summaryrefslogtreecommitdiff
path: root/theories/FSets
diff options
context:
space:
mode:
authorGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
committerGravatar Enrico Tassi <gareuselesinge@debian.org>2015-01-25 14:42:51 +0100
commit7cfc4e5146be5666419451bdd516f1f3f264d24a (patch)
treee4197645da03dc3c7cc84e434cc31d0a0cca7056 /theories/FSets
parent420f78b2caeaaddc6fe484565b2d0e49c66888e5 (diff)
Imported Upstream version 8.5~beta1+dfsg
Diffstat (limited to 'theories/FSets')
-rw-r--r--theories/FSets/FMapAVL.v62
-rw-r--r--theories/FSets/FMapFacts.v72
-rw-r--r--theories/FSets/FMapFullAVL.v12
-rw-r--r--theories/FSets/FMapList.v41
-rw-r--r--theories/FSets/FMapPositive.v119
-rw-r--r--theories/FSets/FMapWeakList.v27
-rw-r--r--theories/FSets/FSetBridge.v20
-rw-r--r--theories/FSets/FSetCompat.v2
-rw-r--r--theories/FSets/FSetDecide.v6
-rw-r--r--theories/FSets/FSetEqProperties.v2
-rw-r--r--theories/FSets/FSetInterface.v2
-rw-r--r--theories/FSets/FSetPositive.v95
-rw-r--r--theories/FSets/FSetProperties.v3
13 files changed, 233 insertions, 230 deletions
diff --git a/theories/FSets/FMapAVL.v b/theories/FSets/FMapAVL.v
index c68216e6..c9e5b8dd 100644
--- a/theories/FSets/FMapAVL.v
+++ b/theories/FSets/FMapAVL.v
@@ -270,7 +270,7 @@ Fixpoint elements_aux (acc : list (key*elt)) m : list (key*elt) :=
| Node l x d r _ => elements_aux ((x,d) :: elements_aux acc r) l
end.
-(** then [elements] is an instanciation with an empty [acc] *)
+(** then [elements] is an instantiation with an empty [acc] *)
Definition elements := elements_aux nil.
@@ -342,7 +342,7 @@ Notation "t #r" := (t_right t) (at level 9, format "t '#r'").
Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
match m with
- | Leaf => Leaf _
+ | Leaf _ => Leaf _
| Node l x d r h => Node (map f l) x (f d) (map f r) h
end.
@@ -350,7 +350,7 @@ Fixpoint map (elt elt' : Type)(f : elt -> elt')(m : t elt) : t elt' :=
Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
match m with
- | Leaf => Leaf _
+ | Leaf _ => Leaf _
| Node l x d r h => Node (mapi f l) x (f x d) (mapi f r) h
end.
@@ -359,7 +359,7 @@ Fixpoint mapi (elt elt' : Type)(f : key -> elt -> elt')(m : t elt) : t elt' :=
Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
: t elt' :=
match m with
- | Leaf => Leaf _
+ | Leaf _ => Leaf _
| Node l x d r h =>
match f x d with
| Some d' => join (map_option f l) x d' (map_option f r)
@@ -370,7 +370,7 @@ Fixpoint map_option (elt elt' : Type)(f : key -> elt -> option elt')(m : t elt)
(** * Optimized map2
Suggestion by B. Gregoire: a [map2] function with specialized
- arguments allowing to bypass some tree traversal. Instead of one
+ arguments that allows bypassing some tree traversal. Instead of one
[f0] of type [key -> option elt -> option elt' -> option elt''],
we ask here for:
- [f] which is a specialisation of [f0] when first option isn't [None]
@@ -389,8 +389,8 @@ Variable mapr : t elt' -> t elt''.
Fixpoint map2_opt m1 m2 :=
match m1, m2 with
- | Leaf, _ => mapr m2
- | _, Leaf => mapl m1
+ | Leaf _, _ => mapr m2
+ | _, Leaf _ => mapl m1
| Node l1 x1 d1 r1 h1, _ =>
let (l2',o2,r2') := split x1 m2 in
match f x1 d1 o2 with
@@ -534,7 +534,7 @@ Ltac order := match goal with
| _ => MX.order
end.
-Ltac intuition_in := repeat progress (intuition; inv In; inv MapsTo).
+Ltac intuition_in := repeat (intuition; inv In; inv MapsTo).
(* Function/Functional Scheme can't deal with internal fix.
Let's do its job by hand: *)
@@ -1247,11 +1247,11 @@ Proof.
intros m1 m2; functional induction (concat m1 m2); intros; auto;
try factornode _x _x0 _x1 _x2 _x3 as m1.
apply join_bst; auto.
- change (bst (m2',xd)#1); rewrite <-e1; eauto.
+ change (bst (m2',xd)#1). rewrite <-e1; eauto.
intros y Hy.
apply H1; auto.
rewrite remove_min_in, e1; simpl; auto.
- change (gt_tree (m2',xd)#2#1 (m2',xd)#1); rewrite <-e1; eauto.
+ change (gt_tree (m2',xd)#2#1 (m2',xd)#1). rewrite <-e1; eauto.
Qed.
Hint Resolve concat_bst.
@@ -1270,10 +1270,10 @@ Proof.
inv bst.
rewrite H2, join_find; auto; clear H2.
- simpl; destruct X.compare; simpl; auto.
+ simpl; destruct X.compare as [Hlt| |Hlt]; simpl; auto.
destruct (find y m2'); auto.
symmetry; rewrite not_find_iff; auto; intro.
- apply (MX.lt_not_gt l); apply H1; auto; rewrite H3; auto.
+ apply (MX.lt_not_gt Hlt); apply H1; auto; rewrite H3; auto.
intros z Hz; apply H1; auto; rewrite H3; auto.
Qed.
@@ -1367,7 +1367,7 @@ Proof.
induction s; simpl; intros; auto.
rewrite IHs1, IHs2.
unfold elements; simpl.
- rewrite 2 IHs1, IHs2, <- !app_nil_end, !app_ass; auto.
+ rewrite 2 IHs1, IHs2, !app_nil_r, !app_ass; auto.
Qed.
Lemma elements_node :
@@ -1376,7 +1376,7 @@ Lemma elements_node :
elements (Node t1 x e t2 z) ++ l.
Proof.
unfold elements; simpl; intros.
- rewrite !elements_app, <- !app_nil_end, !app_ass; auto.
+ rewrite !elements_app, !app_nil_r, !app_ass; auto.
Qed.
(** * Fold *)
@@ -1424,7 +1424,7 @@ Qed.
i.e. the list of elements actually compared *)
Fixpoint flatten_e (e : enumeration elt) : list (key*elt) := match e with
- | End => nil
+ | End _ => nil
| More x e t r => (x,e) :: elements t ++ flatten_e r
end.
@@ -1433,14 +1433,14 @@ Lemma flatten_e_elements :
elements l ++ flatten_e (More x d r e) =
elements (Node l x d r z) ++ flatten_e e.
Proof.
- intros; simpl; apply elements_node.
+ intros; apply elements_node.
Qed.
Lemma cons_1 : forall (s:t elt) e,
flatten_e (cons s e) = elements s ++ flatten_e e.
Proof.
- induction s; simpl; auto; intros.
- rewrite IHs1; apply flatten_e_elements; auto.
+ induction s; auto; intros.
+ simpl flatten_e; rewrite IHs1; apply flatten_e_elements; auto.
Qed.
(** Proof of correction for the comparison *)
@@ -1478,7 +1478,7 @@ Lemma equal_cont_IfEq : forall m1 cont e2 l,
(forall e, IfEq (cont e) l (flatten_e e)) ->
IfEq (equal_cont cmp m1 cont e2) (elements m1 ++ l) (flatten_e e2).
