summaryrefslogtreecommitdiff
path: root/plugins
diff options
context:
space:
mode:
authorGravatar Stephane Glondu <steph@glondu.net>2013-05-08 18:03:54 +0200
committerGravatar Stephane Glondu <steph@glondu.net>2013-05-08 18:03:54 +0200
commitdb38bb4ad9aff74576d3b7f00028d48f0447d5bd (patch)
tree09dafc3e5c7361d3a28e93677eadd2b7237d4f9f /plugins
parent6e34b272d789455a9be589e27ad3a998cf25496b (diff)
parent499a11a45b5711d4eaabe84a80f0ad3ae539d500 (diff)
Merge branch 'experimental/upstream' into upstream
Diffstat (limited to 'plugins')
-rw-r--r--plugins/cc/ccalgo.ml99
-rw-r--r--plugins/cc/ccalgo.mli13
-rw-r--r--plugins/cc/ccproof.ml10
-rw-r--r--plugins/cc/ccproof.mli4
-rw-r--r--plugins/cc/cctac.ml57
-rw-r--r--plugins/cc/cctac.mli4
-rw-r--r--plugins/cc/g_congruence.ml44
-rw-r--r--plugins/decl_mode/decl_expr.mli103
-rw-r--r--plugins/decl_mode/decl_interp.ml471
-rw-r--r--plugins/decl_mode/decl_interp.mli16
-rw-r--r--plugins/decl_mode/decl_mode.ml123
-rw-r--r--plugins/decl_mode/decl_mode.mli78
-rw-r--r--plugins/decl_mode/decl_mode_plugin.mllib6
-rw-r--r--plugins/decl_mode/decl_proof_instr.ml1504
-rw-r--r--plugins/decl_mode/decl_proof_instr.mli109
-rw-r--r--plugins/decl_mode/g_decl_mode.ml4409
-rw-r--r--plugins/decl_mode/ppdecl_proof.ml188
-rw-r--r--plugins/decl_mode/ppdecl_proof.mli2
-rw-r--r--plugins/dp/Dp.v120
-rw-r--r--plugins/dp/TODO24
-rw-r--r--plugins/dp/dp.ml1134
-rw-r--r--plugins/dp/dp.mli20
-rw-r--r--plugins/dp/dp_plugin.mllib5
-rw-r--r--plugins/dp/dp_why.ml185
-rw-r--r--plugins/dp/dp_why.mli17
-rw-r--r--plugins/dp/dp_zenon.mli7
-rw-r--r--plugins/dp/dp_zenon.mll189
-rw-r--r--plugins/dp/fol.mli58
-rw-r--r--plugins/dp/g_dp.ml479
-rw-r--r--plugins/dp/test2.v80
-rw-r--r--plugins/dp/tests.v300
-rw-r--r--plugins/dp/vo.itarget1
-rw-r--r--plugins/dp/zenon.v94
-rw-r--r--plugins/extraction/ExtrOcamlBasic.v4
-rw-r--r--plugins/extraction/ExtrOcamlBigIntConv.v2
-rw-r--r--plugins/extraction/ExtrOcamlIntConv.v2
-rw-r--r--plugins/extraction/ExtrOcamlNatBigInt.v6
-rw-r--r--plugins/extraction/ExtrOcamlNatInt.v22
-rw-r--r--plugins/extraction/ExtrOcamlString.v2
-rw-r--r--plugins/extraction/ExtrOcamlZBigInt.v78
-rw-r--r--plugins/extraction/ExtrOcamlZInt.v68
-rw-r--r--plugins/extraction/big.ml2
-rw-r--r--plugins/extraction/common.ml39
-rw-r--r--plugins/extraction/common.mli15
-rw-r--r--plugins/extraction/extract_env.ml157
-rw-r--r--plugins/extraction/extract_env.mli10
-rw-r--r--plugins/extraction/extraction.ml214
-rw-r--r--plugins/extraction/extraction.mli4
-rw-r--r--plugins/extraction/g_extraction.ml48
-rw-r--r--plugins/extraction/haskell.ml162
-rw-r--r--plugins/extraction/haskell.mli4
-rw-r--r--plugins/extraction/miniml.mli50
-rw-r--r--plugins/extraction/mlutil.ml289
-rw-r--r--plugins/extraction/mlutil.mli11
-rw-r--r--plugins/extraction/modutil.ml146
-rw-r--r--plugins/extraction/modutil.mli7
-rw-r--r--plugins/extraction/ocaml.ml332
-rw-r--r--plugins/extraction/ocaml.mli4
-rw-r--r--plugins/extraction/scheme.ml29
-rw-r--r--plugins/extraction/scheme.mli4
-rw-r--r--plugins/extraction/table.ml224
-rw-r--r--plugins/extraction/table.mli38
-rw-r--r--plugins/field/LegacyField.v4
-rw-r--r--plugins/field/LegacyField_Compl.v4
-rw-r--r--plugins/field/LegacyField_Tactic.v24
-rw-r--r--plugins/field/LegacyField_Theory.v184
-rw-r--r--plugins/field/field.ml416
-rw-r--r--plugins/firstorder/formula.ml4
-rw-r--r--plugins/firstorder/formula.mli4
-rw-r--r--plugins/firstorder/g_ground.ml411
-rw-r--r--plugins/firstorder/ground.ml32
-rw-r--r--plugins/firstorder/ground.mli4
-rw-r--r--plugins/firstorder/instances.ml20
-rw-r--r--plugins/firstorder/instances.mli4
-rw-r--r--plugins/firstorder/rules.ml4
-rw-r--r--plugins/firstorder/rules.mli4
-rw-r--r--plugins/firstorder/sequent.ml71
-rw-r--r--plugins/firstorder/sequent.mli4
-rw-r--r--plugins/firstorder/unify.ml7
-rw-r--r--plugins/firstorder/unify.mli4
-rw-r--r--plugins/fourier/Fourier.v4
-rw-r--r--plugins/fourier/Fourier_util.v36
-rw-r--r--plugins/fourier/fourier.ml6
-rw-r--r--plugins/fourier/fourierR.ml56
-rw-r--r--plugins/fourier/g_fourier.ml44
-rw-r--r--plugins/funind/Recdef.v2
-rw-r--r--plugins/funind/functional_principles_proofs.ml84
-rw-r--r--plugins/funind/functional_principles_types.ml80
-rw-r--r--plugins/funind/functional_principles_types.mli6
-rw-r--r--plugins/funind/g_indfun.ml4122
-rw-r--r--plugins/funind/glob_term_to_relation.ml (renamed from plugins/funind/rawterm_to_relation.ml)324
-rw-r--r--plugins/funind/glob_term_to_relation.mli (renamed from plugins/funind/rawterm_to_relation.mli)4
-rw-r--r--plugins/funind/glob_termops.ml (renamed from plugins/funind/rawtermops.ml)444
-rw-r--r--plugins/funind/glob_termops.mli126
-rw-r--r--plugins/funind/indfun.ml563
-rw-r--r--plugins/funind/indfun.mli24
-rw-r--r--plugins/funind/indfun_common.ml81
-rw-r--r--plugins/funind/indfun_common.mli15
-rw-r--r--plugins/funind/invfun.ml142
-rw-r--r--plugins/funind/merge.ml139
-rw-r--r--plugins/funind/rawtermops.mli126
-rw-r--r--plugins/funind/recdef.ml299
-rw-r--r--plugins/funind/recdef_plugin.mllib4
-rw-r--r--plugins/micromega/CheckerMaker.v5
-rw-r--r--plugins/micromega/Env.v159
-rw-r--r--plugins/micromega/EnvRing.v1267
-rw-r--r--plugins/micromega/MExtraction.v19
-rw-r--r--plugins/micromega/OrderedRing.v2
-rw-r--r--plugins/micromega/Psatz.v20
-rw-r--r--plugins/micromega/QMicromega.v22
-rw-r--r--plugins/micromega/RMicromega.v480
-rw-r--r--plugins/micromega/Refl.v2
-rw-r--r--plugins/micromega/RingMicromega.v243
-rw-r--r--plugins/micromega/Tauto.v248
-rw-r--r--plugins/micromega/VarMap.v225
-rw-r--r--plugins/micromega/ZCoeff.v22
-rw-r--r--plugins/micromega/ZMicromega.v491
-rw-r--r--plugins/micromega/certificate.ml1249
-rw-r--r--plugins/micromega/coq_micromega.ml696
-rw-r--r--plugins/micromega/csdpcert.ml10
-rw-r--r--plugins/micromega/g_micromega.ml416
-rw-r--r--plugins/micromega/mfourier.ml182
-rw-r--r--plugins/micromega/micromega.ml4625
-rw-r--r--plugins/micromega/micromega.mli1080
-rw-r--r--plugins/micromega/micromega_plugin.mllib1
-rw-r--r--plugins/micromega/mutils.ml131
-rw-r--r--plugins/micromega/persistent_cache.ml97
-rw-r--r--plugins/micromega/polynomial.ml739
-rw-r--r--plugins/micromega/sos.ml74
-rw-r--r--plugins/micromega/sos.mli2
-rw-r--r--plugins/micromega/sos_types.ml2
-rw-r--r--plugins/nsatz/Nsatz.v611
-rw-r--r--plugins/nsatz/ideal.ml11
-rw-r--r--plugins/nsatz/nsatz.ml486
-rw-r--r--plugins/nsatz/polynom.ml9
-rw-r--r--plugins/nsatz/polynom.mli2
-rw-r--r--plugins/nsatz/utile.ml16
-rw-r--r--plugins/omega/Omega.v10
-rw-r--r--plugins/omega/OmegaLemmas.v269
-rw-r--r--plugins/omega/OmegaPlugin.v4
-rw-r--r--plugins/omega/PreOmega.v406
-rw-r--r--plugins/omega/coq_omega.ml413
-rw-r--r--plugins/omega/g_omega.ml44
-rw-r--r--plugins/omega/omega.ml4
-rw-r--r--plugins/pluginsbyte.itarget2
-rw-r--r--plugins/pluginsdyn.itarget2
-rw-r--r--plugins/pluginsopt.itarget2
-rw-r--r--plugins/pluginsvo.itarget3
-rw-r--r--plugins/quote/Quote.v7
-rw-r--r--plugins/quote/g_quote.ml46
-rw-r--r--plugins/quote/quote.ml33
-rw-r--r--plugins/ring/LegacyArithRing.v12
-rw-r--r--plugins/ring/LegacyNArithRing.v29
-rw-r--r--plugins/ring/LegacyRing.v8
-rw-r--r--plugins/ring/LegacyRing_theory.v44
-rw-r--r--plugins/ring/LegacyZArithRing.v12
-rw-r--r--plugins/ring/Ring_abstract.v94
-rw-r--r--plugins/ring/Ring_normalize.v155
-rw-r--r--plugins/ring/Setoid_ring.v4
-rw-r--r--plugins/ring/Setoid_ring_normalize.v135
-rw-r--r--plugins/ring/Setoid_ring_theory.v6
-rw-r--r--plugins/ring/g_ring.ml44
-rw-r--r--plugins/ring/ring.ml66
-rw-r--r--plugins/romega/ReflOmegaCore.v628
-rw-r--r--plugins/romega/const_omega.ml90
-rw-r--r--plugins/romega/refl_omega.ml34
-rw-r--r--plugins/rtauto/Bintree.v233
-rw-r--r--plugins/rtauto/Rtauto.v48
-rw-r--r--plugins/rtauto/g_rtauto.ml44
-rw-r--r--plugins/rtauto/proof_search.ml9
-rw-r--r--plugins/rtauto/proof_search.mli6
-rw-r--r--plugins/rtauto/refl_tauto.ml20
-rw-r--r--plugins/rtauto/refl_tauto.mli4
-rw-r--r--plugins/setoid_ring/Algebra_syntax.v25
-rw-r--r--plugins/setoid_ring/ArithRing.v12
-rw-r--r--plugins/setoid_ring/BinList.v77
-rw-r--r--plugins/setoid_ring/Cring.v271
-rw-r--r--plugins/setoid_ring/Field.v2
-rw-r--r--plugins/setoid_ring/Field_tac.v6
-rw-r--r--plugins/setoid_ring/Field_theory.v523
-rw-r--r--plugins/setoid_ring/InitialRing.v228
-rw-r--r--plugins/setoid_ring/Integral_domain.v43
-rw-r--r--plugins/setoid_ring/NArithRing.v4
-rw-r--r--plugins/setoid_ring/Ncring.v306
-rw-r--r--plugins/setoid_ring/Ncring_initial.v209
-rw-r--r--plugins/setoid_ring/Ncring_polynom.v584
-rw-r--r--plugins/setoid_ring/Ncring_tac.v308
-rw-r--r--plugins/setoid_ring/RealField.v64
-rw-r--r--plugins/setoid_ring/Ring.v4
-rw-r--r--plugins/setoid_ring/Ring_base.v2
-rw-r--r--plugins/setoid_ring/Ring_polynom.v1320
-rw-r--r--plugins/setoid_ring/Ring_tac.v7
-rw-r--r--plugins/setoid_ring/Ring_theory.v310
-rw-r--r--plugins/setoid_ring/Rings_Q.v30
-rw-r--r--plugins/setoid_ring/Rings_R.v34
-rw-r--r--plugins/setoid_ring/Rings_Z.v14
-rw-r--r--plugins/setoid_ring/ZArithRing.v12
-rw-r--r--plugins/setoid_ring/newring.ml469
-rw-r--r--plugins/setoid_ring/vo.itarget10
-rw-r--r--plugins/subtac/eterm.ml36
-rw-r--r--plugins/subtac/eterm.mli3
-rw-r--r--plugins/subtac/g_subtac.ml421
-rw-r--r--plugins/subtac/subtac.ml32
-rw-r--r--plugins/subtac/subtac_cases.ml58
-rw-r--r--plugins/subtac/subtac_cases.mli6
-rw-r--r--plugins/subtac/subtac_classes.ml48
-rw-r--r--plugins/subtac/subtac_classes.mli6
-rw-r--r--plugins/subtac/subtac_coercion.ml132
-rw-r--r--plugins/subtac/subtac_command.ml79
-rw-r--r--plugins/subtac/subtac_command.mli8
-rw-r--r--plugins/subtac/subtac_obligations.ml200
-rw-r--r--plugins/subtac/subtac_obligations.mli2
-rw-r--r--plugins/subtac/subtac_pretyping.ml23
-rw-r--r--plugins/subtac/subtac_pretyping.mli2
-rw-r--r--plugins/subtac/subtac_pretyping_F.ml196
-rw-r--r--plugins/subtac/subtac_utils.ml63
-rw-r--r--plugins/subtac/subtac_utils.mli15
-rw-r--r--plugins/syntax/ascii_syntax.ml16
-rw-r--r--plugins/syntax/nat_syntax.ml22
-rw-r--r--plugins/syntax/numbers_syntax.ml158
-rw-r--r--plugins/syntax/r_syntax.ml44
-rw-r--r--plugins/syntax/string_syntax.ml16
-rw-r--r--plugins/syntax/z_syntax.ml81
-rw-r--r--plugins/xml/acic.ml2
-rw-r--r--plugins/xml/acic2Xml.ml42
-rw-r--r--plugins/xml/cic2acic.ml4
-rw-r--r--plugins/xml/doubleTypeInference.ml7
-rw-r--r--plugins/xml/doubleTypeInference.mli2
-rw-r--r--plugins/xml/dumptree.ml434
-rw-r--r--plugins/xml/proof2aproof.ml108
-rw-r--r--plugins/xml/proofTree2Xml.ml421
-rw-r--r--plugins/xml/unshare.ml2
-rw-r--r--plugins/xml/unshare.mli2
-rw-r--r--plugins/xml/xml.ml42
-rw-r--r--plugins/xml/xml.mli4
-rw-r--r--plugins/xml/xmlcommand.ml48
-rw-r--r--plugins/xml/xmlcommand.mli4
-rw-r--r--plugins/xml/xmlentries.ml44
238 files changed, 19389 insertions, 12794 deletions
diff --git a/plugins/cc/ccalgo.ml b/plugins/cc/ccalgo.ml
index 3c40cfb9..1c021eee 100644
--- a/plugins/cc/ccalgo.ml
+++ b/plugins/cc/ccalgo.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ccalgo.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* This file implements the basic congruence-closure algorithm by *)
(* Downey,Sethi and Tarjan. *)
@@ -30,6 +28,7 @@ let debug f x =
let _=
let gdopt=
{ optsync=true;
+ optdepr=false;
optname="Congruence Verbose";
optkey=["Congruence";"Verbose"];
optread=(fun ()-> !cc_verbose);
@@ -105,6 +104,26 @@ type term=
| Appli of term*term
| Constructor of cinfo (* constructor arity + nhyps *)
+let rec term_equal t1 t2 =
+ match t1, t2 with
+ | Symb c1, Symb c2 -> eq_constr c1 c2
+ | Product (s1, t1), Product (s2, t2) -> s1 = s2 && t1 = t2
+ | Eps i1, Eps i2 -> id_ord i1 i2 = 0
+ | Appli (t1, u1), Appli (t2, u2) -> term_equal t1 t2 && term_equal u1 u2
+ | Constructor {ci_constr=c1; ci_arity=i1; ci_nhyps=j1},
+ Constructor {ci_constr=c2; ci_arity=i2; ci_nhyps=j2} ->
+ i1 = i2 && j1 = j2 && eq_constructor c1 c2
+ | _ -> t1 = t2
+
+open Hashtbl_alt.Combine
+
+let rec hash_term = function
+ | Symb c -> combine 1 (hash_constr c)
+ | Product (s1, s2) -> combine3 2 (Hashtbl.hash s1) (Hashtbl.hash s2)
+ | Eps i -> combine 3 (Hashtbl.hash i)
+ | Appli (t1, t2) -> combine3 4 (hash_term t1) (hash_term t2)
+ | Constructor {ci_constr=c; ci_arity=i; ci_nhyps=j} -> combine4 5 (Hashtbl.hash c) i j
+
type ccpattern =
PApp of term * ccpattern list (* arguments are reversed *)
| PVar of int
@@ -172,13 +191,32 @@ type node =
vertex:vertex;
term:term}
+module Constrhash = Hashtbl.Make
+ (struct type t = constr
+ let equal = eq_constr
+ let hash = hash_constr
+ end)
+module Typehash = Constrhash
+
+module Termhash = Hashtbl.Make
+ (struct type t = term
+ let equal = term_equal
+ let hash = hash_term
+ end)
+
+module Identhash = Hashtbl.Make
+ (struct type t = identifier
+ let equal = Pervasives.(=)
+ let hash = Hashtbl.hash
+ end)
+
type forest=
{mutable max_size:int;
mutable size:int;
mutable map: node array;
- axioms: (constr,term*term) Hashtbl.t;
+ axioms: (term*term) Constrhash.t;
mutable epsilons: pa_constructor list;
- syms:(term,int) Hashtbl.t}
+ syms: int Termhash.t}
type state =
{uf: forest;
@@ -189,10 +227,10 @@ type state =
mutable diseq: disequality list;
mutable quant: quant_eq list;
mutable pa_classes: Intset.t;
- q_history: (identifier,int array) Hashtbl.t;
+ q_history: (int array) Identhash.t;
mutable rew_depth:int;
mutable changed:bool;
- by_type: (types,Intset.t) Hashtbl.t;
+ by_type: Intset.t Typehash.t;
mutable gls:Proof_type.goal Tacmach.sigma}
let dummy_node =
@@ -207,8 +245,8 @@ let empty depth gls:state =
size=0;
map=Array.create init_size dummy_node;
epsilons=[];
- axioms=Hashtbl.create init_size;
- syms=Hashtbl.create init_size};
+ axioms=Constrhash.create init_size;
+ syms=Termhash.create init_size};
terms=Intset.empty;
combine=Queue.create ();
marks=Queue.create ();
@@ -216,9 +254,9 @@ let empty depth gls:state =
diseq=[];
quant=[];
pa_classes=Intset.empty;
- q_history=Hashtbl.create init_size;
+ q_history=Identhash.create init_size;
rew_depth=depth;
- by_type=Hashtbl.create init_size;
+ by_type=Constrhash.create init_size;
changed=false;
gls=gls}
@@ -366,7 +404,8 @@ let rec canonize_name c =
let build_subst uf subst =
Array.map (fun i ->
try term uf i
- with _ -> anomaly "incomplete matching") subst
+ with e when Errors.noncritical e ->
+ anomaly "incomplete matching") subst
let rec inst_pattern subst = function
PVar i ->
@@ -384,7 +423,7 @@ let pr_term t = str "[" ++
let rec add_term state t=
let uf=state.uf in
- try Hashtbl.find uf.syms t with
+ try Termhash.find uf.syms t with
Not_found ->
let b=next uf in
let typ = pf_type_of state.gls (constr_of_term t) in
@@ -430,10 +469,10 @@ let rec add_term state t=
term=t}
in
uf.map.(b)<-new_node;
- Hashtbl.add uf.syms t b;
- Hashtbl.replace state.by_type typ
+ Termhash.add uf.syms t b;
+ Typehash.replace state.by_type typ
(Intset.add b
- (try Hashtbl.find state.by_type typ with
+ (try Typehash.find state.by_type typ with
Not_found -> Intset.empty));
b
@@ -441,7 +480,7 @@ let add_equality state c s t=
let i = add_term state s in
let j = add_term state t in
Queue.add {lhs=i;rhs=j;rule=Axiom(c,false)} state.combine;
- Hashtbl.add state.uf.axioms c (s,t)
+ Constrhash.add state.uf.axioms c (s,t)
let add_disequality state from s t =
let i = add_term state s in
@@ -461,7 +500,7 @@ let add_quant state id pol (nvars,valid1,patt1,valid2,patt2) =
let is_redundant state id args =
try
let norm_args = Array.map (find state.uf) args in
- let prev_args = Hashtbl.find_all state.q_history id in
+ let prev_args = Identhash.find_all state.q_history id in
List.exists
(fun old_args ->
Util.array_for_all2 (fun i j -> i = find state.uf j)
@@ -476,7 +515,7 @@ let add_inst state (inst,int_subst) =
debug msgnl (str "discarding redundant (dis)equality")
else
begin
- Hashtbl.add state.q_history inst.qe_hyp_id int_subst;
+ Identhash.add state.q_history inst.qe_hyp_id int_subst;
let subst = build_subst (forest state) int_subst in
let prfhead= mkVar inst.qe_hyp_id in
let args = Array.map constr_of_term subst in
@@ -532,9 +571,9 @@ let union state i1 i2 eq=
let r1= get_representative state.uf i1
and r2= get_representative state.uf i2 in
link state.uf i1 i2 eq;
- Hashtbl.replace state.by_type r1.class_type
+ Constrhash.replace state.by_type r1.class_type
(Intset.remove i1
- (try Hashtbl.find state.by_type r1.class_type with
+ (try Constrhash.find state.by_type r1.class_type with
Not_found -> Intset.empty));
let f= Intset.union r1.fathers r2.fathers in
r2.weight<-Intset.cardinal f;
@@ -691,11 +730,9 @@ let __eps__ = id_of_string "_eps_"
let new_state_var typ state =
let id = pf_get_new_id __eps__ state.gls in
- state.gls<-
- {state.gls with it =
- {state.gls.it with evar_hyps =
- Environ.push_named_context_val (id,None,typ)
- state.gls.it.evar_hyps}};
+ let {it=gl ; sigma=sigma} = state.gls in
+ let gls = Goal.V82.new_goal_with sigma gl [id,None,typ] in
+ state.gls<- gls;
id
let complete_one_class state i=
@@ -763,14 +800,14 @@ let rec do_match state res pb_stack =
else (* mismatch for non-linear variable in pattern *) ()
| PApp (f,[]) ->
begin
- try let j=Hashtbl.find uf.syms f in
+ try let j=Termhash.find uf.syms f in
if find uf j =cl then
Stack.push {mp with mp_stack=remains} pb_stack
with Not_found -> ()
end
| PApp(f, ((last_arg::rem_args) as args)) ->
try
- let j=Hashtbl.find uf.syms f in
+ let j=Termhash.find uf.syms f in
let paf={fsym=j;fnargs=List.length args} in
let rep=get_representative uf cl in
let good_terms = PafMap.find paf rep.functions in
@@ -788,7 +825,7 @@ let rec do_match state res pb_stack =
let paf_of_patt syms = function
PVar _ -> invalid_arg "paf_of_patt: pattern is trivial"
| PApp (f,args) ->
- {fsym=Hashtbl.find syms f;
+ {fsym=Termhash.find syms f;
fnargs=List.length args}
let init_pb_stack state =
@@ -810,7 +847,7 @@ let init_pb_stack state =
| Trivial typ ->
begin
try
- Hashtbl.find state.by_type typ
+ Typehash.find state.by_type typ
with Not_found -> Intset.empty
end in
Intset.iter (fun i ->
@@ -833,7 +870,7 @@ let init_pb_stack state =
| Trivial typ ->
begin
try
- Hashtbl.find state.by_type typ
+ Typehash.find state.by_type typ
with Not_found -> Intset.empty
end in
Intset.iter (fun i ->
diff --git a/plugins/cc/ccalgo.mli b/plugins/cc/ccalgo.mli
index 8786c907..9653da2c 100644
--- a/plugins/cc/ccalgo.mli
