summaryrefslogtreecommitdiff
path: root/theories/FSets/FMapPositive.v
diff options
context:
space:
mode:
Diffstat (limited to 'theories/FSets/FMapPositive.v')
-rw-r--r--theories/FSets/FMapPositive.v119
1 files changed, 58 insertions, 61 deletions
diff --git a/theories/FSets/FMapPositive.v b/theories/FSets/FMapPositive.v
index c59f7c22..3eac15b0 100644
--- a/theories/FSets/FMapPositive.v
+++ b/theories/FSets/FMapPositive.v
@@ -8,13 +8,11 @@
(** * FMapPositive : an implementation of FMapInterface for [positive] keys. *)
-Require Import Bool ZArith OrderedType OrderedTypeEx FMapInterface.
+Require Import Bool OrderedType ZArith OrderedType OrderedTypeEx FMapInterface.
Set Implicit Arguments.
Local Open Scope positive_scope.
-
Local Unset Elimination Schemes.
-Local Unset Case Analysis Schemes.
(** This file is an adaptation to the [FMap] framework of a work by
Xavier Leroy and Sandrine Blazy (used for building certified compilers).
@@ -71,7 +69,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Module E:=PositiveOrderedTypeBits.
Module ME:=KeyOrderedType E.
- Definition key := positive.
+ Definition key := positive : Type.
Inductive tree (A : Type) :=
| Leaf : tree A
@@ -84,7 +82,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section A.
Variable A:Type.
- Arguments Leaf [A].
+ Arguments Leaf {A}.
Definition empty : t A := Leaf.
@@ -95,7 +93,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| _ => false
end.
- Fixpoint find (i : positive) (m : t A) : option A :=
+ Fixpoint find (i : key) (m : t A) : option A :=
match m with
| Leaf => None
| Node l o r =>
@@ -106,7 +104,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint mem (i : positive) (m : t A) : bool :=
+ Fixpoint mem (i : key) (m : t A) : bool :=
match m with
| Leaf => false
| Node l o r =>
@@ -117,7 +115,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint add (i : positive) (v : A) (m : t A) : t A :=
+ Fixpoint add (i : key) (v : A) (m : t A) : t A :=
match m with
| Leaf =>
match i with
@@ -133,7 +131,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Fixpoint remove (i : positive) (m : t A) : t A :=
+ Fixpoint remove (i : key) (m : t A) : t A :=
match i with
| xH =>
match m with
@@ -165,7 +163,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
(** [elements] *)
- Fixpoint xelements (m : t A) (i : positive) : list (positive * A) :=
+ Fixpoint xelements (m : t A) (i : key) : list (key * A) :=
match m with
| Leaf => nil
| Node l None r =>
@@ -192,33 +190,33 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section CompcertSpec.
Theorem gempty:
- forall (i: positive), find i empty = None.
+ forall (i: key), find i empty = None.
Proof.
destruct i; simpl; auto.
Qed.
Theorem gss:
- forall (i: positive) (x: A) (m: t A), find i (add i x m) = Some x.
+ forall (i: key) (x: A) (m: t A), find i (add i x m) = Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
- Lemma gleaf : forall (i : positive), find i (Leaf : t A) = None.
+ Lemma gleaf : forall (i : key), find i (Leaf : t A) = None.
Proof. exact gempty. Qed.
Theorem gso:
- forall (i j: positive) (x: A) (m: t A),
+ forall (i j: key) (x: A) (m: t A),
i <> j -> find i (add j x m) = find i m.
Proof.
induction i; intros; destruct j; destruct m; simpl;
try rewrite <- (gleaf i); auto; try apply IHi; congruence.
Qed.
- Lemma rleaf : forall (i : positive), remove i (Leaf : t A) = Leaf.
+ Lemma rleaf : forall (i : key), remove i Leaf = Leaf.
Proof. destruct i; simpl; auto. Qed.
Theorem grs:
- forall (i: positive) (m: t A), find i (remove i m) = None.
+ forall (i: key) (m: t A), find i (remove i m) = None.
Proof.
induction i; destruct m.
simpl; auto.
@@ -238,7 +236,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem gro:
- forall (i j: positive) (m: t A),
+ forall (i j: key) (m: t A),
i <> j -> find i (remove j m) = find i m.
Proof.
induction i; intros; destruct j; destruct m;
@@ -267,11 +265,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_correct:
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
find i m = Some v -> List.In (append j i, v) (xelements m j).
Proof.
induction m; intros.
- rewrite (gleaf i) in H; congruence.
+ rewrite (gleaf i) in H; discriminate.
destruct o; destruct i; simpl; simpl in H.
rewrite append_assoc_1; apply in_or_app; right; apply in_cons;
apply IHm2; auto.