Proof.
- induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; simpl; intros; auto.
+ induction m1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- elements_node; simpl.
apply Hl1; auto.
clear e2; intros [|x2 d2 r2 e2].
@@ -1491,9 +1491,9 @@ Lemma equal_IfEq : forall (m1 m2:t elt),
IfEq (equal cmp m1 m2) (elements m1) (elements m2).
Proof.
intros; unfold equal.
- rewrite (app_nil_end (elements m1)).
+ rewrite <- (app_nil_r (elements m1)).
replace (elements m2) with (flatten_e (cons m2 (End _)))
- by (rewrite cons_1; simpl; rewrite <-app_nil_end; auto).
+ by (rewrite cons_1; simpl; rewrite app_nil_r; auto).
apply equal_cont_IfEq.
intros.
apply equal_end_IfEq; auto.
@@ -1622,8 +1622,8 @@ Lemma map_option_find : forall (m:t elt)(x:key),
Proof.
intros m; functional induction (map_option f m); simpl; auto; intros;
inv bst; rewrite join_find || rewrite concat_find; auto; simpl;
- try destruct X.compare; simpl; auto.
-rewrite (f_compat d e); auto.
+ try destruct X.compare as [Hlt|Heq|Hlt]; simpl; auto.
+rewrite (f_compat d Heq); auto.
intros y H;
destruct (map_option_2 H) as (? & ? & ?); eauto using MapsTo_In.
intros y H;
@@ -1631,7 +1631,7 @@ intros y H;
rewrite <- IHt, IHt0; auto; nonify (find x0 r); auto.
rewrite IHt, IHt0; auto; nonify (find x0 r); nonify (find x0 l); auto.
-rewrite (f_compat d e); auto.
+rewrite (f_compat d Heq); auto.
rewrite <- IHt0, IHt; auto; nonify (find x0 l); auto.
destruct (find x0 (map_option f r)); auto.
@@ -1930,7 +1930,7 @@ Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X.
Lemma Equivb_Equivb : forall cmp m m',
Equivb cmp m m' <-> Raw.Proofs.Equivb cmp m m'.
Proof.
- intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In; intuition.
+ intros; unfold Equivb, Equiv, Raw.Proofs.Equivb, In. intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite In_alt; intuition.
generalize (H0 k); do 2 rewrite <- In_alt; intuition.
@@ -2016,7 +2016,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Definition compare_more x1 d1 (cont:R.enumeration D.t -> comparison) e2 :=
match e2 with
- | R.End => Gt
+ | R.End _ => Gt
| R.More x2 d2 r2 e2 =>
match X.compare x1 x2 with
| EQ _ => match D.compare d1 d2 with
@@ -2033,7 +2033,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Fixpoint compare_cont s1 (cont:R.enumeration D.t -> comparison) e2 :=
match s1 with
- | R.Leaf => cont e2
+ | R.Leaf _ => cont e2
| R.Node l1 x1 d1 r1 _ =>
compare_cont l1 (compare_more x1 d1 (compare_cont r1 cont)) e2
end.
@@ -2041,7 +2041,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
(** Initial continuation *)
Definition compare_end (e2:R.enumeration D.t) :=
- match e2 with R.End => Eq | _ => Lt end.
+ match e2 with R.End _ => Eq | _ => Lt end.
(** The complete comparison *)
@@ -2084,7 +2084,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
(forall e, Cmp (cont e) l (P.flatten_e e)) ->
Cmp (compare_cont s1 cont e2) (R.elements s1 ++ l) (P.flatten_e e2).
Proof.
- induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; simpl; intros; auto.
+ induction s1 as [|l1 Hl1 x1 d1 r1 Hr1 h1]; intros; auto.
rewrite <- P.elements_node; simpl.
apply Hl1; auto. clear e2. intros [|x2 d2 r2 e2].
simpl; auto.
@@ -2096,9 +2096,9 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Cmp (compare_pure s1 s2) (R.elements s1) (R.elements s2).
Proof.
intros; unfold compare_pure.
- rewrite (app_nil_end (R.elements s1)).
+ rewrite <- (app_nil_r (R.elements s1)).
replace (R.elements s2) with (P.flatten_e (R.cons s2 (R.End _))) by
- (rewrite P.cons_1; simpl; rewrite <- app_nil_end; auto).
+ (rewrite P.cons_1; simpl; rewrite app_nil_r; auto).
auto using compare_cont_Cmp, compare_end_Cmp.
Qed.
diff --git a/theories/FSets/FMapFacts.v b/theories/FSets/FMapFacts.v
index 0c1448c9..8c6f4b64 100644
--- a/theories/FSets/FMapFacts.v
+++ b/theories/FSets/FMapFacts.v
@@ -437,12 +437,6 @@ intros; do 2 rewrite mem_find_b; rewrite remove_o; unfold eqb.
destruct (eq_dec x y); auto.
Qed.
-Definition option_map (A B:Type)(f:A->B)(o:option A) : option B :=
- match o with
- | Some a => Some (f a)
- | None => None
- end.
-
Lemma map_o : forall m x (f:elt->elt'),
find x (map f m) = option_map f (find x m).
Proof.
@@ -519,7 +513,7 @@ Proof.
intros. rewrite eq_option_alt. intro e.
rewrite <- find_mapsto_iff, elements_mapsto_iff.
unfold eqb.
-rewrite <- findA_NoDupA; intuition; try apply elements_3w; eauto.
+rewrite <- findA_NoDupA; dintuition; try apply elements_3w; eauto.
Qed.
Lemma elements_b : forall m x,
@@ -678,9 +672,9 @@ Qed.
Add Parametric Morphism elt : (@Empty elt)
with signature Equal ==> iff as Empty_m.
Proof.
-unfold Empty; intros m m' Hm; intuition.
-rewrite <-Hm in H0; eauto.
-rewrite Hm in H0; eauto.
+unfold Empty; intros m m' Hm. split; intros; intro.
+rewrite <-Hm in H0; eapply H, H0.
+rewrite Hm in H0; eapply H, H0.
Qed.
Add Parametric Morphism elt : (@is_empty elt)
@@ -708,18 +702,18 @@ Add Parametric Morphism elt : (@add elt)
with signature E.eq ==> eq ==> Equal ==> Equal as add_m.
Proof.
intros k k' Hk e m m' Hm y.
-rewrite add_o, add_o; do 2 destruct eq_dec; auto.
-elim n; rewrite <-Hk; auto.
-elim n; rewrite Hk; auto.
+rewrite add_o, add_o; do 2 destruct eq_dec as [|?Hnot]; auto.
+elim Hnot; rewrite <-Hk; auto.
+elim Hnot; rewrite Hk; auto.
Qed.
Add Parametric Morphism elt : (@remove elt)
with signature E.eq ==> Equal ==> Equal as remove_m.
Proof.
intros k k' Hk m m' Hm y.
-rewrite remove_o, remove_o; do 2 destruct eq_dec; auto.
-elim n; rewrite <-Hk; auto.
-elim n; rewrite Hk; auto.
+rewrite remove_o, remove_o; do 2 destruct eq_dec as [|?Hnot]; auto.
+elim Hnot; rewrite <-Hk; auto.
+elim Hnot; rewrite Hk; auto.
Qed.
Add Parametric Morphism elt elt' : (@map elt elt')
@@ -835,8 +829,8 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
Definition uncurry {U V W : Type} (f : U -> V -> W) : U*V -> W :=
fun p => f (fst p) (snd p).
- Definition of_list (l : list (key*elt)) :=
- List.fold_right (uncurry (@add _)) (empty _) l.
+ Definition of_list :=
+ List.fold_right (uncurry (@add _)) (empty elt).
Definition to_list := elements.
