summaryrefslogtreecommitdiff
path: root/theories7/Reals/Ranalysis3.v
blob: 6ce63bbc07e2e06bc0cf8029f22562607b910632 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Ranalysis3.v,v 1.1.2.1 2004/07/16 19:31:33 herbelin Exp $ i*)

Require Rbase.
Require Rfunctions.
Require Ranalysis1.
Require Ranalysis2.
V7only [Import R_scope.]. Open Local Scope R_scope.

(* Division *)
Theorem derivable_pt_lim_div : (f1,f2:R->R;x,l1,l2:R) (derivable_pt_lim f1 x l1) -> (derivable_pt_lim f2 x l2) -> ~``(f2 x)==0``-> (derivable_pt_lim (div_fct f1 f2) x ``(l1*(f2 x)-l2*(f1 x))/(Rsqr (f2 x))``).
Intros.
Cut (derivable_pt f2 x); [Intro | Unfold derivable_pt; Apply Specif.existT with l2; Exact H0].
Assert H2 := ((continuous_neq_0 ? ? (derivable_continuous_pt ? ? X)) H1).
Elim H2; Clear H2; Intros eps_f2 H2.
Unfold div_fct.
Assert H3 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H3; Unfold continue_in in H3; Unfold limit1_in in H3; Unfold limit_in in H3; Unfold dist in H3.
Simpl in H3; Unfold R_dist in H3.
Elim (H3 ``(Rabsolu (f2 x))/2``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (f2 x))*/2``; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0]].
Clear H3; Intros alp_f2 H3.
Cut (x0:R) ``(Rabsolu (x0-x)) < alp_f2`` ->``(Rabsolu ((f2 x0)-(f2 x))) < (Rabsolu (f2 x))/2``.
Intro H4.
Cut (a:R) ``(Rabsolu (a-x)) < alp_f2``->``(Rabsolu (f2 x))/2 < (Rabsolu (f2 a))``.
Intro H5.
Cut (a:R) ``(Rabsolu (a)) < (Rmin eps_f2 alp_f2)`` -> ``/(Rabsolu (f2 (x+a))) < 2/(Rabsolu (f2 x))``.
Intro Maj.
Unfold derivable_pt_lim; Intros.
Elim (H ``(Rabsolu ((eps*(f2 x))/8))``); [Idtac | Unfold Rdiv; Change ``0 < (Rabsolu (eps*(f2 x)*/8))``; Apply Rabsolu_pos_lt; Repeat Apply prod_neq_R0; [Red; Intro H7; Rewrite H7 in H6; Elim (Rlt_antirefl ? H6) | Assumption | Apply Rinv_neq_R0; DiscrR]].
Intros alp_f1d H7.
Case (Req_EM (f1 x) R0); Intro.
Case (Req_EM l1 R0); Intro.
(***********************************)
(*              Cas n° 1           *)
(*           (f1 x)=0  l1 =0       *)
(***********************************)
Cut ``0 < (Rmin eps_f2 (Rmin alp_f2 alp_f1d))``; [Intro | Repeat Apply Rmin_pos; [Apply (cond_pos eps_f2) | Elim H3; Intros; Assumption | Apply (cond_pos alp_f1d)]].
Exists (mkposreal (Rmin eps_f2 (Rmin alp_f2 alp_f1d)) H10).
Simpl; Intros.
Assert H13 := (Rlt_le_trans ? ? ? H12 (Rmin_r ? ?)).
Assert H14 := (Rlt_le_trans ? ? ? H12 (Rmin_l ? ?)).
Assert H15 := (Rlt_le_trans ? ? ? H13 (Rmin_r ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H13 (Rmin_l ? ?)).
Assert H17 := (H7 ? H11 H15).
Rewrite formule; [Idtac | Assumption | Assumption | Apply H2; Apply H14].
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption Orelse Apply H2.
Apply H14.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
(***********************************)
(*              Cas n° 2           *)
(*           (f1 x)=0  l1<>0       *)
(***********************************)
Assert H10 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H10.
Unfold continue_in in H10.
Unfold limit1_in in H10.
Unfold limit_in in H10.
Unfold dist in H10.
