Unset Strict Universe Declaration. Require Import TestSuite.admit. (* -*- mode: coq; coq-prog-args: ("-indices-matter") -*- *) (* File reduced by coq-bug-finder from original input, then from 6522 lines to 318 lines, then from 1139 lines to 361 lines *) (* coqc version 8.5beta1 (February 2015) compiled on Feb 23 2015 18:32:3 with OCaml 4.01.0 coqtop version cagnode15:/afs/csail.mit.edu/u/j/jgross/coq-8.5,v8.5 (ebfc19d792492417b129063fb511aa423e9d9e08) *) Open Scope type_scope. Global Set Universe Polymorphism. Module Export Datatypes. Set Implicit Arguments. Record prod (A B : Type) := pair { fst : A ; snd : B }. Notation "x * y" := (prod x y) : type_scope. Notation "( x , y , .. , z )" := (pair .. (pair x y) .. z) : core_scope. End Datatypes. Module Export Specif. Set Implicit Arguments. Record sig {A} (P : A -> Type) := exist { proj1_sig : A ; proj2_sig : P proj1_sig }. Notation sigT := sig (only parsing). Notation existT := exist (only parsing). Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope. Notation projT1 := proj1_sig (only parsing). Notation projT2 := proj2_sig (only parsing). End Specif. Ltac rapply p := refine (p _ _ _ _ _ _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _ _) || refine (p _ _ _ _ _ _) || refine (p _ _ _ _ _) || refine (p _ _ _ _) || refine (p _ _ _) || refine (p _ _) || refine (p _) || refine p. Local Unset Elimination Schemes. Definition relation (A : Type) := A -> A -> Type. Class Symmetric {A} (R : relation A) := symmetry : forall x y, R x y -> R y x. Class Transitive {A} (R : relation A) := transitivity : forall x y z, R x y -> R y z -> R x z. Tactic Notation "etransitivity" open_constr(y) := let R := match goal with |- ?R ?x ?z => constr:(R) end in let x := match goal with |- ?R ?x ?z => constr:(x) end in let z := match goal with |- ?R ?x ?z => constr:(z) end in let pre_proof_term_head := constr:(@transitivity _ R _) in let proof_term_head := (eval cbn in pre_proof_term_head) in refine (proof_term_head x y z _ _); [ change (R x y) | change (R y z) ]. Ltac transitivity x := etransitivity x. Definition Type1 := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}. Notation idmap := (fun x => x). Delimit Scope function_scope with function. Delimit Scope path_scope with path. Delimit Scope fibration_scope with fibration. Open Scope fibration_scope. Open Scope function_scope. Notation "( x ; y )" := (existT _ x y) : fibration_scope. Notation pr1 := projT1. Notation pr2 := projT2. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope. Notation compose := (fun g f x => g (f x)). Notation "g 'o' f" := (compose g%function f%function) (at level 40, left associativity) : function_scope. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. Arguments idpath {A a} , [A] a. Scheme paths_ind := Induction for paths Sort Type. Definition paths_rect := paths_ind. Notation "x = y :> A" := (@paths A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Local Open Scope path_scope. Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end. Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. Arguments concat {A x y z} p q : simpl nomatch. Notation "1" := idpath : path_scope. Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope. Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope. Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end. Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end. Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) := forall x:A, f x = g x. Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope. Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g) : f == g := fun x => match h with idpath => 1 end. Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x. Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { equiv_inv : B -> A ; eisretr : Sect equiv_inv f; eissect : Sect f equiv_inv; eisadj : forall x : A, eisretr (f x) = ap f (eissect x) }. Arguments eisretr {A B}%type_scope f%function_scope {_} _. Arguments eissect {A B}%type_scope f%function_scope {_} _. Arguments eisadj {A B}%type_scope f%function_scope {_} _. Record Equiv A B := BuildEquiv { equiv_fun : A -> B ; equiv_isequiv : IsEquiv equiv_fun }. Coercion equiv_fun : Equiv >-> Funclass. Global Existing Instance equiv_isequiv. Bind Scope equiv_scope with Equiv. Notation "A <~> B" := (Equiv A B) (at level 85) : type_scope. Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : function_scope. Inductive Unit : Set := tt : Unit. Ltac done := trivial; intros; solve [ repeat first [ solve [trivial] | solve [symmetry; trivial] | reflexivity | contradiction | split ] | match goal with H : ~ _ |- _ => solve [destruct H; trivial] end ]. Tactic Notation "by" tactic(tac) := tac; done. Definition concat_p1 {A : Type} {x y : A} (p : x = y) : p @ 1 = p := match p with idpath => 1 end. Definition concat_1p {A : Type} {x y : A} (p : x = y) : 1 @ p = p := match p with idpath => 1 end. Definition ap_pp {A B : Type} (f : A -> B) {x y z : A} (p : x = y) (q : y = z) : ap f (p @ q) = (ap f p) @ (ap f q) := match q with idpath => match p with idpath => 1 end end. Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) : ap (g o f) p = ap g (ap f p) := match p with idpath => 1 end. Definition concat_A1p {A : Type} {f : A -> A} (p : forall x, f x = x) {x y : A} (q : x = y) : (ap f q) @ (p y) = (p x) @ q := match q with | idpath => concat_1p _ @ ((concat_p1 _) ^) end. Definition concat2 {A} {x y z : A} {p p' : x = y} {q q' : y = z} (h : p = p') (h' : q = q') : p @ q = p' @ q' := match h, h' with idpath, idpath => 1 end. Notation "p @@ q" := (concat2 p q)%path (at level 20) : path_scope. Definition whiskerL {A : Type} {x y z : A} (p : x = y) {q r : y = z} (h : q = r) : p @ q = p @ r := 1 @@ h. Definition ap02 {A B : Type} (f:A->B) {x y:A} {p q:x=y} (r:p=q) : ap f p = ap f q := match r with idpath => 1 end. Module Export Equivalences. Generalizable Variables A B C f g. Global Instance isequiv_idmap (A : Type) : IsEquiv idmap | 0 := BuildIsEquiv A A idmap idmap (fun _ => 1) (fun _ => 1) (fun _ => 1). Definition equiv_idmap (A : Type) : A <~> A := BuildEquiv A A idmap _. Arguments equiv_idmap {A} , A. Notation "1" := equiv_idmap : equiv_scope. Global Instance isequiv_compose `{IsEquiv A B f} `{IsEquiv B C g} : IsEquiv (compose g f) | 1000 := BuildIsEquiv A C (compose g f) (compose f^-1 g^-1) (fun c => ap g (eisretr f (g^-1 c)) @ eisretr g c) (fun a => ap (f^-1) (eissect g (f a)) @ eissect f a) (fun a => (whiskerL _ (eisadj g (f a))) @ (ap_pp g _ _)^ @ ap02 g ( (concat_A1p (eisretr f) (eissect g (f a)))^ @ (ap_compose f^-1 f _ @@ eisadj f a) @ (ap_pp f _ _)^ ) @ (ap_compose f g _)^ ). Definition equiv_compose {A B C : Type} (g : B -> C) (f : A -> B) `{IsEquiv B C g} `{IsEquiv A B f} : A <~> C := BuildEquiv A C (compose g f) _. Global Instance transitive_equiv : Transitive Equiv | 0 := fun _ _ _ f g => equiv_compose g f. Theorem equiv_inverse {A B : Type} : (A <~> B) -> (B <~> A). admit. Defined. Global Instance symmetric_equiv : Symmetric Equiv | 0 := @equiv_inverse. End Equivalences. Definition path_prod_uncurried {A B : Type} (z z' : A * B) (pq : (fst z = fst z') * (snd z = snd z')) : (z = z'). admit. Defined. Global Instance isequiv_path_prod {A B : Type} {z z' : A * B} : IsEquiv (path_prod_uncurried z z') | 0. admit. Defined. Definition equiv_path_prod {A B : Type} (z z' : A * B) : (fst z = fst z') * (snd z = snd z') <~> (z = z') := BuildEquiv _ _ (path_prod_uncurried z z') _. Generalizable Variables X A B C f g n. Definition functor_sigma `{P : A -> Type} `{Q : B -> Type} (f : A -> B) (g : forall a, P a -> Q (f a)) : sigT P -> sigT Q := fun u => (f u.1 ; g u.1 u.2). Global Instance isequiv_functor_sigma `{P : A -> Type} `{Q : B -> Type} `{IsEquiv A B f} `{forall a, @IsEquiv (P a) (Q (f a)) (g a)} : IsEquiv (functor_sigma f g) | 1000. admit. Defined. Definition equiv_functor_sigma `{P : A -> Type} `{Q : B -> Type} (f : A -> B) `{IsEquiv A B f} (g : forall a, P a -> Q (f a)) `{forall a, @IsEquiv (P a) (Q (f a)) (g a)} : sigT P <~> sigT Q := BuildEquiv _ _ (functor_sigma f g) _. Definition equiv_functor_sigma' `{P : A -> Type} `{Q : B -> Type} (f : A <~> B) (g : forall a, P a <~> Q (f a)) : sigT P <~> sigT Q := equiv_functor_sigma f g. Definition equiv_functor_sigma_id `{P : A -> Type} `{Q : A -> Type} (g : forall a, P a <~> Q a) : sigT P <~> sigT Q := equiv_functor_sigma' 1 g. Definition Bip : Type := { C : Type & C * C }. Definition BipMor (X Y : Bip) : Type := match X, Y with (C;(c0,c1)), (D;(d0,d1)) => { f : C -> D & (f c0 = d0) * (f c1 = d1) } end. Definition bipmor2map {X Y : Bip} : BipMor X Y -> X.1 -> Y.1 := match X, Y with (C;(c0,c1)), (D;(d0,d1)) => fun i => match i with (f;_) => f end end. Definition bipidmor {X : Bip} : BipMor X X := match X with (C;(c0,c1)) => (idmap; (1, 1)) end. Definition bipcompmor {X Y Z : Bip} : BipMor X Y -> BipMor Y Z -> BipMor X Z := match X, Y, Z with (C;(c0,c1)), (D;(d0,d1)), (E;(e0,e1)) => fun i j => match i, j with (f;(f0,f1)), (g;(g0,g1)) => (g o f; (ap g f0 @ g0, ap g f1 @ g1)) end end. Definition isbipequiv {X Y : Bip} (i : BipMor X Y) : Type := { l : BipMor Y X & bipcompmor i l = bipidmor } * { r : BipMor Y X & bipcompmor r i = bipidmor }. Lemma bipequivEQequiv : forall {X Y : Bip} (i : BipMor X Y), isbipequiv i <~> IsEquiv (bipmor2map i). Proof. assert (equivcompmor : forall {X Y : Bip} (i : BipMor X Y) j, (bipcompmor i j = bipidmor) <~> Unit). intros; set (U := X); set (V := Y); destruct X as [C [c0 c1]], Y as [D [d0 d1]]. transitivity { n : (bipcompmor i j).1 = (@bipidmor U).1 & (bipcompmor i j).2 = transport (fun h => (h c0 = c0) * (h c1 = c1)) n^ (@bipidmor U).2}. admit. destruct i as [f [f0 f1]]; destruct j as [g [g0 g1]]. transitivity { n : g o f = idmap & (ap g f0 @ g0 = apD10 n c0 @ 1) * (ap g f1 @ g1 = apD10 n c1 @ 1)}. apply equiv_functor_sigma_id; intro n. assert (Ggen : forall (h0 h1 : C -> C) (p : h0 = h1) u0 u1 v0 v1, ((u0, u1) = transport (fun h => (h c0 = c0) * (h c1 = c1)) p^ (v0, v1)) <~> (u0 = apD10 p c0 @ v0) * (u1 = apD10 p c1 @ v1)). induction p; intros; simpl; rewrite !concat_1p; apply symmetry. by apply (equiv_path_prod (u0,u1) (v0,v1)). rapply Ggen. pose (@paths C). Check (@paths C). Undo. Check (@paths C). (* Toplevel input, characters 0-17: Error: Illegal application: The term "@paths" of type "forall A : Type, A -> A -> Type" cannot be applied to the term "C" : "Type" This term has type "Type@{Top.892}" which should be coercible to "Type@{Top.882}". *)