@@ -867,7 +861,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
inversion_clear Hnodup as [| ? ? Hnotin Hnodup'].
specialize (IH k Hnodup'); clear Hnodup'.
rewrite add_o, IH.
- unfold eqb; do 2 destruct eq_dec; auto; elim n; eauto.
+ unfold eqb; do 2 destruct eq_dec as [|?Hnot]; auto; elim Hnot; eauto.
Qed.
Lemma of_list_2 : forall l, NoDupA eqk l ->
@@ -934,7 +928,7 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
apply InA_eqke_eqk with k e'; auto.
rewrite <- of_list_1; auto.
intro k'. rewrite Hsame, add_o, of_list_1b. simpl.
- unfold eqb. do 2 destruct eq_dec; auto; elim n; eauto.
+ unfold eqb. do 2 destruct eq_dec as [|?Hnot]; auto; elim Hnot; eauto.
inversion_clear Hdup; auto.
apply IHl.
intros; eapply Hstep'; eauto.
@@ -1124,6 +1118,27 @@ Module WProperties_fun (E:DecidableType)(M:WSfun E).
auto with *.
Qed.
+ Lemma fold_Equal2 : forall m1 m2 i j, Equal m1 m2 -> eqA i j ->
+ eqA (fold f m1 i) (fold f m2 j).
+ Proof.
+ intros.
+ rewrite 2 fold_spec_right.
+ assert (NoDupA eqk (rev (elements m1))) by (auto with * ).
+ assert (NoDupA eqk (rev (elements m2))) by (auto with * ).
+ apply fold_right_equivlistA_restr2 with (R:=complement eqk)(eqA:=eqke)
+ ; auto with *.
+ - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *; apply Comp; auto.
+ - unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto.
+ - intros (k,e) (k',e') z z' h h'; unfold eq_key, uncurry;simpl; auto.
+ rewrite h'.
+ auto.
+ - rewrite <- NoDupA_altdef; auto.
+ - intros (k,e).
+ rewrite 2 InA_rev, <- 2 elements_mapsto_iff, 2 find_mapsto_iff, H;
+ auto with *.
+ Qed.
+
+
Lemma fold_Add : forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 ->
eqA (fold f m2 i) (f k e (fold f m1 i)).
Proof.
@@ -1871,14 +1886,9 @@ Module OrdProperties (M:S).
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff by (auto with *).
unfold O.eqke, O.ltk; simpl.
- destruct (E.compare t0 x); intuition.
- right; split; auto; ME.order.
- ME.order.
- elim H.
- exists e0; apply MapsTo_1 with t0; auto.
- right; right; split; auto; ME.order.
- ME.order.
- right; split; auto; ME.order.
+ destruct (E.compare t0 x); intuition; try fold (~E.eq x t0); auto.
+ - elim H; exists e0; apply MapsTo_1 with t0; auto.
+ - fold (~E.lt t0 x); auto.
Qed.
Lemma elements_Add_Above : forall m m' x e,
@@ -1901,7 +1911,7 @@ Module OrdProperties (M:S).
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff by (auto with *).
unfold O.eqke; simpl. intuition.
- destruct (E.eq_dec x t0); auto.
+ destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
exfalso.
assert (In t0 m).
exists e0; auto.
@@ -1930,7 +1940,7 @@ Module OrdProperties (M:S).
find_mapsto_iff, (H0 t0), <- find_mapsto_iff,
add_mapsto_iff by (auto with *).
unfold O.eqke; simpl. intuition.
- destruct (E.eq_dec x t0); auto.
+ destruct (E.eq_dec x t0) as [Heq|Hneq]; auto.
exfalso.
assert (In t0 m).
exists e0; auto.
@@ -1986,7 +1996,7 @@ Module OrdProperties (M:S).
inversion_clear H1; [ | inversion_clear H2; eauto ].
red in H3; simpl in H3; destruct H3.
destruct p as (p1,p2).
- destruct (E.eq_dec p1 x).
+ destruct (E.eq_dec p1 x) as [Heq|Hneq].
apply ME.lt_eq with p1; auto.
inversion_clear H2.
inversion_clear H5.
diff --git a/theories/FSets/FMapFullAVL.v b/theories/FSets/FMapFullAVL.v
index e1c60351..a7be3232 100644
--- a/theories/FSets/FMapFullAVL.v
+++ b/theories/FSets/FMapFullAVL.v
@@ -660,7 +660,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Fixpoint cardinal_e (e:Raw.enumeration D.t) :=
match e with
- | Raw.End => 0%nat
+ | Raw.End _ => 0%nat
| Raw.More _ _ r e => S (Raw.cardinal r + cardinal_e e)
end.
@@ -674,12 +674,14 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
Definition cardinal_e_2 ee :=
(cardinal_e (fst ee) + cardinal_e (snd ee))%nat.
+ Local Unset Keyed Unification.
+
Function compare_aux (ee:Raw.enumeration D.t * Raw.enumeration D.t)
{ measure cardinal_e_2 ee } : comparison :=
match ee with
- | (Raw.End, Raw.End) => Eq
- | (Raw.End, Raw.More _ _ _ _) => Lt
- | (Raw.More _ _ _ _, Raw.End) => Gt
+ | (Raw.End _, Raw.End _) => Eq
+ | (Raw.End _, Raw.More _ _ _ _) => Lt
+ | (Raw.More _ _ _ _, Raw.End _) => Gt
| (Raw.More x1 d1 r1 e1, Raw.More x2 d2 r2 e2) =>
match X.compare x1 x2 with
| EQ _ => match D.compare d1 d2 with
@@ -726,7 +728,7 @@ Module IntMake_ord (I:Int)(X: OrderedType)(D : OrderedType) <:
intros.
assert (H1:=cons_1 m1 (Raw.End _)).
assert (H2:=cons_1 m2 (Raw.End _)).
- simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2.
+ simpl in *; rewrite app_nil_r in *; rewrite <-H1,<-H2.
apply (@compare_aux_Cmp (Raw.cons m1 (Raw.End _),
Raw.cons m2 (Raw.End _))).
Qed.
diff --git a/theories/FSets/FMapList.v b/theories/FSets/FMapList.v
index f15ab222..13cb559b 100644
--- a/theories/FSets/FMapList.v
+++ b/theories/FSets/FMapList.v
@@ -403,7 +403,7 @@ Proof.
apply H1 with k; destruct (X.eq_dec x k); auto.
- destruct (X.compare x x'); try contradiction; clear y.
+ destruct (X.compare x x') as [Hlt|Heq|Hlt]; try contradiction; clear y.
destruct (H0 x).
assert (In x ((x',e')::l')).
apply H; auto.
@@ -527,7 +527,7 @@ Fixpoint mapi (f: key -> elt -> elt') (m:t elt) : t elt' :=
| nil => nil
| (k,e)::m' => (k,f k e) :: mapi f m'
end.
-
+
End Elt.
Section Elt2.
(* A new section is necessary for previous definitions to work
@@ -543,14 +543,13 @@ Proof.
intros m x e f.
(* functional induction map elt elt' f m. *) (* Marche pas ??? *)
induction m.
- inversion 1.
+ inversion 1.
destruct a as (x',e').
simpl.
- inversion_clear 1.
+ inversion_clear 1.
constructor 1.
unfold eqke in *; simpl in *; intuition congruence.
- constructor 2.
unfold MapsTo in *; auto.
Qed.
@@ -799,7 +798,7 @@ Proof.
intros.
simpl.
destruct a as (k,e); destruct a0 as (k',e').
- destruct (X.compare k k').
+ destruct (X.compare k k') as [Hlt|Heq|Hlt].
inversion_clear Hm.
constructor; auto.
assert (lelistA (ltk (elt:=elt')) (k, e') ((k',e')::m')) by auto.