+++ b/plugins/cc/ccalgo.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ccalgo.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util
open Term
open Names
@@ -24,6 +22,8 @@ type term =
| Appli of term*term
| Constructor of cinfo (* constructor arity + nhyps *)
+val term_equal : term -> term -> bool
+
type patt_kind =
Normal
| Trivial of types
@@ -66,13 +66,16 @@ type explanation =
| Contradiction of disequality
| Incomplete
+module Constrhash : Hashtbl.S with type key = constr
+module Termhash : Hashtbl.S with type key = term
+
val constr_of_term : term -> constr
val debug : (Pp.std_ppcmds -> unit) -> Pp.std_ppcmds -> unit
val forest : state -> forest
-val axioms : forest -> (constr, term * term) Hashtbl.t
+val axioms : forest -> (term * term) Constrhash.t
val epsilons : forest -> pa_constructor list
@@ -127,7 +130,7 @@ val do_match : state ->
val init_pb_stack : state -> matching_problem Stack.t
-val paf_of_patt : (term, int) Hashtbl.t -> ccpattern -> pa_fun
+val paf_of_patt : int Termhash.t -> ccpattern -> pa_fun
val find_instances : state -> (quant_eq * int array) list
diff --git a/plugins/cc/ccproof.ml b/plugins/cc/ccproof.ml
index 6981c5a0..c5bbd105 100644
--- a/plugins/cc/ccproof.ml
+++ b/plugins/cc/ccproof.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ccproof.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* This file uses the (non-compressed) union-find structure to generate *)
(* proof-trees that will be transformed into proof-terms in cctac.ml4 *)
@@ -45,7 +43,7 @@ let rec ptrans p1 p3=
| Congr(p1,p2), Trans({p_rule=Congr(p3,p4)},p5) ->
ptrans (pcongr (ptrans p1 p3) (ptrans p2 p4)) p5
| _, _ ->
- if p1.p_rhs = p3.p_lhs then
+ if term_equal p1.p_rhs p3.p_lhs then
{p_lhs=p1.p_lhs;
p_rhs=p3.p_rhs;
p_rule=Trans (p1,p3)}
@@ -70,13 +68,13 @@ let rec psym p =
| Congr (p1,p2)-> pcongr (psym p1) (psym p2)
let pax axioms s =
- let l,r = Hashtbl.find axioms s in
+ let l,r = Constrhash.find axioms s in
{p_lhs=l;
p_rhs=r;
p_rule=Ax s}
let psymax axioms s =
- let l,r = Hashtbl.find axioms s in
+ let l,r = Constrhash.find axioms s in
{p_lhs=r;
p_rhs=l;
p_rule=SymAx s}
diff --git a/plugins/cc/ccproof.mli b/plugins/cc/ccproof.mli
index a58637f9..b8a8d229 100644
--- a/plugins/cc/ccproof.mli
+++ b/plugins/cc/ccproof.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ccproof.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Ccalgo
open Names
open Term
diff --git a/plugins/cc/cctac.ml b/plugins/cc/cctac.ml
index 5b477b4d..764e36b0 100644
--- a/plugins/cc/cctac.ml
+++ b/plugins/cc/cctac.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: cctac.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* This file is the interface between the c-c algorithm and Coq *)
open Evd
@@ -20,7 +18,6 @@ open Nameops
open Inductiveops
open Declarations
open Term
-open Termops
open Tacmach
open Tactics
open Tacticals
@@ -38,11 +35,11 @@ let _f_equal = constant ["Init";"Logic"] "f_equal"
let _eq_rect = constant ["Init";"Logic"] "eq_rect"
-let _refl_equal = constant ["Init";"Logic"] "refl_equal"
+let _refl_equal = constant ["Init";"Logic"] "eq_refl"
-let _sym_eq = constant ["Init";"Logic"] "sym_eq"
+let _sym_eq = constant ["Init";"Logic"] "eq_sym"
-let _trans_eq = constant ["Init";"Logic"] "trans_eq"
+let _trans_eq = constant ["Init";"Logic"] "eq_trans"
let _eq = constant ["Init";"Logic"] "eq"
@@ -66,8 +63,8 @@ let rec decompose_term env sigma t=
let tf=decompose_term env sigma f in
let targs=Array.map (decompose_term env sigma) args in
Array.fold_left (fun s t->Appli (s,t)) tf targs
- | Prod (_,a,_b) when not (dependent (mkRel 1) _b) ->
- let b = pop _b in
+ | Prod (_,a,_b) when not (Termops.dependent (mkRel 1) _b) ->
+ let b = Termops.pop _b in
let sort_b = sf_of env sigma b in
let sort_a = sf_of env sigma a in
Appli(Appli(Product (sort_a,sort_b) ,
@@ -113,8 +110,8 @@ let rec pattern_of_constr env sigma c =
(array_map_to_list (pattern_of_constr env sigma) args) in
PApp (pf,List.rev pargs),
List.fold_left Intset.union Intset.empty lrels
- | Prod (_,a,_b) when not (dependent (mkRel 1) _b) ->
- let b =pop _b in
+ | Prod (_,a,_b) when not (Termops.dependent (mkRel 1) _b) ->
+ let b = Termops.pop _b in
let pa,sa = pattern_of_constr env sigma a in
let pb,sb = pattern_of_constr env sigma b in
let sort_b = sf_of env sigma b in
@@ -132,7 +129,9 @@ let non_trivial = function
let patterns_of_constr env sigma nrels term=
let f,args=
- try destApp (whd_delta env term) with _ -> raise Not_found in
+ try destApp (whd_delta env term)
+ with e when Errors.noncritical e -> raise Not_found
+ in
if eq_constr f (Lazy.force _eq) && (Array.length args)=3
then
let patt1,rels1 = pattern_of_constr env sigma args.(1)
@@ -214,9 +213,9 @@ let rec make_prb gls depth additionnal_terms =
neg_hyps:=(cid,nh):: !neg_hyps
| `Rule patts -> add_quant state id true patts
| `Nrule patts -> add_quant state id false patts
- end) (Environ.named_context_of_val gls.it.evar_hyps);
+ end) (Environ.named_context_of_val (Goal.V82.hyps gls.sigma gls.it));
begin
- match atom_of_constr env sigma gls.it.evar_concl with
+ match atom_of_constr env sigma (pf_concl gls) with
`Eq (t,a,b) -> add_disequality state Goal a b
| `Other g ->
List.iter
@@ -260,19 +259,19 @@ let rec proof_tac p gls =
| SymAx c ->
let l=constr_of_term p.p_lhs and
r=constr_of_term p.p_rhs in
- let typ = refresh_universes (pf_type_of gls l) in
+ let typ = Termops.refresh_universes (pf_type_of gls l) in
exact_check
(mkApp(Lazy.force _sym_eq,[|typ;r;l;c|])) gls
| Refl t ->
let lr = constr_of_term t in
- let typ = refresh_universes (pf_type_of gls lr) in
+ let typ = Termops.refresh_universes (pf_type_of gls lr) in
exact_check
(mkApp(Lazy.force _refl_equal,[|typ;constr_of_term t|])) gls
| Trans (p1,p2)->
let t1 = constr_of_term p1.p_lhs and
t2 = constr_of_term p1.p_rhs and
t3 = constr_of_term p2.p_rhs in
- let typ = refresh_universes (pf_type_of gls t2) in
+ let typ = Termops.refresh_universes (pf_type_of gls t2) in
let prf =
mkApp(Lazy.force _trans_eq,[|typ;t1;t2;t3;_M 1;_M 2|]) in
tclTHENS (refine prf) [(proof_tac p1);(proof_tac p2)] gls
@@ -281,9 +280,9 @@ let rec proof_tac p gls =
and tx1=constr_of_term p2.p_lhs
and tf2=constr_of_term p1.p_rhs
and tx2=constr_of_term p2.p_rhs in
- let typf = refresh_universes (pf_type_of gls tf1) in
- let typx = refresh_universes (pf_type_of gls tx1) in
- let typfx = refresh_universes (pf_type_of gls (mkApp (tf1,[|tx1|]))) in
+ let typf = Termops.refresh_universes (pf_type_of gls tf1) in
+ let typx = Termops.refresh_universes (pf_type_of gls tx1) in
+ let typfx = Termops.refresh_universes (pf_type_of gls (mkApp (tf1,[|tx1|]))) in
let id = pf_get_new_id (id_of_string "f") gls in
let appx1 = mkLambda(Name id,typf,mkApp(mkRel 1,[|tx1|])) in
let lemma1 =
@@ -311,8 +310,8 @@ let rec proof_tac p gls =
let ti=constr_of_term prf.p_lhs in
let tj=constr_of_term prf.p_rhs in
let default=constr_of_term p.p_lhs in
- let intype=refresh_universes (pf_type_of gls ti) in
- let outtype=refresh_universes (pf_type_of gls default) in
+ let intype = Termops.refresh_universes (pf_type_of gls ti) in
+ let outtype = Termops.refresh_universes (pf_type_of gls default) in
let special=mkRel (1+nargs-argind) in
let proj=build_projection intype outtype cstr special default gls in
let injt=
@@ -321,7 +320,7 @@ let rec proof_tac p gls =
let refute_tac c t1 t2 p gls =
let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
- let intype=refresh_universes (pf_type_of gls tt1) in
+ let intype = Termops.refresh_universes (pf_type_of gls tt1) in
let neweq=
mkApp(Lazy.force _eq,
[|intype;tt1;tt2|]) in
@@ -332,7 +331,7 @@ let refute_tac c t1 t2 p gls =
let convert_to_goal_tac c t1 t2 p gls =
let tt1=constr_of_term t1 and tt2=constr_of_term t2 in
- let sort=refresh_universes (pf_type_of gls tt2) in
+ let sort = Termops.refresh_universes (pf_type_of gls tt2) in
let neweq=mkApp(Lazy.force _eq,[|sort;tt1;tt2|]) in
let e=pf_get_new_id (id_of_string "e") gls in
let x=pf_get_new_id (id_of_string "X") gls in
@@ -352,14 +351,14 @@ let convert_to_hyp_tac c1 t1 c2 t2 p gls =
let discriminate_tac cstr p gls =
let t1=constr_of_term p.p_lhs and t2=constr_of_term p.p_rhs in
- let intype=refresh_universes (pf_type_of gls t1) in
+ let intype = Termops.refresh_universes (pf_type_of gls t1) in
let concl=pf_concl gls in
- let outsort=mkType (new_univ ()) in
+ let outsort = mkType (Termops.new_univ ()) in
let xid=pf_get_new_id (id_of_string "X") gls in
let tid=pf_get_new_id (id_of_string "t") gls in
let identity=mkLambda(Name xid,outsort,mkLambda(Name tid,mkRel 1,mkRel 1)) in
let trivial=pf_type_of gls identity in
- let outtype=mkType (new_univ ()) in
+ let outtype = mkType (Termops.new_univ ()) in
let pred=mkLambda(Name xid,outtype,mkRel 1) in
let hid=pf_get_new_id (id_of_string "Heq") gls in
let proj=build_projection intype outtype cstr trivial concl gls in
@@ -414,7 +413,7 @@ let cc_tactic depth additionnal_terms gls=
str "\"congruence with (" ++
prlist_with_sep
(fun () -> str ")" ++ pr_spc () ++ str "(")
- (print_constr_env (pf_env gls))
+ (Termops.print_constr_env (pf_env gls))
terms_to_complete ++
str ")\","
end);
@@ -456,7 +455,7 @@ let simple_reflexivity () = apply (Lazy.force _refl_equal)
let f_equal gl =
let cut_eq c1 c2 =
- let ty = refresh_universes (pf_type_of gl c1) in
+ let ty = Termops.refresh_universes (pf_type_of gl c1) in
tclTHENTRY
(Tactics.cut (mkApp (Lazy.force _eq, [|ty; c1; c2|])))
(simple_reflexivity ())
diff --git a/plugins/cc/cctac.mli b/plugins/cc/cctac.mli
index b3d5c16b..365c172c 100644
--- a/plugins/cc/cctac.mli
+++ b/plugins/cc/cctac.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: cctac.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Proof_type
diff --git a/plugins/cc/g_congruence.ml4 b/plugins/cc/g_congruence.ml4
index eb58c5eb..c9805f02 100644
--- a/plugins/cc/g_congruence.ml4
+++ b/plugins/cc/g_congruence.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_congruence.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Cctac
open Tactics
open Tacticals
diff --git a/plugins/decl_mode/decl_expr.mli b/plugins/decl_mode/decl_expr.mli
new file mode 100644
index 00000000..69b0a0e3
--- /dev/null
+++ b/plugins/decl_mode/decl_expr.mli
@@ -0,0 +1,103 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Names
+open Util
+open Tacexpr
+
+type 'it statement =
+ {st_label:name;
+ st_it:'it}
+
+type thesis_kind =
+ Plain
+ | For of identifier
+
+type 'this or_thesis =
+ This of 'this
+ | Thesis of thesis_kind
+
+type side = Lhs | Rhs
+
+type elim_type =
+ ET_Case_analysis
+ | ET_Induction
+
+type block_type =
+ B_proof
+ | B_claim
+ | B_focus
+ | B_elim of elim_type
+
+type ('it,'constr,'tac) cut =
+ {cut_stat: 'it;
+ cut_by: 'constr list option;
+ cut_using: 'tac option}
+
+type ('var,'constr) hyp =
+ Hvar of 'var
+ | Hprop of 'constr statement
+
+type ('constr,'tac) casee =
+ Real of 'constr
+ | Virtual of ('constr statement,'constr,'tac) cut
+
+type ('hyp,'constr,'pat,'tac) bare_proof_instr =
+ | Pthen of ('hyp,'constr,'pat,'tac) bare_proof_instr
+ | Pthus of ('hyp,'constr,'pat,'tac) bare_proof_instr
+ | Phence of ('hyp,'constr,'pat,'tac) bare_proof_instr
+ | Pcut of ('constr or_thesis statement,'constr,'tac) cut
+ | Prew of side * ('constr statement,'constr,'tac) cut
+ | Psuffices of ((('hyp,'constr) hyp list * 'constr or_thesis),'constr,'tac) cut
+ | Passume of ('hyp,'constr) hyp list
+ | Plet of ('hyp,'constr) hyp list
+ | Pgiven of ('hyp,'constr) hyp list
+ | Pconsider of 'constr*('hyp,'constr) hyp list
+ | Pclaim of 'constr statement
+ | Pfocus of 'constr statement
+ | Pdefine of identifier * 'hyp list * 'constr
+ | Pcast of identifier or_thesis * 'constr
+ | Psuppose of ('hyp,'constr) hyp list
+ | Pcase of 'hyp list*'pat*(('hyp,'constr or_thesis) hyp list)
+ | Ptake of 'constr list
+ | Pper of elim_type * ('constr,'tac) casee
+ | Pend of block_type
+ | Pescape
+
+type emphasis = int
+
+type ('hyp,'constr,'pat,'tac) gen_proof_instr=
+ {emph: emphasis;
+ instr: ('hyp,'constr,'pat,'tac) bare_proof_instr }
+
+
+type raw_proof_instr =
+ ((identifier*(Topconstr.constr_expr option)) located,
+ Topconstr.constr_expr,
+ Topconstr.cases_pattern_expr,
+ raw_tactic_expr) gen_proof_instr
+
+type glob_proof_instr =
+ ((identifier*(Genarg.glob_constr_and_expr option)) located,
+ Genarg.glob_constr_and_expr,
+ Topconstr.cases_pattern_expr,
+ Tacexpr.glob_tactic_expr) gen_proof_instr
+
+type proof_pattern =
+ {pat_vars: Term.types statement list;
+ pat_aliases: (Term.constr*Term.types) statement list;
+ pat_constr: Term.constr;
+ pat_typ: Term.types;
+ pat_pat: Glob_term.cases_pattern;
+ pat_expr: Topconstr.cases_pattern_expr}
+
+type proof_instr =
+ (Term.constr statement,
+ Term.constr,
+ proof_pattern,
+ Tacexpr.glob_tactic_expr) gen_proof_instr
diff --git a/plugins/decl_mode/decl_interp.ml b/plugins/decl_mode/decl_interp.ml
new file mode 100644
index 00000000..7637fed2
--- /dev/null
+++ b/plugins/decl_mode/decl_interp.ml
@@ -0,0 +1,471 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Util
+open Names
+open Topconstr
+open Tacinterp
+open Tacmach
+open Decl_expr
+open Decl_mode
+open Pretyping.Default
+open Glob_term
+open Term
+open Pp
+open Compat
+
+(* INTERN *)
+
+let glob_app (loc,hd,args) = if args =[] then hd else GApp(loc,hd,args)
+
+let intern_justification_items globs =
+ Option.map (List.map (intern_constr globs))
+
+let intern_justification_method globs =
+ Option.map (intern_pure_tactic globs)
+
+let intern_statement intern_it globs st =
+ {st_label=st.st_label;
+ st_it=intern_it globs st.st_it}
+
+let intern_no_bind intern_it globs x =
+ globs,intern_it globs x
+
+let intern_constr_or_thesis globs = function
+ Thesis n -> Thesis n
+ | This c -> This (intern_constr globs c)
+
+let add_var id globs=
+ let l1,l2=globs.ltacvars in
+ {globs with ltacvars= (id::l1),(id::l2)}
+
+let add_name nam globs=
+ match nam with
+ Anonymous -> globs
+ | Name id -> add_var id globs
+
+let intern_hyp iconstr globs = function
+ Hvar (loc,(id,topt)) -> add_var id globs,
+ Hvar (loc,(id,Option.map (intern_constr globs) topt))
+ | Hprop st -> add_name st.st_label globs,
+ Hprop (intern_statement iconstr globs st)
+
+let intern_hyps iconstr globs hyps =
+ snd (list_fold_map (intern_hyp iconstr) globs hyps)
+
+let intern_cut intern_it globs cut=
+ let nglobs,nstat=intern_it globs cut.cut_stat in
+ {cut_stat=nstat;
+ cut_by=intern_justification_items nglobs cut.cut_by;
+ cut_using=intern_justification_method nglobs cut.cut_using}
+
+let intern_casee globs = function
+ Real c -> Real (intern_constr globs c)
+ | Virtual cut -> Virtual
+ (intern_cut (intern_no_bind (intern_statement intern_constr)) globs cut)
+
+let intern_hyp_list args globs =
+ let intern_one globs (loc,(id,opttyp)) =
+ (add_var id globs),
+ (loc,(id,Option.map (intern_constr globs) opttyp)) in
+ list_fold_map intern_one globs args
+
+let intern_suffices_clause globs (hyps,c) =
+ let nglobs,nhyps = list_fold_map (intern_hyp intern_constr) globs hyps in
+ nglobs,(nhyps,intern_constr_or_thesis nglobs c)
+
+let intern_fundecl args body globs=
+ let nglobs,nargs = intern_hyp_list args globs in
+ nargs,intern_constr nglobs body
+
+let rec add_vars_of_simple_pattern globs = function
+ CPatAlias (loc,p,id) ->
+ add_vars_of_simple_pattern (add_var id globs) p
+(* Loc.raise loc
+ (UserError ("simple_pattern",str "\"as\" is not allowed here"))*)
+ | CPatOr (loc, _)->
+ Loc.raise loc
+ (UserError ("simple_pattern",str "\"(_ | _)\" is not allowed here"))
+ | CPatDelimiters (_,_,p) ->
+ add_vars_of_simple_pattern globs p
+ | CPatCstr (_,_,pl) | CPatCstrExpl (_,_,pl) ->
+ List.fold_left add_vars_of_simple_pattern globs pl
+ | CPatNotation(_,_,(pl,pll)) ->
+ List.fold_left add_vars_of_simple_pattern globs (List.flatten (pl::pll))
+ | CPatAtom (_,Some (Libnames.Ident (_,id))) -> add_var id globs
+ | _ -> globs
+
+let rec intern_bare_proof_instr globs = function
+ Pthus i -> Pthus (intern_bare_proof_instr globs i)
+ | Pthen i -> Pthen (intern_bare_proof_instr globs i)
+ | Phence i -> Phence (intern_bare_proof_instr globs i)
+ | Pcut c -> Pcut
+ (intern_cut
+ (intern_no_bind (intern_statement intern_constr_or_thesis)) globs c)
+ | Psuffices c ->
+ Psuffices (intern_cut intern_suffices_clause globs c)
+ | Prew (s,c) -> Prew
+ (s,intern_cut
+ (intern_no_bind (intern_statement intern_constr)) globs c)
+ | Psuppose hyps -> Psuppose (intern_hyps intern_constr globs hyps)
+ | Pcase (params,pat,hyps) ->
+ let nglobs,nparams = intern_hyp_list params globs in
+ let nnglobs= add_vars_of_simple_pattern nglobs pat in
+ let nhyps = intern_hyps intern_constr_or_thesis nnglobs hyps in
+ Pcase (nparams,pat,nhyps)
+ | Ptake witl -> Ptake (List.map (intern_constr globs) witl)
+ | Pconsider (c,hyps) -> Pconsider (intern_constr globs c,
+ intern_hyps intern_constr globs hyps)
+ | Pper (et,c) -> Pper (et,intern_casee globs c)
+ | Pend bt -> Pend bt
+ | Pescape -> Pescape
+ | Passume hyps -> Passume (intern_hyps intern_constr globs hyps)
+ | Pgiven hyps -> Pgiven (intern_hyps intern_constr globs hyps)
+ | Plet hyps -> Plet (intern_hyps intern_constr globs hyps)
+ | Pclaim st -> Pclaim (intern_statement intern_constr globs st)
+ | Pfocus st -> Pfocus (intern_statement intern_constr globs st)
+ | Pdefine (id,args,body) ->
+ let nargs,nbody = intern_fundecl args body globs in
+ Pdefine (id,nargs,nbody)
+ | Pcast (id,typ) ->
+ Pcast (id,intern_constr globs typ)
+
+let rec intern_proof_instr globs instr=
+ {emph = instr.emph;
+ instr = intern_bare_proof_instr globs instr.instr}
+
+(* INTERP *)
+
+let interp_justification_items sigma env =
+ Option.map (List.map (fun c ->understand sigma env (fst c)))
+
+let interp_constr check_sort sigma env c =
+ if check_sort then
+ understand_type sigma env (fst c)
+ else
+ understand sigma env (fst c)
+
+let special_whd env =
+ let infos=Closure.create_clos_infos Closure.betadeltaiota env in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+let _eq = Libnames.constr_of_global (Coqlib.glob_eq)
+
+let decompose_eq env id =
+ let typ = Environ.named_type id env in
+ let whd = special_whd env typ in
+ match kind_of_term whd with
+ App (f,args)->
+ if eq_constr f _eq && (Array.length args)=3
+ then args.(0)
+ else error "Previous step is not an equality."
