summaryrefslogtreecommitdiff
path: root/plugins/micromega/RMicromega.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/micromega/RMicromega.v')
-rw-r--r--plugins/micromega/RMicromega.v325
1 files changed, 30 insertions, 295 deletions
diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v
index 2352d78d..c2b40c73 100644
--- a/plugins/micromega/RMicromega.v
+++ b/plugins/micromega/RMicromega.v
@@ -1,9 +1,11 @@
(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
+(* * The Coq Proof Assistant / The Coq Development Team *)
+(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
+(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
@@ -18,7 +20,7 @@ Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
Require Import QArith.
Require Import Qfield.
-
+Require Import Qreals.
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
@@ -38,15 +40,8 @@ Proof.
exact Rplus_opp_r.
Qed.
-Add Ring Rring : Rsrt.
Open Scope R_scope.
-Lemma Rmult_neutral : forall x:R , 0 * x = 0.
-Proof.
- intro ; ring.
-Qed.
-
-
Lemma Rsor : SOR R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle Rlt.
Proof.
constructor; intros ; subst ; try (intuition (subst; try ring ; auto with real)).
@@ -59,142 +54,41 @@ Proof.
apply (Rlt_irrefl m) ; auto.
apply Rnot_le_lt. auto with real.
destruct (total_order_T n m) as [ [H1 | H1] | H1] ; auto.
- intros.
- rewrite <- (Rmult_neutral m).
- apply (Rmult_lt_compat_r) ; auto.
-Qed.
-
-Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
-
-
-Lemma Rinv_elim : forall x y z,
- y <> 0 -> (z * y = x <-> x * / y = z).
-Proof.
- intros.
- split ; intros.
- subst.
- rewrite Rmult_assoc.
- rewrite Rinv_r; auto.
- ring.
- subst.
- rewrite Rmult_assoc.
- rewrite (Rmult_comm (/ y)).
- rewrite Rinv_r ; auto.
- ring.
-Qed.
-
-Ltac INR_nat_of_P :=
- match goal with
- | H : context[INR (Pos.to_nat ?X)] |- _ =>
- revert H ;
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- | |- context[INR (Pos.to_nat ?X)] =>
- let HH := fresh in
- assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
- end.
-
-Ltac add_eq expr val := set (temp := expr) ;
- generalize (eq_refl temp) ;
- unfold temp at 1 ; generalize temp ; intro val ; clear temp.
-
-Ltac Rinv_elim :=
- match goal with
- | |- context[?x * / ?y] =>
- let z := fresh "v" in
- add_eq (x * / y) z ;
- let H := fresh in intro H ; rewrite <- Rinv_elim in H
- end.
-
-Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
-Proof.
- red. intros.
- subst.
- apply (Rlt_irrefl 0 H).
+ now apply Rmult_lt_0_compat.
Qed.
+Notation IQR := Q2R (only parsing).
Lemma Rinv_1 : forall x, x * / 1 = x.
Proof.
intro.
- Rinv_elim.
- subst ; ring.
- apply R1_neq_R0.
+ rewrite Rinv_1.
+ apply Rmult_1_r.
Qed.
-Lemma Qeq_true : forall x y,
- Qeq_bool x y = true ->
- IQR x = IQR y.
+Lemma Qeq_true : forall x y, Qeq_bool x y = true -> IQR x = IQR y.
Proof.
- unfold IQR.
- simpl.
- intros.
- apply Qeq_bool_eq in H.
- unfold Qeq in H.
- assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
- rewrite H. reflexivity.
- repeat rewrite mult_IZR in H0.
- simpl in H0.
- revert H0.
- repeat INR_nat_of_P.
intros.
- apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
- rewrite <- H2.
- field.
- split ; apply Rlt_neq ; auto.
+ now apply Qeq_eqR, Qeq_bool_eq.
Qed.
Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
Proof.
intros.
- apply Qeq_bool_neq in H.
- intro. apply H. clear H.
- unfold Qeq,IQR in *.
- simpl in *.
- revert H0.
- repeat Rinv_elim.
- intros.
- subst.
- assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
- repeat rewrite mult_IZR.
- simpl.
- rewrite <- H0. rewrite <- H.
- ring.
- apply eq_IZR ; auto.
- INR_nat_of_P; intros; apply Rlt_neq ; auto.
- INR_nat_of_P; intros ; apply Rlt_neq ; auto.
+ apply Qeq_bool_neq in H.
+ contradict H.
+ now apply eqR_Qeq.
Qed.
-
-
Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
Proof.
intros.
- apply Qle_bool_imp_le in H.
- unfold Qle in H.
- unfold IQR.
- simpl in *.
- apply IZR_le in H.
- repeat rewrite mult_IZR in H.
- simpl in H.
- repeat INR_nat_of_P; intros.
- assert (Hr := Rlt_neq r H).
- assert (Hr0 := Rlt_neq r0 H0).
- replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
- replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
- apply Rmult_le_compat_r ; auto.
- apply Rmult_le_pos.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- unfold Rle. left. apply Rinv_0_lt_compat ; auto.
- field ; intuition.
- field ; intuition.
+ now apply Qle_Rle, Qle_bool_imp_le.
Qed.
-
-
Lemma IQR_0 : IQR 0 = 0.
Proof.
- compute. apply Rinv_1.