@@ -868,8 +867,8 @@ Proof.
induction m'.
(* m' = nil *)
intros; destruct a; simpl.
- destruct (X.compare x t0); simpl; auto.
- inversion_clear Hm; clear H0 l Hm' IHm t0.
+ destruct (X.compare x t0) as [Hlt| |Hlt]; simpl; auto.
+ inversion_clear Hm; clear H0 Hlt Hm' IHm t0.
induction m; simpl; auto.
inversion_clear H.
destruct a.
@@ -923,7 +922,7 @@ Proof.
destruct o; destruct o'; simpl in *; try discriminate; auto.
destruct a as (k,(oo,oo')); simpl in *.
inversion_clear H2.
- destruct (X.compare x k); simpl in *.
+ destruct (X.compare x k) as [Hlt|Heq|Hlt]; simpl in *.
(* x < k *)
destruct (f' (oo,oo')); simpl.
elim_comp.
@@ -959,7 +958,7 @@ Proof.
destruct a as (k,(oo,oo')).
simpl.
inversion_clear H2.
- destruct (X.compare x k).
+ destruct (X.compare x k) as [Hlt|Heq|Hlt].
(* x < k *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
@@ -1208,7 +1207,7 @@ Proof.
destruct a as (x,e).
destruct p as (x',e').
unfold equal; simpl.
- destruct (X.compare x x'); simpl; intuition.
+ destruct (X.compare x x') as [Hlt|Heq|Hlt]; simpl; intuition.
unfold cmp at 1.
MD.elim_comp; clear H; simpl.
inversion_clear Hl.
@@ -1245,21 +1244,21 @@ Lemma eq_refl : forall m : t, eq m m.
Proof.
intros (m,Hm); induction m; unfold eq; simpl; auto.
destruct a.
- destruct (X.compare t0 t0); auto.
- apply (MapS.Raw.MX.lt_antirefl l); auto.
+ destruct (X.compare t0 t0) as [Hlt|Heq|Hlt]; auto.
+ apply (MapS.Raw.MX.lt_antirefl Hlt); auto.
split.
apply D.eq_refl.
inversion_clear Hm.
apply (IHm H).
- apply (MapS.Raw.MX.lt_antirefl l); auto.
+ apply (MapS.Raw.MX.lt_antirefl Hlt); auto.
Qed.
-Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
+Lemma eq_sym : forall m1 m2 : t, eq m1 m2 -> eq m2 m1.
Proof.
intros (m,Hm); induction m;
intros (m', Hm'); destruct m'; unfold eq; simpl;
try destruct a as (x,e); try destruct p as (x',e'); auto.
- destruct (X.compare x x'); MapS.Raw.MX.elim_comp; intuition.
+ destruct (X.compare x x') as [Hlt|Heq|Hlt]; MapS.Raw.MX.elim_comp; intuition.
inversion_clear Hm; inversion_clear Hm'.
apply (IHm H0 (Build_slist H4)); auto.
Qed.
@@ -1272,8 +1271,8 @@ Proof.
try destruct a as (x,e);
try destruct p as (x',e');
try destruct p0 as (x'',e''); try contradiction; auto.
- destruct (X.compare x x');
- destruct (X.compare x' x'');
+ destruct (X.compare x x') as [Hlt|Heq|Hlt];
+ destruct (X.compare x' x'') as [Hlt'|Heq'|Hlt'];
MapS.Raw.MX.elim_comp; intuition.
apply D.eq_trans with e'; auto.
inversion_clear Hm1; inversion_clear Hm2; inversion_clear Hm3.
@@ -1288,8 +1287,8 @@ Proof.
try destruct a as (x,e);
try destruct p as (x',e');
try destruct p0 as (x'',e''); try contradiction; auto.
- destruct (X.compare x x');
- destruct (X.compare x' x'');
+ destruct (X.compare x x') as [Hlt|Heq|Hlt];
+ destruct (X.compare x' x'') as [Hlt'|Heq'|Hlt'];
MapS.Raw.MX.elim_comp; intuition.
left; apply D.lt_trans with e'; auto.
left; apply lt_eq with e'; auto.
@@ -1307,7 +1306,7 @@ Proof.
intros (m2, Hm2); destruct m2; unfold eq, lt; simpl;
try destruct a as (x,e);
try destruct p as (x',e'); try contradiction; auto.
- destruct (X.compare x x'); auto.
+ destruct (X.compare x x') as [Hlt|Heq|Hlt]; auto.
intuition.
exact (D.lt_not_eq H0 H1).
inversion_clear Hm1; inversion_clear Hm2.
diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v
index c59f7c22..3eac15b0 100644
--- a/theories/FSets/FMapPositive.v
+++ b/theories/FSets/FMapPositive.v
@@ -8,13 +8,11 @@
(** * FMapPositive : an implementation of FMapInterface for [positive] keys. *)
-Require Import Bool ZArith OrderedType OrderedTypeEx FMapInterface.
+Require Import Bool OrderedType ZArith OrderedType OrderedTypeEx FMapInterface.
Set Implicit Arguments.
Local Open Scope positive_scope.
-
Local Unset Elimination Schemes.
-Local Unset Case Analysis Schemes.
(** This file is an adaptation to the [FMap] framework of a work by
Xavier Leroy and Sandrine Blazy (used for building certified compilers).
@@ -71,7 +69,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
Module ME:=KeyOrderedType E.
- Definition key := positive.
+ Definition key := positive : Type.
Inductive tree (A : Type) :=
| Leaf : tree A
@@ -84,7 +82,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section A.
Variable A:Type.
- Arguments Leaf [A].
+ Arguments Leaf {A}.
Definition empty : t A := Leaf.
@@ -95,7 +93,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| _ => false
end.
- Fixpoint find (i : positive) (m : t A) : option A :=
+ Fixpoint find (i : key) (m : t A) : option A :=
match m with
| Leaf => None
| Node l o r =>
@@ -106,7 +104,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint mem (i : positive) (m : t A) : bool :=
+ Fixpoint mem (i : key) (m : t A) : bool :=
match m with
| Leaf => false
| Node l o r =>
@@ -117,7 +115,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint add (i : positive) (v : A) (m : t A) : t A :=
+ Fixpoint add (i : key) (v : A) (m : t A) : t A :=
match m with
| Leaf =>
match i with
@@ -133,7 +131,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint remove (i : positive) (m : t A) : t A :=
+ Fixpoint remove (i : key) (m : t A) : t A :=
match i with
| xH =>
match m with
@@ -165,7 +163,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
(** [elements] *)
- Fixpoint xelements (m : t A) (i : positive) : list (positive * A) :=
+ Fixpoint xelements (m : t A) (i : key) : list (key * A) :=
match m with
| Leaf => nil
| Node l None r =>
@@ -192,33 +190,33 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section CompcertSpec.
Theorem gempty:
- forall (i: positive), find i empty = None.
+ forall (i: key), find i empty = None.
Proof.
destruct i; simpl; auto.
Qed.
Theorem gss:
- forall (i: positive) (x: A) (m: t A), find i (add i x m) = Some x.
+ forall (i: key) (x: A) (m: t A), find i (add i x m) = Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
- Lemma gleaf : forall (i : positive), find i (Leaf : t A) = None.
+ Lemma gleaf : forall (i : key), find i (Leaf : t A) = None.
Proof. exact gempty. Qed.
Theorem gso:
- forall (i j: positive) (x: A) (m: t A),
+ forall (i j: key) (x: A) (m: t A),
i <> j -> find i (add j x m) = find i m.
Proof.
induction i; intros; destruct j; destruct m; simpl;
try rewrite <- (gleaf i); auto; try apply IHi; congruence.