+ | _ -> error "Previous step is not an equality."
+
+let get_eq_typ info env =
+ let typ = decompose_eq env (get_last env) in
+ typ
+
+let interp_constr_in_type typ sigma env c =
+ understand sigma env (fst c) ~expected_type:typ
+
+let interp_statement interp_it sigma env st =
+ {st_label=st.st_label;
+ st_it=interp_it sigma env st.st_it}
+
+let interp_constr_or_thesis check_sort sigma env = function
+ Thesis n -> Thesis n
+ | This c -> This (interp_constr check_sort sigma env c)
+
+let abstract_one_hyp inject h glob =
+ match h with
+ Hvar (loc,(id,None)) ->
+ GProd (dummy_loc,Name id, Explicit, GHole (loc,Evd.BinderType (Name id)), glob)
+ | Hvar (loc,(id,Some typ)) ->
+ GProd (dummy_loc,Name id, Explicit, fst typ, glob)
+ | Hprop st ->
+ GProd (dummy_loc,st.st_label, Explicit, inject st.st_it, glob)
+
+let glob_constr_of_hyps inject hyps head =
+ List.fold_right (abstract_one_hyp inject) hyps head
+
+let glob_prop = GSort (dummy_loc,GProp Null)
+
+let rec match_hyps blend names constr = function
+ [] -> [],substl names constr
+ | hyp::q ->
+ let (name,typ,body)=destProd constr in
+ let st= {st_label=name;st_it=substl names typ} in
+ let qnames=
+ match name with
+ Anonymous -> mkMeta 0 :: names
+ | Name id -> mkVar id :: names in
+ let qhyp = match hyp with
+ Hprop st' -> Hprop (blend st st')
+ | Hvar _ -> Hvar st in
+ let rhyps,head = match_hyps blend qnames body q in
+ qhyp::rhyps,head
+
+let interp_hyps_gen inject blend sigma env hyps head =
+ let constr=understand sigma env (glob_constr_of_hyps inject hyps head) in
+ match_hyps blend [] constr hyps
+
+let interp_hyps sigma env hyps = fst (interp_hyps_gen fst (fun x _ -> x) sigma env hyps glob_prop)
+
+let dummy_prefix= id_of_string "__"
+
+let rec deanonymize ids =
+ function
+ PatVar (loc,Anonymous) ->
+ let (found,known) = !ids in
+ let new_id=Namegen.next_ident_away dummy_prefix known in
+ let _= ids:= (loc,new_id) :: found , new_id :: known in
+ PatVar (loc,Name new_id)
+ | PatVar (loc,Name id) as pat ->
+ let (found,known) = !ids in
+ let _= ids:= (loc,id) :: found , known in
+ pat
+ | PatCstr(loc,cstr,lpat,nam) ->
+ PatCstr(loc,cstr,List.map (deanonymize ids) lpat,nam)
+
+let rec glob_of_pat =
+ function
+ PatVar (loc,Anonymous) -> anomaly "Anonymous pattern variable"
+ | PatVar (loc,Name id) ->
+ GVar (loc,id)
+ | PatCstr(loc,((ind,_) as cstr),lpat,_) ->
+ let mind= fst (Global.lookup_inductive ind) in
+ let rec add_params n q =
+ if n<=0 then q else
+ add_params (pred n) (GHole(dummy_loc,
+ Evd.TomatchTypeParameter(ind,n))::q) in
+ let args = List.map glob_of_pat lpat in
+ glob_app(loc,GRef(dummy_loc,Libnames.ConstructRef cstr),
+ add_params mind.Declarations.mind_nparams args)
+
+let prod_one_hyp = function
+ (loc,(id,None)) ->
+ (fun glob ->
+ GProd (dummy_loc,Name id, Explicit,
+ GHole (loc,Evd.BinderType (Name id)), glob))
+ | (loc,(id,Some typ)) ->
+ (fun glob ->
+ GProd (dummy_loc,Name id, Explicit, fst typ, glob))
+
+let prod_one_id (loc,id) glob =
+ GProd (dummy_loc,Name id, Explicit,
+ GHole (loc,Evd.BinderType (Name id)), glob)
+
+let let_in_one_alias (id,pat) glob =
+ GLetIn (dummy_loc,Name id, glob_of_pat pat, glob)
+
+let rec bind_primary_aliases map pat =
+ match pat with
+ PatVar (_,_) -> map
+ | PatCstr(loc,_,lpat,nam) ->
+ let map1 =
+ match nam with
+ Anonymous -> map
+ | Name id -> (id,pat)::map
+ in
+ List.fold_left bind_primary_aliases map1 lpat
+
+let bind_secondary_aliases map subst =
+ List.fold_left (fun map (ids,idp) -> (ids,List.assoc idp map)::map) map subst
+
+let bind_aliases patvars subst patt =
+ let map = bind_primary_aliases [] patt in
+ let map1 = bind_secondary_aliases map subst in
+ List.rev map1
+
+let interp_pattern env pat_expr =
+ let patvars,pats = Constrintern.intern_pattern env pat_expr in
+ match pats with
+ [] -> anomaly "empty pattern list"
+ | [subst,patt] ->
+ (patvars,bind_aliases patvars subst patt,patt)
+ | _ -> anomaly "undetected disjunctive pattern"
+
+let rec match_args dest names constr = function
+ [] -> [],names,substl names constr
+ | _::q ->
+ let (name,typ,body)=dest constr in
+ let st={st_label=name;st_it=substl names typ} in
+ let qnames=
+ match name with
+ Anonymous -> assert false
+ | Name id -> mkVar id :: names in
+ let args,bnames,body = match_args dest qnames body q in
+ st::args,bnames,body
+
+let rec match_aliases names constr = function
+ [] -> [],names,substl names constr
+ | _::q ->
+ let (name,c,typ,body)=destLetIn constr in
+ let st={st_label=name;st_it=(substl names c,substl names typ)} in
+ let qnames=
+ match name with
+ Anonymous -> assert false
+ | Name id -> mkVar id :: names in
+ let args,bnames,body = match_aliases qnames body q in
+ st::args,bnames,body
+
+let detype_ground c = Detyping.detype false [] [] c
+
+let interp_cases info sigma env params (pat:cases_pattern_expr) hyps =
+ let et,pinfo =
+ match info.pm_stack with
+ Per(et,pi,_,_)::_ -> et,pi
+ | _ -> error "No proof per cases/induction/inversion in progress." in
+ let mib,oib=Global.lookup_inductive pinfo.per_ind in
+ let num_params = pinfo.per_nparams in
+ let _ =
+ let expected = mib.Declarations.mind_nparams - num_params in
+ if List.length params <> expected then
+ errorlabstrm "suppose it is"
+ (str "Wrong number of extra arguments: " ++
+ (if expected = 0 then str "none" else int expected) ++ spc () ++
+ str "expected.") in
+ let app_ind =
+ let rind = GRef (dummy_loc,Libnames.IndRef pinfo.per_ind) in
+ let rparams = List.map detype_ground pinfo.per_params in
+ let rparams_rec =
+ List.map
+ (fun (loc,(id,_)) ->
+ GVar (loc,id)) params in
+ let dum_args=
+ list_tabulate (fun _ -> GHole (dummy_loc,Evd.QuestionMark (Evd.Define false)))
+ oib.Declarations.mind_nrealargs in
+ glob_app(dummy_loc,rind,rparams@rparams_rec@dum_args) in
+ let pat_vars,aliases,patt = interp_pattern env pat in
+ let inject = function
+ Thesis (Plain) -> Glob_term.GSort(dummy_loc,GProp Null)
+ | Thesis (For rec_occ) ->
+ if not (List.mem rec_occ pat_vars) then
+ errorlabstrm "suppose it is"
+ (str "Variable " ++ Nameops.pr_id rec_occ ++
+ str " does not occur in pattern.");
+ Glob_term.GSort(dummy_loc,GProp Null)
+ | This (c,_) -> c in
+ let term1 = glob_constr_of_hyps inject hyps glob_prop in
+ let loc_ids,npatt =
+ let rids=ref ([],pat_vars) in
+ let npatt= deanonymize rids patt in
+ List.rev (fst !rids),npatt in
+ let term2 =
+ GLetIn(dummy_loc,Anonymous,
+ GCast(dummy_loc,glob_of_pat npatt,
+ CastConv (DEFAULTcast,app_ind)),term1) in
+ let term3=List.fold_right let_in_one_alias aliases term2 in
+ let term4=List.fold_right prod_one_id loc_ids term3 in
+ let term5=List.fold_right prod_one_hyp params term4 in
+ let constr = understand sigma env term5 in
+ let tparams,nam4,rest4 = match_args destProd [] constr params in
+ let tpatvars,nam3,rest3 = match_args destProd nam4 rest4 loc_ids in
+ let taliases,nam2,rest2 = match_aliases nam3 rest3 aliases in
+ let (_,pat_pat,pat_typ,rest1) = destLetIn rest2 in
+ let blend st st' =
+ match st'.st_it with
+ Thesis nam -> {st_it=Thesis nam;st_label=st'.st_label}
+ | This _ -> {st_it = This st.st_it;st_label=st.st_label} in
+ let thyps = fst (match_hyps blend nam2 (Termops.pop rest1) hyps) in
+ tparams,{pat_vars=tpatvars;
+ pat_aliases=taliases;
+ pat_constr=pat_pat;
+ pat_typ=pat_typ;
+ pat_pat=patt;
+ pat_expr=pat},thyps
+
+let interp_cut interp_it sigma env cut=
+ let nenv,nstat = interp_it sigma env cut.cut_stat in
+ {cut with
+ cut_stat=nstat;
+ cut_by=interp_justification_items sigma nenv cut.cut_by}
+
+let interp_no_bind interp_it sigma env x =
+ env,interp_it sigma env x
+
+let interp_suffices_clause sigma env (hyps,cot)=
+ let (locvars,_) as res =
+ match cot with
+ This (c,_) ->
+ let nhyps,nc = interp_hyps_gen fst (fun x _ -> x) sigma env hyps c in
+ nhyps,This nc
+ | Thesis Plain as th -> interp_hyps sigma env hyps,th
+ | Thesis (For n) -> error "\"thesis for\" is not applicable here." in
+ let push_one hyp env0 =
+ match hyp with
+ (Hprop st | Hvar st) ->
+ match st.st_label with
+ Name id -> Environ.push_named (id,None,st.st_it) env0
+ | _ -> env in
+ let nenv = List.fold_right push_one locvars env in
+ nenv,res
+
+let interp_casee sigma env = function
+ Real c -> Real (understand sigma env (fst c))
+ | Virtual cut -> Virtual (interp_cut (interp_no_bind (interp_statement (interp_constr true))) sigma env cut)
+
+let abstract_one_arg = function
+ (loc,(id,None)) ->
+ (fun glob ->
+ GLambda (dummy_loc,Name id, Explicit,
+ GHole (loc,Evd.BinderType (Name id)), glob))
+ | (loc,(id,Some typ)) ->
+ (fun glob ->
+ GLambda (dummy_loc,Name id, Explicit, fst typ, glob))
+
+let glob_constr_of_fun args body =
+ List.fold_right abstract_one_arg args (fst body)
+
+let interp_fun sigma env args body =
+ let constr=understand sigma env (glob_constr_of_fun args body) in
+ match_args destLambda [] constr args
+
+let rec interp_bare_proof_instr info (sigma:Evd.evar_map) (env:Environ.env) = function
+ Pthus i -> Pthus (interp_bare_proof_instr info sigma env i)
+ | Pthen i -> Pthen (interp_bare_proof_instr info sigma env i)
+ | Phence i -> Phence (interp_bare_proof_instr info sigma env i)
+ | Pcut c -> Pcut (interp_cut
+ (interp_no_bind (interp_statement
+ (interp_constr_or_thesis true)))
+ sigma env c)
+ | Psuffices c ->
+ Psuffices (interp_cut interp_suffices_clause sigma env c)
+ | Prew (s,c) -> Prew (s,interp_cut
+ (interp_no_bind (interp_statement
+ (interp_constr_in_type (get_eq_typ info env))))
+ sigma env c)
+
+ | Psuppose hyps -> Psuppose (interp_hyps sigma env hyps)
+ | Pcase (params,pat,hyps) ->
+ let tparams,tpat,thyps = interp_cases info sigma env params pat hyps in
+ Pcase (tparams,tpat,thyps)
+ | Ptake witl ->
+ Ptake (List.map (fun c -> understand sigma env (fst c)) witl)
+ | Pconsider (c,hyps) -> Pconsider (interp_constr false sigma env c,
+ interp_hyps sigma env hyps)
+ | Pper (et,c) -> Pper (et,interp_casee sigma env c)
+ | Pend bt -> Pend bt
+ | Pescape -> Pescape
+ | Passume hyps -> Passume (interp_hyps sigma env hyps)
+ | Pgiven hyps -> Pgiven (interp_hyps sigma env hyps)
+ | Plet hyps -> Plet (interp_hyps sigma env hyps)
+ | Pclaim st -> Pclaim (interp_statement (interp_constr true) sigma env st)
+ | Pfocus st -> Pfocus (interp_statement (interp_constr true) sigma env st)
+ | Pdefine (id,args,body) ->
+ let nargs,_,nbody = interp_fun sigma env args body in
+ Pdefine (id,nargs,nbody)
+ | Pcast (id,typ) ->
+ Pcast(id,interp_constr true sigma env typ)
+
+let rec interp_proof_instr info sigma env instr=
+ {emph = instr.emph;
+ instr = interp_bare_proof_instr info sigma env instr.instr}
+
+
+
diff --git a/plugins/decl_mode/decl_interp.mli b/plugins/decl_mode/decl_interp.mli
new file mode 100644
index 00000000..bd6ed064
--- /dev/null
+++ b/plugins/decl_mode/decl_interp.mli
@@ -0,0 +1,16 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Tacinterp
+open Decl_expr
+open Mod_subst
+
+
+val intern_proof_instr : glob_sign -> raw_proof_instr -> glob_proof_instr
+val interp_proof_instr : Decl_mode.pm_info ->
+ Evd.evar_map -> Environ.env -> glob_proof_instr -> proof_instr
diff --git a/plugins/decl_mode/decl_mode.ml b/plugins/decl_mode/decl_mode.ml
new file mode 100644
index 00000000..da88d48d
--- /dev/null
+++ b/plugins/decl_mode/decl_mode.ml
@@ -0,0 +1,123 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Names
+open Term
+open Evd
+open Util
+
+
+let daimon_flag = ref false
+
+let set_daimon_flag () = daimon_flag:=true
+let clear_daimon_flag () = daimon_flag:=false
+let get_daimon_flag () = !daimon_flag
+
+
+
+(* Information associated to goals. *)
+open Store.Field
+
+type split_tree=
+ Skip_patt of Idset.t * split_tree
+ | Split_patt of Idset.t * inductive *
+ (bool array * (Idset.t * split_tree) option) array
+ | Close_patt of split_tree
+ | End_patt of (identifier * (int * int))
+
+type elim_kind =
+ EK_dep of split_tree
+ | EK_nodep
+ | EK_unknown
+
+type recpath = int option*Declarations.wf_paths
+
+type per_info =
+ {per_casee:constr;
+ per_ctype:types;
+ per_ind:inductive;
+ per_pred:constr;
+ per_args:constr list;
+ per_params:constr list;
+ per_nparams:int;
+ per_wf:recpath}
+
+type stack_info =
+ Per of Decl_expr.elim_type * per_info * elim_kind * identifier list
+ | Suppose_case
+ | Claim
+ | Focus_claim
+
+type pm_info =
+ { pm_stack : stack_info list}
+let info = Store.field ()
+
+
+(* Current proof mode *)
+
+type command_mode =
+ Mode_tactic
+ | Mode_proof
+ | Mode_none
+
+let mode_of_pftreestate pts =
+ (* spiwack: it used to be "top_goal_..." but this should be fine *)
+ let { it = goals ; sigma = sigma } = Proof.V82.subgoals pts in
+ let goal = List.hd goals in
+ if info.get (Goal.V82.extra sigma goal) = None then
+ Mode_tactic
+ else
+ Mode_proof
+
+let get_current_mode () =
+ try
+ mode_of_pftreestate (Pfedit.get_pftreestate ())
+ with e when Errors.noncritical e -> Mode_none
+
+let check_not_proof_mode str =
+ if get_current_mode () = Mode_proof then
+ error str
+
+let get_info sigma gl=
+ match info.get (Goal.V82.extra sigma gl) with
+ | None -> invalid_arg "get_info"
+ | Some pm -> pm
+
+let try_get_info sigma gl =
+ info.get (Goal.V82.extra sigma gl)
+
+let get_stack pts =
+ let { it = goals ; sigma = sigma } = Proof.V82.subgoals pts in
+ let info = get_info sigma (List.hd goals) in
+ info.pm_stack
+
+
+let proof_focus = Proof.new_focus_kind ()
+let proof_cond = Proof.no_cond proof_focus
+
+let focus p =
+ let inf = get_stack p in
+ Proof.focus proof_cond inf 1 p
+
+let unfocus = Proof.unfocus proof_focus
+
+let maximal_unfocus = Proof_global.maximal_unfocus proof_focus
+
+let get_top_stack pts =
+ try
+ Proof.get_at_focus proof_focus pts
+ with Proof.NoSuchFocus ->
+ let { it = gl ; sigma = sigma } = Proof.V82.top_goal pts in
+ let info = get_info sigma gl in
+ info.pm_stack
+
+let get_last env =
+ try
+ let (id,_,_) = List.hd (Environ.named_context env) in id
+ with Invalid_argument _ -> error "no previous statement to use"
+
diff --git a/plugins/decl_mode/decl_mode.mli b/plugins/decl_mode/decl_mode.mli
new file mode 100644
index 00000000..f23a97b4
--- /dev/null
+++ b/plugins/decl_mode/decl_mode.mli
@@ -0,0 +1,78 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Names
+open Term
+open Evd
+open Tacmach
+
+val set_daimon_flag : unit -> unit
+val clear_daimon_flag : unit -> unit
+val get_daimon_flag : unit -> bool
+
+type command_mode =
+ Mode_tactic
+ | Mode_proof
+ | Mode_none
+
+val mode_of_pftreestate : Proof.proof -> command_mode
+
+val get_current_mode : unit -> command_mode
+
+val check_not_proof_mode : string -> unit
+
+type split_tree=
+ Skip_patt of Idset.t * split_tree
+ | Split_patt of Idset.t * inductive *
+ (bool array * (Idset.t * split_tree) option) array
+ | Close_patt of split_tree
+ | End_patt of (identifier * (int * int))
+
+type elim_kind =
+ EK_dep of split_tree
+ | EK_nodep
+ | EK_unknown
+
+type recpath = int option*Declarations.wf_paths
+
+type per_info =
+ {per_casee:constr;
+ per_ctype:types;
+ per_ind:inductive;
+ per_pred:constr;
+ per_args:constr list;
+ per_params:constr list;
+ per_nparams:int;
+ per_wf:recpath}
+
+type stack_info =
+ Per of Decl_expr.elim_type * per_info * elim_kind * Names.identifier list
+ | Suppose_case
+ | Claim
+ | Focus_claim
+
+type pm_info =
+ {pm_stack : stack_info list }
+
+val info : pm_info Store.Field.t
+
+val get_info : Evd.evar_map -> Proof_type.goal -> pm_info
+
+val try_get_info : Evd.evar_map -> Proof_type.goal -> pm_info option
+
+val get_stack : Proof.proof -> stack_info list
+
+val get_top_stack : Proof.proof -> stack_info list
+
+val get_last: Environ.env -> identifier
+
+val focus : Proof.proof -> unit
+
+val unfocus : Proof.proof -> unit
+
+val maximal_unfocus : Proof.proof -> unit
diff --git a/plugins/decl_mode/decl_mode_plugin.mllib b/plugins/decl_mode/decl_mode_plugin.mllib
new file mode 100644
index 00000000..39342dbd
--- /dev/null
+++ b/plugins/decl_mode/decl_mode_plugin.mllib
@@ -0,0 +1,6 @@
+Decl_mode
+Decl_interp
+Decl_proof_instr
+Ppdecl_proof
+G_decl_mode
+Decl_mode_plugin_mod
diff --git a/plugins/decl_mode/decl_proof_instr.ml b/plugins/decl_mode/decl_proof_instr.ml
new file mode 100644
index 00000000..ab161b35
--- /dev/null
+++ b/plugins/decl_mode/decl_proof_instr.ml
@@ -0,0 +1,1504 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Util
+open Pp
+open Evd
+
+open Refiner
+open Proof_type
+open Tacmach
+open Tacinterp
+open Decl_expr
+open Decl_mode
+open Decl_interp
+open Glob_term
+open Names
+open Nameops
+open Declarations
+open Tactics
+open Tacticals
+open Term
+open Termops
+open Namegen
+open Reductionops
+open Goptions
+
+
+(* Strictness option *)
+
+let get_its_info gls = get_info gls.sigma gls.it
+
+let get_strictness,set_strictness =
+ let strictness = ref false in
+ (fun () -> (!strictness)),(fun b -> strictness:=b)
+
+let _ =
+ declare_bool_option
+ { optsync = true;
+ optdepr = false;
+ optname = "strict mode";
+ optkey = ["Strict";"Proofs"];
+ optread = get_strictness;
+ optwrite = set_strictness }
+
+let tcl_change_info_gen info_gen =
+ (fun gls ->
+ let concl = pf_concl gls in
+ let hyps = Goal.V82.hyps (project gls) (sig_it gls) in
+ let extra = Goal.V82.extra (project gls) (sig_it gls) in
+ let (gl,ev,sigma) = Goal.V82.mk_goal (project gls) hyps concl (info_gen extra) in
+ let sigma = Goal.V82.partial_solution sigma (sig_it gls) ev in
+ { it = [gl] ; sigma= sigma } )
+
+open Store.Field
+
+let tcl_change_info info gls =
+ let info_gen = Decl_mode.info.set info in
+ tcl_change_info_gen info_gen gls
+
+let tcl_erase_info gls = tcl_change_info_gen (Decl_mode.info.remove) gls
+
+let special_whd gl=
+ let infos=Closure.create_clos_infos Closure.betadeltaiota (pf_env gl) in
+ (fun t -> Closure.whd_val infos (Closure.inject t))
+
+let special_nf gl=
+ let infos=Closure.create_clos_infos Closure.betaiotazeta (pf_env gl) in
+ (fun t -> Closure.norm_val infos (Closure.inject t))
+
+let is_good_inductive env ind =
+ let mib,oib = Inductive.lookup_mind_specif env ind in
+ oib.mind_nrealargs = 0 && not (Inductiveops.mis_is_recursive (ind,mib,oib))
+
+let check_not_per pts =
+ if not (Proof.is_done pts) then
+ match get_stack pts with
+ Per (_,_,_,_)::_ ->
+ error "You are inside a proof per cases/induction.\n\
+Please \"suppose\" something or \"end\" it now."
