summaryrefslogtreecommitdiff
path: root/theories/Relations/Operators_Properties.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Relations/Operators_Properties.v')
-rw-r--r--theories/Relations/Operators_Properties.v234
1 files changed, 139 insertions, 95 deletions
diff --git a/theories/Relations/Operators_Properties.v b/theories/Relations/Operators_Properties.v
index d0916b09..1976b435 100644
--- a/theories/Relations/Operators_Properties.v
+++ b/theories/Relations/Operators_Properties.v
@@ -6,7 +6,7 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Operators_Properties.v 11481 2008-10-20 19:23:51Z herbelin $ i*)
+(*i $Id$ i*)
(************************************************************************)
(** * Some properties of the operators on relations *)
@@ -16,31 +16,41 @@
Require Import Relation_Definitions.
Require Import Relation_Operators.
-Require Import Setoid.
Section Properties.
+ Implicit Arguments clos_refl_trans [A].
+ Implicit Arguments clos_refl_trans_1n [A].
+ Implicit Arguments clos_refl_trans_n1 [A].
+ Implicit Arguments clos_refl_sym_trans [A].
+ Implicit Arguments clos_refl_sym_trans_1n [A].
+ Implicit Arguments clos_refl_sym_trans_n1 [A].
+ Implicit Arguments clos_trans [A].
+ Implicit Arguments clos_trans_1n [A].
+ Implicit Arguments clos_trans_n1 [A].
+ Implicit Arguments inclusion [A].
+ Implicit Arguments preorder [A].
+
Variable A : Type.
Variable R : relation A.
- Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
-
Section Clos_Refl_Trans.
+ Local Notation "R *" := (clos_refl_trans R) (at level 8, left associativity).
+
(** Correctness of the reflexive-transitive closure operator *)
- Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
+ Lemma clos_rt_is_preorder : preorder R*.
Proof.
apply Build_preorder.
exact (rt_refl A R).
-
+
exact (rt_trans A R).
Qed.
(** Idempotency of the reflexive-transitive closure operator *)
- Lemma clos_rt_idempotent :
- incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
+ Lemma clos_rt_idempotent : inclusion (R*)* R*.
Proof.
red in |- *.
induction 1; auto with sets.
@@ -56,7 +66,7 @@ Section Properties.
reflexive-symmetric-transitive closure *)
Lemma clos_rt_clos_rst :
- inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
+ inclusion (clos_refl_trans R) (clos_refl_sym_trans R).
Proof.
red in |- *.
induction 1; auto with sets.
@@ -65,7 +75,7 @@ Section Properties.
(** Correctness of the reflexive-symmetric-transitive closure *)
- Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
+ Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans R).
Proof.
apply Build_equivalence.
exact (rst_refl A R).
@@ -76,8 +86,8 @@ Section Properties.
(** Idempotency of the reflexive-symmetric-transitive closure operator *)
Lemma clos_rst_idempotent :
- incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
- (clos_refl_sym_trans A R).
+ inclusion (clos_refl_sym_trans (clos_refl_sym_trans R))
+ (clos_refl_sym_trans R).
Proof.
red in |- *.
induction 1; auto with sets.
@@ -91,11 +101,11 @@ Section Properties.
(** *** Equivalences between the different definition of the reflexive,
symmetric, transitive closures *)
- (** *** Contributed by P. Casteran *)
+ (** *** Contributed by P. Castéran *)
(** Direct transitive closure vs left-step extension *)
- Lemma t1n_trans : forall x y, clos_trans_1n A R x y -> clos_trans A R x y.
+ Lemma clos_t1n_trans : forall x y, clos_trans_1n R x y -> clos_trans R x y.
Proof.
induction 1.
left; assumption.
@@ -103,7 +113,7 @@ Section Properties.
left; auto.
Qed.
- Lemma trans_t1n : forall x y, clos_trans A R x y -> clos_trans_1n A R x y.
+ Lemma clos_trans_t1n : forall x y, clos_trans R x y -> clos_trans_1n R x y.
Proof.
induction 1.
left; assumption.
@@ -111,20 +121,20 @@ Section Properties.
right with y; auto.
right with y; auto.
eapply IHIHclos_trans1; auto.
- apply t1n_trans; auto.
+ apply clos_t1n_trans; auto.
Qed.
- Lemma t1n_trans_equiv : forall x y,
- clos_trans A R x y <-> clos_trans_1n A R x y.
+ Lemma clos_trans_t1n_iff : forall x y,
+ clos_trans R x y <-> clos_trans_1n R x y.
Proof.
split.
- apply trans_t1n.
- apply t1n_trans.
+ apply clos_trans_t1n.
+ apply clos_t1n_trans.
Qed.