Qed.
- Lemma rleaf : forall (i : positive), remove i (Leaf : t A) = Leaf.
+ Lemma rleaf : forall (i : key), remove i Leaf = Leaf.
Proof. destruct i; simpl; auto. Qed.
Theorem grs:
- forall (i: positive) (m: t A), find i (remove i m) = None.
+ forall (i: key) (m: t A), find i (remove i m) = None.
Proof.
induction i; destruct m.
simpl; auto.
@@ -238,7 +236,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem gro:
- forall (i j: positive) (m: t A),
+ forall (i j: key) (m: t A),
i <> j -> find i (remove j m) = find i m.
Proof.
induction i; intros; destruct j; destruct m;
@@ -267,11 +265,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_correct:
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
find i m = Some v -> List.In (append j i, v) (xelements m j).
Proof.
induction m; intros.
- rewrite (gleaf i) in H; congruence.
+ rewrite (gleaf i) in H; discriminate.
destruct o; destruct i; simpl; simpl in H.
rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
apply IHm2; auto.
@@ -284,14 +282,14 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem elements_correct:
- forall (m: t A) (i: positive) (v: A),
+ forall (m: t A) (i: key) (v: A),
find i m = Some v -> List.In (i, v) (elements m).
Proof.
intros m i v H.
exact (xelements_correct m i xH H).
Qed.
- Fixpoint xfind (i j : positive) (m : t A) : option A :=
+ Fixpoint xfind (i j : key) (m : t A) : option A :=
match i, j with
| _, xH => find i m
| xO ii, xO jj => xfind ii jj m
@@ -300,7 +298,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end.
Lemma xfind_left :
- forall (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
+ forall (j i : key) (m1 m2 : t A) (o : option A) (v : A),
xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
@@ -308,7 +306,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ii :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
List.In (xI i, v) (xelements m (xI j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
@@ -324,7 +322,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_io :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
~List.In (xI i, v) (xelements m (xO j)).
Proof.
induction m.
@@ -339,7 +337,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oo :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
List.In (xO i, v) (xelements m (xO j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
@@ -355,7 +353,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oi :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
~List.In (xO i, v) (xelements m (xI j)).
Proof.
induction m.
@@ -370,7 +368,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ih :
- forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
+ forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xI i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m2 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -383,7 +381,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oh :
- forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
+ forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xO i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m1 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -396,7 +394,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_hi :
- forall (m: t A) (i : positive) (v: A),
+ forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xI i)).
Proof.
induction m; intros.
@@ -411,7 +409,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ho :
- forall (m: t A) (i : positive) (v: A),
+ forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xO i)).
Proof.
induction m; intros.
@@ -426,13 +424,13 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma find_xfind_h :
- forall (m: t A) (i: positive), find i m = xfind i xH m.
+ forall (m: t A) (i: key), find i m = xfind i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
- forall (i j : positive) (m: t A) (v: A),
+ forall (i j : key) (m: t A) (v: A),
List.In (i, v) (xelements m j) -> xfind i j m = Some v.
Proof.
induction i; simpl; intros; destruct j; simpl.
@@ -460,7 +458,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem elements_complete:
- forall (m: t A) (i: positive) (v: A),
+ forall (m: t A) (i: key) (v: A),
List.In (i, v) (elements m) -> find i m = Some v.
Proof.
intros m i v H.
@@ -481,22 +479,22 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End CompcertSpec.
- Definition MapsTo (i:positive)(v:A)(m:t A) := find i m = Some v.
+ Definition MapsTo (i:key)(v:A)(m:t A) := find i m = Some v.
- Definition In (i:positive)(m:t A) := exists e:A, MapsTo i e m.
+ Definition In (i:key)(m:t A) := exists e:A, MapsTo i e m.
- Definition Empty m := forall (a : positive)(e:A) , ~ MapsTo a e m.
+ Definition Empty m := forall (a : key)(e:A) , ~ MapsTo a e m.
- Definition eq_key (p p':positive*A) := E.eq (fst p) (fst p').
+ Definition eq_key (p p':key*A) := E.eq (fst p) (fst p').
- Definition eq_key_elt (p p':positive*A) :=
+ Definition eq_key_elt (p p':key*A) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
- Definition lt_key (p p':positive*A) := E.lt (fst p) (fst p').
+ Definition lt_key (p p':key*A) := E.lt (fst p) (fst p').
- Global Program Instance eqk_equiv : Equivalence eq_key.
- Global Program Instance eqke_equiv : Equivalence eq_key_elt.
- Global Program Instance ltk_strorder : StrictOrder lt_key.
+ Global Instance eqk_equiv : Equivalence eq_key := _.
+ Global Instance eqke_equiv : Equivalence eq_key_elt := _.
+ Global Instance ltk_strorder : StrictOrder lt_key := _.
Lemma mem_find :
forall m x, mem x m = match find x m with None => false | _ => true end.
@@ -717,8 +715,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Lemma elements_3w : NoDupA eq_key (elements m).
Proof.
- change eq_key with (@ME.eqk A).
- apply ME.Sort_NoDupA; apply elements_3; auto.
+ apply ME.Sort_NoDupA.
+ apply elements_3.
Qed.
End FMapSpec.
@@ -729,9 +727,9 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section Mapi.
- Variable f : positive -> A -> B.
+ Variable f : key -> A -> B.
- Fixpoint xmapi (m : t A) (i : positive) : t B :=
+ Fixpoint xmapi (m : t A) (i : key) : t B :=
match m with
| Leaf => @Leaf B
| Node l o r => Node (xmapi l (append i (xO xH)))
@@ -748,7 +746,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End A.
Lemma xgmapi:
- forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
+ forall (A B: Type) (f: key -> A -> B) (i j : key) (m: t A),
find i (xmapi f m j) = option_map (f (append j i)) (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -758,7 +756,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem gmapi:
- forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
+ forall (A B: Type) (f: key -> A -> B) (i: key) (m: t A),
find i (mapi f m) = option_map (f i) (find i m).
Proof.
intros.
@@ -814,7 +812,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Variable A B C : Type.
Variable f : option A -> option B -> option C.
- Arguments Leaf [A].
+ Arguments Leaf {A}.
Fixpoint xmap2_l (m : t A) : t C :=
match m with
@@ -822,7 +820,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r)
end.
- Lemma xgmap2_l : forall (i : positive) (m : t A),
+ Lemma xgmap2_l : forall (i : key) (m : t A),
f None None = None -> find i (xmap2_l m) = f (find i m) None.
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -834,7 +832,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r)
end.
- Lemma xgmap2_r : forall (i : positive) (m : t B),
+ Lemma xgmap2_r : forall (i : key) (m : t B),
f None None = None -> find i (xmap2_r m) = f None (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -850,7 +848,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Lemma gmap2: forall (i: positive)(m1:t A)(m2: t B),
+ Lemma gmap2: forall (i: key)(m1:t A)(m2: t B),
f None None = None ->
find i (_map2 m1 m2) = f (find i m1) (find i m2).
Proof.
@@ -898,11 +896,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section Fold.
Variables A B : Type.
- Variable f : positive -> A -> B -> B.
+ Variable f : key -> A -> B -> B.
- Fixpoint xfoldi (m : t A) (v : B) (i : positive) :=
+ Fixpoint xfoldi (m : t A) (v : B) (i : key) :=
match m with
- | Leaf => v
+ | Leaf _ => v
| Node l (Some x) r =>
xfoldi r (f i x (xfoldi l v (append i 2))) (append i 3)
| Node l None r =>
@@ -940,8 +938,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool :=
match m1, m2 with
- | Leaf, _ => is_empty m2
- | _, Leaf => is_empty m1
+ | Leaf _, _ => is_empty m2
+ | _, Leaf _ => is_empty m1
| Node l1 o1 r1, Node l2 o2 r2 =>
(match o1, o2 with
| None, None => true
@@ -1072,16 +1070,16 @@ Module PositiveMapAdditionalFacts.
