summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis3.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories7/Reals/Ranalysis3.v')
-rw-r--r--theories7/Reals/Ranalysis3.v617
1 files changed, 0 insertions, 617 deletions
diff --git a/theories7/Reals/Ranalysis3.v b/theories7/Reals/Ranalysis3.v
deleted file mode 100644
index 6ce63bbc..00000000
--- a/theories7/Reals/Ranalysis3.v
+++ /dev/null
@@ -1,617 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i $Id: Ranalysis3.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)
-
-Require Rbase.
-Require Rfunctions.
-Require Ranalysis1.
-Require Ranalysis2.
-V7only [Import R_scope.]. Open Local Scope R_scope.
-
-(* Division *)
-Theorem derivable_pt_lim_div : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> ~``(f2 x)==0``-> (derivable_pt_lim (div_fct f1 f2) x ``(l1*(f2 x)-l2*(f1 x))/(Rsqr (f2 x))``).
-Intros.
-Cut (derivable_pt f2 x); [Intro | Unfold derivable_pt; Apply Specif.existT with l2; Exact H0].
-Assert H2 := ((continuous_neq_0 ? ? (derivable_continuous_pt ? ? X)) H1).
-Elim H2; Clear H2; Intros eps_f2 H2.
-Unfold div_fct.
-Assert H3 := (derivable_continuous_pt ? ? X).
-Unfold continuity_pt in H3; Unfold continue_in in H3; Unfold limit1_in in H3; Unfold limit_in in H3; Unfold dist in H3.
-Simpl in H3; Unfold R_dist in H3.
-Elim (H3 ``(Rabsolu (f2 x))/2``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (f2 x))*/2``; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0]].
-Clear H3; Intros alp_f2 H3.
-Cut (x0:R) ``(Rabsolu (x0-x)) < alp_f2`` ->``(Rabsolu ((f2 x0)-(f2 x))) < (Rabsolu (f2 x))/2``.
-Intro H4.
-Cut (a:R) ``(Rabsolu (a-x)) < alp_f2``->``(Rabsolu (f2 x))/2 < (Rabsolu (f2 a))``.
-Intro H5.
-Cut (a:R) ``(Rabsolu (a)) < (Rmin eps_f2 alp_f2)`` -> ``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``.
-Intro Maj.
-Unfold derivable_pt_lim; Intros.
-Elim (H ``(Rabsolu ((eps*(f2 x))/8))``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (eps*(f2 x)*/8))``; Apply Rabsolu_pos_lt; Repeat Apply prod_neq_R0; [Red; Intro H7; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6) | Assumption | Apply Rinv_neq_R0; DiscrR]].
-Intros alp_f1d H7.
-Case (Req_EM (f1 x) R0); Intro.
-Case (Req_EM l1 R0); Intro.
-(***********************************)
-(* Cas n° 1 *)
-(* (f1 x)=0 l1 =0 *)
-(***********************************)
-Cut ``0 < (Rmin eps_f2 (Rmin alp_f2 alp_f1d))``; [Intro | Repeat Apply Rmin_pos; [Apply (cond_pos eps_f2) | Elim H3; Intros; Assumption | Apply (cond_pos alp_f1d)]].
-Exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10).
-Simpl; Intros.
-Assert H13 := (Rlt_le_trans ? ? ? H12 (Rmin_r ? ?)).
-Assert H14 := (Rlt_le_trans ? ? ? H12 (Rmin_l ? ?)).
-Assert H15 := (Rlt_le_trans ? ? ? H13 (Rmin_r ? ?)).
-Assert H16 := (Rlt_le_trans ? ? ? H13 (Rmin_l ? ?)).
-Assert H17 := (H7 ? H11 H15).
-Rewrite formule; [Idtac | Assumption | Assumption | Apply H2; Apply H14].
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite H8.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite H8.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite H9.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption Orelse Apply H2.
-Apply H14.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-(***********************************)
-(* Cas n° 2 *)
-(* (f1 x)=0 l1<>0 *)
-(***********************************)
-Assert H10 := (derivable_continuous_pt ? ? X).
-Unfold continuity_pt in H10.
-Unfold continue_in in H10.
-Unfold limit1_in in H10.
-Unfold limit_in in H10.
-Unfold dist in H10.
-Simpl in H10.
-Unfold R_dist in H10.