@@ -284,14 +282,14 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem elements_correct:
- forall (m: t A) (i: positive) (v: A),
+ forall (m: t A) (i: key) (v: A),
find i m = Some v -> List.In (i, v) (elements m).
Proof.
intros m i v H.
exact (xelements_correct m i xH H).
Qed.
- Fixpoint xfind (i j : positive) (m : t A) : option A :=
+ Fixpoint xfind (i j : key) (m : t A) : option A :=
match i, j with
| _, xH => find i m
| xO ii, xO jj => xfind ii jj m
@@ -300,7 +298,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end.
Lemma xfind_left :
- forall (j i : positive) (m1 m2 : t A) (o : option A) (v : A),
+ forall (j i : key) (m1 m2 : t A) (o : option A) (v : A),
xfind i (append j (xO xH)) m1 = Some v -> xfind i j (Node m1 o m2) = Some v.
Proof.
induction j; intros; destruct i; simpl; simpl in H; auto; try congruence.
@@ -308,7 +306,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ii :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
List.In (xI i, v) (xelements m (xI j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
@@ -324,7 +322,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_io :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
~List.In (xI i, v) (xelements m (xO j)).
Proof.
induction m.
@@ -339,7 +337,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oo :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
List.In (xO i, v) (xelements m (xO j)) -> List.In (i, v) (xelements m j).
Proof.
induction m.
@@ -355,7 +353,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oi :
- forall (m: t A) (i j : positive) (v: A),
+ forall (m: t A) (i j : key) (v: A),
~List.In (xO i, v) (xelements m (xI j)).
Proof.
induction m.
@@ -370,7 +368,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ih :
- forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
+ forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xI i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m2 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -383,7 +381,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_oh :
- forall (m1 m2: t A) (o: option A) (i : positive) (v: A),
+ forall (m1 m2: t A) (o: option A) (i : key) (v: A),
List.In (xO i, v) (xelements (Node m1 o m2) xH) -> List.In (i, v) (xelements m1 xH).
Proof.
destruct o; simpl; intros; destruct (in_app_or _ _ _ H).
@@ -396,7 +394,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_hi :
- forall (m: t A) (i : positive) (v: A),
+ forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xI i)).
Proof.
induction m; intros.
@@ -411,7 +409,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma xelements_ho :
- forall (m: t A) (i : positive) (v: A),
+ forall (m: t A) (i : key) (v: A),
~List.In (xH, v) (xelements m (xO i)).
Proof.
induction m; intros.
@@ -426,13 +424,13 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Lemma find_xfind_h :
- forall (m: t A) (i: positive), find i m = xfind i xH m.
+ forall (m: t A) (i: key), find i m = xfind i xH m.
Proof.
destruct i; simpl; auto.
Qed.
Lemma xelements_complete:
- forall (i j : positive) (m: t A) (v: A),
+ forall (i j : key) (m: t A) (v: A),
List.In (i, v) (xelements m j) -> xfind i j m = Some v.
Proof.
induction i; simpl; intros; destruct j; simpl.
@@ -460,7 +458,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem elements_complete:
- forall (m: t A) (i: positive) (v: A),
+ forall (m: t A) (i: key) (v: A),
List.In (i, v) (elements m) -> find i m = Some v.
Proof.
intros m i v H.
@@ -481,22 +479,22 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End CompcertSpec.
- Definition MapsTo (i:positive)(v:A)(m:t A) := find i m = Some v.
+ Definition MapsTo (i:key)(v:A)(m:t A) := find i m = Some v.
- Definition In (i:positive)(m:t A) := exists e:A, MapsTo i e m.
+ Definition In (i:key)(m:t A) := exists e:A, MapsTo i e m.
- Definition Empty m := forall (a : positive)(e:A) , ~ MapsTo a e m.
+ Definition Empty m := forall (a : key)(e:A) , ~ MapsTo a e m.
- Definition eq_key (p p':positive*A) := E.eq (fst p) (fst p').
+ Definition eq_key (p p':key*A) := E.eq (fst p) (fst p').
- Definition eq_key_elt (p p':positive*A) :=
+ Definition eq_key_elt (p p':key*A) :=
E.eq (fst p) (fst p') /\ (snd p) = (snd p').
- Definition lt_key (p p':positive*A) := E.lt (fst p) (fst p').
+ Definition lt_key (p p':key*A) := E.lt (fst p) (fst p').
- Global Program Instance eqk_equiv : Equivalence eq_key.
- Global Program Instance eqke_equiv : Equivalence eq_key_elt.
- Global Program Instance ltk_strorder : StrictOrder lt_key.
+ Global Instance eqk_equiv : Equivalence eq_key := _.
+ Global Instance eqke_equiv : Equivalence eq_key_elt := _.