+ | _ -> ()
+
+let mk_evd metalist gls =
+ let evd0= create_goal_evar_defs (sig_sig gls) in
+ let add_one (meta,typ) evd =
+ meta_declare meta typ evd in
+ List.fold_right add_one metalist evd0
+
+let is_tmp id = (string_of_id id).[0] = '_'
+
+let tmp_ids gls =
+ let ctx = pf_hyps gls in
+ match ctx with
+ [] -> []
+ | _::q -> List.filter is_tmp (ids_of_named_context q)
+
+let clean_tmp gls =
+ let clean_id id0 gls0 =
+ tclTRY (clear [id0]) gls0 in
+ let rec clean_all = function
+ [] -> tclIDTAC
+ | id :: rest -> tclTHEN (clean_id id) (clean_all rest)
+ in
+ clean_all (tmp_ids gls) gls
+
+let assert_postpone id t =
+ assert_tac (Name id) t
+
+(* start a proof *)
+
+
+let start_proof_tac gls=
+ let info={pm_stack=[]} in
+ tcl_change_info info gls
+
+let go_to_proof_mode () =
+ Pfedit.by start_proof_tac;
+ let p = Proof_global.give_me_the_proof () in
+ Decl_mode.focus p
+
+(* closing gaps *)
+
+let daimon_tac gls =
+ set_daimon_flag ();
+ {it=[];sigma=sig_sig gls}
+
+
+(* marking closed blocks *)
+
+let rec is_focussing_instr = function
+ Pthus i | Pthen i | Phence i -> is_focussing_instr i
+ | Pescape | Pper _ | Pclaim _ | Pfocus _
+ | Psuppose _ | Pcase (_,_,_) -> true
+ | _ -> false
+
+let mark_rule_as_done = function
+ Decl_proof true -> Decl_proof false
+ | Decl_proof false ->
+ anomaly "already marked as done"
+ | _ -> anomaly "mark_rule_as_done"
+
+
+(* post-instruction focus management *)
+
+(* spiwack: This used to fail if there was no focusing command
+ above, but I don't think it ever happened. I hope it doesn't mess
+ things up*)
+let goto_current_focus pts =
+ Decl_mode.maximal_unfocus pts
+
+let goto_current_focus_or_top pts =
+ goto_current_focus pts
+
+(* return *)
+
+let close_tactic_mode pts =
+ try goto_current_focus pts
+ with Not_found ->
+ error "\"return\" cannot be used outside of Declarative Proof Mode."
+
+let return_from_tactic_mode () =
+ close_tactic_mode (Proof_global.give_me_the_proof ())
+
+(* end proof/claim *)
+
+let close_block bt pts =
+ if Proof.no_focused_goal pts then
+ goto_current_focus pts
+ else
+ let stack =
+ if Proof.is_done pts then
+ get_top_stack pts
+ else
+ get_stack pts
+ in
+ match bt,stack with
+ B_claim, Claim::_ | B_focus, Focus_claim::_ | B_proof, [] ->
+ (goto_current_focus pts)
+ | _, Claim::_ ->
+ error "\"end claim\" expected."
+ | _, Focus_claim::_ ->
+ error "\"end focus\" expected."
+ | _, [] ->
+ error "\"end proof\" expected."
+ | _, (Per (et,_,_,_)::_|Suppose_case::Per (et,_,_,_)::_) ->
+ begin
+ match et with
+ ET_Case_analysis -> error "\"end cases\" expected."
+ | ET_Induction -> error "\"end induction\" expected."
+ end
+ | _,_ -> anomaly "Lonely suppose on stack."
+
+
+(* utility for suppose / suppose it is *)
+
+let close_previous_case pts =
+ if
+ Proof.is_done pts
+ then
+ match get_top_stack pts with
+ Per (et,_,_,_) :: _ -> anomaly "Weird case occured ..."
+ | Suppose_case :: Per (et,_,_,_) :: _ ->
+ goto_current_focus (pts)
+ | _ -> error "Not inside a proof per cases or induction."
+ else
+ match get_stack pts with
+ Per (et,_,_,_) :: _ -> ()
+ | Suppose_case :: Per (et,_,_,_) :: _ ->
+ goto_current_focus ((pts))
+ | _ -> error "Not inside a proof per cases or induction."
+
+(* Proof instructions *)
+
+(* automation *)
+
+let filter_hyps f gls =
+ let filter_aux (id,_,_) =
+ if f id then
+ tclIDTAC
+ else
+ tclTRY (clear [id]) in
+ tclMAP filter_aux (pf_hyps gls) gls
+
+let local_hyp_prefix = id_of_string "___"
+
+let add_justification_hyps keep items gls =
+ let add_aux c gls=
+ match kind_of_term c with
+ Var id ->
+ keep:=Idset.add id !keep;
+ tclIDTAC gls
+ | _ ->
+ let id=pf_get_new_id local_hyp_prefix gls in
+ keep:=Idset.add id !keep;
+ tclTHEN (letin_tac None (Names.Name id) c None Tacexpr.nowhere)
+ (thin_body [id]) gls in
+ tclMAP add_aux items gls
+
+let prepare_goal items gls =
+ let tokeep = ref Idset.empty in
+ let auxres = add_justification_hyps tokeep items gls in
+ tclTHENLIST
+ [ (fun _ -> auxres);
+ filter_hyps (let keep = !tokeep in fun id -> Idset.mem id keep)] gls
+
+let my_automation_tac = ref
+ (fun gls -> anomaly "No automation registered")
+
+let register_automation_tac tac = my_automation_tac:= tac
+
+let automation_tac gls = !my_automation_tac gls
+
+let justification tac gls=
+ tclORELSE
+ (tclSOLVE [tclTHEN tac assumption])
+ (fun gls ->
+ if get_strictness () then
+ error "Insufficient justification."
+ else
+ begin
+ msg_warning (str "Insufficient justification.");
+ daimon_tac gls
+ end) gls
+
+let default_justification elems gls=
+ justification (tclTHEN (prepare_goal elems) automation_tac) gls
+
+(* code for conclusion refining *)
+
+let constant dir s = lazy (Coqlib.gen_constant "Declarative" dir s)
+
+let _and = constant ["Init";"Logic"] "and"
+
+let _and_rect = constant ["Init";"Logic"] "and_rect"
+
+let _prod = constant ["Init";"Datatypes"] "prod"
+
+let _prod_rect = constant ["Init";"Datatypes"] "prod_rect"
+
+let _ex = constant ["Init";"Logic"] "ex"
+
+let _ex_ind = constant ["Init";"Logic"] "ex_ind"
+
+let _sig = constant ["Init";"Specif"] "sig"
+
+let _sig_rect = constant ["Init";"Specif"] "sig_rect"
+
+let _sigT = constant ["Init";"Specif"] "sigT"
+
+let _sigT_rect = constant ["Init";"Specif"] "sigT_rect"
+
+type stackd_elt =
+{se_meta:metavariable;
+ se_type:types;
+ se_last_meta:metavariable;
+ se_meta_list:(metavariable*types) list;
+ se_evd: evar_map}
+
+let rec replace_in_list m l = function
+ [] -> raise Not_found
+ | c::q -> if m=fst c then l@q else c::replace_in_list m l q
+
+let enstack_subsubgoals env se stack gls=
+ let hd,params = decompose_app (special_whd gls se.se_type) in
+ match kind_of_term hd with
+ Ind ind when is_good_inductive env ind ->
+ let mib,oib=
+ Inductive.lookup_mind_specif env ind in
+ let gentypes=
+ Inductive.arities_of_constructors ind (mib,oib) in
+ let process i gentyp =
+ let constructor = mkConstruct(ind,succ i)
+ (* constructors numbering*) in
+ let appterm = applist (constructor,params) in
+ let apptype = Term.prod_applist gentyp params in
+ let rc,_ = Reduction.dest_prod env apptype in
+ let rec meta_aux last lenv = function
+ [] -> (last,lenv,[])
+ | (nam,_,typ)::q ->
+ let nlast=succ last in
+ let (llast,holes,metas) =
+ meta_aux nlast (mkMeta nlast :: lenv) q in
+ (llast,holes,(nlast,special_nf gls (substl lenv typ))::metas) in
+ let (nlast,holes,nmetas) =
+ meta_aux se.se_last_meta [] (List.rev rc) in
+ let refiner = applist (appterm,List.rev holes) in
+ let evd = meta_assign se.se_meta
+ (refiner,(Conv,TypeProcessed (* ? *))) se.se_evd in
+ let ncreated = replace_in_list
+ se.se_meta nmetas se.se_meta_list in
+ let evd0 = List.fold_left
+ (fun evd (m,typ) -> meta_declare m typ evd) evd nmetas in
+ List.iter (fun (m,typ) ->
+ Stack.push
+ {se_meta=m;
+ se_type=typ;
+ se_evd=evd0;
+ se_meta_list=ncreated;
+ se_last_meta=nlast} stack) (List.rev nmetas)
+ in
+ Array.iteri process gentypes
+ | _ -> ()
+
+let rec nf_list evd =
+ function
+ [] -> []
+ | (m,typ)::others ->
+ if meta_defined evd m then
+ nf_list evd others
+ else
+ (m,nf_meta evd typ)::nf_list evd others
+
+let find_subsubgoal c ctyp skip submetas gls =
+ let env= pf_env gls in
+ let concl = pf_concl gls in
+ let evd = mk_evd ((0,concl)::submetas) gls in
+ let stack = Stack.create () in
+ let max_meta =
+ List.fold_left (fun a (m,_) -> max a m) 0 submetas in
+ let _ = Stack.push
+ {se_meta=0;
+ se_type=concl;
+ se_last_meta=max_meta;
+ se_meta_list=[0,concl];
+ se_evd=evd} stack in
+ let rec dfs n =
+ let se = Stack.pop stack in
+ try
+ let unifier =
+ Unification.w_unify env se.se_evd Reduction.CUMUL
+ ~flags:Unification.elim_flags ctyp se.se_type in
+ if n <= 0 then
+ {se with
+ se_evd=meta_assign se.se_meta
+ (c,(Conv,TypeNotProcessed (* ?? *))) unifier;
+ se_meta_list=replace_in_list
+ se.se_meta submetas se.se_meta_list}
+ else
+ dfs (pred n)
+ with e when Errors.noncritical e ->
+ begin
+ enstack_subsubgoals env se stack gls;
+ dfs n
+ end in
+ let nse= try dfs skip with Stack.Empty -> raise Not_found in
+ nf_list nse.se_evd nse.se_meta_list,nf_meta nse.se_evd (mkMeta 0)
+
+let concl_refiner metas body gls =
+ let concl = pf_concl gls in
+ let evd = sig_sig gls in
+ let env = pf_env gls in
+ let sort = family_of_sort (Typing.sort_of env evd concl) in
+ let rec aux env avoid subst = function
+ [] -> anomaly "concl_refiner: cannot happen"
+ | (n,typ)::rest ->
+ let _A = subst_meta subst typ in
+ let x = id_of_name_using_hdchar env _A Anonymous in
+ let _x = fresh_id avoid x gls in
+ let nenv = Environ.push_named (_x,None,_A) env in
+ let asort = family_of_sort (Typing.sort_of nenv evd _A) in
+ let nsubst = (n,mkVar _x)::subst in
+ if rest = [] then
+ asort,_A,mkNamedLambda _x _A (subst_meta nsubst body)
+ else
+ let bsort,_B,nbody =
+ aux nenv (_x::avoid) ((n,mkVar _x)::subst) rest in
+ let body = mkNamedLambda _x _A nbody in
+ if occur_term (mkVar _x) _B then
+ begin
+ let _P = mkNamedLambda _x _A _B in
+ match bsort,sort with
+ InProp,InProp ->
+ let _AxB = mkApp(Lazy.force _ex,[|_A;_P|]) in
+ InProp,_AxB,
+ mkApp(Lazy.force _ex_ind,[|_A;_P;concl;body|])
+ | InProp,_ ->
+ let _AxB = mkApp(Lazy.force _sig,[|_A;_P|]) in
+ let _P0 = mkLambda(Anonymous,_AxB,concl) in
+ InType,_AxB,
+ mkApp(Lazy.force _sig_rect,[|_A;_P;_P0;body|])
+ | _,_ ->
+ let _AxB = mkApp(Lazy.force _sigT,[|_A;_P|]) in
+ let _P0 = mkLambda(Anonymous,_AxB,concl) in
+ InType,_AxB,
+ mkApp(Lazy.force _sigT_rect,[|_A;_P;_P0;body|])
+ end
+ else
+ begin
+ match asort,bsort with
+ InProp,InProp ->
+ let _AxB = mkApp(Lazy.force _and,[|_A;_B|]) in
+ InProp,_AxB,
+ mkApp(Lazy.force _and_rect,[|_A;_B;concl;body|])
+ |_,_ ->
+ let _AxB = mkApp(Lazy.force _prod,[|_A;_B|]) in
+ let _P0 = mkLambda(Anonymous,_AxB,concl) in
+ InType,_AxB,
+ mkApp(Lazy.force _prod_rect,[|_A;_B;_P0;body|])
+ end
+ in
+ let (_,_,prf) = aux env [] [] metas in
+ mkApp(prf,[|mkMeta 1|])
+
+let thus_tac c ctyp submetas gls =
+ let list,proof =
+ try
+ find_subsubgoal c ctyp 0 submetas gls
+ with Not_found ->
+ error "I could not relate this statement to the thesis." in
+ if list = [] then
+ exact_check proof gls
+ else
+ let refiner = concl_refiner list proof gls in
+ Tactics.refine refiner gls
+
+(* general forward step *)
+
+let mk_stat_or_thesis info gls = function
+ This c -> c
+ | Thesis (For _ ) ->
+ error "\"thesis for ...\" is not applicable here."
+ | Thesis Plain -> pf_concl gls
+
+let just_tac _then cut info gls0 =
+ let last_item = if _then then
+ let last_id = try get_last (pf_env gls0) with Failure _ ->
+ error "\"then\" and \"hence\" require at least one previous fact" in
+ [mkVar last_id]
+ else []
+ in
+ let items_tac gls =
+ match cut.cut_by with
+ None -> tclIDTAC gls
+ | Some items -> prepare_goal (last_item@items) gls in
+ let method_tac gls =
+ match cut.cut_using with
+ None ->
+ automation_tac gls
+ | Some tac ->
+ (Tacinterp.eval_tactic tac) gls in
+ justification (tclTHEN items_tac method_tac) gls0
+
+let instr_cut mkstat _thus _then cut gls0 =
+ let info = get_its_info gls0 in
+ let stat = cut.cut_stat in
+ let (c_id,_) = match stat.st_label with
+ Anonymous ->
+ pf_get_new_id (id_of_string "_fact") gls0,false
+ | Name id -> id,true in
+ let c_stat = mkstat info gls0 stat.st_it in
+ let thus_tac gls=
+ if _thus then
+ thus_tac (mkVar c_id) c_stat [] gls
+ else tclIDTAC gls in
+ tclTHENS (assert_postpone c_id c_stat)
+ [tclTHEN tcl_erase_info (just_tac _then cut info);
+ thus_tac] gls0
+
+
+
+(* iterated equality *)
+let _eq = Libnames.constr_of_global (Coqlib.glob_eq)
+
+let decompose_eq id gls =
+ let typ = pf_get_hyp_typ gls id in
+ let whd = (special_whd gls typ) in
+ match kind_of_term whd with
+ App (f,args)->
+ if eq_constr f _eq && (Array.length args)=3
+ then (args.(0),
+ args.(1),
+ args.(2))
+ else error "Previous step is not an equality."
+ | _ -> error "Previous step is not an equality."
+
+let instr_rew _thus rew_side cut gls0 =
+ let last_id =
+ try get_last (pf_env gls0)
+ with e when Errors.noncritical e ->
+ error "No previous equality."
