scope.

Notation projT1 := proj1_sig (only parsing).
Notation projT2 := proj2_sig (only parsing).

End Specif.

Ltac rapply p :=
  refine (p _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _ _) ||
  refine (p _ _ _ _ _ _) ||
  refine (p _ _ _ _ _) ||
  refine (p _ _ _ _) ||
  refine (p _ _ _) ||
  refine (p _ _) ||
  refine (p _) ||
  refine p.

Local Unset Elimination Schemes.

Definition relation (A : Type) := A -> A -> Type.

Class Symmetric {A} (R : relation A) :=
  symmetry : forall x y, R x y -> R y x.

Class Transitive {A} (R : relation A) :=
  transitivity : forall x y z, R x y -> R y z -> R x z.

Tactic Notation "etransitivity" open_constr(y) :=
  let R := match goal with |- ?R ?x ?z => constr:(R) end in
  let x := match goal with |- ?R ?x ?z => constr:(x) end in
  let z := match goal with |- ?R ?x ?z => constr:(z) end in
  let pre_proof_term_head := constr:(@transitivity _ R _) in
  let proof_term_head := (eval cbn in pre_proof_term_head) in
  refine (proof_term_head x y z _ _); [ change (R x y) | change (R y z) ].

Ltac transitivity x := etransitivity x.

Definition Type1 := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.

Notation idmap := (fun x => x).
Delimit Scope function_scope with function.
Delimit Scope path_scope with path.
Delimit Scope fibration_scope with fibration.
Open Scope fibration_scope.
Open Scope function_scope.

Notation "( x ; y )" := (existT _ x y) : fibration_scope.

Notation pr1 := projT1.
Notation pr2 := projT2.

Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope.
Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope.

Notation compose := (fun g f x => g (f x)).

Notation "g 'o' f" := (compose g%function f%function) (at level 40, left associativity) : function_scope.

Inductive paths {A : Type} (a : A) : A -> Type :=
  idpath : paths a a.

Arguments idpath {A a} , [A] a.

Scheme paths_ind := Induction for paths Sort Type.

Definition paths_rect := paths_ind.

Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.

Local Open Scope path_scope.

Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
  := match p with idpath => idpath end.

Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
  match p, q with idpath, idpath => idpath end.

Arguments concat {A x y z} p q : simpl nomatch.

Notation "1" := idpath : path_scope.

Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope.

Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope.

Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
  match p with idpath => u end.

Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
  := match p with idpath => idpath end.

Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
  := forall x:A, f x = g x.

Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.

Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g)
  : f == g
  := fun x => match h with idpath => 1 end.

Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
  forall x : A, r (s x) = x.

Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
  equiv_inv : B -> A ;
  eisretr : Sect equiv_inv f;
  eissect : Sect f equiv_inv;
  eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.

Arguments eisretr {A B}%type_scope f%function_scope {_} _.
Arguments eissect {A B}%type_scope f%function_scope {_} _.
Arguments eisadj {A B}%type_scope f%function_scope {_} _.

Record Equiv A B := BuildEquiv {
  equiv_fun : A -> B ;
  equiv_isequiv : IsEquiv equiv_fun
}.

Coercion equiv_fun : Equiv >-> Funclass.

Global Existing Instance equiv_isequiv.

Bind Scope equiv_scope with Equiv.

Notation "A <~> B" := (Equiv A B) (at level 85) : type_scope.

Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : function_scope.

Inductive Unit : Set :=
    tt : Unit.

Ltac done :=
  trivial; intros; solve
    [ repeat first
      [ solve [trivial]
      | solve [symmetry; trivial]
      | reflexivity

      | contradiction
      | split ]
    | match goal with
      H : ~ _ |- _ => solve [destruct H; trivial]
      end ].
Tactic Notation "by" tactic(tac) :=
  tac; done.

Definition concat_p1 {A : Type} {x y : A} (p : x = y) :
  p @ 1 = p
  :=
  match p with idpath => 1 end.

Definition concat_1p {A : Type} {x y : A} (p : x = y) :
  1 @ p = p
  :=
  match p with idpath => 1 end.