(* Derivable from the Map interface *)
Theorem gsspec:
- forall (A:Type)(i j: positive) (x: A) (m: t A),
+ forall (A:Type)(i j: key) (x: A) (m: t A),
find i (add j x m) = if E.eq_dec i j then Some x else find i m.
Proof.
intros.
- destruct (E.eq_dec i j); [ rewrite e; apply gss | apply gso; auto ].
+ destruct (E.eq_dec i j) as [ ->|]; [ apply gss | apply gso; auto ].
Qed.
(* Not derivable from the Map interface *)
Theorem gsident:
- forall (A:Type)(i: positive) (m: t A) (v: A),
+ forall (A:Type)(i: key) (m: t A) (v: A),
find i m = Some v -> add i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
@@ -1120,4 +1118,3 @@ Module PositiveMapAdditionalFacts.
Qed.
End PositiveMapAdditionalFacts.
-
diff --git a/theories/FSets/FMapWeakList.v b/theories/FSets/FMapWeakList.v
index 6c1e8ca8..0f11dd7a 100644
--- a/theories/FSets/FMapWeakList.v
+++ b/theories/FSets/FMapWeakList.v
@@ -146,9 +146,10 @@ Proof.
induction m; simpl; auto; destruct a; intros.
inversion_clear Hm.
rewrite (IHm H1 x x'); auto.
- destruct (X.eq_dec x t0); destruct (X.eq_dec x' t0); trivial.
- elim n; apply X.eq_trans with x; auto.
- elim n; apply X.eq_trans with x'; auto.
+ destruct (X.eq_dec x t0) as [|Hneq]; destruct (X.eq_dec x' t0) as [|?Hneq'];
+ trivial.
+ elim Hneq'; apply X.eq_trans with x; auto.
+ elim Hneq; apply X.eq_trans with x'; auto.
Qed.
(** * [add] *)
@@ -600,18 +601,18 @@ Definition combine_l (m:t elt)(m':t elt') : t oee' :=
Definition combine_r (m:t elt)(m':t elt') : t oee' :=
mapi (fun k e' => (find k m, Some e')) m'.
-Definition fold_right_pair (A B C:Type)(f:A->B->C->C)(l:list (A*B))(i:C) :=
- List.fold_right (fun p => f (fst p) (snd p)) i l.
+Definition fold_right_pair (A B C:Type)(f:A->B->C->C) :=
+ List.fold_right (fun p => f (fst p) (snd p)).
Definition combine (m:t elt)(m':t elt') : t oee' :=
let l := combine_l m m' in
let r := combine_r m m' in
- fold_right_pair (add (elt:=oee')) l r.
+ fold_right_pair (add (elt:=oee')) r l.
Lemma fold_right_pair_NoDup :
forall l r (Hl: NoDupA (eqk (elt:=oee')) l)
(Hl: NoDupA (eqk (elt:=oee')) r),
- NoDupA (eqk (elt:=oee')) (fold_right_pair (add (elt:=oee')) l r).
+ NoDupA (eqk (elt:=oee')) (fold_right_pair (add (elt:=oee')) r l).
Proof.
induction l; simpl; auto.
destruct a; simpl; auto.
@@ -733,7 +734,7 @@ Definition option_cons (A:Type)(k:key)(o:option A)(l:list (key*A)) :=
Definition map2 m m' :=
let m0 : t oee' := combine m m' in
let m1 : t (option elt'') := map (fun p => f (fst p) (snd p)) m0 in
- fold_right_pair (option_cons (A:=elt'')) m1 nil.
+ fold_right_pair (option_cons (A:=elt'')) nil m1.
Lemma map2_NoDup :
forall m (Hm:NoDupA (@eqk elt) m) m' (Hm':NoDupA (@eqk elt') m'),
@@ -787,14 +788,14 @@ Proof.
destruct o; destruct o'; simpl in *; try discriminate; auto.
destruct a as (k,(oo,oo')); simpl in *.
inversion_clear H2.
- destruct (X.eq_dec x k); simpl in *.
+ destruct (X.eq_dec x k) as [|Hneq]; simpl in *.
(* x = k *)
assert (at_least_one_then_f o o' = f oo oo').
destruct o; destruct o'; simpl in *; inversion_clear H; auto.
rewrite H2.
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); try contradict n; auto.
+ destruct (X.eq_dec x k) as [|Hneq]; try contradict Hneq; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
case_eq (find x m0); intros; auto.
elim H0.
@@ -804,7 +805,7 @@ Proof.
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); [ contradict n; auto | auto].
+ destruct (X.eq_dec x k); [ contradict Hneq; auto | auto].
destruct (IHm0 H1) as (H3,_); apply H3; auto.
destruct (IHm0 H1) as (H3,_); apply H3; auto.
@@ -812,13 +813,13 @@ Proof.
destruct a as (k,(oo,oo')).
simpl.
inversion_clear H2.
- destruct (X.eq_dec x k).
+ destruct (X.eq_dec x k) as [|Hneq].
(* x = k *)
discriminate.
(* k < x *)
unfold f'; simpl.
destruct (f oo oo'); simpl.
- destruct (X.eq_dec x k); [ contradict n; auto | auto].
+ destruct (X.eq_dec x k); [ contradict Hneq; auto | auto].
destruct (IHm0 H1) as (_,H4); apply H4; auto.
destruct (IHm0 H1) as (_,H4); apply H4; auto.
Qed.
diff --git a/theories/FSets/FSetBridge.v b/theories/FSets/FSetBridge.v
index 1ac544e1..97f140b3 100644
--- a/theories/FSets/FSetBridge.v
+++ b/theories/FSets/FSetBridge.v
@@ -284,7 +284,7 @@ Module DepOfNodep (Import M: S) <: Sdep with Module E := M.E.
Lemma choose_equal : forall s s', Equal s s' ->
match choose s, choose s' with
- | inleft (exist x _), inleft (exist x' _) => E.eq x x'
+ | inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x'
| inright _, inright _ => True
| _, _ => False
end.
@@ -423,7 +423,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Definition choose (s : t) : option elt :=
match choose s with
- | inleft (exist x _) => Some x
+ | inleft (exist _ x _) => Some x
| inright _ => None
end.
@@ -472,7 +472,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Definition min_elt (s : t) : option elt :=
match min_elt s with
- | inleft (exist x _) => Some x
+ | inleft (exist _ x _) => Some x
| inright _ => None
end.
@@ -500,7 +500,7 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
Definition max_elt (s : t) : option elt :=
match max_elt s with
- | inleft (exist x _) => Some x
+ | inleft (exist _ x _) => Some x
| inright _ => None
end.
@@ -673,24 +673,24 @@ Module NodepOfDep (M: Sdep) <: S with Module E := M.E.
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> In x s.
Proof.
- intros s x f; unfold filter; case M.filter; intuition.
- generalize (i (compat_P_aux H)); firstorder.
+ intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
+ generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Lemma filter_2 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x (filter f s) -> f x = true.
Proof.
- intros s x f; unfold filter; case M.filter; intuition.
- generalize (i (compat_P_aux H)); firstorder.
+ intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
+ generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Lemma filter_3 :
forall (s : t) (x : elt) (f : elt -> bool),
compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s).
Proof.
- intros s x f; unfold filter; case M.filter; intuition.
- generalize (i (compat_P_aux H)); firstorder.
+ intros s x f; unfold filter; case M.filter as (x0,Hiff); intuition.