+ in
+ let typ,lhs,rhs = decompose_eq last_id gls0 in
+ let items_tac gls =
+ match cut.cut_by with
+ None -> tclIDTAC gls
+ | Some items -> prepare_goal items gls in
+ let method_tac gls =
+ match cut.cut_using with
+ None ->
+ automation_tac gls
+ | Some tac ->
+ (Tacinterp.eval_tactic tac) gls in
+ let just_tac gls =
+ justification (tclTHEN items_tac method_tac) gls in
+ let (c_id,_) = match cut.cut_stat.st_label with
+ Anonymous ->
+ pf_get_new_id (id_of_string "_eq") gls0,false
+ | Name id -> id,true in
+ let thus_tac new_eq gls=
+ if _thus then
+ thus_tac (mkVar c_id) new_eq [] gls
+ else tclIDTAC gls in
+ match rew_side with
+ Lhs ->
+ let new_eq = mkApp(_eq,[|typ;cut.cut_stat.st_it;rhs|]) in
+ tclTHENS (assert_postpone c_id new_eq)
+ [tclTHEN tcl_erase_info
+ (tclTHENS (transitivity lhs)
+ [just_tac;exact_check (mkVar last_id)]);
+ thus_tac new_eq] gls0
+ | Rhs ->
+ let new_eq = mkApp(_eq,[|typ;lhs;cut.cut_stat.st_it|]) in
+ tclTHENS (assert_postpone c_id new_eq)
+ [tclTHEN tcl_erase_info
+ (tclTHENS (transitivity rhs)
+ [exact_check (mkVar last_id);just_tac]);
+ thus_tac new_eq] gls0
+
+
+
+(* tactics for claim/focus *)
+
+let instr_claim _thus st gls0 =
+ let info = get_its_info gls0 in
+ let (id,_) = match st.st_label with
+ Anonymous -> pf_get_new_id (id_of_string "_claim") gls0,false
+ | Name id -> id,true in
+ let thus_tac gls=
+ if _thus then
+ thus_tac (mkVar id) st.st_it [] gls
+ else tclIDTAC gls in
+ let ninfo1 = {pm_stack=
+ (if _thus then Focus_claim else Claim)::info.pm_stack} in
+ tclTHENS (assert_postpone id st.st_it)
+ [thus_tac;
+ tcl_change_info ninfo1] gls0
+
+(* tactics for assume *)
+
+let push_intro_tac coerce nam gls =
+ let (hid,_) =
+ match nam with
+ Anonymous -> pf_get_new_id (id_of_string "_hyp") gls,false
+ | Name id -> id,true in
+ tclTHENLIST
+ [intro_mustbe_force hid;
+ coerce hid]
+ gls
+
+let assume_tac hyps gls =
+ List.fold_right
+ (fun (Hvar st | Hprop st) ->
+ tclTHEN
+ (push_intro_tac
+ (fun id ->
+ convert_hyp (id,None,st.st_it)) st.st_label))
+ hyps tclIDTAC gls
+
+let assume_hyps_or_theses hyps gls =
+ List.fold_right
+ (function
+ (Hvar {st_label=nam;st_it=c} | Hprop {st_label=nam;st_it=This c}) ->
+ tclTHEN
+ (push_intro_tac
+ (fun id ->
+ convert_hyp (id,None,c)) nam)
+ | Hprop {st_label=nam;st_it=Thesis (tk)} ->
+ tclTHEN
+ (push_intro_tac
+ (fun id -> tclIDTAC) nam))
+ hyps tclIDTAC gls
+
+let assume_st hyps gls =
+ List.fold_right
+ (fun st ->
+ tclTHEN
+ (push_intro_tac
+ (fun id -> convert_hyp (id,None,st.st_it)) st.st_label))
+ hyps tclIDTAC gls
+
+let assume_st_letin hyps gls =
+ List.fold_right
+ (fun st ->
+ tclTHEN
+ (push_intro_tac
+ (fun id ->
+ convert_hyp (id,Some (fst st.st_it),snd st.st_it)) st.st_label))
+ hyps tclIDTAC gls
+
+(* suffices *)
+
+let rec metas_from n hyps =
+ match hyps with
+ _ :: q -> n :: metas_from (succ n) q
+ | [] -> []
+
+let rec build_product args body =
+ match args with
+ (Hprop st| Hvar st )::rest ->
+ let pprod= lift 1 (build_product rest body) in
+ let lbody =
+ match st.st_label with
+ Anonymous -> pprod
+ | Name id -> subst_term (mkVar id) pprod in
+ mkProd (st.st_label, st.st_it, lbody)
+ | [] -> body
+
+let rec build_applist prod = function
+ [] -> [],prod
+ | n::q ->
+ let (_,typ,_) = destProd prod in
+ let ctx,head = build_applist (Term.prod_applist prod [mkMeta n]) q in
+ (n,typ)::ctx,head
+
+let instr_suffices _then cut gls0 =
+ let info = get_its_info gls0 in
+ let c_id = pf_get_new_id (id_of_string "_cofact") gls0 in
+ let ctx,hd = cut.cut_stat in
+ let c_stat = build_product ctx (mk_stat_or_thesis info gls0 hd) in
+ let metas = metas_from 1 ctx in
+ let c_ctx,c_head = build_applist c_stat metas in
+ let c_term = applist (mkVar c_id,List.map mkMeta metas) in
+ let thus_tac gls=
+ thus_tac c_term c_head c_ctx gls in
+ tclTHENS (assert_postpone c_id c_stat)
+ [tclTHENLIST
+ [ assume_tac ctx;
+ tcl_erase_info;
+ just_tac _then cut info];
+ thus_tac] gls0
+
+(* tactics for consider/given *)
+
+let conjunction_arity id gls =
+ let typ = pf_get_hyp_typ gls id in
+ let hd,params = decompose_app (special_whd gls typ) in
+ let env =pf_env gls in
+ match kind_of_term hd with
+ Ind ind when is_good_inductive env ind ->
+ let mib,oib=
+ Inductive.lookup_mind_specif env ind in
+ let gentypes=
+ Inductive.arities_of_constructors ind (mib,oib) in
+ let _ = if Array.length gentypes <> 1 then raise Not_found in
+ let apptype = Term.prod_applist gentypes.(0) params in
+ let rc,_ = Reduction.dest_prod env apptype in
+ List.length rc
+ | _ -> raise Not_found
+
+let rec intron_then n ids ltac gls =
+ if n<=0 then
+ ltac ids gls
+ else
+ let id = pf_get_new_id (id_of_string "_tmp") gls in
+ tclTHEN
+ (intro_mustbe_force id)
+ (intron_then (pred n) (id::ids) ltac) gls
+
+
+let rec consider_match may_intro introduced available expected gls =
+ match available,expected with
+ [],[] ->
+ tclIDTAC gls
+ | _,[] -> error "Last statements do not match a complete hypothesis."
+ (* should tell which ones *)
+ | [],hyps ->
+ if may_intro then
+ begin
+ let id = pf_get_new_id (id_of_string "_tmp") gls in
+ tclIFTHENELSE
+ (intro_mustbe_force id)
+ (consider_match true [] [id] hyps)
+ (fun _ ->
+ error "Not enough sub-hypotheses to match statements.")
+ gls
+ end
+ else
+ error "Not enough sub-hypotheses to match statements."
+ (* should tell which ones *)
+ | id::rest_ids,(Hvar st | Hprop st)::rest ->
+ tclIFTHENELSE (convert_hyp (id,None,st.st_it))
+ begin
+ match st.st_label with
+ Anonymous ->
+ consider_match may_intro ((id,false)::introduced) rest_ids rest
+ | Name hid ->
+ tclTHENLIST
+ [rename_hyp [id,hid];
+ consider_match may_intro ((hid,true)::introduced) rest_ids rest]
+ end
+ begin
+ (fun gls ->
+ let nhyps =
+ try conjunction_arity id gls with
+ Not_found -> error "Matching hypothesis not found." in
+ tclTHENLIST
+ [general_case_analysis false (mkVar id,NoBindings);
+ intron_then nhyps []
+ (fun l -> consider_match may_intro introduced
+ (List.rev_append l rest_ids) expected)] gls)
+ end
+ gls
+
+let consider_tac c hyps gls =
+ match kind_of_term (strip_outer_cast c) with
+ Var id ->
+ consider_match false [] [id] hyps gls
+ | _ ->
+ let id = pf_get_new_id (id_of_string "_tmp") gls in
+ tclTHEN
+ (forward None (Some (dummy_loc, Genarg.IntroIdentifier id)) c)
+ (consider_match false [] [id] hyps) gls
+
+
+let given_tac hyps gls =
+ consider_match true [] [] hyps gls
+
+(* tactics for take *)
+
+let rec take_tac wits gls =
+ match wits with
+ [] -> tclIDTAC gls
+ | wit::rest ->
+ let typ = pf_type_of gls wit in
+ tclTHEN (thus_tac wit typ []) (take_tac rest) gls
+
+
+(* tactics for define *)
+
+let rec build_function args body =
+ match args with
+ st::rest ->
+ let pfun= lift 1 (build_function rest body) in
+ let id = match st.st_label with
+ Anonymous -> assert false
+ | Name id -> id in
+ mkLambda (Name id, st.st_it, subst_term (mkVar id) pfun)
+ | [] -> body
+
+let define_tac id args body gls =
+ let t = build_function args body in
+ letin_tac None (Name id) t None Tacexpr.nowhere gls
+
+(* tactics for reconsider *)
+
+let cast_tac id_or_thesis typ gls =
+ match id_or_thesis with
+ This id ->
+ let (_,body,_) = pf_get_hyp gls id in
+ convert_hyp (id,body,typ) gls
+ | Thesis (For _ ) ->
+ error "\"thesis for ...\" is not applicable here."
+ | Thesis Plain ->
+ convert_concl typ DEFAULTcast gls
+
+(* per cases *)
+
+let is_rec_pos (main_ind,wft) =
+ match main_ind with
+ None -> false
+ | Some index ->
+ match fst (Rtree.dest_node wft) with
+ Mrec (_,i) when i = index -> true
+ | _ -> false
+
+let rec constr_trees (main_ind,wft) ind =
+ match Rtree.dest_node wft with
+ Norec,_ ->
+ let itree =
+ (snd (Global.lookup_inductive ind)).mind_recargs in
+ constr_trees (None,itree) ind
+ | _,constrs -> main_ind,constrs
+
+let ind_args rp ind =
+ let main_ind,constrs = constr_trees rp ind in
+ let args ctree =
+ Array.map (fun t -> main_ind,t) (snd (Rtree.dest_node ctree)) in
+ Array.map args constrs
+
+let init_tree ids ind rp nexti =
+ let indargs = ind_args rp ind in
+ let do_i i arp = (Array.map is_rec_pos arp),nexti i arp in
+ Split_patt (ids,ind,Array.mapi do_i indargs)
+
+let map_tree_rp rp id_fun mapi = function
+ Split_patt (ids,ind,branches) ->
+ let indargs = ind_args rp ind in
+ let do_i i (recargs,bri) = recargs,mapi i indargs.(i) bri in
+ Split_patt (id_fun ids,ind,Array.mapi do_i branches)
+ | _ -> failwith "map_tree_rp: not a splitting node"
+
+let map_tree id_fun mapi = function
+ Split_patt (ids,ind,branches) ->
+ let do_i i (recargs,bri) = recargs,mapi i bri in
+ Split_patt (id_fun ids,ind,Array.mapi do_i branches)
+ | _ -> failwith "map_tree: not a splitting node"
+
+
+let start_tree env ind rp =
+ init_tree Idset.empty ind rp (fun _ _ -> None)
+
+let build_per_info etype casee gls =
+ let concl=pf_concl gls in
+ let env=pf_env gls in
+ let ctyp=pf_type_of gls casee in
+ let is_dep = dependent casee concl in
+ let hd,args = decompose_app (special_whd gls ctyp) in
+ let ind =
+ try
+ destInd hd
+ with e when Errors.noncritical e ->
+ error "Case analysis must be done on an inductive object." in
+ let mind,oind = Global.lookup_inductive ind in
+ let nparams,index =
+ match etype with
+ ET_Induction -> mind.mind_nparams_rec,Some (snd ind)
+ | _ -> mind.mind_nparams,None in
+ let params,real_args = list_chop nparams args in
+ let abstract_obj c body =
+ let typ=pf_type_of gls c in
+ lambda_create env (typ,subst_term c body) in
+ let pred= List.fold_right abstract_obj
+ real_args (lambda_create env (ctyp,subst_term casee concl)) in
+ is_dep,
+ {per_casee=casee;
+ per_ctype=ctyp;
+ per_ind=ind;
+ per_pred=pred;
+ per_args=real_args;
+ per_params=params;
+ per_nparams=nparams;
+ per_wf=index,oind.mind_recargs}
+
+let per_tac etype casee gls=
+ let env=pf_env gls in
+ let info = get_its_info gls in
+ match casee with
+ Real c ->
+ let is_dep,per_info = build_per_info etype c gls in
+ let ek =
+ if is_dep then
+ EK_dep (start_tree env per_info.per_ind per_info.per_wf)
+ else EK_unknown in
+ tcl_change_info
+ {pm_stack=
+ Per(etype,per_info,ek,[])::info.pm_stack} gls
+ | Virtual cut ->
+ assert (cut.cut_stat.st_label=Anonymous);
+ let id = pf_get_new_id (id_of_string "anonymous_matched") gls in
+ let c = mkVar id in
+ let modified_cut =
+ {cut with cut_stat={cut.cut_stat with st_label=Name id}} in
+ tclTHEN
+ (instr_cut (fun _ _ c -> c) false false modified_cut)
+ (fun gls0 ->
+ let is_dep,per_info = build_per_info etype c gls0 in
+ assert (not is_dep);
+ tcl_change_info
+ {pm_stack=
+ Per(etype,per_info,EK_unknown,[])::info.pm_stack} gls0)
+ gls
+
+(* suppose *)
+
+let register_nodep_subcase id= function
+ Per(et,pi,ek,clauses)::s ->
+ begin
+ match ek with
+ EK_unknown -> clauses,Per(et,pi,EK_nodep,id::clauses)::s
+ | EK_nodep -> clauses,Per(et,pi,EK_nodep,id::clauses)::s
+ | EK_dep _ -> error "Do not mix \"suppose\" with \"suppose it is\"."
+ end
+ | _ -> anomaly "wrong stack state"
+
+let suppose_tac hyps gls0 =
+ let info = get_its_info gls0 in
+ let thesis = pf_concl gls0 in
+ let id = pf_get_new_id (id_of_string "subcase_") gls0 in
+ let clause = build_product hyps thesis in
+ let ninfo1 = {pm_stack=Suppose_case::info.pm_stack} in
+ let old_clauses,stack = register_nodep_subcase id info.pm_stack in
+ let ninfo2 = {pm_stack=stack} in
+ tclTHENS (assert_postpone id clause)
+ [tclTHENLIST [tcl_change_info ninfo1;
+ assume_tac hyps;
+ clear old_clauses];
+ tcl_change_info ninfo2] gls0
+
+(* suppose it is ... *)
+
+(* pattern matching compiling *)
+
+let rec skip_args rest ids n =
+ if n <= 0 then
+ Close_patt rest
+ else
+ Skip_patt (ids,skip_args rest ids (pred n))
+
+let rec tree_of_pats ((id,_) as cpl) pats =
+ match pats with
+ [] -> End_patt cpl
+ | args::stack ->
+ match args with
+ [] -> Close_patt (tree_of_pats cpl stack)
+ | (patt,rp) :: rest_args ->
+ match patt with
+ PatVar (_,v) ->
+ Skip_patt (Idset.singleton id,
+ tree_of_pats cpl (rest_args::stack))
+ | PatCstr (_,(ind,cnum),args,nam) ->
+ let nexti i ati =
+ if i = pred cnum then
+ let nargs =
+ list_map_i (fun j a -> (a,ati.(j))) 0 args in
+ Some (Idset.singleton id,
+ tree_of_pats cpl (nargs::rest_args::stack))
+ else None
+ in init_tree Idset.empty ind rp nexti
+
+let rec add_branch ((id,_) as cpl) pats tree=
+ match pats with
+ [] ->
+ begin
+ match tree with
+ End_patt cpl0 -> End_patt cpl0
+ (* this ensures precedence for overlapping patterns *)
+ | _ -> anomaly "tree is expected to end here"
+ end
+ | args::stack ->
+ match args with
+ [] ->
+ begin
+ match tree with
+ Close_patt t ->
+ Close_patt (add_branch cpl stack t)
+ | _ -> anomaly "we should pop here"
+ end
+ | (patt,rp) :: rest_args ->
+ match patt with
+ PatVar (_,v) ->
+ begin
+ match tree with
+ Skip_patt (ids,t) ->
+ Skip_patt (Idset.add id ids,
+ add_branch cpl (rest_args::stack) t)
+ | Split_patt (_,_,_) ->
+ map_tree (Idset.add id)
+ (fun i bri ->
+ append_branch cpl 1 (rest_args::stack) bri)
+ tree
+ | _ -> anomaly "No pop/stop expected here"
+ end
+ | PatCstr (_,(ind,cnum),args,nam) ->
+ match tree with
+ Skip_patt (ids,t) ->
+ let nexti i ati =
+ if i = pred cnum then
+ let nargs =
+ list_map_i (fun j a -> (a,ati.(j))) 0 args in
+ Some (Idset.add id ids,
+ add_branch cpl (nargs::rest_args::stack)
+ (skip_args t ids (Array.length ati)))
+ else
+ Some (ids,
+ skip_args t ids (Array.length ati))
+ in init_tree ids ind rp nexti
+ | Split_patt (_,ind0,_) ->
+ if (ind <> ind0) then error
+ (* this can happen with coercions *)
+ "Case pattern belongs to wrong inductive type.";
+ let mapi i ati bri =
+ if i = pred cnum then
+ let nargs =
+ list_map_i (fun j a -> (a,ati.(j))) 0 args in
+ append_branch cpl 0
+ (nargs::rest_args::stack) bri
+ else bri in
+ map_tree_rp rp (fun ids -> ids) mapi tree
+ | _ -> anomaly "No pop/stop expected here"
+and append_branch ((id,_) as cpl) depth pats = function
+ Some (ids,tree) ->
+ Some (Idset.add id ids,append_tree cpl depth pats tree)
+ | None ->
+ Some (Idset.singleton id,tree_of_pats cpl pats)
+and append_tree ((id,_) as cpl) depth pats tree =
+ if depth<=0 then add_branch cpl pats tree
+ else match tree with
+ Close_patt t ->
+ Close_patt (append_tree cpl (pred depth) pats t)
+ | Skip_patt (ids,t) ->
+ Skip_patt (Idset.add id ids,append_tree cpl depth pats t)
+ | End_patt _ -> anomaly "Premature end of branch"
+ | Split_patt (_,_,_) ->
+ map_tree (Idset.add id)
+ (fun i bri -> append_branch cpl (succ depth) pats bri) tree
+
+(* suppose it is *)
+
+let rec st_assoc id = function
+ [] -> raise Not_found
+ | st::_ when st.st_label = id -> st.st_it
+ | _ :: rest -> st_assoc id rest
+
+let thesis_for obj typ per_info env=
+ let rc,hd1=decompose_prod typ in
+ let cind,all_args=decompose_app typ in
+ let ind = destInd cind in
+ let _ = if ind <> per_info.per_ind then
+ errorlabstrm "thesis_for"
+ ((Printer.pr_constr_env env obj) ++ spc () ++
+ str"cannot give an induction hypothesis (wrong inductive type).") in
+ let params,args = list_chop per_info.per_nparams all_args in
+ let _ = if not (List.for_all2 eq_constr params per_info.per_params) then
+ errorlabstrm "thesis_for"
+ ((Printer.pr_constr_env env obj) ++ spc () ++
+ str "cannot give an induction hypothesis (wrong parameters).") in
+ let hd2 = (applist ((lift (List.length rc) per_info.per_pred),args@[obj])) in
+ compose_prod rc (whd_beta Evd.empty hd2)
+
+let rec build_product_dep pat_info per_info args body gls =
+ match args with
+ (Hprop {st_label=nam;st_it=This c}
+ | Hvar {st_label=nam;st_it=c})::rest ->
+ let pprod=
+ lift 1 (build_product_dep pat_info per_info rest body gls) in
+ let lbody =
+ match nam with
+ Anonymous -> body
+ | Name id -> subst_var id pprod in
+ mkProd (nam,c,lbody)
+ | Hprop ({st_it=Thesis tk} as st)::rest ->
+ let pprod=
+ lift 1 (build_product_dep pat_info per_info rest body gls) in
+ let lbody =
+ match st.st_label with
+ Anonymous -> body
+ | Name id -> subst_var id pprod in
+ let ptyp =
+ match tk with
+ For id ->
+ let obj = mkVar id in
+ let typ =
+ try st_assoc (Name id) pat_info.pat_vars
+ with Not_found ->
+ snd (st_assoc (Name id) pat_info.pat_aliases) in
+ thesis_for obj typ per_info (pf_env gls)
+ | Plain -> pf_concl gls in
+ mkProd (st.st_label,ptyp,lbody)
+ | [] -> body
+
+let build_dep_clause params pat_info per_info hyps gls =
+ let concl=
+ thesis_for pat_info.pat_constr pat_info.pat_typ per_info (pf_env gls) in
+ let open_clause =
+ build_product_dep pat_info per_info hyps concl gls in
+ let prod_one st body =
+ match st.st_label with
+ Anonymous -> mkProd(Anonymous,st.st_it,lift 1 body)
+ | Name id -> mkNamedProd id st.st_it (lift 1 body) in
+ let let_one_in st body =
+ match st.st_label with
+ Anonymous -> mkLetIn(Anonymous,fst st.st_it,snd st.st_it,lift 1 body)
+ | Name id ->
+ mkNamedLetIn id (fst st.st_it) (snd st.st_it) (lift 1 body) in
+ let aliased_clause =
+ List.fold_right let_one_in pat_info.pat_aliases open_clause in
+ List.fold_right prod_one (params@pat_info.pat_vars) aliased_clause
+
+let rec register_dep_subcase id env per_info pat = function
+ EK_nodep -> error "Only \"suppose it is\" can be used here."