Definition ap_pp {A B : Type} (f : A -> B) {x y z : A} (p : x = y) (q : y = z) :
  ap f (p @ q) = (ap f p) @ (ap f q)
  :=
  match q with
    idpath =>
    match p with idpath => 1 end
  end.

Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) :
  ap (g o f) p = ap g (ap f p)
  :=
  match p with idpath => 1 end.

Definition concat_A1p {A : Type} {f : A -> A} (p : forall x, f x = x) {x y : A} (q : x = y) :
  (ap f q) @ (p y) = (p x) @ q
  :=
  match q with
    | idpath => concat_1p _ @ ((concat_p1 _) ^)
  end.

Definition concat2 {A} {x y z : A} {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q')
  : p @ q = p' @ q'
:= match h, h' with idpath, idpath => 1 end.

Notation "p @@ q" := (concat2 p q)%path (at level 20) : path_scope.

Definition whiskerL {A : Type} {x y z : A} (p : x = y)
  {q r : y = z} (h : q = r) : p @ q = p @ r
:= 1 @@ h.

Definition ap02 {A B : Type} (f:A->B) {x y:A} {p q:x=y} (r:p=q) : ap f p = ap f q
  := match r with idpath => 1 end.
Module Export Equivalences.

Generalizable Variables A B C f g.

Global Instance isequiv_idmap (A : Type) : IsEquiv idmap | 0 :=
  BuildIsEquiv A A idmap idmap (fun _ => 1) (fun _ => 1) (fun _ => 1).

Definition equiv_idmap (A : Type) : A <~> A := BuildEquiv A A idmap _.

Arguments equiv_idmap {A} , A.

Notation "1" := equiv_idmap : equiv_scope.

Global Instance isequiv_compose `{IsEquiv A B f} `{IsEquiv B C g}
  : IsEquiv (compose g f) | 1000
  := BuildIsEquiv A C (compose g f)
    (compose f^-1 g^-1)
    (fun c => ap g (eisretr f (g^-1 c)) @ eisretr g c)
    (fun a => ap (f^-1) (eissect g (f a)) @ eissect f a)
    (fun a =>
      (whiskerL _ (eisadj g (f a))) @
      (ap_pp g _ _)^ @
      ap02 g
      ( (concat_A1p (eisretr f) (eissect g (f a)))^ @
        (ap_compose f^-1 f _ @@ eisadj f a) @
        (ap_pp f _ _)^
      ) @
      (ap_compose f g _)^
    ).

Definition equiv_compose {A B C : Type} (g : B -> C) (f : A -> B)
  `{IsEquiv B C g} `{IsEquiv A B f}
  : A <~> C
  := BuildEquiv A C (compose g f) _.

Global Instance transitive_equiv : Transitive Equiv | 0 :=
  fun _ _ _ f g => equiv_compose g f.

Theorem equiv_inverse {A B : Type} : (A <~> B) -> (B <~> A).
admit.
Defined.

Global Instance symmetric_equiv : Symmetric Equiv | 0 := @equiv_inverse.

End Equivalences.

Definition path_prod_uncurried {A B : Type} (z z' : A * B)
  (pq : (fst z = fst z') * (snd z = snd z'))
  : (z = z').
admit.
Defined.

Global Instance isequiv_path_prod {A B : Type} {z z' : A * B}
: IsEquiv (path_prod_uncurried z z') | 0.
admit.
Defined.

Definition equiv_path_prod {A B : Type} (z z' : A * B)
  : (fst z = fst z') * (snd z = snd z')  <~>  (z = z')
  := BuildEquiv _ _ (path_prod_uncurried z z') _.

Generalizable Variables X A B C f g n.

Definition functor_sigma `{P : A -> Type} `{Q : B -> Type}
           (f : A -> B) (g : forall a, P a -> Q (f a))
: sigT P -> sigT Q
  := fun u => (f u.1 ; g u.1 u.2).

Global Instance isequiv_functor_sigma `{P : A -> Type} `{Q : B -> Type}
         `{IsEquiv A B f} `{forall a, @IsEquiv (P a) (Q (f a)) (g a)}
: IsEquiv (functor_sigma f g) | 1000.
admit.
Defined.

