summaryrefslogtreecommitdiff
path: root/theories/Init/Peano.v
blob: 789a020fcc712cd90a58f30189e1662f77bb6879 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i $Id: Peano.v,v 1.23.2.1 2004/07/16 19:31:03 herbelin Exp $ i*)

(** Natural numbers [nat] built from [O] and [S] are defined in Datatypes.v *)

(** This module defines the following operations on natural numbers :
    - predecessor [pred]
    - addition [plus]
    - multiplication [mult]
    - less or equal order [le]
    - less [lt]
    - greater or equal [ge]
    - greater [gt]

   This module states various lemmas and theorems about natural numbers,
   including Peano's axioms of arithmetic (in Coq, these are in fact provable)
   Case analysis on [nat] and induction on [nat * nat] are provided too *)

Require Import Notations.
Require Import Datatypes.
Require Import Logic.

Open Scope nat_scope.

Definition eq_S := f_equal S.

Hint Resolve (f_equal S): v62.
Hint Resolve (f_equal (A:=nat)): core.

(** The predecessor function *)

Definition pred (n:nat) : nat := match n with
                                 | O => 0
                                 | S u => u
                                 end.
Hint Resolve (f_equal pred): v62.

Theorem pred_Sn : forall n:nat, n = pred (S n).
Proof.
  auto.
Qed.

Theorem eq_add_S : forall n m:nat, S n = S m -> n = m.
Proof.
  intros n m H; change (pred (S n) = pred (S m)) in |- *; auto.
Qed.

Hint Immediate eq_add_S: core v62.

(** A consequence of the previous axioms *)

Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m.
Proof.
  red in |- *; auto.
Qed.
Hint Resolve not_eq_S: core v62.

Definition IsSucc (n:nat) : Prop :=
  match n with
  | O => False
  | S p => True
  end.


Theorem O_S : forall n:nat, 0 <> S n.
Proof.
  red in |- *; intros n H.
  change (IsSucc 0) in |- *.
  rewrite <- (sym_eq (x:=0) (y:=(S n))); [ exact I | assumption ].
Qed.
Hint Resolve O_S: core v62.

Theorem n_Sn : forall n:nat, n <> S n.
Proof.
  induction n; auto.
Qed.
Hint Resolve n_Sn: core v62.

(** Addition *)

Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
  | O => m
  | S p => S (plus p m)
  end.
Hint Resolve (f_equal2 plus): v62.
Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core.

Infix "+" := plus : nat_scope.

Lemma plus_n_O : forall n:nat, n = n + 0.
Proof.
  induction n; simpl in |- *; auto.
Qed.
Hint Resolve plus_n_O: core v62.

Lemma plus_O_n : forall n:nat, 0 + n = n.
Proof.
  auto.
Qed.

Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m.
Proof.
  intros n m; induction n; simpl in |- *; auto.
Qed.
Hint Resolve plus_n_Sm: core v62.

Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m).
Proof.
  auto.
Qed.

(** Multiplication *)

Fixpoint mult (n m:nat) {struct n} : nat :=
  match n with
  | O => 0
  | S p => m + mult p m
  end.
Hint Resolve (f_equal2 mult): core v62.

Infix "*" := mult : nat_scope.

Lemma mult_n_O : forall n:nat, 0 = n * 0.
Proof.
  induction n; simpl in |- *; auto.
Qed.
Hint Resolve mult_n_O: core v62.

Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m.
Proof.
  intros; induction n as [| p H]; simpl in |- *; auto.
  destruct H; rewrite <- plus_n_Sm; apply (f_equal S).
  pattern m at 1 3 in |- *; elim m; simpl in |- *; auto.
Qed.
Hint Resolve mult_n_Sm: core v62.

(** Definition of subtraction on [nat] : [m-n] is [0] if [n>=m] *)

Fixpoint minus (n m:nat) {struct n} : nat :=
  match n, m with
  | O, _ => 0
  | S k, O => S k
  | S k, S l => minus k l
  end. 

Infix "-" := minus : nat_scope.

(** Definition of the usual orders, the basic properties of [le] and [lt] 
    can be found in files Le and Lt *)

(** An inductive definition to define the order *)

Inductive le (n:nat) : nat -> Prop :=
  | le_n : le n n
  | le_S : forall m:nat, le n m -> le n (S m).

Infix "<=" := le : nat_scope.

Hint Constructors le: core v62.
(*i equivalent to : "Hints Resolve le_n le_S : core v62." i*)

Definition lt (n m:nat) := S n <= m.
Hint Unfold lt: core v62.

Infix "<" := lt : nat_scope.

Definition ge (n m:nat) := m <= n.
Hint Unfold ge: core v62.

Infix ">=" := ge : nat_scope.

Definition gt (n m:nat) := m < n.
Hint Unfold gt: core v62.

Infix ">" := gt : nat_scope.

Notation "x <= y <= z" := (x <= y /\ y <= z) : nat_scope.
Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope.
Notation "x < y < z" := (x < y /\ y < z) : nat_scope.
Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope.

(** Pattern-Matching on natural numbers *)

Theorem nat_case :
 forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n.
Proof.
  induction n; auto.
Qed.

(** Principle of double induction *)

Theorem nat_double_ind :
 forall R:nat -> nat -> Prop,
   (forall n:nat, R 0 n) ->
   (forall n:nat, R (S n) 0) ->
   (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m.
Proof.
  induction n; auto.
  destruct m as [| n0]; auto.
Qed.

(** Notations *)