summaryrefslogtreecommitdiff
path: root/plugins/micromega/RMicromega.v
blob: c2b40c730f519b9154a8631c16b65786f020c51f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)
(*                                                                      *)
(* Micromega: A reflexive tactic using the Positivstellensatz           *)
(*                                                                      *)
(*  Frédéric Besson (Irisa/Inria) 2006-2008                             *)
(*                                                                      *)
(************************************************************************)

Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
Require Import Qreals.

Require Setoid.
(*Declare ML Module "micromega_plugin".*)

Definition Rsrt : ring_theory R0 R1 Rplus Rmult Rminus Ropp (@eq R).
Proof.
  constructor.
  exact Rplus_0_l.
  exact Rplus_comm.
  intros. rewrite Rplus_assoc. auto.
  exact Rmult_1_l.
  exact Rmult_comm.
  intros ; rewrite Rmult_assoc ; auto.
  intros. rewrite Rmult_comm. rewrite Rmult_plus_distr_l.
   rewrite (Rmult_comm z).    rewrite (Rmult_comm z). auto.
  reflexivity.
  exact Rplus_opp_r.
Qed.

Open Scope R_scope.

Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R)  Rle Rlt.
Proof.
  constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
  constructor.
  constructor.
  unfold RelationClasses.Symmetric. auto.
  unfold RelationClasses.Transitive. intros. subst. reflexivity.
  apply Rsrt.
  eapply Rle_trans ; eauto.
  apply (Rlt_irrefl m) ; auto.
  apply Rnot_le_lt. auto with real.
  destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
  now apply Rmult_lt_0_compat.
Qed.

Notation IQR := Q2R (only parsing).

Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
  intro.
  rewrite Rinv_1.
  apply Rmult_1_r.
Qed.

Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y.
Proof.
  intros.
  now apply Qeq_eqR, Qeq_bool_eq.
Qed.

Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
  intros.
  apply Qeq_bool_neq in H.
  contradict H.
  now apply eqR_Qeq.
Qed.

Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
  intros.
  now apply Qle_Rle, Qle_bool_imp_le.
Qed.

Lemma IQR_0 : IQR 0 = 0.
Proof.
  apply Rmult_0_l.
Qed.

Lemma IQR_1 : IQR 1 = 1.
Proof.
  compute. apply Rinv_1.
Qed.

Lemma IQR_inv_ext : forall x, 
  IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
  intros.
  case_eq (Qeq_bool x 0).
  intros.
  apply Qeq_bool_eq in H.
  destruct x ; simpl.
  unfold Qeq in H.
  simpl in H.
  rewrite Zmult_1_r in H.
  rewrite H.
  apply Rmult_0_l.
  intros.
  now apply Q2R_inv, Qeq_bool_neq.
Qed.

Notation to_nat := N.to_nat.

Lemma QSORaddon :
  @SORaddon R
  R0 R1 Rplus Rmult Rminus Ropp  (@eq R)  Rle (* ring elements *)
  Q 0%Q 1%Q Qplus Qmult Qminus Qopp (* coefficients *)
  Qeq_bool Qle_bool
  IQR nat to_nat pow.
Proof.
  constructor.
  constructor ; intros ; try reflexivity.
  apply IQR_0.
  apply IQR_1.
  apply Q2R_plus.
  apply Q2R_minus.
  apply Q2R_mult.
  apply Q2R_opp.
  apply Qeq_true ; auto.
  apply R_power_theory.
  apply Qeq_false.
  apply Qle_true.
Qed.


(* Syntactic ring coefficients. 
   For computing, we use Q. *)
Inductive Rcst :=
| C0
| C1
| CQ (r : Q)
| CZ (r : Z)
| CPlus (r1 r2 : Rcst)
| CMinus (r1  r2 : Rcst)
| CMult (r1 r2 : Rcst)
| CInv  (r : Rcst)
| COpp  (r : Rcst).


