summaryrefslogtreecommitdiff
path: root/theories/Relations/Operators_Properties.v
blob: d0916b0977c9816df69339342e135be911c91d2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Operators_Properties.v 11481 2008-10-20 19:23:51Z herbelin $ i*)

(************************************************************************)
(** * Some properties of the operators on relations                     *)
(************************************************************************)
(** * Initial version by Bruno Barras                                   *)
(************************************************************************)

Require Import Relation_Definitions.
Require Import Relation_Operators.
Require Import Setoid.

Section Properties.

  Variable A : Type.
  Variable R : relation A.

  Let incl (R1 R2:relation A) : Prop := forall x y:A, R1 x y -> R2 x y.
  
  Section Clos_Refl_Trans.

    (** Correctness of the reflexive-transitive closure operator *)

    Lemma clos_rt_is_preorder : preorder A (clos_refl_trans A R).
    Proof.
      apply Build_preorder.
      exact (rt_refl A R).
      
      exact (rt_trans A R).
    Qed.

    (** Idempotency of the reflexive-transitive closure operator *)

    Lemma clos_rt_idempotent :
      incl (clos_refl_trans A (clos_refl_trans A R)) (clos_refl_trans A R).
    Proof.
      red in |- *.
      induction 1; auto with sets.
      intros.
      apply rt_trans with y; auto with sets.
    Qed.

  End Clos_Refl_Trans.

  Section Clos_Refl_Sym_Trans.

    (** Reflexive-transitive closure is included in the
        reflexive-symmetric-transitive closure *)

    Lemma clos_rt_clos_rst :
      inclusion A (clos_refl_trans A R) (clos_refl_sym_trans A R).
    Proof.
      red in |- *.
      induction 1; auto with sets.
      apply rst_trans with y; auto with sets.
    Qed.

    (** Correctness of the reflexive-symmetric-transitive closure *)

    Lemma clos_rst_is_equiv : equivalence A (clos_refl_sym_trans A R).
    Proof.
      apply Build_equivalence.
      exact (rst_refl A R).
      exact (rst_trans A R).
      exact (rst_sym A R).
    Qed.

    (** Idempotency of the reflexive-symmetric-transitive closure operator *)

    Lemma clos_rst_idempotent :
      incl (clos_refl_sym_trans A (clos_refl_sym_trans A R))
      (clos_refl_sym_trans A R).
    Proof.
      red in |- *.
      induction 1; auto with sets.
      apply rst_trans with y; auto with sets.
    Qed.

  End Clos_Refl_Sym_Trans.

  Section Equivalences.

  (** *** Equivalences between the different definition of the reflexive,
      symmetric, transitive closures *)

  (** *** Contributed by P. Casteran *)

    (** Direct transitive closure vs left-step extension *)

    Lemma t1n_trans : forall x y, clos_trans_1n A R x y -> clos_trans A R x y.
    Proof.
     induction 1.
     left; assumption.
     right with y; auto.
     left; auto.
    Qed.

    Lemma trans_t1n : forall x y, clos_trans A R x y -> clos_trans_1n A R x y.
    Proof.
      induction 1.
      left; assumption.
      generalize IHclos_trans2; clear IHclos_trans2; induction IHclos_trans1.
      right with y; auto.
      right with y; auto.
      eapply IHIHclos_trans1; auto.
      apply t1n_trans; auto.
    Qed.

    Lemma t1n_trans_equiv : forall x y, 
        clos_trans A R x y <-> clos_trans_1n A R x y.
    Proof.
      split.
      apply trans_t1n.
      apply t1n_trans.
    Qed.

    (** Direct transitive closure vs right-step extension *)

    Lemma tn1_trans : forall x y, clos_trans_n1 A R x y -> clos_trans A R x y.
    Proof.
      induction 1.
      left; assumption.
      right with y; auto.
      left; assumption.
    Qed.

