summaryrefslogtreecommitdiff
path: root/theories/Init/Peano.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/Init/Peano.v')
-rw-r--r--[-rwxr-xr-x]theories/Init/Peano.v56
1 files changed, 30 insertions, 26 deletions
diff --git a/theories/Init/Peano.v b/theories/Init/Peano.v
index 789a020f..c0416b63 100755..100644
--- a/theories/Init/Peano.v
+++ b/theories/Init/Peano.v
@@ -6,9 +6,10 @@
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: Peano.v,v 1.23.2.1 2004/07/16 19:31:03 herbelin Exp $ i*)
+(*i $Id: Peano.v 8642 2006-03-17 10:09:02Z notin $ i*)
-(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)
+(** The type [nat] of Peano natural numbers (built from [O] and [S])
+ is defined in [Datatypes.v] *)
(** This module defines the following operations on natural numbers :
- predecessor [pred]
@@ -19,13 +20,15 @@
- greater or equal [ge]
- greater [gt]
- This module states various lemmas and theorems about natural numbers,
- including Peano's axioms of arithmetic (in Coq, these are in fact provable)
- Case analysis on [nat] and induction on [nat * nat] are provided too *)
+ It states various lemmas and theorems about natural numbers,
+ including Peano's axioms of arithmetic (in Coq, these are provable).
+ Case analysis on [nat] and induction on [nat * nat] are provided too
+ *)
Require Import Notations.
Require Import Datatypes.
Require Import Logic.
+Unset Boxed Definitions.
Open Scope nat_scope.
@@ -47,6 +50,8 @@ Proof.
auto.
Qed.
+(** Injectivity of successor *)
+
Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Proof.
intros n m H; change (pred (S n) = pred (S m)) in |- *; auto.
@@ -54,21 +59,20 @@ Qed.
Hint Immediate eq_add_S: core v62.
-(** A consequence of the previous axioms *)
-
Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Proof.
red in |- *; auto.
Qed.
Hint Resolve not_eq_S: core v62.
+(** Zero is not the successor of a number *)
+
Definition IsSucc (n:nat) : Prop :=
match n with
| O => False
| S p => True
end.
-
Theorem O_S : forall n:nat, 0 <> S n.
Proof.
red in |- *; intros n H.
@@ -88,13 +92,14 @@ Hint Resolve n_Sn: core v62.
Fixpoint plus (n m:nat) {struct n} : nat :=
match n with
| O => m
- | S p => S (plus p m)
- end.
+ | S p => S (p + m)
+ end
+
+where "n + m" := (plus n m) : nat_scope.
+
Hint Resolve (f_equal2 plus): v62.
Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core.
-Infix "+" := plus : nat_scope.
-
Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
induction n; simpl in |- *; auto.
@@ -122,11 +127,12 @@ Qed.
Fixpoint mult (n m:nat) {struct n} : nat :=
match n with
| O => 0
- | S p => m + mult p m
- end.
-Hint Resolve (f_equal2 mult): core v62.
+ | S p => m + p * m
+ end
-Infix "*" := mult : nat_scope.
+where "n * m" := (mult n m) : nat_scope.
+
+Hint Resolve (f_equal2 mult): core v62.
Lemma mult_n_O : forall n:nat, 0 = n * 0.
Proof.
@@ -142,27 +148,25 @@ Proof.
Qed.
Hint Resolve mult_n_Sm: core v62.
-(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)
+(** Truncated subtraction: [m-n] is [0] if [n>=m] *)
Fixpoint minus (n m:nat) {struct n} : nat :=
match n, m with
| O, _ => 0
| S k, O => S k
- | S k, S l => minus k l
- end.
+ | S k, S l => k - l
+ end
-Infix "-" := minus : nat_scope.
+where "n - m" := (minus n m) : nat_scope.
(** Definition of the usual orders, the basic properties of [le] and [lt]
can be found in files Le and Lt *)
-(** An inductive definition to define the order *)
-
Inductive le (n:nat) : nat -> Prop :=
- | le_n : le n n
- | le_S : forall m:nat, le n m -> le n (S m).
+ | le_n : n <= n
+ | le_S : forall m:nat, n <= m -> n <= S m
-Infix "<=" := le : nat_scope.
+where "n <= m" := (le n m) : nat_scope.
Hint Constructors le: core v62.
(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)
@@ -187,7 +191,7 @@ Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope.
Notation "x < y < z" := (x < y /\ y < z) : nat_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope.
-(** Pattern-Matching on natural numbers *)
+(** Case analysis *)
Theorem nat_case :
forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.