(** Direct transitive closure vs right-step extension *)
- Lemma tn1_trans : forall x y, clos_trans_n1 A R x y -> clos_trans A R x y.
+ Lemma clos_tn1_trans : forall x y, clos_trans_n1 R x y -> clos_trans R x y.
Proof.
induction 1.
left; assumption.
@@ -132,7 +142,7 @@ Section Properties.
left; assumption.
Qed.
- Lemma trans_tn1 : forall x y, clos_trans A R x y -> clos_trans_n1 A R x y.
+ Lemma clos_trans_tn1 : forall x y, clos_trans R x y -> clos_trans_n1 R x y.
Proof.
induction 1.
left; assumption.
@@ -144,31 +154,31 @@ Section Properties.
right with y0; auto.
Qed.
- Lemma tn1_trans_equiv : forall x y,
- clos_trans A R x y <-> clos_trans_n1 A R x y.
+ Lemma clos_trans_tn1_iff : forall x y,
+ clos_trans R x y <-> clos_trans_n1 R x y.
Proof.
split.
- apply trans_tn1.
- apply tn1_trans.
+ apply clos_trans_tn1.
+ apply clos_tn1_trans.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by left-step extension *)
- Lemma R_rt1n : forall x y, R x y -> clos_refl_trans_1n A R x y.
+ Lemma clos_rt1n_step : forall x y, R x y -> clos_refl_trans_1n R x y.
Proof.
intros x y H.
right with y;[assumption|left].
Qed.
- Lemma R_rtn1 : forall x y, R x y -> clos_refl_trans_n1 A R x y.
+ Lemma clos_rtn1_step : forall x y, R x y -> clos_refl_trans_n1 R x y.
Proof.
intros x y H.
right with x;[assumption|left].
Qed.
- Lemma rt1n_trans : forall x y,
- clos_refl_trans_1n A R x y -> clos_refl_trans A R x y.
+ Lemma clos_rt1n_rt : forall x y,
+ clos_refl_trans_1n R x y -> clos_refl_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -176,33 +186,33 @@ Section Properties.
constructor 1; auto.
Qed.
- Lemma trans_rt1n : forall x y,
- clos_refl_trans A R x y -> clos_refl_trans_1n A R x y.
+ Lemma clos_rt_rt1n : forall x y,
+ clos_refl_trans R x y -> clos_refl_trans_1n R x y.
Proof.
induction 1.
- apply R_rt1n; assumption.
+ apply clos_rt1n_step; assumption.
left.
generalize IHclos_refl_trans2; clear IHclos_refl_trans2;
induction IHclos_refl_trans1; auto.
right with y; auto.
eapply IHIHclos_refl_trans1; auto.
- apply rt1n_trans; auto.
+ apply clos_rt1n_rt; auto.
Qed.
- Lemma rt1n_trans_equiv : forall x y,
- clos_refl_trans A R x y <-> clos_refl_trans_1n A R x y.
+ Lemma clos_rt_rt1n_iff : forall x y,
+ clos_refl_trans R x y <-> clos_refl_trans_1n R x y.
Proof.
split.
- apply trans_rt1n.
- apply rt1n_trans.
+ apply clos_rt_rt1n.
+ apply clos_rt1n_rt.
Qed.
- (** Direct reflexive-transitive closure is equivalent to
+ (** Direct reflexive-transitive closure is equivalent to
transitivity by right-step extension *)
- Lemma rtn1_trans : forall x y,
- clos_refl_trans_n1 A R x y -> clos_refl_trans A R x y.
+ Lemma clos_rtn1_rt : forall x y,
+ clos_refl_trans_n1 R x y -> clos_refl_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -210,37 +220,37 @@ Section Properties.
constructor 1; assumption.
Qed.
- Lemma trans_rtn1 : forall x y,
- clos_refl_trans A R x y -> clos_refl_trans_n1 A R x y.
+ Lemma clos_rt_rtn1 : forall x y,
+ clos_refl_trans R x y -> clos_refl_trans_n1 R x y.
Proof.
induction 1.
- apply R_rtn1; auto.
+ apply clos_rtn1_step; auto.
left.
elim IHclos_refl_trans2; auto.
intros.
right with y0; auto.
Qed.
- Lemma rtn1_trans_equiv : forall x y,
- clos_refl_trans A R x y <-> clos_refl_trans_n1 A R x y.
+ Lemma clos_rt_rtn1_iff : forall x y,
+ clos_refl_trans R x y <-> clos_refl_trans_n1 R x y.
Proof.
split.
- apply trans_rtn1.
- apply rtn1_trans.
+ apply clos_rt_rtn1.
+ apply clos_rtn1_rt.
Qed.