+ | EK_unknown ->
+ register_dep_subcase id env per_info pat
+ (EK_dep (start_tree env per_info.per_ind per_info.per_wf))
+ | EK_dep tree -> EK_dep (add_branch id [[pat,per_info.per_wf]] tree)
+
+let case_tac params pat_info hyps gls0 =
+ let info = get_its_info gls0 in
+ let id = pf_get_new_id (id_of_string "subcase_") gls0 in
+ let et,per_info,ek,old_clauses,rest =
+ match info.pm_stack with
+ Per (et,pi,ek,old_clauses)::rest -> (et,pi,ek,old_clauses,rest)
+ | _ -> anomaly "wrong place for cases" in
+ let clause = build_dep_clause params pat_info per_info hyps gls0 in
+ let ninfo1 = {pm_stack=Suppose_case::info.pm_stack} in
+ let nek =
+ register_dep_subcase (id,(List.length params,List.length hyps))
+ (pf_env gls0) per_info pat_info.pat_pat ek in
+ let ninfo2 = {pm_stack=Per(et,per_info,nek,id::old_clauses)::rest} in
+ tclTHENS (assert_postpone id clause)
+ [tclTHENLIST
+ [tcl_change_info ninfo1;
+ assume_st (params@pat_info.pat_vars);
+ assume_st_letin pat_info.pat_aliases;
+ assume_hyps_or_theses hyps;
+ clear old_clauses];
+ tcl_change_info ninfo2] gls0
+
+(* end cases *)
+
+type instance_stack =
+ (constr option*(constr list) list) list
+
+let initial_instance_stack ids =
+ List.map (fun id -> id,[None,[]]) ids
+
+let push_one_arg arg = function
+ [] -> anomaly "impossible"
+ | (head,args) :: ctx ->
+ ((head,(arg::args)) :: ctx)
+
+let push_arg arg stacks =
+ List.map (fun (id,stack) -> (id,push_one_arg arg stack)) stacks
+
+
+let push_one_head c ids (id,stack) =
+ let head = if Idset.mem id ids then Some c else None in
+ id,(head,[]) :: stack
+
+let push_head c ids stacks =
+ List.map (push_one_head c ids) stacks
+
+let pop_one (id,stack) =
+ let nstack=
+ match stack with
+ [] -> anomaly "impossible"
+ | [c] as l -> l
+ | (Some head,args)::(head0,args0)::ctx ->
+ let arg = applist (head,(List.rev args)) in
+ (head0,(arg::args0))::ctx
+ | (None,args)::(head0,args0)::ctx ->
+ (head0,(args@args0))::ctx
+ in id,nstack
+
+let pop_stacks stacks =
+ List.map pop_one stacks
+
+let hrec_for fix_id per_info gls obj_id =
+ let obj=mkVar obj_id in
+ let typ=pf_get_hyp_typ gls obj_id in
+ let rc,hd1=decompose_prod typ in
+ let cind,all_args=decompose_app typ in
+ let ind = destInd cind in assert (ind=per_info.per_ind);
+ let params,args= list_chop per_info.per_nparams all_args in
+ assert begin
+ try List.for_all2 eq_constr params per_info.per_params with
+ Invalid_argument _ -> false end;
+ let hd2 = applist (mkVar fix_id,args@[obj]) in
+ compose_lam rc (whd_beta gls.sigma hd2)
+
+
+let rec execute_cases fix_name per_info tacnext args objs nhrec tree gls =
+ match tree, objs with
+ Close_patt t,_ ->
+ let args0 = pop_stacks args in
+ execute_cases fix_name per_info tacnext args0 objs nhrec t gls
+ | Skip_patt (_,t),skipped::next_objs ->
+ let args0 = push_arg skipped args in
+ execute_cases fix_name per_info tacnext args0 next_objs nhrec t gls
+ | End_patt (id,(nparams,nhyps)),[] ->
+ begin
+ match List.assoc id args with
+ [None,br_args] ->
+ let all_metas =
+ list_tabulate (fun n -> mkMeta (succ n)) (nparams + nhyps) in
+ let param_metas,hyp_metas = list_chop nparams all_metas in
+ tclTHEN
+ (tclDO nhrec introf)
+ (tacnext
+ (applist (mkVar id,
+ List.append param_metas
+ (List.rev_append br_args hyp_metas)))) gls
+ | _ -> anomaly "wrong stack size"
+ end
+ | Split_patt (ids,ind,br), casee::next_objs ->
+ let (mind,oind) as spec = Global.lookup_inductive ind in
+ let nparams = mind.mind_nparams in
+ let concl=pf_concl gls in
+ let env=pf_env gls in
+ let ctyp=pf_type_of gls casee in
+ let hd,all_args = decompose_app (special_whd gls ctyp) in
+ let _ = assert (destInd hd = ind) in (* just in case *)
+ let params,real_args = list_chop nparams all_args in
+ let abstract_obj c body =
+ let typ=pf_type_of gls c in
+ lambda_create env (typ,subst_term c body) in
+ let elim_pred = List.fold_right abstract_obj
+ real_args (lambda_create env (ctyp,subst_term casee concl)) in
+ let case_info = Inductiveops.make_case_info env ind RegularStyle in
+ let gen_arities = Inductive.arities_of_constructors ind spec in
+ let f_ids typ =
+ let sign =
+ (prod_assum (Term.prod_applist typ params)) in
+ find_intro_names sign gls in
+ let constr_args_ids = Array.map f_ids gen_arities in
+ let case_term =
+ mkCase(case_info,elim_pred,casee,
+ Array.mapi (fun i _ -> mkMeta (succ i)) constr_args_ids) in
+ let branch_tac i (recargs,bro) gls0 =
+ let args_ids = constr_args_ids.(i) in
+ let rec aux n = function
+ [] ->
+ assert (n=Array.length recargs);
+ next_objs,[],nhrec
+ | id :: q ->
+ let objs,recs,nrec = aux (succ n) q in
+ if recargs.(n)
+ then (mkVar id::objs),(id::recs),succ nrec
+ else (mkVar id::objs),recs,nrec in
+ let objs,recs,nhrec = aux 0 args_ids in
+ tclTHENLIST
+ [tclMAP intro_mustbe_force args_ids;
+ begin
+ fun gls1 ->
+ let hrecs =
+ List.map
+ (fun id ->
+ hrec_for (out_name fix_name) per_info gls1 id)
+ recs in
+ generalize hrecs gls1
+ end;
+ match bro with
+ None ->
+ msg_warning (str "missing case");
+ tacnext (mkMeta 1)
+ | Some (sub_ids,tree) ->
+ let br_args =
+ List.filter
+ (fun (id,_) -> Idset.mem id sub_ids) args in
+ let construct =
+ applist (mkConstruct(ind,succ i),params) in
+ let p_args =
+ push_head construct ids br_args in
+ execute_cases fix_name per_info tacnext
+ p_args objs nhrec tree] gls0 in
+ tclTHENSV
+ (refine case_term)
+ (Array.mapi branch_tac br) gls
+ | Split_patt (_, _, _) , [] ->
+ anomaly "execute_cases : Nothing to split"
+ | Skip_patt _ , [] ->
+ anomaly "execute_cases : Nothing to skip"
+ | End_patt (_,_) , _ :: _ ->
+ anomaly "execute_cases : End of branch with garbage left"
+
+let understand_my_constr c gls =
+ let env = pf_env gls in
+ let nc = names_of_rel_context env in
+ let rawc = Detyping.detype false [] nc c in
+ let rec frob = function GEvar _ -> GHole (dummy_loc,QuestionMark Expand) | rc -> map_glob_constr frob rc in
+ Pretyping.Default.understand_tcc (sig_sig gls) env ~expected_type:(pf_concl gls) (frob rawc)
+
+let my_refine c gls =
+ let oc = understand_my_constr c gls in
+ Refine.refine oc gls
+
+(* end focus/claim *)
+
+let end_tac et2 gls =
+ let info = get_its_info gls in
+ let et1,pi,ek,clauses =
+ match info.pm_stack with
+ Suppose_case::_ ->
+ anomaly "This case should already be trapped"
+ | Claim::_ ->
+ error "\"end claim\" expected."
+ | Focus_claim::_ ->
+ error "\"end focus\" expected."
+ | Per(et',pi,ek,clauses)::_ -> (et',pi,ek,clauses)
+ | [] ->
+ anomaly "This case should already be trapped" in
+ let et =
+ if et1 <> et2 then
+ match et1 with
+ ET_Case_analysis ->
+ error "\"end cases\" expected."
+ | ET_Induction ->
+ error "\"end induction\" expected."
+ else et1 in
+ tclTHEN
+ tcl_erase_info
+ begin
+ match et,ek with
+ _,EK_unknown ->
+ tclSOLVE [simplest_elim pi.per_casee]
+ | ET_Case_analysis,EK_nodep ->
+ tclTHEN
+ (general_case_analysis false (pi.per_casee,NoBindings))
+ (default_justification (List.map mkVar clauses))
+ | ET_Induction,EK_nodep ->
+ tclTHENLIST
+ [generalize (pi.per_args@[pi.per_casee]);
+ simple_induct (AnonHyp (succ (List.length pi.per_args)));
+ default_justification (List.map mkVar clauses)]
+ | ET_Case_analysis,EK_dep tree ->
+ execute_cases Anonymous pi
+ (fun c -> tclTHENLIST
+ [my_refine c;
+ clear clauses;
+ justification assumption])
+ (initial_instance_stack clauses) [pi.per_casee] 0 tree
+ | ET_Induction,EK_dep tree ->
+ let nargs = (List.length pi.per_args) in
+ tclTHEN (generalize (pi.per_args@[pi.per_casee]))
+ begin
+ fun gls0 ->
+ let fix_id =
+ pf_get_new_id (id_of_string "_fix") gls0 in
+ let c_id =
+ pf_get_new_id (id_of_string "_main_arg") gls0 in
+ tclTHENLIST
+ [fix (Some fix_id) (succ nargs);
+ tclDO nargs introf;
+ intro_mustbe_force c_id;
+ execute_cases (Name fix_id) pi
+ (fun c ->
+ tclTHENLIST
+ [clear [fix_id];
+ my_refine c;
+ clear clauses;
+ justification assumption])
+ (initial_instance_stack clauses)
+ [mkVar c_id] 0 tree] gls0
+ end
+ end gls
+
+(* escape *)
+
+let escape_tac gls =
+ (* spiwack: sets an empty info stack to avoid interferences.
+ We could erase the info altogether, but that doesn't play
+ well with the Decl_mode.focus (used in post_processing). *)
+ let info={pm_stack=[]} in
+ tcl_change_info info gls
+
+(* General instruction engine *)
+
+let rec do_proof_instr_gen _thus _then instr =
+ match instr with
+ Pthus i ->
+ assert (not _thus);
+ do_proof_instr_gen true _then i
+ | Pthen i ->
+ assert (not _then);
+ do_proof_instr_gen _thus true i
+ | Phence i ->
+ assert (not (_then || _thus));
+ do_proof_instr_gen true true i
+ | Pcut c ->
+ instr_cut mk_stat_or_thesis _thus _then c
+ | Psuffices c ->
+ instr_suffices _then c
+ | Prew (s,c) ->
+ assert (not _then);
+ instr_rew _thus s c
+ | Pconsider (c,hyps) -> consider_tac c hyps
+ | Pgiven hyps -> given_tac hyps
+ | Passume hyps -> assume_tac hyps
+ | Plet hyps -> assume_tac hyps
+ | Pclaim st -> instr_claim false st
+ | Pfocus st -> instr_claim true st
+ | Ptake witl -> take_tac witl
+ | Pdefine (id,args,body) -> define_tac id args body
+ | Pcast (id,typ) -> cast_tac id typ
+ | Pper (et,cs) -> per_tac et cs
+ | Psuppose hyps -> suppose_tac hyps
+ | Pcase (params,pat_info,hyps) -> case_tac params pat_info hyps
+ | Pend (B_elim et) -> end_tac et
+ | Pend _ -> anomaly "Not applicable"
+ | Pescape -> escape_tac
+
+let eval_instr {instr=instr} =
+ do_proof_instr_gen false false instr
+
+let rec preprocess pts instr =
+ match instr with
+ Phence i |Pthus i | Pthen i -> preprocess pts i
+ | Psuffices _ | Pcut _ | Passume _ | Plet _ | Pclaim _ | Pfocus _
+ | Pconsider (_,_) | Pcast (_,_) | Pgiven _ | Ptake _
+ | Pdefine (_,_,_) | Pper _ | Prew _ ->
+ check_not_per pts;
+ true
+ | Pescape ->
+ check_not_per pts;
+ true
+ | Pcase _ | Psuppose _ | Pend (B_elim _) ->
+ close_previous_case pts ;
+ true
+ | Pend bt ->
+ close_block bt pts ;
+ false
+
+let rec postprocess pts instr =
+ match instr with
+ Phence i | Pthus i | Pthen i -> postprocess pts i
+ | Pcut _ | Psuffices _ | Passume _ | Plet _ | Pconsider (_,_) | Pcast (_,_)
+ | Pgiven _ | Ptake _ | Pdefine (_,_,_) | Prew (_,_) -> ()
+ | Pclaim _ | Pfocus _ | Psuppose _ | Pcase _ | Pper _ ->
+ Decl_mode.focus pts
+ | Pescape ->
+ Decl_mode.focus pts;
+ Proof_global.set_proof_mode "Classic"
+ | Pend (B_elim ET_Induction) ->
+ begin
+ let pfterm = List.hd (Proof.partial_proof pts) in
+ let { it = gls ; sigma = sigma } = Proof.V82.subgoals pts in
+ let env = try
+ Goal.V82.env sigma (List.hd gls)
+ with Failure "hd" ->
+ Global.env ()
+ in
+ try
+ Inductiveops.control_only_guard env pfterm;
+ goto_current_focus_or_top pts
+ with
+ Type_errors.TypeError(env,
+ Type_errors.IllFormedRecBody(_,_,_,_,_)) ->
+ anomaly "\"end induction\" generated an ill-formed fixpoint"
+ end
+ | Pend _ ->
+ goto_current_focus_or_top (pts)
+
+let do_instr raw_instr pts =
+ let has_tactic = preprocess pts raw_instr.instr in
+ begin
+ if has_tactic then
+ let { it=gls ; sigma=sigma } = Proof.V82.subgoals pts in
+ let gl = { it=List.hd gls ; sigma=sigma } in
+ let env= pf_env gl in
+ let ist = {ltacvars = ([],[]); ltacrecvars = [];
+ gsigma = sigma; genv = env} in
+ let glob_instr = intern_proof_instr ist raw_instr in
+ let instr =
+ interp_proof_instr (get_its_info gl) sigma env glob_instr in
+ Pfedit.by (tclTHEN (eval_instr instr) clean_tmp)
+ else () end;
+ postprocess pts raw_instr.instr;
+ (* spiwack: this should restore a compatible semantics with
+ v8.3 where we never stayed focused on 0 goal. *)
+ Decl_mode.maximal_unfocus pts
+
+let proof_instr raw_instr =
+ let p = Proof_global.give_me_the_proof () in
+ do_instr raw_instr p
+
+(*
+
+(* STUFF FOR ITERATED RELATIONS *)
+let decompose_bin_app t=
+ let hd,args = destApp
+
+let identify_transitivity_lemma c =
+ let varx,tx,c1 = destProd c in
+ let vary,ty,c2 = destProd (pop c1) in
+ let varz,tz,c3 = destProd (pop c2) in
+ let _,p1,c4 = destProd (pop c3) in
+ let _,lp2,lp3 = destProd (pop c4) in
+ let p2=pop lp2 in
+ let p3=pop lp3 in
+*)
+
diff --git a/plugins/decl_mode/decl_proof_instr.mli b/plugins/decl_mode/decl_proof_instr.mli
new file mode 100644
index 00000000..775d2f53
--- /dev/null
+++ b/plugins/decl_mode/decl_proof_instr.mli
@@ -0,0 +1,109 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Refiner
+open Names
+open Term
+open Tacmach
+open Decl_mode
+
+val go_to_proof_mode: unit -> unit
+val return_from_tactic_mode: unit -> unit
+
+val register_automation_tac: tactic -> unit
+
+val automation_tac : tactic
+
+val concl_refiner:
+ Termops.meta_type_map -> constr -> Proof_type.goal sigma -> constr
+
+val do_instr: Decl_expr.raw_proof_instr -> Proof.proof -> unit
+val proof_instr: Decl_expr.raw_proof_instr -> unit
+
+val tcl_change_info : Decl_mode.pm_info -> tactic
+
+val execute_cases :
+ Names.name ->
+ Decl_mode.per_info ->
+ (Term.constr -> Proof_type.tactic) ->
+ (Names.Idset.elt * (Term.constr option * Term.constr list) list) list ->
+ Term.constr list -> int -> Decl_mode.split_tree -> Proof_type.tactic
+
+val tree_of_pats :
+ identifier * (int * int) -> (Glob_term.cases_pattern*recpath) list list ->
+ split_tree
+
+val add_branch :
+ identifier * (int * int) -> (Glob_term.cases_pattern*recpath) list list ->
+ split_tree -> split_tree
+
+val append_branch :
+ identifier *(int * int) -> int -> (Glob_term.cases_pattern*recpath) list list ->
+ (Names.Idset.t * Decl_mode.split_tree) option ->
+ (Names.Idset.t * Decl_mode.split_tree) option
+
+val append_tree :
+ identifier * (int * int) -> int -> (Glob_term.cases_pattern*recpath) list list ->
+ split_tree -> split_tree
+
+val build_dep_clause : Term.types Decl_expr.statement list ->
+ Decl_expr.proof_pattern ->
+ Decl_mode.per_info ->
+ (Term.types Decl_expr.statement, Term.types Decl_expr.or_thesis)
+ Decl_expr.hyp list -> Proof_type.goal Tacmach.sigma -> Term.types
+
+val register_dep_subcase :
+ Names.identifier * (int * int) ->
+ Environ.env ->
+ Decl_mode.per_info ->
+ Glob_term.cases_pattern -> Decl_mode.elim_kind -> Decl_mode.elim_kind
+
+val thesis_for : Term.constr ->
+ Term.constr -> Decl_mode.per_info -> Environ.env -> Term.constr
+
+val close_previous_case : Proof.proof -> unit
+
+val pop_stacks :
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list ->
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list
+
+val push_head : Term.constr ->
+ Names.Idset.t ->
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list ->
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list
+
+val push_arg : Term.constr ->
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list ->
+ (Names.identifier *
+ (Term.constr option * Term.constr list) list) list
+
+val hrec_for:
+ Names.identifier ->
+ Decl_mode.per_info -> Proof_type.goal Tacmach.sigma ->
+ Names.identifier -> Term.constr
+
+val consider_match :
+ bool ->
+ (Names.Idset.elt*bool) list ->
+ Names.Idset.elt list ->
+ (Term.types Decl_expr.statement, Term.types) Decl_expr.hyp list ->
+ Proof_type.tactic
+
+val init_tree:
+ Names.Idset.t ->
+ Names.inductive ->
+ int option * Declarations.wf_paths ->
+ (int ->
+ (int option * Declarations.recarg Rtree.t) array ->
+ (Names.Idset.t * Decl_mode.split_tree) option) ->
+ Decl_mode.split_tree
diff --git a/plugins/decl_mode/g_decl_mode.ml4 b/plugins/decl_mode/g_decl_mode.ml4
new file mode 100644
index 00000000..5699c1bf
--- /dev/null
+++ b/plugins/decl_mode/g_decl_mode.ml4
@@ -0,0 +1,409 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(*i camlp4deps: "parsing/grammar.cma" i*)
+
+(* arnaud: veiller à l'aspect tutorial des commentaires *)
+
+open Pp
+open Tok
+open Decl_expr
+open Names
+open Term
+open Genarg
+open Pcoq
+
+open Pcoq.Constr
+open Pcoq.Tactic
+open Pcoq.Vernac_
+
+let pr_goal gs =
+ let (g,sigma) = Goal.V82.nf_evar (Tacmach.project gs) (Evd.sig_it gs) in
+ let env = Goal.V82.unfiltered_env sigma g in
+ let preamb,thesis,penv,pc =
+ (str " *** Declarative Mode ***" ++ fnl ()++fnl ()),
+ (str "thesis := " ++ fnl ()),
+ Printer.pr_context_of env,
+ Printer.pr_goal_concl_style_env env (Goal.V82.concl sigma g)
+ in
+ preamb ++
+ str" " ++ hv 0 (penv ++ fnl () ++
+ str (Printer.emacs_str "") ++
+ str "============================" ++ fnl () ++
+ thesis ++ str " " ++ pc) ++ fnl ()
+
+(* arnaud: rebrancher ça
+let pr_open_subgoals () =
+ let p = Proof_global.give_me_the_proof () in
+ let { Evd.it = goals ; sigma = sigma } = Proof.V82.subgoals p in
+ let close_cmd = Decl_mode.get_end_command p in
+ pr_subgoals close_cmd sigma goals
+*)
+
+let pr_proof_instr instr =
+ Util.anomaly "Cannot print a proof_instr"
+ (* arnaud: Il nous faut quelque chose de type extr_genarg_printer si on veut aller
+ dans cette direction
+ Ppdecl_proof.pr_proof_instr (Global.env()) instr
+ *)
+let pr_raw_proof_instr instr =
+ Util.anomaly "Cannot print a raw proof_instr"
+let pr_glob_proof_instr instr =
+ Util.anomaly "Cannot print a non-interpreted proof_instr"
+
+let interp_proof_instr _ { Evd.it = gl ; sigma = sigma }=
+ Decl_interp.interp_proof_instr
+ (Decl_mode.get_info sigma gl)
+ (sigma)
+ (Goal.V82.env sigma gl)
+
+let vernac_decl_proof () =
+ let pf = Proof_global.give_me_the_proof () in
+ if Proof.is_done pf then
+ Util.error "Nothing left to prove here."
+ else
+ Proof.transaction pf begin fun () ->
+ Decl_proof_instr.go_to_proof_mode () ;
+ Proof_global.set_proof_mode "Declarative" ;
+ Vernacentries.print_subgoals ()
+ end
+
+(* spiwack: some bureaucracy is not performed here *)
+let vernac_return () =
+ Proof.transaction (Proof_global.give_me_the_proof ()) begin fun () ->
+ Decl_proof_instr.return_from_tactic_mode () ;
+ Proof_global.set_proof_mode "Declarative" ;
+ Vernacentries.print_subgoals ()
+ end
+
+let vernac_proof_instr instr =
+ Proof.transaction (Proof_global.give_me_the_proof ()) begin fun () ->
+ Decl_proof_instr.proof_instr instr;
+ Vernacentries.print_subgoals ()
+ end
+
+(* We create a new parser entry [proof_mode]. The Declarative proof mode
+ will replace the normal parser entry for tactics with this one. *)
+let proof_mode = Gram.entry_create "vernac:proof_command"
+(* Auxiliary grammar entry. *)
+let proof_instr = Gram.entry_create "proofmode:instr"
+
+(* Before we can write an new toplevel command (see below)
+ which takes a [proof_instr] as argument, we need to declare
+ how to parse it, print it, globalise it and interprete it.