+ Global Instance ltk_strorder : StrictOrder lt_key := _.
Lemma mem_find :
forall m x, mem x m = match find x m with None => false | _ => true end.
@@ -717,8 +715,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Lemma elements_3w : NoDupA eq_key (elements m).
Proof.
- change eq_key with (@ME.eqk A).
- apply ME.Sort_NoDupA; apply elements_3; auto.
+ apply ME.Sort_NoDupA.
+ apply elements_3.
Qed.
End FMapSpec.
@@ -729,9 +727,9 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section Mapi.
- Variable f : positive -> A -> B.
+ Variable f : key -> A -> B.
- Fixpoint xmapi (m : t A) (i : positive) : t B :=
+ Fixpoint xmapi (m : t A) (i : key) : t B :=
match m with
| Leaf => @Leaf B
| Node l o r => Node (xmapi l (append i (xO xH)))
@@ -748,7 +746,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
End A.
Lemma xgmapi:
- forall (A B: Type) (f: positive -> A -> B) (i j : positive) (m: t A),
+ forall (A B: Type) (f: key -> A -> B) (i j : key) (m: t A),
find i (xmapi f m j) = option_map (f (append j i)) (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -758,7 +756,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Qed.
Theorem gmapi:
- forall (A B: Type) (f: positive -> A -> B) (i: positive) (m: t A),
+ forall (A B: Type) (f: key -> A -> B) (i: key) (m: t A),
find i (mapi f m) = option_map (f i) (find i m).
Proof.
intros.
@@ -814,7 +812,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Variable A B C : Type.
Variable f : option A -> option B -> option C.
- Arguments Leaf [A].
+ Arguments Leaf {A}.
Fixpoint xmap2_l (m : t A) : t C :=
match m with
@@ -822,7 +820,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| Node l o r => Node (xmap2_l l) (f o None) (xmap2_l r)
end.
- Lemma xgmap2_l : forall (i : positive) (m : t A),
+ Lemma xgmap2_l : forall (i : key) (m : t A),
f None None = None -> find i (xmap2_l m) = f (find i m) None.
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -834,7 +832,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
| Node l o r => Node (xmap2_r l) (f None o) (xmap2_r r)
end.
- Lemma xgmap2_r : forall (i : positive) (m : t B),
+ Lemma xgmap2_r : forall (i : key) (m : t B),
f None None = None -> find i (xmap2_r m) = f None (find i m).
Proof.
induction i; intros; destruct m; simpl; auto.
@@ -850,7 +848,7 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
end
end.
- Lemma gmap2: forall (i: positive)(m1:t A)(m2: t B),
+ Lemma gmap2: forall (i: key)(m1:t A)(m2: t B),
f None None = None ->
find i (_map2 m1 m2) = f (find i m1) (find i m2).
Proof.
@@ -898,11 +896,11 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Section Fold.
Variables A B : Type.
- Variable f : positive -> A -> B -> B.
+ Variable f : key -> A -> B -> B.
- Fixpoint xfoldi (m : t A) (v : B) (i : positive) :=
+ Fixpoint xfoldi (m : t A) (v : B) (i : key) :=
match m with
- | Leaf => v
+ | Leaf _ => v
| Node l (Some x) r =>
xfoldi r (f i x (xfoldi l v (append i 2))) (append i 3)
| Node l None r =>
@@ -940,8 +938,8 @@ Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits.
Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool :=
match m1, m2 with
- | Leaf, _ => is_empty m2
- | _, Leaf => is_empty m1
+ | Leaf _, _ => is_empty m2
+ | _, Leaf _ => is_empty m1
| Node l1 o1 r1, Node l2 o2 r2 =>
(match o1, o2 with
| None, None => true
@@ -1072,16 +1070,16 @@ Module PositiveMapAdditionalFacts.
(* Derivable from the Map interface *)
Theorem gsspec:
- forall (A:Type)(i j: positive) (x: A) (m: t A),
+ forall (A:Type)(i j: key) (x: A) (m: t A),
find i (add j x m) = if E.eq_dec i j then Some x else find i m.
Proof.
intros.
- destruct (E.eq_dec i j); [ rewrite e; apply gss | apply gso; auto ].
+ destruct (E.eq_dec i j) as [ ->|]; [ apply gss | apply gso; auto ].
Qed.
(* Not derivable from the Map interface *)
Theorem gsident:
- forall (A:Type)(i: positive) (m: t A) (v: A),
+ forall (A:Type)(i: key) (m: t A) (v: A),
find i m = Some v -> add i v m = m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
@@ -1120,4 +1118,3 @@ Module PositiveMapAdditionalFacts.
Qed.
End PositiveMapAdditionalFacts.
-