Simpl in H10.
Unfold R_dist in H10.
Elim (H10 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Clear H10; Intros alp_f2t2 H10.
Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a)) - (f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Intro H11.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f1d) (Rmin alp_f2 alp_f2t2)) H12).
Simpl.
Intros.
Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Clear H14 H15 H16.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite H8.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Apply (cond_pos alp_f1d).
Elim H3; Intros; Assumption.
Elim H10; Intros; Assumption.
Intros.
Elim H10; Intros.
Case (Req_EM a R0); Intro.
Rewrite H14; Rewrite Rplus_Or.
Unfold Rminus; Rewrite Rplus_Ropp_r.
Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro; Rewrite H15 in H6; Elim (Rlt_antirefl ? H6).
Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption.
Apply H13.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Change ``0<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0.
Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6).
Assumption. 
Assumption.
Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; [DiscrR | DiscrR | DiscrR | Assumption].
(***********************************)
(*              Cas n° 3           *)
(*     (f1 x)<>0  l1=0  l2=0       *)
(***********************************)
Case (Req_EM l1 R0); Intro.
Case (Req_EM l2 R0); Intro.
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rdiv Rsqr; Repeat Rewrite Rmult_assoc; Repeat Apply prod_neq_R0; [Assumption | Assumption | Red; Intro; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6) | Apply Rinv_neq_R0; Repeat Apply prod_neq_R0; DiscrR Orelse Assumption]].
Intros alp_f2d H12.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) H11).
Simpl.
Intros.
Assert H15 := (Rlt_le_trans ? ? ? H14 (Rmin_l ? ?)).
Assert H16 := (Rlt_le_trans ? ? ? H14 (Rmin_r ? ?)).
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Clear H15 H16.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H10.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Assumption Orelse Idtac.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
(***********************************)
(*              Cas n° 4           *)
(*    (f1 x)<>0  l1=0  l2<>0       *)
(***********************************)
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``); [Idtac | Apply Rabsolu_pos_lt; Unfold Rsqr Rdiv; Repeat Rewrite Rinv_Rmult; Repeat Apply prod_neq_R0; Try Assumption Orelse DiscrR].
Intros alp_f2d H11.
Assert H12 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H12.
Unfold continue_in in H12.
Unfold limit1_in in H12.
Unfold limit_in in H12.
Unfold dist in H12.
Simpl in H12.
Unfold R_dist in H12.
Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
Intros alp_f2c H13.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c)))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2c))) H14).
Simpl; Intros.
Assert H17 := (Rlt_le_trans ? ? ? H16 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H16 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Clear H16 H17 H18 H19.
Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Intro.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite H9.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H17; Rewrite Rplus_Or.
Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr.
Repeat Rewrite Rinv_Rmult; Try Assumption.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6). 
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
Apply Rinv_neq_R0; Assumption.
DiscrR.
DiscrR.
DiscrR.
DiscrR.
DiscrR.
Apply prod_neq_R0; [DiscrR | Assumption].
Elim H13; Intros.
Apply H19.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
Elim H13; Intros; Assumption.
Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Apply Rabsolu_pos_lt.
Unfold Rsqr Rdiv.
Repeat Rewrite Rinv_Rmult; Try Assumption Orelse DiscrR.
Repeat Apply prod_neq_R0; Try Assumption.
Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6). 
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
Apply Rinv_neq_R0; Assumption.
Apply prod_neq_R0; [DiscrR | Assumption].
Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6). 
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; DiscrR.
Apply Rinv_neq_R0; Assumption.
(***********************************)
(*              Cas n° 5           *)
(*    (f1 x)<>0  l1<>0  l2=0       *)
(***********************************)
Case (Req_EM l2 R0); Intro.
Assert H11 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H11.
Unfold continue_in in H11.
Unfold limit1_in in H11.
Unfold limit_in in H11.
Unfold dist in H11.
Simpl in H11.
Unfold R_dist in H11.
Elim (H11 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Clear H11; Intros alp_f2t2 H11.
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
Intros alp_f2d H12.
Cut ``0 < (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2)))``.
Intro.
Exists (mkposreal (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d (Rmin alp_f2d alp_f2t2))) H13).