+ Normally we could do that easily through ARGUMENT EXTEND,
+ but as the parsing is fairly complicated we will do it manually to
+ indirect through the [proof_instr] grammar entry. *)
+(* spiwack: proposal: doing that directly from argextend.ml4, maybe ? *)
+
+(* [Genarg.create_arg] creates a new embedding into Genarg. *)
+let (wit_proof_instr,globwit_proof_instr,rawwit_proof_instr) =
+ Genarg.create_arg None "proof_instr"
+let _ = Tacinterp.add_interp_genarg "proof_instr"
+ begin
+ begin fun e x -> (* declares the globalisation function *)
+ Genarg.in_gen globwit_proof_instr
+ (Decl_interp.intern_proof_instr e (Genarg.out_gen rawwit_proof_instr x))
+ end,
+ begin fun ist gl x -> (* declares the interpretation function *)
+ Tacmach.project gl ,
+ Genarg.in_gen wit_proof_instr
+ (interp_proof_instr ist gl (Genarg.out_gen globwit_proof_instr x))
+ end,
+ begin fun _ x -> x end (* declares the substitution function, irrelevant in our case *)
+ end
+
+let _ = Pptactic.declare_extra_genarg_pprule
+ (rawwit_proof_instr, pr_raw_proof_instr)
+ (globwit_proof_instr, pr_glob_proof_instr)
+ (wit_proof_instr, pr_proof_instr)
+
+(* We use the VERNAC EXTEND facility with a custom non-terminal
+ to populate [proof_mode] with a new toplevel interpreter.
+ The "-" indicates that the rule does not start with a distinguished
+ string. *)
+VERNAC proof_mode EXTEND ProofInstr
+ [ - proof_instr(instr) ] -> [ vernac_proof_instr instr ]
+END
+
+(* It is useful to use GEXTEND directly to call grammar entries that have been
+ defined previously VERNAC EXTEND. In this case we allow, in proof mode,
+ the use of commands like Check or Print. VERNAC EXTEND does quite a bit of
+ bureaucracy for us, but it is not needed in this sort of case, and it would require
+ to have an ARGUMENT EXTEND version of the "proof_mode" grammar entry. *)
+GEXTEND Gram
+ GLOBAL: proof_mode ;
+
+ proof_mode: LAST
+ [ [ c=G_vernac.subgoal_command -> c (Some 1) ] ]
+ ;
+END
+
+(* We register a new proof mode here *)
+
+let _ =
+ Proof_global.register_proof_mode { Proof_global.
+ name = "Declarative" ; (* name for identifying and printing *)
+ (* function [set] goes from No Proof Mode to
+ Declarative Proof Mode performing side effects *)
+ set = begin fun () ->
+ (* We set the command non terminal to
+ [proof_mode] (which we just defined). *)
+ G_vernac.set_command_entry proof_mode ;
+ (* We substitute the goal printer, by the one we built
+ for the proof mode. *)
+ Printer.set_printer_pr { Printer.default_printer_pr with
+ Printer.pr_goal = pr_goal }
+ end ;
+ (* function [reset] goes back to No Proof Mode from
+ Declarative Proof Mode *)
+ reset = begin fun () ->
+ (* We restore the command non terminal to
+ [noedit_mode]. *)
+ G_vernac.set_command_entry G_vernac.noedit_mode ;
+ (* We restore the goal printer to default *)
+ Printer.set_printer_pr Printer.default_printer_pr
+ end
+ }
+
+(* Two new vernacular commands *)
+VERNAC COMMAND EXTEND DeclProof
+ [ "proof" ] -> [ vernac_decl_proof () ]
+END
+VERNAC COMMAND EXTEND DeclReturn
+ [ "return" ] -> [ vernac_return () ]
+END
+
+let none_is_empty = function
+ None -> []
+ | Some l -> l
+
+GEXTEND Gram
+GLOBAL: proof_instr;
+ thesis :
+ [[ "thesis" -> Plain
+ | "thesis"; "for"; i=ident -> (For i)
+ ]];
+ statement :
+ [[ i=ident ; ":" ; c=constr -> {st_label=Name i;st_it=c}
+ | i=ident -> {st_label=Anonymous;
+ st_it=Topconstr.CRef (Libnames.Ident (loc, i))}
+ | c=constr -> {st_label=Anonymous;st_it=c}
+ ]];
+ constr_or_thesis :
+ [[ t=thesis -> Thesis t ] |
+ [ c=constr -> This c
+ ]];
+ statement_or_thesis :
+ [
+ [ t=thesis -> {st_label=Anonymous;st_it=Thesis t} ]
+ |
+ [ i=ident ; ":" ; cot=constr_or_thesis -> {st_label=Name i;st_it=cot}
+ | i=ident -> {st_label=Anonymous;
+ st_it=This (Topconstr.CRef (Libnames.Ident (loc, i)))}
+ | c=constr -> {st_label=Anonymous;st_it=This c}
+ ]
+ ];
+ justification_items :
+ [[ -> Some []
+ | "by"; l=LIST1 constr SEP "," -> Some l
+ | "by"; "*" -> None ]]
+ ;
+ justification_method :
+ [[ -> None
+ | "using"; tac = tactic -> Some tac ]]
+ ;
+ simple_cut_or_thesis :
+ [[ ls = statement_or_thesis;
+ j = justification_items;
+ taco = justification_method
+ -> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
+ ;
+ simple_cut :
+ [[ ls = statement;
+ j = justification_items;
+ taco = justification_method
+ -> {cut_stat=ls;cut_by=j;cut_using=taco} ]]
+ ;
+ elim_type:
+ [[ IDENT "induction" -> ET_Induction
+ | IDENT "cases" -> ET_Case_analysis ]]
+ ;
+ block_type :
+ [[ IDENT "claim" -> B_claim
+ | IDENT "focus" -> B_focus
+ | IDENT "proof" -> B_proof
+ | et=elim_type -> B_elim et ]]
+ ;
+ elim_obj:
+ [[ IDENT "on"; c=constr -> Real c
+ | IDENT "of"; c=simple_cut -> Virtual c ]]
+ ;
+ elim_step:
+ [[ IDENT "consider" ;
+ h=consider_vars ; IDENT "from" ; c=constr -> Pconsider (c,h)
+ | IDENT "per"; et=elim_type; obj=elim_obj -> Pper (et,obj)
+ | IDENT "suffices"; ls=suff_clause;
+ j = justification_items;
+ taco = justification_method
+ -> Psuffices {cut_stat=ls;cut_by=j;cut_using=taco} ]]
+ ;
+ rew_step :
+ [[ "~=" ; c=simple_cut -> (Rhs,c)
+ | "=~" ; c=simple_cut -> (Lhs,c)]]
+ ;
+ cut_step:
+ [[ "then"; tt=elim_step -> Pthen tt
+ | "then"; c=simple_cut_or_thesis -> Pthen (Pcut c)
+ | IDENT "thus"; tt=rew_step -> Pthus (let s,c=tt in Prew (s,c))
+ | IDENT "thus"; c=simple_cut_or_thesis -> Pthus (Pcut c)
+ | IDENT "hence"; c=simple_cut_or_thesis -> Phence (Pcut c)
+ | tt=elim_step -> tt
+ | tt=rew_step -> let s,c=tt in Prew (s,c);
+ | IDENT "have"; c=simple_cut_or_thesis -> Pcut c;
+ | IDENT "claim"; c=statement -> Pclaim c;
+ | IDENT "focus"; IDENT "on"; c=statement -> Pfocus c;
+ | "end"; bt = block_type -> Pend bt;
+ | IDENT "escape" -> Pescape ]]
+ ;
+ (* examiner s'il est possible de faire R _ et _ R pour R une relation qcq*)
+ loc_id:
+ [[ id=ident -> fun x -> (loc,(id,x)) ]];
+ hyp:
+ [[ id=loc_id -> id None ;
+ | id=loc_id ; ":" ; c=constr -> id (Some c)]]
+ ;
+ consider_vars:
+ [[ name=hyp -> [Hvar name]
+ | name=hyp; ","; v=consider_vars -> (Hvar name) :: v
+ | name=hyp;
+ IDENT "such"; IDENT "that"; h=consider_hyps -> (Hvar name)::h
+ ]]
+ ;
+ consider_hyps:
+ [[ st=statement; IDENT "and"; h=consider_hyps -> Hprop st::h
+ | st=statement; IDENT "and";
+ IDENT "consider" ; v=consider_vars -> Hprop st::v
+ | st=statement -> [Hprop st]
+ ]]
+ ;
+ assume_vars:
+ [[ name=hyp -> [Hvar name]
+ | name=hyp; ","; v=assume_vars -> (Hvar name) :: v
+ | name=hyp;
+ IDENT "such"; IDENT "that"; h=assume_hyps -> (Hvar name)::h
+ ]]
+ ;
+ assume_hyps:
+ [[ st=statement; IDENT "and"; h=assume_hyps -> Hprop st::h
+ | st=statement; IDENT "and";
+ IDENT "we"; IDENT "have" ; v=assume_vars -> Hprop st::v
+ | st=statement -> [Hprop st]
+ ]]
+ ;
+ assume_clause:
+ [[ IDENT "we" ; IDENT "have" ; v=assume_vars -> v
+ | h=assume_hyps -> h ]]
+ ;
+ suff_vars:
+ [[ name=hyp; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
+ [Hvar name],c
+ | name=hyp; ","; v=suff_vars ->
+ let (q,c) = v in ((Hvar name) :: q),c
+ | name=hyp;
+ IDENT "such"; IDENT "that"; h=suff_hyps ->
+ let (q,c) = h in ((Hvar name) :: q),c
+ ]];
+ suff_hyps:
+ [[ st=statement; IDENT "and"; h=suff_hyps ->
+ let (q,c) = h in (Hprop st::q),c
+ | st=statement; IDENT "and";
+ IDENT "to" ; IDENT "have" ; v=suff_vars ->
+ let (q,c) = v in (Hprop st::q),c
+ | st=statement; IDENT "to"; IDENT "show" ; c = constr_or_thesis ->
+ [Hprop st],c
+ ]]
+ ;
+ suff_clause:
+ [[ IDENT "to" ; IDENT "have" ; v=suff_vars -> v
+ | h=suff_hyps -> h ]]
+ ;
+ let_vars:
+ [[ name=hyp -> [Hvar name]
+ | name=hyp; ","; v=let_vars -> (Hvar name) :: v
+ | name=hyp; IDENT "be";
+ IDENT "such"; IDENT "that"; h=let_hyps -> (Hvar name)::h
+ ]]
+ ;
+ let_hyps:
+ [[ st=statement; IDENT "and"; h=let_hyps -> Hprop st::h
+ | st=statement; IDENT "and"; "let"; v=let_vars -> Hprop st::v
+ | st=statement -> [Hprop st]
+ ]];
+ given_vars:
+ [[ name=hyp -> [Hvar name]
+ | name=hyp; ","; v=given_vars -> (Hvar name) :: v
+ | name=hyp; IDENT "such"; IDENT "that"; h=given_hyps -> (Hvar name)::h
+ ]]
+ ;
+ given_hyps:
+ [[ st=statement; IDENT "and"; h=given_hyps -> Hprop st::h
+ | st=statement; IDENT "and"; IDENT "given"; v=given_vars -> Hprop st::v
+ | st=statement -> [Hprop st]
+ ]];
+ suppose_vars:
+ [[name=hyp -> [Hvar name]
+ |name=hyp; ","; v=suppose_vars -> (Hvar name) :: v
+ |name=hyp; OPT[IDENT "be"];
+ IDENT "such"; IDENT "that"; h=suppose_hyps -> (Hvar name)::h
+ ]]
+ ;
+ suppose_hyps:
+ [[ st=statement_or_thesis; IDENT "and"; h=suppose_hyps -> Hprop st::h
+ | st=statement_or_thesis; IDENT "and"; IDENT "we"; IDENT "have";
+ v=suppose_vars -> Hprop st::v
+ | st=statement_or_thesis -> [Hprop st]
+ ]]
+ ;
+ suppose_clause:
+ [[ IDENT "we"; IDENT "have"; v=suppose_vars -> v;
+ | h=suppose_hyps -> h ]]
+ ;
+ intro_step:
+ [[ IDENT "suppose" ; h=assume_clause -> Psuppose h
+ | IDENT "suppose" ; IDENT "it"; IDENT "is" ; c=pattern LEVEL "0" ;
+ po=OPT[ "with"; p=LIST1 hyp SEP ","-> p ] ;
+ ho=OPT[ IDENT "and" ; h=suppose_clause -> h ] ->
+ Pcase (none_is_empty po,c,none_is_empty ho)
+ | "let" ; v=let_vars -> Plet v
+ | IDENT "take"; witnesses = LIST1 constr SEP "," -> Ptake witnesses
+ | IDENT "assume"; h=assume_clause -> Passume h
+ | IDENT "given"; h=given_vars -> Pgiven h
+ | IDENT "define"; id=ident; args=LIST0 hyp;
+ "as"; body=constr -> Pdefine(id,args,body)
+ | IDENT "reconsider"; id=ident; "as" ; typ=constr -> Pcast (This id,typ)
+ | IDENT "reconsider"; t=thesis; "as" ; typ=constr -> Pcast (Thesis t ,typ)
+ ]]
+ ;
+ emphasis :
+ [[ -> 0
+ | "*" -> 1
+ | "**" -> 2
+ | "***" -> 3
+ ]]
+ ;
+ bare_proof_instr:
+ [[ c = cut_step -> c ;
+ | i = intro_step -> i ]]
+ ;
+ proof_instr :
+ [[ e=emphasis;i=bare_proof_instr;"." -> {emph=e;instr=i}]]
+ ;
+END;;
+
+
diff --git a/plugins/decl_mode/ppdecl_proof.ml b/plugins/decl_mode/ppdecl_proof.ml
new file mode 100644
index 00000000..7ba0d4ff
--- /dev/null
+++ b/plugins/decl_mode/ppdecl_proof.ml
@@ -0,0 +1,188 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+open Util
+open Pp
+open Decl_expr
+open Names
+open Nameops
+
+let pr_constr = Printer.pr_constr_env
+let pr_tac = Pptactic.pr_glob_tactic
+let pr_pat mpat = Ppconstr.pr_cases_pattern_expr mpat.pat_expr
+
+let pr_label = function
+ Anonymous -> mt ()
+ | Name id -> pr_id id ++ spc () ++ str ":" ++ spc ()
+
+let pr_justification_items env = function
+ Some [] -> mt ()
+ | Some (_::_ as l) ->
+ spc () ++ str "by" ++ spc () ++
+ prlist_with_sep (fun () -> str ",") (pr_constr env) l
+ | None -> spc () ++ str "by *"
+
+let pr_justification_method env = function
+ None -> mt ()
+ | Some tac ->
+ spc () ++ str "using" ++ spc () ++ pr_tac env tac
+
+let pr_statement pr_it env st =
+ pr_label st.st_label ++ pr_it env st.st_it
+
+let pr_or_thesis pr_this env = function
+ Thesis Plain -> str "thesis"
+ | Thesis (For id) ->
+ str "thesis" ++ spc() ++ str "for" ++ spc () ++ pr_id id
+ | This c -> pr_this env c
+
+let pr_cut pr_it env c =
+ hov 1 (pr_it env c.cut_stat) ++
+ pr_justification_items env c.cut_by ++
+ pr_justification_method env c.cut_using
+
+let type_or_thesis = function
+ Thesis _ -> Term.mkProp
+ | This c -> c
+
+let _I x = x
+
+let rec print_hyps pconstr gtyp env sep _be _have hyps =
+ let pr_sep = if sep then str "and" ++ spc () else mt () in
+ match hyps with
+ (Hvar _ ::_) as rest ->
+ spc () ++ pr_sep ++ str _have ++
+ print_vars pconstr gtyp env false _be _have rest
+ | Hprop st :: rest ->
+ begin
+ let nenv =
+ match st.st_label with
+ Anonymous -> env
+ | Name id -> Environ.push_named (id,None,gtyp st.st_it) env in
+ spc() ++ pr_sep ++ pr_statement pconstr env st ++
+ print_hyps pconstr gtyp nenv true _be _have rest
+ end
+ | [] -> mt ()
+
+and print_vars pconstr gtyp env sep _be _have vars =
+ match vars with
+ Hvar st :: rest ->
+ begin
+ let nenv =
+ match st.st_label with
+ Anonymous -> anomaly "anonymous variable"
+ | Name id -> Environ.push_named (id,None,st.st_it) env in
+ let pr_sep = if sep then pr_comma () else mt () in
+ spc() ++ pr_sep ++
+ pr_statement pr_constr env st ++
+ print_vars pconstr gtyp nenv true _be _have rest
+ end
+ | (Hprop _ :: _) as rest ->
+ let _st = if _be then
+ str "be such that"
+ else
+ str "such that" in
+ spc() ++ _st ++ print_hyps pconstr gtyp env false _be _have rest
+ | [] -> mt ()
+
+let pr_suffices_clause env (hyps,c) =
+ print_hyps pr_constr _I env false false "to have" hyps ++ spc () ++
+ str "to show" ++ spc () ++ pr_or_thesis pr_constr env c
+
+let pr_elim_type = function
+ ET_Case_analysis -> str "cases"
+ | ET_Induction -> str "induction"
+
+let pr_casee env =function
+ Real c -> str "on" ++ spc () ++ pr_constr env c
+ | Virtual cut -> str "of" ++ spc () ++ pr_cut (pr_statement pr_constr) env cut
+
+let pr_side = function
+ Lhs -> str "=~"
+ | Rhs -> str "~="
+
+let rec pr_bare_proof_instr _then _thus env = function
+ | Pescape -> str "escape"
+ | Pthen i -> pr_bare_proof_instr true _thus env i
+ | Pthus i -> pr_bare_proof_instr _then true env i
+ | Phence i -> pr_bare_proof_instr true true env i
+ | Pcut c ->
+ begin
+ match _then,_thus with
+ false,false -> str "have" ++ spc () ++
+ pr_cut (pr_statement (pr_or_thesis pr_constr)) env c
+ | false,true -> str "thus" ++ spc () ++
+ pr_cut (pr_statement (pr_or_thesis pr_constr)) env c
+ | true,false -> str "then" ++ spc () ++
+ pr_cut (pr_statement (pr_or_thesis pr_constr)) env c
+ | true,true -> str "hence" ++ spc () ++
+ pr_cut (pr_statement (pr_or_thesis pr_constr)) env c
+ end
+ | Psuffices c ->
+ str "suffices" ++ pr_cut pr_suffices_clause env c
+ | Prew (sid,c) ->
+ (if _thus then str "thus" else str " ") ++ spc () ++
+ pr_side sid ++ spc () ++ pr_cut (pr_statement pr_constr) env c
+ | Passume hyps ->
+ str "assume" ++ print_hyps pr_constr _I env false false "we have" hyps
+ | Plet hyps ->
+ str "let" ++ print_vars pr_constr _I env false true "let" hyps
+ | Pclaim st ->
+ str "claim" ++ spc () ++ pr_statement pr_constr env st
+ | Pfocus st ->
+ str "focus on" ++ spc () ++ pr_statement pr_constr env st
+ | Pconsider (id,hyps) ->
+ str "consider" ++ print_vars pr_constr _I env false false "consider" hyps
+ ++ spc () ++ str "from " ++ pr_constr env id
+ | Pgiven hyps ->
+ str "given" ++ print_vars pr_constr _I env false false "given" hyps
+ | Ptake witl ->
+ str "take" ++ spc () ++
+ prlist_with_sep pr_comma (pr_constr env) witl
+ | Pdefine (id,args,body) ->
+ str "define" ++ spc () ++ pr_id id ++ spc () ++
+ prlist_with_sep spc
+ (fun st -> str "(" ++
+ pr_statement pr_constr env st ++ str ")") args ++ spc () ++
+ str "as" ++ (pr_constr env body)
+ | Pcast (id,typ) ->
+ str "reconsider" ++ spc () ++
+ pr_or_thesis (fun _ -> pr_id) env id ++ spc () ++
+ str "as" ++ spc () ++ (pr_constr env typ)
+ | Psuppose hyps ->
+ str "suppose" ++
+ print_hyps pr_constr _I env false false "we have" hyps
+ | Pcase (params,pat,hyps) ->
+ str "suppose it is" ++ spc () ++ pr_pat pat ++
+ (if params = [] then mt () else
+ (spc () ++ str "with" ++ spc () ++
+ prlist_with_sep spc
+ (fun st -> str "(" ++
+ pr_statement pr_constr env st ++ str ")") params ++ spc ()))
+ ++
+ (if hyps = [] then mt () else
+ (spc () ++ str "and" ++
+ print_hyps (pr_or_thesis pr_constr) type_or_thesis
+ env false false "we have" hyps))
+ | Pper (et,c) ->
+ str "per" ++ spc () ++ pr_elim_type et ++ spc () ++
+ pr_casee env c
+ | Pend (B_elim et) -> str "end" ++ spc () ++ pr_elim_type et
+ | _ -> anomaly "unprintable instruction"
+
+let pr_emph = function
+ 0 -> str " "
+ | 1 -> str "* "
+ | 2 -> str "** "
+ | 3 -> str "*** "
+ | _ -> anomaly "unknown emphasis"
+
+let pr_proof_instr env instr =
+ pr_emph instr.emph ++ spc () ++
+ pr_bare_proof_instr false false env instr.instr
+
diff --git a/plugins/decl_mode/ppdecl_proof.mli b/plugins/decl_mode/ppdecl_proof.mli
new file mode 100644
index 00000000..fd6fb663
--- /dev/null
+++ b/plugins/decl_mode/ppdecl_proof.mli
@@ -0,0 +1,2 @@
+
+val pr_proof_instr : Environ.env -> Decl_expr.proof_instr -> Pp.std_ppcmds
diff --git a/plugins/dp/Dp.v b/plugins/dp/Dp.v
deleted file mode 100644
index 5ddc4452..00000000
--- a/plugins/dp/Dp.v
+++ /dev/null
@@ -1,120 +0,0 @@
-(* Calls to external decision procedures *)
-
-Require Export ZArith.
-Require Export Classical.