+ apply Rmult_0_l.
Qed.
Lemma IQR_1 : IQR 1 = 1.
@@ -202,160 +96,6 @@ Proof.
compute. apply Rinv_1.
Qed.
-Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
-Proof.
- intros.
- unfold IQR.
- simpl in *.
- rewrite plus_IZR in *.
- rewrite mult_IZR in *.
- simpl.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- rewrite mult_IZR.
- simpl.
- repeat INR_nat_of_P.
- intros. field.
- split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
-Proof.
- intros.
- unfold IQR.
- simpl.
- rewrite opp_IZR.
- ring.
-Qed.
-
-Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
-Proof.
- intros.
- unfold Qminus.
- rewrite IQR_plus.
- rewrite IQR_opp.
- ring.
-Qed.
-
-
-Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
-Proof.
- unfold IQR ; intros.
- simpl.
- repeat rewrite mult_IZR.
- rewrite Pos2Nat.inj_mul.
- rewrite mult_INR.
- repeat INR_nat_of_P.
- intros. field ; split ; apply Rlt_neq ; auto.
-Qed.
-
-Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- unfold IQR ; simpl.
- intros.
- unfold Qlt in H.
- revert H.
- simpl.
- intros.
- unfold Qinv.
- destruct x.
- destruct Qnum ; simpl in *.
- exfalso. auto with zarith.
- clear H.
- repeat INR_nat_of_P.
- intros.
- assert (HH := Rlt_neq _ H).
- assert (HH0 := Rlt_neq _ H0).
- rewrite Rinv_mult_distr ; auto.
- rewrite Rinv_involutive ; auto.
- ring.
- apply Rinv_0_lt_compat in H0.
- apply Rlt_neq ; auto.
- simpl in H.
- exfalso.
- rewrite Pos.mul_comm in H.
- compute in H.
- discriminate.
-Qed.
-
-Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
-Proof.
- destruct x ; destruct Qnum ; reflexivity.
-Qed.
-
-Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
-Proof.
- intros.
- destruct x.
- unfold Qopp.
- simpl.
- rewrite Z.opp_involutive.
- reflexivity.
-Qed.
-
-Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
-Proof.
- intros.
- rewrite <- (Ropp_involutive r).
- apply Ropp_eq_0_compat ; auto.
-Qed.
-
-Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
-Proof.
- destruct x ; simpl.
- unfold IQR.
- simpl.
- INR_nat_of_P.
- intros.
- apply Rmult_integral in H0.
- destruct H0.
- apply eq_IZR_R0 in H0.
- subst.
- reflexivity.
- exfalso.
- apply Rinv_0_lt_compat in H.
- rewrite <- H0 in H.
- apply Rlt_irrefl in H. auto.
-Qed.
-
-
-Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- rewrite <- (Qopp_involutive_strong x).
- rewrite <- Qinv_opp.
- rewrite IQR_opp.
- rewrite IQR_inv_lt.
- repeat rewrite IQR_opp.
- rewrite Ropp_inv_permute.
- auto.
- intro.
- apply Ropp_0 in H0.
- apply IQR_x_0 in H0.
- rewrite H0 in H.
- compute in H. discriminate.
- unfold Qlt in *.
- destruct x ; simpl in *.
- auto with zarith.
-Qed.
-
-Lemma IQR_inv : forall x, ~ x == 0 ->
- IQR (/ x) = / IQR x.
-Proof.
- intros.
- assert ( 0 > x \/ 0 < x)%Q.
- destruct x ; unfold Qlt, Qeq in * ; simpl in *.
- rewrite Z.mul_1_r in *.
- destruct Qnum ; simpl in * ; intuition auto.
- right. reflexivity.
- left ; reflexivity.
- destruct H0.
- apply IQR_inv_gt ; auto.
- apply IQR_inv_lt ; auto.
-Qed.
-
Lemma IQR_inv_ext : forall x,
IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
Proof.
@@ -366,18 +106,13 @@ Proof.
destruct x ; simpl.
unfold Qeq in H.
simpl in H.
- replace Qnum with 0%Z.
- compute. rewrite Rinv_1.
- reflexivity.
- rewrite <- H. ring.
+ rewrite Zmult_1_r in H.
+ rewrite H.
+ apply Rmult_0_l.
intros.
- apply IQR_inv.
- intro.
- rewrite <- Qeq_bool_iff in H0.
- congruence.
+ now apply Q2R_inv, Qeq_bool_neq.
Qed.
-
Notation to_nat := N.to_nat.
Lemma QSORaddon :
@@ -391,10 +126,10 @@ Proof.
constructor ; intros ; try reflexivity.
apply IQR_0.
apply IQR_1.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
- apply IQR_opp.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
+ apply Q2R_opp.
apply Qeq_true ; auto.
apply R_power_theory.
apply Qeq_false.
@@ -453,13 +188,13 @@ Proof.
apply IQR_1.
reflexivity.
unfold IQR. simpl. rewrite Rinv_1. reflexivity.
- apply IQR_plus.
- apply IQR_minus.
- apply IQR_mult.
+ apply Q2R_plus.
+ apply Q2R_minus.
+ apply Q2R_mult.
rewrite <- IHc.
apply IQR_inv_ext.
rewrite <- IHc.
- apply IQR_opp.
+ apply Q2R_opp.
Qed.
Require Import EnvRing.