    Lemma trans_tn1 :  forall x y, clos_trans A R x y -> clos_trans_n1 A R x y.
    Proof.
      induction 1.
      left; assumption.
      elim IHclos_trans2.
      intro y0; right with y.
      auto.
      auto.
      intros.
      right with y0; auto.
    Qed.

    Lemma tn1_trans_equiv : forall x y, 
        clos_trans A R x y <-> clos_trans_n1 A R x y.
    Proof.
      split.
      apply trans_tn1.
      apply tn1_trans.
    Qed.

    (** Direct reflexive-transitive closure is equivalent to 
        transitivity by left-step extension *)

    Lemma R_rt1n : forall x y, R x y -> clos_refl_trans_1n A R x y.
    Proof.
      intros x y H.
      right with y;[assumption|left].
    Qed.

    Lemma R_rtn1 : forall x y, R x y -> clos_refl_trans_n1 A R x y.
    Proof.
      intros x y H.
      right with x;[assumption|left].
    Qed.

    Lemma rt1n_trans : forall x y, 
        clos_refl_trans_1n A R x y -> clos_refl_trans A R x y.
    Proof.
      induction 1.
      constructor 2.
      constructor 3 with y; auto.
      constructor 1; auto.
    Qed.

    Lemma trans_rt1n : forall x y, 
        clos_refl_trans A R x y -> clos_refl_trans_1n A R x y.
    Proof.
      induction 1.
      apply R_rt1n; assumption.
      left.
      generalize IHclos_refl_trans2; clear IHclos_refl_trans2;
        induction IHclos_refl_trans1; auto.

      right with y; auto.
      eapply IHIHclos_refl_trans1; auto.
      apply rt1n_trans; auto.
    Qed.

    Lemma rt1n_trans_equiv : forall x y, 
      clos_refl_trans A R x y <-> clos_refl_trans_1n A R x y.
    Proof.
      split.
      apply trans_rt1n.
      apply rt1n_trans.
    Qed.

    (** Direct reflexive-transitive closure is equivalent to 
        transitivity by right-step extension *)

    Lemma rtn1_trans : forall x y,
        clos_refl_trans_n1 A R x y -> clos_refl_trans A R x y.
    Proof.
      induction 1.
      constructor 2.
      constructor 3 with y; auto.
      constructor 1; assumption.
    Qed.

    Lemma trans_rtn1 :  forall x y, 
        clos_refl_trans A R x y -> clos_refl_trans_n1 A R x y.
    Proof.
      induction 1.
      apply R_rtn1; auto.
      left.
      elim IHclos_refl_trans2; auto.
      intros.
      right with y0; auto.
    Qed.

    Lemma rtn1_trans_equiv : forall x y, 
        clos_refl_trans A R x y <-> clos_refl_trans_n1 A R x y.
    Proof.
      split.
      apply trans_rtn1.
      apply rtn1_trans.
    Qed.

    (** Induction on the left transitive step *)

    Lemma clos_refl_trans_ind_left :
      forall (x:A) (P:A -> Prop), P x ->
	(forall y z:A, clos_refl_trans A R x y -> P y -> R y z -> P z) ->
	forall z:A, clos_refl_trans A R x z -> P z.
    Proof.
      intros.
      revert H H0.
      induction H1; intros; auto with sets.
      apply H1 with x; auto with sets.
      
      apply IHclos_refl_trans2.
      apply IHclos_refl_trans1; auto with sets.

      intros.
      apply H0 with y0; auto with sets.
      apply rt_trans with y; auto with sets.
    Qed.

    (** Induction on the right transitive step *)

    Lemma rt1n_ind_right : forall (P : A -> Prop) (z:A),
      P z ->
      (forall x y, R x y -> clos_refl_trans_1n A R y z -> P y -> P x) ->
      forall x, clos_refl_trans_1n A R x z -> P x.
      induction 3; auto.
      apply H0 with y; auto.
    Qed.