(** Induction on the left transitive step *)
Lemma clos_refl_trans_ind_left :
forall (x:A) (P:A -> Prop), P x ->
- (forall y z:A, clos_refl_trans A R x y -> P y -> R y z -> P z) ->
- forall z:A, clos_refl_trans A R x z -> P z.
+ (forall y z:A, clos_refl_trans R x y -> P y -> R y z -> P z) ->
+ forall z:A, clos_refl_trans R x z -> P z.
Proof.
intros.
revert H H0.
induction H1; intros; auto with sets.
apply H1 with x; auto with sets.
-
+
apply IHclos_refl_trans2.
apply IHclos_refl_trans1; auto with sets.
@@ -253,28 +263,30 @@ Section Properties.
Lemma rt1n_ind_right : forall (P : A -> Prop) (z:A),
P z ->
- (forall x y, R x y -> clos_refl_trans_1n A R y z -> P y -> P x) ->
- forall x, clos_refl_trans_1n A R x z -> P x.
+ (forall x y, R x y -> clos_refl_trans_1n R y z -> P y -> P x) ->
+ forall x, clos_refl_trans_1n R x z -> P x.
induction 3; auto.
apply H0 with y; auto.
Qed.
Lemma clos_refl_trans_ind_right : forall (P : A -> Prop) (z:A),
P z ->
- (forall x y, R x y -> P y -> clos_refl_trans A R y z -> P x) ->
- forall x, clos_refl_trans A R x z -> P x.
- intros.
- rewrite rt1n_trans_equiv in H1.
- elim H1 using rt1n_ind_right; auto.
- intros; rewrite <- rt1n_trans_equiv in *.
+ (forall x y, R x y -> P y -> clos_refl_trans R y z -> P x) ->
+ forall x, clos_refl_trans R x z -> P x.
+ intros P z Hz IH x Hxz.
+ apply clos_rt_rt1n_iff in Hxz.
+ elim Hxz using rt1n_ind_right; auto.
+ clear x Hxz.
+ intros x y Hxy Hyz Hy.
+ apply clos_rt_rt1n_iff in Hyz.
eauto.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric left-step extension *)
- Lemma rts1n_rts : forall x y,
- clos_refl_sym_trans_1n A R x y -> clos_refl_sym_trans A R x y.
+ Lemma clos_rst1n_rst : forall x y,
+ clos_refl_sym_trans_1n R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -282,48 +294,47 @@ Section Properties.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
- Lemma rts_1n_trans : forall x y, clos_refl_sym_trans_1n A R x y ->
- forall z, clos_refl_sym_trans_1n A R y z ->
- clos_refl_sym_trans_1n A R x z.
+ Lemma clos_rst1n_trans : forall x y z, clos_refl_sym_trans_1n R x y ->
+ clos_refl_sym_trans_1n R y z -> clos_refl_sym_trans_1n R x z.
induction 1.
auto.
intros; right with y; eauto.
Qed.
- Lemma rts1n_sym : forall x y, clos_refl_sym_trans_1n A R x y ->
- clos_refl_sym_trans_1n A R y x.
+ Lemma clos_rst1n_sym : forall x y, clos_refl_sym_trans_1n R x y ->
+ clos_refl_sym_trans_1n R y x.
Proof.
intros x y H; elim H.
constructor 1.
- intros x0 y0 z D H0 H1; apply rts_1n_trans with y0; auto.
+ intros x0 y0 z D H0 H1; apply clos_rst1n_trans with y0; auto.
right with x0.
tauto.
left.
Qed.
- Lemma rts_rts1n : forall x y,
- clos_refl_sym_trans A R x y -> clos_refl_sym_trans_1n A R x y.
+ Lemma clos_rst_rst1n : forall x y,
+ clos_refl_sym_trans R x y -> clos_refl_sym_trans_1n R x y.
induction 1.
constructor 2 with y; auto.
constructor 1.
constructor 1.
- apply rts1n_sym; auto.
- eapply rts_1n_trans; eauto.
+ apply clos_rst1n_sym; auto.
+ eapply clos_rst1n_trans; eauto.
Qed.
- Lemma rts_rts1n_equiv : forall x y,
- clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_1n A R x y.
+ Lemma clos_rst_rst1n_iff : forall x y,
+ clos_refl_sym_trans R x y <-> clos_refl_sym_trans_1n R x y.
Proof.
split.
- apply rts_rts1n.
- apply rts1n_rts.
+ apply clos_rst_rst1n.
+ apply clos_rst1n_rst.
Qed.
- (** Direct reflexive-symmetric-transitive closure is equivalent to
+ (** Direct reflexive-symmetric-transitive closure is equivalent to
transitivity by symmetric right-step extension *)
- Lemma rtsn1_rts : forall x y,
- clos_refl_sym_trans_n1 A R x y -> clos_refl_sym_trans A R x y.