-Elim (H10 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
-Clear H10; Intros alp_f2t2 H10.
-Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a)) - (f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
-Intro H11.
-Cut ``0 < (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2))``.
-Intro.
-Exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12).
-Simpl.
-Intros.
-Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
-Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
-Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
-Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
-Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
-Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
-Clear H14 H15 H16.
-Rewrite formule; Try Assumption.
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite H8.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite H8.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-Apply H2; Assumption.
-Repeat Apply Rmin_pos.
-Apply (cond_pos eps_f2).
-Apply (cond_pos alp_f1d).
-Elim H3; Intros; Assumption.
-Elim H10; Intros; Assumption.
-Intros.
-Elim H10; Intros.
-Case (Req_EM a R0); Intro.
-Rewrite H14; Rewrite Rplus_Or.
-Unfold Rminus; Rewrite Rplus_Ropp_r.
-Rewrite Rabsolu_R0.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc.
-Repeat Apply prod_neq_R0; Try Assumption.
-Red; Intro; Rewrite H15 in H6; Elim (Rlt_antirefl ? H6).
-Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption.
-Apply H13.
-Split.
-Apply D_x_no_cond; Assumption.
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Change ``0<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
-Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0.
-Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6).
-Assumption.
-Assumption.
-Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; [DiscrR | DiscrR | DiscrR | Assumption].
-(***********************************)
-(* Cas n° 3 *)
-(* (f1 x)<>0 l1=0 l2=0 *)
-(***********************************)
-Case (Req_EM l1 R0); Intro.
-Case (Req_EM l2 R0); Intro.
-Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0; [Assumption | Assumption | Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6) | Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption]].
-Intros alp_f2d H12.
-Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))``.
-Intro.
-Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11).
-Simpl.
-Intros.
-Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
-Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
-Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
-Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
-Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
-Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
-Clear H15 H16.
-Rewrite formule; Try Assumption.
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite H10.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite H9.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Assumption Orelse Idtac.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-Apply H2; Assumption.
-Repeat Apply Rmin_pos.
-Apply (cond_pos eps_f2).
-Elim H3; Intros; Assumption.
-Apply (cond_pos alp_f1d).
-Apply (cond_pos alp_f2d).
-(***********************************)
-(* Cas n° 4 *)
-(* (f1 x)<>0 l1=0 l2<>0 *)
-(***********************************)
-Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rsqr Rdiv; Repeat Rewrite Rinv_Rmult; Repeat Apply prod_neq_R0; Try Assumption Orelse DiscrR].
-Intros alp_f2d H11.
-Assert H12 := (derivable_continuous_pt ? ? X).
-Unfold continuity_pt in H12.
-Unfold continue_in in H12.
-Unfold limit1_in in H12.
-Unfold limit_in in H12.
-Unfold dist in H12.
-Simpl in H12.
-Unfold R_dist in H12.
-Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
-Intros alp_f2c H13.
-Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))``.
-Intro.
-Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14).
-Simpl; Intros.
-Assert H17 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
-Assert H18 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
-Assert H19 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
-Assert H20 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
-Assert H21 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
-Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
-Assert H23 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
-Assert H24 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
-Clear H16 H17 H18 H19.
-Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
-Intro.
-Rewrite formule; Try Assumption.
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite H9.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-Apply H2; Assumption.
-Intros.
-Case (Req_EM a R0); Intro.
-Rewrite H17; Rewrite Rplus_Or.
-Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr.
-Repeat Rewrite Rinv_Rmult; Try Assumption.
-Repeat Apply prod_neq_R0; Try Assumption.
-Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6).
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; Assumption.
-Apply Rinv_neq_R0; Assumption.
-DiscrR.
-DiscrR.
-DiscrR.
-DiscrR.
-DiscrR.
-Apply prod_neq_R0; [DiscrR | Assumption].
-Elim H13; Intros.
-Apply H19.
-Split.
-Apply D_x_no_cond; Assumption.
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Repeat Apply Rmin_pos.
-Apply (cond_pos eps_f2).
-Elim H3; Intros; Assumption.
-Apply (cond_pos alp_f1d).
-Apply (cond_pos alp_f2d).
-Elim H13; Intros; Assumption.
-Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
-Apply Rabsolu_pos_lt.
-Unfold Rsqr Rdiv.
-Repeat Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR.
-Repeat Apply prod_neq_R0; Try Assumption.
-Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6).
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; Assumption.