Fixpoint Q_of_Rcst (r : Rcst) : Q :=
  match r with
    | C0 => 0 # 1
    | C1 => 1 # 1
    | CZ z => z # 1
    | CQ q => q
    | CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CMult r1 r2  => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
    | CInv r        => Qinv (Q_of_Rcst r)
    | COpp r       => Qopp (Q_of_Rcst r)
  end.


Fixpoint R_of_Rcst (r : Rcst) : R :=
  match r with
    | C0 => R0
    | C1 => R1
    | CZ z => IZR z
    | CQ q => IQR q
    | CPlus r1 r2  => (R_of_Rcst r1) + (R_of_Rcst r2)
    | CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
    | CMult r1 r2  => (R_of_Rcst r1) * (R_of_Rcst r2)
    | CInv r       => 
      if Qeq_bool (Q_of_Rcst r) (0 # 1)
        then R0 
        else Rinv (R_of_Rcst r)
      | COpp r       => - (R_of_Rcst r)
  end.

Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
Proof.
    induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
    apply IQR_0. 
    apply IQR_1. 
    reflexivity.
    unfold IQR. simpl. rewrite Rinv_1. reflexivity.
    apply Q2R_plus.
    apply Q2R_minus.
    apply Q2R_mult.
    rewrite <- IHc.
    apply IQR_inv_ext.
    rewrite <- IHc.
    apply Q2R_opp.
  Qed.

Require Import EnvRing.

Definition INZ (n:N) : R :=
  match n with
    | N0 => IZR 0%Z
    | Npos p => IZR (Zpos p)
  end.

Definition Reval_expr := eval_pexpr  Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow.


Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
    match o with
      | OpEq =>  @eq R
      | OpNEq => fun x y  => ~ x = y
      | OpLe => Rle
      | OpGe => Rge
      | OpLt => Rlt
      | OpGt => Rgt
    end.


Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
  let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).


Definition Reval_formula' :=
  eval_sformula  Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst.

Definition QReval_formula := 
  eval_formula  Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow .

Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
  intros.
  unfold Reval_formula.
  destruct f.
  unfold Reval_formula'.
  unfold Reval_expr.
  split ; destruct Fop ; simpl ; auto.
  apply Rge_le.
  apply Rle_ge.
Qed.

Definition Qeval_nformula :=
  eval_nformula 0 Rplus Rmult  (@eq R) Rle Rlt IQR.


Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
  exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.

Definition RWitness := Psatz Q.

Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult  Qeq_bool Qle_bool.

Require Import List.

Lemma RWeakChecker_sound :   forall (l : list (NFormula Q)) (cm : RWitness),
  RWeakChecker l cm = true ->
  forall env, make_impl (Qeval_nformula env) l False.
Proof.
  intros l cm H.
  intro.
  unfold Qeval_nformula.
  apply (checker_nf_sound Rsor QSORaddon l cm).
  unfold RWeakChecker in H.
  exact H.
Qed.

Require Import Coq.micromega.Tauto.

Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.

Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.

Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.

Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness)  : bool :=
  @tauto_checker (Formula Q) (NFormula Q)
  runsat rdeduce
  Rnormalise Rnegate
  RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst)  f) w.

Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f  (Reval_formula env)  f.
Proof.
  intros f w.
  unfold RTautoChecker.
  intros TC env.
  apply (tauto_checker_sound  QReval_formula Qeval_nformula) with (env := env) in TC.
  rewrite eval_f_map in TC.
  rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
  intro.
  unfold QReval_formula.
  rewrite <- eval_formulaSC  with (phiS := R_of_Rcst).
  rewrite Reval_formula_compat.
  tauto.
  intro. rewrite Q_of_RcstR. reflexivity.
  apply Reval_nformula_dec.
  destruct t.
  apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
  unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
  now apply (cnf_normalise_correct Rsor QSORaddon).  
  intros. now apply (cnf_negate_correct Rsor QSORaddon).
  intros t w0.
  apply RWeakChecker_sound.
Qed.



(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)