Simpl.
Intros.
Cut (a:R) ``(Rabsolu a)<alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x)))<(Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Intro.
Assert H17 := (Rlt_le_trans ? ? ? H15 (Rmin_l ? ?)).
Assert H18 := (Rlt_le_trans ? ? ? H15 (Rmin_r ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
Clear H15 H17 H18 H21.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite H10.
Unfold Rdiv; Repeat Rewrite Rmult_Or Orelse Rewrite Rmult_Ol.
Rewrite Rabsolu_R0; Rewrite Rmult_Ol.
Apply Rmult_lt_pos; [Assumption | Apply Rlt_Rinv; Sup].
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H17; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0.
Apply Rabsolu_pos_lt.
Unfold Rdiv; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Unfold Rsqr.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H18; Rewrite H18 in H6; Elim (Rlt_antirefl ? H6)).
Elim H11; Intros.
Apply H19.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d). 
Apply (cond_pos alp_f2d).
Elim H11; Intros; Assumption.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H12; Rewrite H12 in H6; Elim (Rlt_antirefl ? H6)).
(***********************************)
(*              Cas n° 6           *)
(*    (f1 x)<>0  l1<>0  l2<>0      *)
(***********************************)
Elim (H0 ``(Rabsolu ((Rsqr (f2 x))*eps)/(8*(f1 x)))``).
Intros alp_f2d H11.
Assert H12 := (derivable_continuous_pt ? ? X).
Unfold continuity_pt in H12.
Unfold continue_in in H12.
Unfold limit1_in in H12.
Unfold limit_in in H12.
Unfold dist in H12.
Simpl in H12.
Unfold R_dist in H12.
Elim (H12 ``(Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``).
Intros alp_f2c H13.
Elim (H12 ``(Rabsolu (eps*(Rsqr (f2 x)))/(8*l1))``).
Intros alp_f2t2 H14.
Cut ``0 < (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2))``.
Intro.
Exists (mkposreal (Rmin (Rmin (Rmin eps_f2 alp_f2) (Rmin alp_f1d alp_f2d)) (Rmin alp_f2c alp_f2t2)) H15).
Simpl.
Intros.
Assert H18 := (Rlt_le_trans ? ? ? H17 (Rmin_l ? ?)).
Assert H19 := (Rlt_le_trans ? ? ? H17 (Rmin_r ? ?)).
Assert H20 := (Rlt_le_trans ? ? ? H18 (Rmin_l ? ?)).
Assert H21 := (Rlt_le_trans ? ? ? H18 (Rmin_r ? ?)).
Assert H22 := (Rlt_le_trans ? ? ? H19 (Rmin_l ? ?)).
Assert H23 := (Rlt_le_trans ? ? ? H19 (Rmin_r ? ?)).
Assert H24 := (Rlt_le_trans ? ? ? H20 (Rmin_l ? ?)).
Assert H25 := (Rlt_le_trans ? ? ? H20 (Rmin_r ? ?)).
Assert H26 := (Rlt_le_trans ? ? ? H21 (Rmin_l ? ?)).
Assert H27 := (Rlt_le_trans ? ? ? H21 (Rmin_r ? ?)).
Clear H17 H18 H19 H20 H21.
Cut (a:R) ``(Rabsolu a) < alp_f2t2`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``.
Cut (a:R) ``(Rabsolu a) < alp_f2c`` -> ``(Rabsolu ((f2 (x+a))-(f2 x))) < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``.
Intros.
Rewrite formule; Try Assumption.
Apply Rle_lt_trans with ``(Rabsolu (/(f2 (x+h))*(((f1 (x+h))-(f1 x))/h-l1))) + (Rabsolu (l1/((f2 x)*(f2 (x+h)))*((f2 x)-(f2 (x+h))))) + (Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))-(f2 x))/h-l2))) + (Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))*((f2 (x+h))-(f2 x))))``.
Unfold Rminus.
Rewrite <- (Rabsolu_Ropp ``(f1 x)/((f2 x)*(f2 (x+h)))*(((f2 (x+h))+ -(f2 x))/h+ -l2)``).
Apply Rabsolu_4.