+ generalize (Hiff (compat_P_aux H)); firstorder.
Qed.
Definition for_all (f : elt -> bool) (s : t) : bool :=
diff --git a/theories/FSets/FSetCompat.v b/theories/FSets/FSetCompat.v
index 6b3d86d3..b1769da3 100644
--- a/theories/FSets/FSetCompat.v
+++ b/theories/FSets/FSetCompat.v
@@ -283,6 +283,8 @@ Module Update_WSets
Lemma is_empty_spec : is_empty s = true <-> Empty s.
Proof. intros; symmetry; apply MF.is_empty_iff. Qed.
+
+ Declare Equivalent Keys In M.In.
Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s.
Proof. intros. rewrite MF.add_iff. intuition. Qed.
diff --git a/theories/FSets/FSetDecide.v b/theories/FSets/FSetDecide.v
index f64df9fe..ad067eb3 100644
--- a/theories/FSets/FSetDecide.v
+++ b/theories/FSets/FSetDecide.v
@@ -15,7 +15,7 @@
(** This file implements a decision procedure for a certain
class of propositions involving finite sets. *)
-Require Import Decidable DecidableTypeEx FSetFacts.
+Require Import Decidable Setoid DecidableTypeEx FSetFacts.
(** First, a version for Weak Sets in functorial presentation *)
@@ -115,8 +115,8 @@ the above form:
not affect the namespace if you import the enclosing
module [Decide]. *)
Module FSetLogicalFacts.
- Require Export Decidable.
- Require Export Setoid.
+ Export Decidable.
+ Export Setoid.
(** ** Lemmas and Tactics About Decidable Propositions *)
diff --git a/theories/FSets/FSetEqProperties.v b/theories/FSets/FSetEqProperties.v
index ac495c04..f2f4cc2c 100644
--- a/theories/FSets/FSetEqProperties.v
+++ b/theories/FSets/FSetEqProperties.v
@@ -822,7 +822,7 @@ Proof.
intros.
rewrite for_all_exists in H; auto.
rewrite negb_true_iff in H.
-elim (for_all_mem_4 (fun x =>negb (f x)) Comp' s);intros;auto.
+destruct (for_all_mem_4 (fun x =>negb (f x)) Comp' s) as (x,p); auto.
elim p;intros.
exists x;split;auto.
rewrite <-negb_false_iff; auto.
diff --git a/theories/FSets/FSetInterface.v b/theories/FSets/FSetInterface.v
index a0361119..c791f49a 100644
--- a/theories/FSets/FSetInterface.v
+++ b/theories/FSets/FSetInterface.v
@@ -497,7 +497,7 @@ Module Type Sdep.
in the dependent version of [choose], so we leave it separate. *)
Parameter choose_equal : forall s s', Equal s s' ->
match choose s, choose s' with
- | inleft (exist x _), inleft (exist x' _) => E.eq x x'
+ | inleft (exist _ x _), inleft (exist _ x' _) => E.eq x x'
| inright _, inright _ => True
| _, _ => False
end.
diff --git a/theories/FSets/FSetPositive.v b/theories/FSets/FSetPositive.v
index e5d55ac5..7398c6d6 100644
--- a/theories/FSets/FSetPositive.v
+++ b/theories/FSets/FSetPositive.v
@@ -19,20 +19,15 @@
Require Import Bool BinPos OrderedType OrderedTypeEx FSetInterface.
Set Implicit Arguments.
-
Local Open Scope lazy_bool_scope.
Local Open Scope positive_scope.
-
Local Unset Elimination Schemes.
-Local Unset Case Analysis Schemes.
-Local Unset Boolean Equality Schemes.
-
Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
- Definition elt := positive.
+ Definition elt := positive : Type.
Inductive tree :=
| Leaf : tree
@@ -40,9 +35,9 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Scheme tree_ind := Induction for tree Sort Prop.
- Definition t := tree.
+ Definition t := tree : Type.
- Definition empty := Leaf.
+ Definition empty : t := Leaf.
Fixpoint is_empty (m : t) : bool :=
match m with
@@ -50,7 +45,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
| Node l b r => negb b &&& is_empty l &&& is_empty r
end.
- Fixpoint mem (i : positive) (m : t) : bool :=
+ Fixpoint mem (i : elt) (m : t) {struct m} : bool :=
match m with
| Leaf => false
| Node l o r =>
@@ -61,7 +56,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint add (i : positive) (m : t) : t :=
+ Fixpoint add (i : elt) (m : t) : t :=
match m with
| Leaf =>
match i with
@@ -81,13 +76,13 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
(** helper function to avoid creating empty trees that are not leaves *)
- Definition node l (b: bool) r :=
+ Definition node (l : t) (b: bool) (r : t) : t :=
if b then Node l b r else
match l,r with
| Leaf,Leaf => Leaf
| _,_ => Node l false r end.
- Fixpoint remove (i : positive) (m : t) : t :=
+ Fixpoint remove (i : elt) (m : t) {struct m} : t :=
match m with
| Leaf => Leaf
| Node l o r =>
@@ -98,7 +93,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint union (m m': t) :=
+ Fixpoint union (m m': t) : t :=
match m with
| Leaf => m'
| Node l o r =>
@@ -108,7 +103,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint inter (m m': t) :=
+ Fixpoint inter (m m': t) : t :=
match m with
| Leaf => Leaf
| Node l o r =>
@@ -118,7 +113,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint diff (m m': t) :=
+ Fixpoint diff (m m': t) : t :=
match m with
| Leaf => Leaf
| Node l o r =>
@@ -150,7 +145,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
(** reverses [y] and concatenate it with [x] *)
- Fixpoint rev_append y x :=
+ Fixpoint rev_append (y x : elt) : elt :=
match y with
| 1 => x
| y~1 => rev_append y x~1
@@ -161,8 +156,8 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Section Fold.
- Variables B : Type.
- Variable f : positive -> B -> B.
+ Variable B : Type.
+ Variable f : elt -> B -> B.
(** the additional argument, [i], records the current path, in
reverse order (this should be more efficient: we reverse this argument
@@ -170,7 +165,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
we also use this convention in all functions below
*)
- Fixpoint xfold (m : t) (v : B) (i : positive) :=
+ Fixpoint xfold (m : t) (v : B) (i : elt) :=
match m with
| Leaf => v
| Node l true r =>
@@ -184,9 +179,9 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Section Quantifiers.
- Variable f : positive -> bool.
+ Variable f : elt -> bool.
- Fixpoint xforall (m : t) (i : positive) :=
+ Fixpoint xforall (m : t) (i : elt) :=
match m with
| Leaf => true
| Node l o r =>
@@ -194,21 +189,21 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end.
Definition for_all m := xforall m 1.
- Fixpoint xexists (m : t) (i : positive) :=
+ Fixpoint xexists (m : t) (i : elt) :=
match m with
| Leaf => false
| Node l o r => (o &&& f (rev i)) ||| xexists r i~1 ||| xexists l i~0
end.
Definition exists_ m := xexists m 1.
- Fixpoint xfilter (m : t) (i : positive) :=
+ Fixpoint xfilter (m : t) (i : elt) : t :=
match m with
| Leaf => Leaf
| Node l o r => node (xfilter l i~0) (o &&& f (rev i)) (xfilter r i~1)
end.
Definition filter m := xfilter m 1.