Definition equiv_functor_sigma `{P : A -> Type} `{Q : B -> Type}
           (f : A -> B) `{IsEquiv A B f}
           (g : forall a, P a -> Q (f a))
           `{forall a, @IsEquiv (P a) (Q (f a)) (g a)}
: sigT P <~> sigT Q
  := BuildEquiv _ _ (functor_sigma f g) _.

Definition equiv_functor_sigma' `{P : A -> Type} `{Q : B -> Type}
           (f : A <~> B)
           (g : forall a, P a <~> Q (f a))
: sigT P <~> sigT Q
  := equiv_functor_sigma f g.

Definition equiv_functor_sigma_id `{P : A -> Type} `{Q : A -> Type}
           (g : forall a, P a <~> Q a)
: sigT P <~> sigT Q
  := equiv_functor_sigma' 1 g.

Definition Bip : Type := { C : Type &  C * C }.

Definition BipMor (X Y : Bip) : Type :=
  match X, Y with (C;(c0,c1)), (D;(d0,d1)) =>
    { f : C -> D & (f c0 = d0) * (f c1 = d1) }
  end.

Definition bipmor2map {X Y : Bip} : BipMor X Y -> X.1 -> Y.1 :=
  match X, Y with (C;(c0,c1)), (D;(d0,d1)) => fun i =>
    match i with (f;_) => f end
  end.

Definition bipidmor {X : Bip} : BipMor X X :=
  match X with (C;(c0,c1)) => (idmap; (1, 1)) end.

Definition bipcompmor {X Y Z : Bip} : BipMor X Y -> BipMor Y Z -> BipMor X Z :=
  match X, Y, Z with (C;(c0,c1)), (D;(d0,d1)), (E;(e0,e1)) => fun i j =>
    match i, j with (f;(f0,f1)), (g;(g0,g1)) =>
      (g o f; (ap g f0 @ g0, ap g f1 @ g1))
    end
  end.

Definition isbipequiv {X Y : Bip} (i : BipMor X Y) : Type :=
  { l : BipMor Y X & bipcompmor i l = bipidmor } *
  { r : BipMor Y X & bipcompmor r i = bipidmor }.

Lemma bipequivEQequiv : forall {X Y : Bip} (i : BipMor X Y),
  isbipequiv i <~> IsEquiv (bipmor2map i).
Proof.
assert (equivcompmor : forall {X Y : Bip} (i : BipMor X Y) j,
(bipcompmor i j = bipidmor) <~> Unit).
  intros; set (U := X); set (V := Y); destruct X as [C [c0 c1]], Y as [D [d0 d1]].
  transitivity { n : (bipcompmor i j).1 = (@bipidmor U).1 &
  (bipcompmor i j).2 = transport (fun h => (h c0 = c0) * (h c1 = c1)) n^ (@bipidmor U).2}.
    admit.
  destruct i as [f [f0 f1]]; destruct j as [g [g0 g1]].

  transitivity { n : g o f = idmap & (ap g f0 @ g0 = apD10 n c0 @ 1) *
  (ap g f1 @ g1 = apD10 n c1 @ 1)}.
    apply equiv_functor_sigma_id; intro n.
    assert (Ggen : forall (h0 h1 : C -> C) (p : h0 = h1) u0 u1 v0 v1,
    ((u0, u1) = transport (fun h => (h c0 = c0) * (h c1 = c1)) p^ (v0, v1)) <~>
    (u0 = apD10 p c0 @ v0) * (u1 = apD10 p c1 @ v1)).
      induction p; intros; simpl; rewrite !concat_1p; apply symmetry.
      by apply (equiv_path_prod (u0,u1) (v0,v1)).
    rapply Ggen.
    pose (@paths C).
    Check (@paths C).
    Undo.
    Check (@paths C). (* Toplevel input, characters 0-17:
Error: Illegal application:
The term "@paths" of type "forall A : Type, A -> A -> Type"
cannot be applied to the term
 "C" : "Type"
This term has type "Type@{Top.892}" which should be coercible to
 "Type@{Top.882}".
*)