Repeat Rewrite Rabsolu_mult.
Apply Rlt_le_trans with ``eps/4+eps/4+eps/4+eps/4``.
Cut ``(Rabsolu (/(f2 (x+h))))*(Rabsolu (((f1 (x+h))-(f1 x))/h-l1)) < eps/4``.
Cut ``(Rabsolu (l1/((f2 x)*(f2 (x+h)))))*(Rabsolu ((f2 x)-(f2 (x+h)))) < eps/4``.
Cut ``(Rabsolu ((f1 x)/((f2 x)*(f2 (x+h)))))*(Rabsolu (((f2 (x+h))-(f2 x))/h-l2)) < eps/4``.
Cut ``(Rabsolu ((l2*(f1 x))/((Rsqr (f2 x))*(f2 (x+h)))))*(Rabsolu ((f2 (x+h))-(f2 x))) < eps/4``.
Intros.
Apply Rlt_4; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term4 x h eps l2 alp_f2 alp_f2c eps_f2 f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term3 x h eps l2 alp_f2 eps_f2 alp_f2d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term2 x h eps l1 alp_f2 alp_f2t2 eps_f2 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Rewrite <- Rabsolu_mult.
Apply (maj_term1 x h eps l1 alp_f2 eps_f2 alp_f1d f1 f2); Try Assumption.
Apply H2; Assumption.
Apply Rmin_2; Assumption.
Right; Symmetry; Apply quadruple_var.
Apply H2; Assumption.
Intros.
Case (Req_EM a R0); Intro.
Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
Apply prod_neq_R0; [DiscrR | Assumption].
Apply prod_neq_R0; [DiscrR | Assumption].
Assumption.
Elim H13; Intros.
Apply H20.
Split.
Apply D_x_no_cond; Assumption.
Replace ``x+a-x`` with a; [Assumption | Ring].
Intros.
Case (Req_EM a R0); Intro.
Rewrite H18; Rewrite Rplus_Or; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H28; Rewrite H28 in H6; Elim (Rlt_antirefl ? H6)).
DiscrR.
Assumption.
Elim H14; Intros.
Apply H20.
Split.
Unfold D_x no_cond; Split.
Trivial.
Apply Rminus_not_eq_right.
Replace ``x+a-x`` with a; [Assumption | Ring].
Replace ``x+a-x`` with a; [Assumption | Ring].
Repeat Apply Rmin_pos.
Apply (cond_pos eps_f2).
Elim H3; Intros; Assumption.
Apply (cond_pos alp_f1d).
Apply (cond_pos alp_f2d).
Elim H13; Intros; Assumption.
Elim H14; Intros; Assumption.
Change ``0 < (Rabsolu ((eps*(Rsqr (f2 x)))/(8*l1)))``; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; Try DiscrR Orelse Assumption.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H14; Rewrite H14 in H6; Elim (Rlt_antirefl ? H6)).
Change ``0 < (Rabsolu (((Rsqr (f2 x))*(f2 x)*eps)/(8*(f1 x)*l2)))``; Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult.
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H13; Rewrite H13 in H6; Elim (Rlt_antirefl ? H6)).
Apply prod_neq_R0; [DiscrR | Assumption].
Apply prod_neq_R0; [DiscrR | Assumption].
Assumption.
Apply Rabsolu_pos_lt.
Unfold Rdiv Rsqr; Rewrite Rinv_Rmult; [Idtac | DiscrR | Assumption].
Repeat Apply prod_neq_R0; Assumption Orelse (Apply Rinv_neq_R0; Assumption) Orelse (Apply Rinv_neq_R0; DiscrR) Orelse (Red; Intro H11; Rewrite H11 in H6; Elim (Rlt_antirefl ? H6)).
Intros.
Unfold Rdiv.
Apply Rlt_monotony_contra with ``(Rabsolu (f2 (x+a)))``.
Apply Rabsolu_pos_lt; Apply H2.
Apply Rlt_le_trans with (Rmin eps_f2 alp_f2).
Assumption.
Apply Rmin_l.
Rewrite <- Rinv_r_sym.
Apply Rlt_monotony_contra with (Rabsolu (f2 x)).