- Fixpoint xpartition (m : t) (i : positive) :=
+ Fixpoint xpartition (m : t) (i : elt) : t * t :=
match m with
| Leaf => (Leaf,Leaf)
| Node l o r =>
@@ -226,7 +221,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
(** uses [a] to accumulate values rather than doing a lot of concatenations *)
- Fixpoint xelements (m : t) (i : positive) (a: list positive) :=
+ Fixpoint xelements (m : t) (i : elt) (a: list elt) :=
match m with
| Leaf => a
| Node l false r => xelements l i~0 (xelements r i~1 a)
@@ -250,7 +245,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
(** would it be more efficient to use a path like in the above functions ? *)
- Fixpoint choose (m: t) :=
+ Fixpoint choose (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r => if o then Some 1 else
@@ -260,7 +255,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint min_elt (m: t) :=
+ Fixpoint min_elt (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r =>
@@ -270,7 +265,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint max_elt (m: t) :=
+ Fixpoint max_elt (m: t) : option elt :=
match m with
| Leaf => None
| Node l o r =>
@@ -311,6 +306,9 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Notation "s [<=] t" := (Subset s t) (at level 70, no associativity).
Definition eq := Equal.
+
+ Declare Equivalent Keys Equal eq.
+
Definition lt m m' := compare_fun m m' = Lt.
(** Specification of [In] *)
@@ -355,10 +353,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
case o; trivial.
destruct l; trivial.
destruct r; trivial.
- symmetry. destruct x.
- apply mem_Leaf.
- apply mem_Leaf.
- reflexivity.
+ now destruct x.
Qed.
Local Opaque node.
@@ -367,8 +362,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Lemma is_empty_spec: forall s, Empty s <-> is_empty s = true.
Proof.
unfold Empty, In.
- induction s as [|l IHl o r IHr]; simpl.
- setoid_rewrite mem_Leaf. firstorder.
+ induction s as [|l IHl o r IHr]; simpl. now split.
rewrite <- 2andb_lazy_alt, 2andb_true_iff, <- IHl, <- IHr. clear IHl IHr.
destruct o; simpl; split.
intro H. elim (H 1). reflexivity.
@@ -759,7 +753,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Proof. intros. rewrite diff_spec. split; assumption. Qed.
(** Specification of [fold] *)
-
+
Lemma fold_1: forall s (A : Type) (i : A) (f : elt -> A -> A),
fold f s i = fold_left (fun a e => f e a) (elements s) i.
Proof.
@@ -807,15 +801,15 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
rewrite <- andb_lazy_alt. apply andb_true_iff.
Qed.
- Lemma filter_1 : forall s x f, compat_bool E.eq f ->
+ Lemma filter_1 : forall s x f, @compat_bool elt E.eq f ->
In x (filter f s) -> In x s.
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
- Lemma filter_2 : forall s x f, compat_bool E.eq f ->
+ Lemma filter_2 : forall s x f, @compat_bool elt E.eq f ->
In x (filter f s) -> f x = true.
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
- Lemma filter_3 : forall s x f, compat_bool E.eq f -> In x s ->
+ Lemma filter_3 : forall s x f, @compat_bool elt E.eq f -> In x s ->
f x = true -> In x (filter f s).
Proof. unfold filter. intros s x f _. rewrite xfilter_spec. tauto. Qed.
@@ -826,8 +820,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
xforall f s i = true <-> For_all (fun x => f (i@x) = true) s.
Proof.
unfold For_all, In. intro f.
- induction s as [|l IHl o r IHr]; intros i; simpl.
- setoid_rewrite mem_Leaf. intuition discriminate.
+ induction s as [|l IHl o r IHr]; intros i; simpl. now split.
rewrite <- 2andb_lazy_alt, <- orb_lazy_alt, 2 andb_true_iff.
rewrite IHl, IHr. clear IHl IHr.
split.
@@ -841,11 +834,11 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
apply H. assumption.
Qed.
- Lemma for_all_1 : forall s f, compat_bool E.eq f ->
+ Lemma for_all_1 : forall s f, @compat_bool elt E.eq f ->
For_all (fun x => f x = true) s -> for_all f s = true.
Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.
- Lemma for_all_2 : forall s f, compat_bool E.eq f ->
+ Lemma for_all_2 : forall s f, @compat_bool elt E.eq f ->
for_all f s = true -> For_all (fun x => f x = true) s.
Proof. intros s f _. unfold for_all. rewrite xforall_spec. trivial. Qed.
@@ -857,7 +850,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
Proof.
unfold Exists, In. intro f.
induction s as [|l IHl o r IHr]; intros i; simpl.
- setoid_rewrite mem_Leaf. firstorder.
+ split; [ discriminate | now intros [ _ [? _]]].
rewrite <- 2orb_lazy_alt, 2orb_true_iff, <- andb_lazy_alt, andb_true_iff.
rewrite IHl, IHr. clear IHl IHr.
split.
@@ -868,11 +861,11 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
intros [[x|x|] H]; eauto.
Qed.
- Lemma exists_1 : forall s f, compat_bool E.eq f ->
+ Lemma exists_1 : forall s f, @compat_bool elt E.eq f ->
Exists (fun x => f x = true) s -> exists_ f s = true.
Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.
- Lemma exists_2 : forall s f, compat_bool E.eq f ->
+ Lemma exists_2 : forall s f, @compat_bool elt E.eq f ->
exists_ f s = true -> Exists (fun x => f x = true) s.
Proof. intros s f _. unfold exists_. rewrite xexists_spec. trivial. Qed.
@@ -888,11 +881,11 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
destruct o; simpl; rewrite IHl, IHr; reflexivity.
Qed.
- Lemma partition_1 : forall s f, compat_bool E.eq f ->
+ Lemma partition_1 : forall s f, @compat_bool elt E.eq f ->
Equal (fst (partition f s)) (filter f s).
Proof. intros. rewrite partition_filter. apply eq_refl. Qed.
- Lemma partition_2 : forall s f, compat_bool E.eq f ->
+ Lemma partition_2 : forall s f, @compat_bool elt E.eq f ->
Equal (snd (partition f s)) (filter (fun x => negb (f x)) s).
Proof. intros. rewrite partition_filter. apply eq_refl. Qed.
@@ -909,7 +902,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
induction s as [|l IHl o r IHr]; simpl.
intros. split; intro H.
left. assumption.
- destruct H as [H|[x [Hx Hx']]]. assumption. elim (empty_1 Hx').
+ destruct H as [H|[x [Hx Hx']]]. assumption. discriminate.
intros j acc y. case o.
rewrite IHl. rewrite InA_cons. rewrite IHr. clear IHl IHr. split.
@@ -1000,7 +993,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
constructor.
intros x H. apply E.lt_not_eq in H. apply H. reflexivity.
intro. apply E.lt_trans.
- intros ? ? <- ? ? <-. reflexivity.
+ solve_proper.
apply elements_3.
Qed.
@@ -1111,7 +1104,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
destruct (min_elt r).
injection H. intros <-. clear H.
destruct y as [z|z|].
- apply (IHr p z); trivial.
+ apply (IHr e z); trivial.
elim (Hp _ H').
discriminate.
discriminate.
@@ -1165,7 +1158,7 @@ Module PositiveSet <: S with Module E:=PositiveOrderedTypeBits.
injection H. intros <-. clear H.
destruct y as [z|z|].
elim (Hp _ H').
- apply (IHl p z); trivial.
+ apply (IHl e z); trivial.
discriminate.
discriminate.
Qed.
diff --git a/theories/FSets/FSetProperties.v b/theories/FSets/FSetProperties.v
index d53ce0c8..25b042ca 100644
--- a/theories/FSets/FSetProperties.v
+++ b/theories/FSets/FSetProperties.v
@@ -995,8 +995,7 @@ Module OrdProperties (M:S).
leb_1, gtb_1, (H0 a) by auto with *.
intuition.
destruct (E.compare a x); intuition.
- right; right; split; auto with *.
- ME.order.
+ fold (~E.lt a x); auto with *.
Qed.
Definition Above x s := forall y, In y s -> E.lt y x.