-Apply Rinv_neq_R0; Assumption.
-Apply prod_neq_R0; [DiscrR | Assumption].
-Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6).
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; DiscrR.
-Apply Rinv_neq_R0; Assumption.
-(***********************************)
-(* Cas n° 5 *)
-(* (f1 x)<>0 l1<>0 l2=0 *)
-(***********************************)
-Case (Req_EM l2 R0); Intro.
-Assert H11 := (derivable_continuous_pt ? ? X).
-Unfold continuity_pt in H11.
-Unfold continue_in in H11.
-Unfold limit1_in in H11.
-Unfold limit_in in H11.
-Unfold dist in H11.
-Simpl in H11.
-Unfold R_dist in H11.
-Elim (H11 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
-Clear H11; Intros alp_f2t2 H11.
-Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
-Intros alp_f2d H12.
-Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2)))``.
-Intro.
-Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13).
-Simpl.
-Intros.
-Cut (a:R) ``(Rabsolu a)<alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x)))<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
-Intro.
-Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
-Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
-Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
-Assert H20 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
-Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
-Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
-Assert H23 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
-Assert H24 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
-Clear H15 H17 H18 H21.
-Rewrite formule; Try Assumption.
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite H10.
-Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
-Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
-Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
-Rewrite <- Rabsolu_mult.
-Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-Apply H2; Assumption.
-Intros.
-Case (Req_EM a R0); Intro.
-Rewrite H17; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
-Unfold Rsqr.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6)).
-Elim H11; Intros.
-Apply H19.
-Split.
-Apply D_x_no_cond; Assumption.
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Repeat Apply Rmin_pos.
-Apply (cond_pos eps_f2).
-Elim H3; Intros; Assumption.
-Apply (cond_pos alp_f1d).
-Apply (cond_pos alp_f2d).
-Elim H11; Intros; Assumption.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
-Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
-(***********************************)
-(* Cas n° 6 *)
-(* (f1 x)<>0 l1<>0 l2<>0 *)
-(***********************************)
-Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
-Intros alp_f2d H11.
-Assert H12 := (derivable_continuous_pt ? ? X).
-Unfold continuity_pt in H12.
-Unfold continue_in in H12.
-Unfold limit1_in in H12.
-Unfold limit_in in H12.
-Unfold dist in H12.
-Simpl in H12.
-Unfold R_dist in H12.
-Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
-Intros alp_f2c H13.
-Elim (H12 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
-Intros alp_f2t2 H14.
-Cut ``0 < (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2))``.
-Intro.
-Exists (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15).
-Simpl.
-Intros.
-Assert H18 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
-Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
-Assert H20 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
-Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
-Assert H22 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
-Assert H23 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
-Assert H24 := (Rlt_le_trans ? ? ? H20 (Rmin_l ? ?)).
-Assert H25 := (Rlt_le_trans ? ? ? H20 (Rmin_r ? ?)).
-Assert H26 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
-Assert H27 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
-Clear H17 H18 H19 H20 H21.
-Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
-Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
-Intros.
-Rewrite formule; Try Assumption.
-Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
-Unfold Rminus.
-Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
-Apply Rabsolu_4.
-Repeat Rewrite Rabsolu_mult.
-Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
-Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
-Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
-Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
-Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
-Intros.
-Apply Rlt_4; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Rewrite <- Rabsolu_mult.
-Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
-Apply H2; Assumption.
-Apply Rmin_2; Assumption.
-Right; Symmetry; Apply quadruple_var.
-Apply H2; Assumption.
-Intros.
-Case (Req_EM a R0); Intro.
-Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
-Apply prod_neq_R0; [DiscrR | Assumption].
-Apply prod_neq_R0; [DiscrR | Assumption].
-Assumption.
-Elim H13; Intros.
-Apply H20.
-Split.
-Apply D_x_no_cond; Assumption.
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Intros.
-Case (Req_EM a R0); Intro.
-Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
-DiscrR.
-Assumption.
-Elim H14; Intros.
-Apply H20.
-Split.
-Unfold D_x no_cond; Split.
-Trivial.
-Apply Rminus_not_eq_right.
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Replace ``x+a-x`` with a; [Assumption | Ring].
-Repeat Apply Rmin_pos.
-Apply (cond_pos eps_f2).
-Elim H3; Intros; Assumption.
-Apply (cond_pos alp_f1d).
-Apply (cond_pos alp_f2d).