    Lemma clos_refl_trans_ind_right : forall (P : A -> Prop) (z:A),
      P z ->
      (forall x y, R x y -> P y -> clos_refl_trans A R y z -> P x) ->
      forall x, clos_refl_trans A R x z -> P x.
      intros.
      rewrite rt1n_trans_equiv in H1.
      elim H1 using rt1n_ind_right; auto.
      intros; rewrite  <- rt1n_trans_equiv in *.
      eauto.
    Qed.

    (** Direct reflexive-symmetric-transitive closure is equivalent to 
        transitivity by symmetric left-step extension *)

    Lemma rts1n_rts  : forall x y, 
      clos_refl_sym_trans_1n A R x y -> clos_refl_sym_trans A R x y.
    Proof.
      induction 1.
      constructor 2.
      constructor 4 with y; auto.
      case H;[constructor 1|constructor 3; constructor 1]; auto.
    Qed.

    Lemma rts_1n_trans : forall x y, clos_refl_sym_trans_1n A R x y ->
      forall z, clos_refl_sym_trans_1n A R y z -> 
        clos_refl_sym_trans_1n A R x z.
      induction 1.
      auto.
      intros; right with y; eauto.
    Qed.

    Lemma rts1n_sym : forall x y, clos_refl_sym_trans_1n A R x y ->
      clos_refl_sym_trans_1n A R y x.
    Proof.
      intros x y H; elim H.
      constructor 1.
      intros x0 y0 z D H0 H1; apply rts_1n_trans with y0; auto.
      right with x0.
      tauto.
      left.
    Qed.

    Lemma rts_rts1n  : forall x y, 
      clos_refl_sym_trans A R x y -> clos_refl_sym_trans_1n A R x y.
      induction 1.
      constructor 2 with y; auto.
      constructor 1.
      constructor 1.
      apply rts1n_sym; auto.
      eapply rts_1n_trans; eauto.
    Qed.

    Lemma rts_rts1n_equiv : forall x y, 
      clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_1n A R x y.
    Proof.
      split.
      apply rts_rts1n.
      apply rts1n_rts.
    Qed.

    (** Direct reflexive-symmetric-transitive closure is equivalent to 
        transitivity by symmetric right-step extension *)

    Lemma rtsn1_rts : forall x y, 
      clos_refl_sym_trans_n1 A R x y -> clos_refl_sym_trans A R x y.
    Proof.
      induction 1.
      constructor 2.
      constructor 4 with y; auto.
      case H;[constructor 1|constructor 3; constructor 1]; auto.
    Qed.

    Lemma rtsn1_trans : forall y z, clos_refl_sym_trans_n1 A R y z->
      forall x, clos_refl_sym_trans_n1 A R x y -> 
        clos_refl_sym_trans_n1 A R x z.
    Proof.
      induction 1.
      auto.
      intros.
      right with y0; eauto.
    Qed.

    Lemma rtsn1_sym : forall x y, clos_refl_sym_trans_n1 A R x y ->
      clos_refl_sym_trans_n1 A R y x.
    Proof.
      intros x y H; elim H.
      constructor 1.
      intros y0 z D H0 H1. apply rtsn1_trans with y0; auto.
      right with z.
      tauto.
      left.
    Qed.

    Lemma rts_rtsn1 : forall x y, 
      clos_refl_sym_trans A R x y -> clos_refl_sym_trans_n1 A R x y.
    Proof.
      induction 1.
      constructor 2 with x; auto.
      constructor 1.
      constructor 1.
      apply rtsn1_sym; auto.
      eapply rtsn1_trans; eauto.
    Qed.

    Lemma rts_rtsn1_equiv : forall x y, 
      clos_refl_sym_trans A R x y <-> clos_refl_sym_trans_n1 A R x y.
    Proof.
      split.
      apply rts_rtsn1.
      apply rtsn1_rts.
    Qed.

  End Equivalences.

End Properties.