+ Lemma clos_rstn1_rst : forall x y,
+ clos_refl_sym_trans_n1 R x y -> clos_refl_sym_trans R x y.
Proof.
induction 1.
constructor 2.
@@ -331,46 +342,79 @@ Section Properties.
case H;[constructor 1|constructor 3; constructor 1]; auto.
Qed.
- Lemma rtsn1_trans : forall y z, clos_refl_sym_trans_n1 A R y z->
- forall x, clos_refl_sym_trans_n1 A R x y ->
- clos_refl_sym_trans_n1 A R x z.
+ Lemma clos_rstn1_trans : forall x y z, clos_refl_sym_trans_n1 R x y ->
+ clos_refl_sym_trans_n1 R y z -> clos_refl_sym_trans_n1 R x z.
Proof.
- induction 1.
+ intros x y z H1 H2.
+ induction H2.
auto.
intros.
right with y0; eauto.
Qed.
- Lemma rtsn1_sym : forall x y, clos_refl_sym_trans_n1 A R x y ->
- clos_refl_sym_trans_n1 A R y x.
+ Lemma clos_rstn1_sym : forall x y, clos_refl_sym_trans_n1 R x y ->
+ clos_refl_sym_trans_n1 R y x.
Proof.
intros x y H; elim H.
constructor 1.
- intros y0 z D H0 H1. apply rtsn1_trans with y0; auto.
+ intros y0 z D H0 H1. apply clos_rstn1_trans with y0; auto.
right with z.
tauto.
left.
Qed.
- Lemma rts_rtsn1 : forall x y,
- clos_refl_sym_trans A R x y -> clos_refl_sym_trans_n1 A R x y.
+ Lemma clos_rst_rstn1 : forall x y,
+ clos_refl_sym_trans R x y -> clos_refl_sym_trans_n1 R x y.
Proof.
induction 1.
constructor 2 with x; auto.
constructor 1.
constructor 1.
- apply rtsn1_sym; auto.
- eapply rtsn1_trans; eauto.
+ apply clos_rstn1_sym; auto.
+ eapply clos_rstn1_trans; eauto.
Qed.
- Lemma rts_rtsn1_equiv : forall x y,
- clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_n1 A R x y.
+ Lemma clos_rst_rstn1_iff : forall x y,
+ clos_refl_sym_trans R x y <-> clos_refl_sym_trans_n1 R x y.
Proof.
split.
- apply rts_rtsn1.
- apply rtsn1_rts.
+ apply clos_rst_rstn1.
+ apply clos_rstn1_rst.
Qed.
End Equivalences.
End Properties.
+
+(* begin hide *)
+(* Compatibility *)
+Notation trans_tn1 := clos_trans_tn1 (only parsing).
+Notation tn1_trans := clos_tn1_trans (only parsing).
+Notation tn1_trans_equiv := clos_trans_tn1_iff (only parsing).
+
+Notation trans_t1n := clos_trans_t1n (only parsing).
+Notation t1n_trans := clos_t1n_trans (only parsing).
+Notation t1n_trans_equiv := clos_trans_t1n_iff (only parsing).
+
+Notation R_rtn1 := clos_rtn1_step (only parsing).
+Notation trans_rt1n := clos_rt_rt1n (only parsing).
+Notation rt1n_trans := clos_rt1n_rt (only parsing).
+Notation rt1n_trans_equiv := clos_rt_rt1n_iff (only parsing).
+
+Notation R_rt1n := clos_rt1n_step (only parsing).
+Notation trans_rtn1 := clos_rt_rtn1 (only parsing).
+Notation rtn1_trans := clos_rtn1_rt (only parsing).
+Notation rtn1_trans_equiv := clos_rt_rtn1_iff (only parsing).
+
+Notation rts1n_rts := clos_rst1n_rst (only parsing).
+Notation rts_1n_trans := clos_rst1n_trans (only parsing).
+Notation rts1n_sym := clos_rst1n_sym (only parsing).
+Notation rts_rts1n := clos_rst_rst1n (only parsing).
+Notation rts_rts1n_equiv := clos_rst_rst1n_iff (only parsing).
+
+Notation rtsn1_rts := clos_rstn1_rst (only parsing).
+Notation rtsn1_trans := clos_rstn1_trans (only parsing).
+Notation rtsn1_sym := clos_rstn1_sym (only parsing).
+Notation rts_rtsn1 := clos_rst_rstn1 (only parsing).
+Notation rts_rtsn1_equiv := clos_rst_rstn1_iff (only parsing).
+(* end hide *)