-Elim H13; Intros; Assumption.
-Elim H14; Intros; Assumption.
-Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``; Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H14; Rewrite H14 in H6; Elim (Rlt_antirefl ? H6)).
-Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``; Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6)).
-Apply prod_neq_R0; [DiscrR | Assumption].
-Apply prod_neq_R0; [DiscrR | Assumption].
-Assumption.
-Apply Rabsolu_pos_lt.
-Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; [Idtac | DiscrR | Assumption].
-Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6)).
-Intros.
-Unfold Rdiv.
-Apply Rlt_monotony_contra with ``(Rabsolu (f2 (x+a)))``.
-Apply Rabsolu_pos_lt; Apply H2.
-Apply Rlt_le_trans with (Rmin eps_f2 alp_f2).
-Assumption.
-Apply Rmin_l.
-Rewrite <- Rinv_r_sym.
-Apply Rlt_monotony_contra with (Rabsolu (f2 x)).
-Apply Rabsolu_pos_lt; Assumption.
-Rewrite Rmult_1r.
-Rewrite (Rmult_sym (Rabsolu (f2 x))).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_l_sym.
-Rewrite Rmult_1r.
-Apply Rlt_monotony_contra with ``/2``.
-Apply Rlt_Rinv; Sup0.
-Repeat Rewrite (Rmult_sym ``/2``).
-Repeat Rewrite Rmult_assoc.
-Rewrite <- Rinv_r_sym.
-Rewrite Rmult_1r.
-Unfold Rdiv in H5; Apply H5.
-Replace ``x+a-x`` with a.
-Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_r ? ?)); Assumption.
-Ring.
-DiscrR.
-Apply Rabsolu_no_R0; Assumption.
-Apply Rabsolu_no_R0; Apply H2.
-Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_l ? ?)); Assumption.
-Intros.
-Assert H6 := (H4 a H5).
-Rewrite <- (Rabsolu_Ropp ``(f2 a)-(f2 x)``) in H6.
-Rewrite Ropp_distr2 in H6.
-Assert H7 := (Rle_lt_trans ? ? ? (Rabsolu_triang_inv ? ?) H6).
-Apply Rlt_anti_compatibility with ``-(Rabsolu (f2 a)) + (Rabsolu (f2 x))/2``.
-Rewrite Rplus_assoc.
-Rewrite <- double_var.
-Do 2 Rewrite (Rplus_sym ``-(Rabsolu (f2 a))``).
-Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
-Unfold Rminus in H7; Assumption.
-Intros.
-Case (Req_EM x x0); Intro.
-Rewrite <- H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0].
-Elim H3; Intros.
-Apply H7.
-Split.
-Unfold D_x no_cond; Split.
-Trivial.
-Assumption.
-Assumption.
-Qed.
-
-Lemma derivable_pt_div : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> ``(f2 x)<>0`` -> (derivable_pt (div_fct f1 f2) x).
-Unfold derivable_pt.
-Intros.
-Elim X; Intros.
-Elim X0; Intros.
-Apply Specif.existT with ``(x0*(f2 x)-x1*(f1 x))/(Rsqr (f2 x))``.
-Apply derivable_pt_lim_div; Assumption.
-Qed.
-
-Lemma derivable_div : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> ((x:R)``(f2 x)<>0``) -> (derivable (div_fct f1 f2)).
-Unfold derivable; Intros.
-Apply (derivable_pt_div ? ? ? (X x) (X0 x) (H x)).
-Qed.
-
-Lemma derive_pt_div : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x);na:``(f2 x)<>0``) ``(derive_pt (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)) == ((derive_pt f1 x pr1)*(f2 x)-(derive_pt f2 x pr2)*(f1 x))/(Rsqr (f2 x))``.
-Intros.
-Assert H := (derivable_derive f1 x pr1).
-Assert H0 := (derivable_derive f2 x pr2).
-Assert H1 := (derivable_derive (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)).
-Elim H; Clear H; Intros l1 H.
-Elim H0; Clear H0; Intros l2 H0.
-Elim H1; Clear H1; Intros l H1.
-Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
-Assert H3 := (projT2 ? ? pr1).
-Unfold derive_pt in H; Rewrite H in H3.
-Assert H4 := (projT2 ? ? pr2).
-Unfold derive_pt in H0; Rewrite H0 in H4.
-Apply derivable_pt_lim_div; Assumption.
-Qed.