Apply Rabsolu_pos_lt; Assumption.
Rewrite Rmult_1r.
Rewrite (Rmult_sym (Rabsolu (f2 x))).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_l_sym.
Rewrite Rmult_1r.
Apply Rlt_monotony_contra with ``/2``.
Apply Rlt_Rinv; Sup0.
Repeat Rewrite (Rmult_sym ``/2``).
Repeat Rewrite Rmult_assoc.
Rewrite <- Rinv_r_sym.
Rewrite Rmult_1r.
Unfold Rdiv in H5; Apply H5.
Replace ``x+a-x`` with a.
Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_r ? ?)); Assumption.
Ring.
DiscrR.
Apply Rabsolu_no_R0; Assumption.
Apply Rabsolu_no_R0; Apply H2.
Assert H7 := (Rlt_le_trans ? ? ? H6 (Rmin_l ? ?)); Assumption.
Intros.
Assert H6 := (H4 a H5).
Rewrite <- (Rabsolu_Ropp ``(f2 a)-(f2 x)``) in H6.
Rewrite Ropp_distr2 in H6.
Assert H7 := (Rle_lt_trans ? ? ? (Rabsolu_triang_inv ? ?) H6).
Apply Rlt_anti_compatibility with ``-(Rabsolu (f2 a)) + (Rabsolu (f2 x))/2``.
Rewrite Rplus_assoc.
Rewrite <- double_var.
Do 2 Rewrite (Rplus_sym ``-(Rabsolu (f2 a))``).
Rewrite Rplus_assoc; Rewrite Rplus_Ropp_l; Rewrite Rplus_Or.
Unfold Rminus in H7; Assumption.
Intros.
Case (Req_EM x x0); Intro.
Rewrite <- H5; Unfold Rminus; Rewrite Rplus_Ropp_r; Rewrite Rabsolu_R0; Unfold Rdiv; Apply Rmult_lt_pos; [Apply Rabsolu_pos_lt; Assumption | Apply Rlt_Rinv; Sup0].
Elim H3; Intros.
Apply H7.
Split.
Unfold D_x no_cond; Split.
Trivial.
Assumption.
Assumption.
Qed.

Lemma derivable_pt_div : (f1,f2:R->R;x:R) (derivable_pt f1 x) -> (derivable_pt f2 x) -> ``(f2 x)<>0`` -> (derivable_pt (div_fct f1 f2) x).
Unfold derivable_pt.
Intros.
Elim X; Intros.
Elim X0; Intros.
Apply Specif.existT with ``(x0*(f2 x)-x1*(f1 x))/(Rsqr (f2 x))``.
Apply derivable_pt_lim_div; Assumption.
Qed.

Lemma derivable_div : (f1,f2:R->R) (derivable f1) -> (derivable f2) -> ((x:R)``(f2 x)<>0``) -> (derivable (div_fct f1 f2)).
Unfold derivable; Intros.
Apply (derivable_pt_div ? ? ? (X x) (X0 x) (H x)).
Qed.

Lemma derive_pt_div : (f1,f2:R->R;x:R;pr1:(derivable_pt f1 x);pr2:(derivable_pt f2 x);na:``(f2 x)<>0``) ``(derive_pt (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)) == ((derive_pt f1 x pr1)*(f2 x)-(derive_pt f2 x pr2)*(f1 x))/(Rsqr (f2 x))``.
Intros.
Assert H := (derivable_derive f1 x pr1).
Assert H0 := (derivable_derive f2 x pr2).
Assert H1 := (derivable_derive (div_fct f1 f2) x (derivable_pt_div ? ? ? pr1 pr2 na)).
Elim H; Clear H; Intros l1 H.
Elim H0; Clear H0; Intros l2 H0.
Elim H1; Clear H1; Intros l H1.
Rewrite H; Rewrite H0; Apply derive_pt_eq_0.
Assert H3 := (projT2 ? ? pr1).
Unfold derive_pt in H; Rewrite H in H3.
Assert H4 := (projT2 ? ? pr2).
Unfold derive_pt in H0; Rewrite H0 in H4.
Apply derivable_pt_lim_div; Assumption.
Qed.