-
-(* Zenon *)
-
-(* Copyright 2004 INRIA *)
-(* $Id: Dp.v 12337 2009-09-17 15:58:14Z glondu $ *)
-
-Lemma zenon_nottrue :
- (~True -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_noteq : forall (T : Type) (t : T),
- ((t <> t) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_and : forall P Q : Prop,
- (P -> Q -> False) -> (P /\ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_or : forall P Q : Prop,
- (P -> False) -> (Q -> False) -> (P \/ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_imply : forall P Q : Prop,
- (~P -> False) -> (Q -> False) -> ((P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_equiv : forall P Q : Prop,
- (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notand : forall P Q : Prop,
- (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notor : forall P Q : Prop,
- (~P -> ~Q -> False) -> (~(P \/ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notimply : forall P Q : Prop,
- (P -> ~Q -> False) -> (~(P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notequiv : forall P Q : Prop,
- (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_ex : forall (T : Type) (P : T -> Prop),
- (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T),
- ((P t) -> False) -> ((forall x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T),
- (~(P t) -> False) -> (~(exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notall : forall (T : Type) (P : T -> Prop),
- (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False).
-Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed.
-
-Lemma zenon_equal_base : forall (T : Type) (f : T), f = f.
-Proof. auto. Qed.
-
-Lemma zenon_equal_step :
- forall (S T : Type) (fa fb : S -> T) (a b : S),
- (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)).
-Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed.
-
-Lemma zenon_pnotp : forall P Q : Prop,
- (P = Q) -> (P -> ~Q -> False).
-Proof. intros P Q Ha. rewrite Ha. auto. Qed.
-
-Lemma zenon_notequal : forall (T : Type) (a b : T),
- (a = b) -> (a <> b -> False).
-Proof. auto. Qed.
-
-Ltac zenon_intro id :=
- intro id || let nid := fresh in (intro nid; clear nid)
-.
-
-Definition zenon_and_s := fun P Q a b => zenon_and P Q b a.
-Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a.
-Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a.
-Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a.
-Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a.
-Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a.
-Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a.
-Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a.
-Definition zenon_ex_s := fun T P a b => zenon_ex T P b a.
-Definition zenon_notall_s := fun T P a b => zenon_notall T P b a.
-
-Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b.
-Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x.
-
-(* Ergo *)
-
-Set Implicit Arguments.
-Section congr.
- Variable t:Type.
-Lemma ergo_eq_concat_1 :
- forall (P:t -> Prop) (x y:t),
- P x -> x = y -> P y.
-Proof.
- intros; subst; auto.
-Qed.
-
-Lemma ergo_eq_concat_2 :
- forall (P:t -> t -> Prop) (x1 x2 y1 y2:t),
- P x1 x2 -> x1 = y1 -> x2 = y2 -> P y1 y2.
-Proof.
- intros; subst; auto.
-Qed.
-
-End congr.
diff --git a/plugins/dp/TODO b/plugins/dp/TODO
deleted file mode 100644
index 44349e21..00000000
--- a/plugins/dp/TODO
+++ /dev/null
@@ -1,24 +0,0 @@
-
-TODO
-----
-
-- axiomes pour les prédicats récursifs comme
-
- Fixpoint even (n:nat) : Prop :=
- match n with
- O => True
- | S O => False
- | S (S p) => even p
- end.
-
- ou encore In sur les listes du module Coq List.
-
-- discriminate
-
-- inversion (Set et Prop)
-
-
-BUGS
-----
-
-
diff --git a/plugins/dp/dp.ml b/plugins/dp/dp.ml
deleted file mode 100644
index ceadd26e..00000000
--- a/plugins/dp/dp.ml
+++ /dev/null
@@ -1,1134 +0,0 @@
-(* Authors: Nicolas Ayache and Jean-Christophe Filliâtre *)
-(* Tactics to call decision procedures *)
-
-(* Works in two steps:
-
- - first the Coq context and the current goal are translated in
- Polymorphic First-Order Logic (see fol.mli in this directory)
-
- - then the resulting query is passed to the Why tool that translates
- it to the syntax of the selected prover (Simplify, CVC Lite, haRVey,
- Zenon)
-*)
-
-open Util
-open Pp
-open Libobject
-open Summary
-open Term
-open Tacmach
-open Tactics
-open Tacticals
-open Fol
-open Names
-open Nameops
-open Namegen
-open Termops
-open Coqlib
-open Hipattern
-open Libnames
-open Declarations
-open Dp_why
-
-let debug = ref false
-let set_debug b = debug := b
-let trace = ref false
-let set_trace b = trace := b
-let timeout = ref 10
-let set_timeout n = timeout := n
-
-let (dp_timeout_obj,_) =
- declare_object
- {(default_object "Dp_timeout") with
- cache_function = (fun (_,x) -> set_timeout x);
- load_function = (fun _ (_,x) -> set_timeout x)}
-
-let dp_timeout x = Lib.add_anonymous_leaf (dp_timeout_obj x)
-
-let (dp_debug_obj,_) =
- declare_object
- {(default_object "Dp_debug") with
- cache_function = (fun (_,x) -> set_debug x);
- load_function = (fun _ (_,x) -> set_debug x)}
-
-let dp_debug x = Lib.add_anonymous_leaf (dp_debug_obj x)
-
-let (dp_trace_obj,_) =
- declare_object
- {(default_object "Dp_trace") with
- cache_function = (fun (_,x) -> set_trace x);
- load_function = (fun _ (_,x) -> set_trace x)}
-
-let dp_trace x = Lib.add_anonymous_leaf (dp_trace_obj x)
-
-let logic_dir = ["Coq";"Logic";"Decidable"]
-let coq_modules =
- init_modules @ [logic_dir] @ arith_modules @ zarith_base_modules
- @ [["Coq"; "ZArith"; "BinInt"];
- ["Coq"; "Reals"; "Rdefinitions"];
- ["Coq"; "Reals"; "Raxioms";];
- ["Coq"; "Reals"; "Rbasic_fun";];
- ["Coq"; "Reals"; "R_sqrt";];
- ["Coq"; "Reals"; "Rfunctions";]]
- @ [["Coq"; "omega"; "OmegaLemmas"]]
-
-let constant = gen_constant_in_modules "dp" coq_modules
-
-(* integers constants and operations *)
-let coq_Z = lazy (constant "Z")
-let coq_Zplus = lazy (constant "Zplus")
-let coq_Zmult = lazy (constant "Zmult")
-let coq_Zopp = lazy (constant "Zopp")
-let coq_Zminus = lazy (constant "Zminus")
-let coq_Zdiv = lazy (constant "Zdiv")
-let coq_Zs = lazy (constant "Zs")
-let coq_Zgt = lazy (constant "Zgt")
-let coq_Zle = lazy (constant "Zle")
-let coq_Zge = lazy (constant "Zge")
-let coq_Zlt = lazy (constant "Zlt")
-let coq_Z0 = lazy (constant "Z0")
-let coq_Zpos = lazy (constant "Zpos")
-let coq_Zneg = lazy (constant "Zneg")
-let coq_xH = lazy (constant "xH")
-let coq_xI = lazy (constant "xI")
-let coq_xO = lazy (constant "xO")
-let coq_iff = lazy (constant "iff")
-
-(* real constants and operations *)
-let coq_R = lazy (constant "R")
-let coq_R0 = lazy (constant "R0")
-let coq_R1 = lazy (constant "R1")
-let coq_Rgt = lazy (constant "Rgt")
-let coq_Rle = lazy (constant "Rle")
-let coq_Rge = lazy (constant "Rge")
-let coq_Rlt = lazy (constant "Rlt")
-let coq_Rplus = lazy (constant "Rplus")
-let coq_Rmult = lazy (constant "Rmult")
-let coq_Ropp = lazy (constant "Ropp")
-let coq_Rminus = lazy (constant "Rminus")
-let coq_Rdiv = lazy (constant "Rdiv")
-let coq_powerRZ = lazy (constant "powerRZ")
-
-(* not Prop typed expressions *)
-exception NotProp
-
-(* not first-order expressions *)
-exception NotFO
-
-(* Renaming of Coq globals *)
-
-let global_names = Hashtbl.create 97
-let used_names = Hashtbl.create 97
-
-let rename_global r =
- try
- Hashtbl.find global_names r
- with Not_found ->
- let rec loop id =
- if Hashtbl.mem used_names id then
- loop (lift_subscript id)
- else begin
- Hashtbl.add used_names id ();
- let s = string_of_id id in
- Hashtbl.add global_names r s;
- s
- end
- in
- loop (Nametab.basename_of_global r)
-
-let foralls =
- List.fold_right
- (fun (x,t) p -> Forall (x, t, p))
-
-let fresh_var = function
- | Anonymous -> rename_global (VarRef (id_of_string "x"))
- | Name x -> rename_global (VarRef x)
-
-(* coq_rename_vars env [(x1,t1);...;(xn,tn)] renames the xi outside of
- env names, and returns the new variables together with the new
- environment *)
-let coq_rename_vars env vars =
- let avoid = ref (ids_of_named_context (Environ.named_context env)) in
- List.fold_right
- (fun (na,t) (newvars, newenv) ->
- let id = next_name_away na !avoid in
- avoid := id :: !avoid;
- id :: newvars, Environ.push_named (id, None, t) newenv)
- vars ([],env)
-
-(* extract the prenex type quantifications i.e.
- type_quantifiers env (A1:Set)...(Ak:Set)t = A1...An, (env+Ai), t *)
-let decomp_type_quantifiers env t =
- let rec loop vars t = match kind_of_term t with
- | Prod (n, a, t) when is_Set a || is_Type a ->
- loop ((n,a) :: vars) t
- | _ ->
- let vars, env = coq_rename_vars env vars in
- let t = substl (List.map mkVar vars) t in
- List.rev vars, env, t
- in
- loop [] t
-
-(* same thing with lambda binders (for axiomatize body) *)
-let decomp_type_lambdas env t =
- let rec loop vars t = match kind_of_term t with
- | Lambda (n, a, t) when is_Set a || is_Type a ->
- loop ((n,a) :: vars) t
- | _ ->
- let vars, env = coq_rename_vars env vars in
- let t = substl (List.map mkVar vars) t in
- List.rev vars, env, t
- in
- loop [] t
-
-let decompose_arrows =
- let rec arrows_rec l c = match kind_of_term c with
- | Prod (_,t,c) when not (dependent (mkRel 1) c) -> arrows_rec (t :: l) c
- | Cast (c,_,_) -> arrows_rec l c
- | _ -> List.rev l, c
- in
- arrows_rec []
-
-let rec eta_expanse t vars env i =
- assert (i >= 0);
- if i = 0 then
- t, vars, env
- else
- match kind_of_term (Typing.type_of env Evd.empty t) with
- | Prod (n, a, b) when not (dependent (mkRel 1) b) ->
- let avoid = ids_of_named_context (Environ.named_context env) in
- let id = next_name_away n avoid in
- let env' = Environ.push_named (id, None, a) env in
- let t' = mkApp (t, [| mkVar id |]) in
- eta_expanse t' (id :: vars) env' (pred i)
- | _ ->
- assert false
-
-let rec skip_k_args k cl = match k, cl with
- | 0, _ -> cl
- | _, _ :: cl -> skip_k_args (k-1) cl
- | _, [] -> raise NotFO
-
-(* Coq global references *)
-
-type global = Gnot_fo | Gfo of Fol.decl
-
-let globals = ref Refmap.empty
-let globals_stack = ref []
-
-(* synchronization *)
-let () =
- Summary.declare_summary "Dp globals"
- { Summary.freeze_function = (fun () -> !globals, !globals_stack);
- Summary.unfreeze_function =
- (fun (g,s) -> globals := g; globals_stack := s);
- Summary.init_function = (fun () -> ()) }
-
-let add_global r d = globals := Refmap.add r d !globals
-let mem_global r = Refmap.mem r !globals
-let lookup_global r = match Refmap.find r !globals with
- | Gnot_fo -> raise NotFO
- | Gfo d -> d
-
-let locals = Hashtbl.create 97
-
-let lookup_local r = match Hashtbl.find locals r with
- | Gnot_fo -> raise NotFO
- | Gfo d -> d
-
-let iter_all_constructors i f =
- let _, oib = Global.lookup_inductive i in
- Array.iteri
- (fun j tj -> f j (mkConstruct (i, j+1)))
- oib.mind_nf_lc
-
-
-(* injection c [t1,...,tn] adds the injection axiom
- forall x1:t1,...,xn:tn,y1:t1,...,yn:tn.
- c(x1,...,xn)=c(y1,...,yn) -> x1=y1 /\ ... /\ xn=yn *)
-
-let injection c l =
- let i = ref 0 in
- let var s = incr i; id_of_string (s ^ string_of_int !i) in
- let xl = List.map (fun t -> rename_global (VarRef (var "x")), t) l in
- i := 0;
- let yl = List.map (fun t -> rename_global (VarRef (var "y")), t) l in
- let f =
- List.fold_right2
- (fun (x,_) (y,_) p -> And (Fatom (Eq (App (x,[]),App (y,[]))), p))
- xl yl True
- in
- let vars = List.map (fun (x,_) -> App(x,[])) in
- let f = Imp (Fatom (Eq (App (c, vars xl), App (c, vars yl))), f) in
- let foralls = List.fold_right (fun (x,t) p -> Forall (x, t, p)) in
- let f = foralls xl (foralls yl f) in
- let ax = Axiom ("injection_" ^ c, f) in
- globals_stack := ax :: !globals_stack
-
-(* rec_names_for c [|n1;...;nk|] builds the list of constant names for
- identifiers n1...nk with the same path as c, if they exist; otherwise
- raises Not_found *)
-let rec_names_for c =
- let mp,dp,_ = Names.repr_con c in
- array_map_to_list
- (function
- | Name id ->
- let c' = Names.make_con mp dp (label_of_id id) in
- ignore (Global.lookup_constant c');
- msgnl (Printer.pr_constr (mkConst c'));
- c'
- | Anonymous ->
- raise Not_found)
-
-(* abstraction tables *)
-
-let term_abstractions = Hashtbl.create 97
-
-let new_abstraction =
- let r = ref 0 in fun () -> incr r; "abstraction_" ^ string_of_int !r
-
-(* Arithmetic constants *)
-
-exception NotArithConstant
-
-(* translates a closed Coq term p:positive into a FOL term of type int *)
-
-let big_two = Big_int.succ_big_int Big_int.unit_big_int
-
-let rec tr_positive p = match kind_of_term p with
- | Term.Construct _ when p = Lazy.force coq_xH ->
- Big_int.unit_big_int
- | Term.App (f, [|a|]) when f = Lazy.force coq_xI ->
-(*
- Plus (Mult (Cst 2, tr_positive a), Cst 1)
-*)
- Big_int.succ_big_int (Big_int.mult_big_int big_two (tr_positive a))
- | Term.App (f, [|a|]) when f = Lazy.force coq_xO ->
-(*
- Mult (Cst 2, tr_positive a)
-*)
- Big_int.mult_big_int big_two (tr_positive a)
- | Term.Cast (p, _, _) ->
- tr_positive p
- | _ ->
- raise NotArithConstant
-
-(* translates a closed Coq term t:Z or R into a FOL term of type int or real *)
-let rec tr_arith_constant t = match kind_of_term t with
- | Term.Construct _ when t = Lazy.force coq_Z0 ->
- Cst Big_int.zero_big_int
- | Term.App (f, [|a|]) when f = Lazy.force coq_Zpos ->
- Cst (tr_positive a)
- | Term.App (f, [|a|]) when f = Lazy.force coq_Zneg ->
- Cst (Big_int.minus_big_int (tr_positive a))
- | Term.Const _ when t = Lazy.force coq_R0 ->
- RCst Big_int.zero_big_int
- | Term.Const _ when t = Lazy.force coq_R1 ->
- RCst Big_int.unit_big_int
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rplus ->
- let ta = tr_arith_constant a in
- let tb = tr_arith_constant b in
- begin match ta,tb with
- | RCst na, RCst nb -> RCst (Big_int.add_big_int na nb)
- | _ -> raise NotArithConstant
- end
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rmult ->
- let ta = tr_arith_constant a in
- let tb = tr_arith_constant b in
- begin match ta,tb with
- | RCst na, RCst nb -> RCst (Big_int.mult_big_int na nb)
- | _ -> raise NotArithConstant
- end
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_powerRZ ->
- tr_powerRZ a b
- | Term.Cast (t, _, _) ->
- tr_arith_constant t
- | _ ->
- raise NotArithConstant
-
-(* translates a constant of the form (powerRZ 2 int_constant) *)
-and tr_powerRZ a b =
- (* checking first that a is (R1 + R1) *)
- match kind_of_term a with
- | Term.App (f, [|c;d|]) when f = Lazy.force coq_Rplus ->
- begin
- match kind_of_term c,kind_of_term d with
- | Term.Const _, Term.Const _
- when c = Lazy.force coq_R1 && d = Lazy.force coq_R1 ->
- begin
- match tr_arith_constant b with
- | Cst n -> Power2 n
- | _ -> raise NotArithConstant
- end
- | _ -> raise NotArithConstant
- end
- | _ -> raise NotArithConstant
-
-
-(* translate a Coq term t:Set into a FOL type expression;
- tv = list of type variables *)
-and tr_type tv env t =
- let t = Reductionops.nf_betadeltaiota env Evd.empty t in
- if t = Lazy.force coq_Z then
- Tid ("int", [])
- else if t = Lazy.force coq_R then
- Tid ("real", [])
- else match kind_of_term t with
- | Var x when List.mem x tv ->
- Tvar (string_of_id x)
- | _ ->
- let f, cl = decompose_app t in
- begin try
- let r = global_of_constr f in
- match tr_global env r with
- | DeclType (id, k) ->
- assert (k = List.length cl); (* since t:Set *)
- Tid (id, List.map (tr_type tv env) cl)
- | _ ->
- raise NotFO
- with
- | Not_found ->
- raise NotFO
- | NotFO ->
- (* we need to abstract some part of (f cl) *)
- (*TODO*)
- raise NotFO
- end
-
-and make_term_abstraction tv env c =
- let ty = Typing.type_of env Evd.empty c in
- let id = new_abstraction () in
- match tr_decl env id ty with
- | DeclFun (id,_,_,_) as _d ->
- raise NotFO
- (* [CM 07/09/2009] deactivated because it generates
- unbound identifiers 'abstraction_<number>'
- begin try
- Hashtbl.find term_abstractions c
- with Not_found ->
- Hashtbl.add term_abstractions c id;
- globals_stack := d :: !globals_stack;
- id
- end
- *)
- | _ ->
- raise NotFO
-
-(* translate a Coq declaration id:ty in a FOL declaration, that is either
- - a type declaration : DeclType (id, n) where n:int is the type arity
- - a function declaration : DeclFun (id, tl, t) ; that includes constants
- - a predicate declaration : DeclPred (id, tl)
- - an axiom : Axiom (id, p)
- *)
-and tr_decl env id ty =
- let tv, env, t = decomp_type_quantifiers env ty in
- if is_Set t || is_Type t then
- DeclType (id, List.length tv)
- else if is_Prop t then
- DeclPred (id, List.length tv, [])
- else
- let s = Typing.type_of env Evd.empty t in
- if is_Prop s then
- Axiom (id, tr_formula tv [] env t)
- else
- let l, t = decompose_arrows t in
- let l = List.map (tr_type tv env) l in
- if is_Prop t then
- DeclPred(id, List.length tv, l)
- else
- let s = Typing.type_of env Evd.empty t in
- if is_Set s || is_Type s then
- DeclFun (id, List.length tv, l, tr_type tv env t)
- else
- raise NotFO
-
-(* tr_global(r) = tr_decl(id(r),typeof(r)) + a cache mechanism *)
-and tr_global env r = match r with
- | VarRef id ->
- lookup_local id
- | r ->
- try
- lookup_global r
- with Not_found ->
- try
- let ty = Global.type_of_global r in
- let id = rename_global r in
- let d = tr_decl env id ty in
- (* r can be already declared if it is a constructor *)
- if not (mem_global r) then begin
- add_global r (Gfo d);
- globals_stack := d :: !globals_stack
- end;
- begin try axiomatize_body env r id d with NotFO -> () end;
- d
- with NotFO ->
- add_global r Gnot_fo;
- raise NotFO
-
-and axiomatize_body env r id d = match r with
- | VarRef _ ->
- assert false
- | ConstRef c ->
- begin match (Global.lookup_constant c).const_body with
- | Some b ->
- let b = force b in
- let axioms =
- (match d with
- | DeclPred (id, _, []) ->
- let tv, env, b = decomp_type_lambdas env b in
- let value = tr_formula tv [] env b in
- [id, Iff (Fatom (Pred (id, [])), value)]
- | DeclFun (id, _, [], _) ->
- let tv, env, b = decomp_type_lambdas env b in
- let value = tr_term tv [] env b in
- [id, Fatom (Eq (Fol.App (id, []), value))]
- | DeclFun (id, _, l, _) | DeclPred (id, _, l) ->
- (*Format.eprintf "axiomatize_body %S@." id;*)
- let b = match kind_of_term b with
- (* a single recursive function *)
- | Fix (_, (_,_,[|b|])) ->
- subst1 (mkConst c) b
- (* mutually recursive functions *)
- | Fix ((_,i), (names,_,bodies)) ->
- (* we only deal with named functions *)
- begin try
- let l = rec_names_for c names in
- substl (List.rev_map mkConst l) bodies.(i)
- with Not_found ->
- b
- end
- | _ ->
- b
- in
- let tv, env, b = decomp_type_lambdas env b in
- let vars, t = decompose_lam b in
- let n = List.length l in
- let k = List.length vars in
- assert (k <= n);
- let vars, env = coq_rename_vars env vars in
- let t = substl (List.map mkVar vars) t in
- let t, vars, env = eta_expanse t vars env (n-k) in
- let vars = List.rev vars in
- let bv = vars in
- let vars = List.map (fun x -> string_of_id x) vars in
- let fol_var x = Fol.App (x, []) in
- let fol_vars = List.map fol_var vars in
- let vars = List.combine vars l in
- begin match d with
- | DeclFun (_, _, _, ty) ->
- begin match kind_of_term t with
- | Case (ci, _, e, br) ->
- equations_for_case env id vars tv bv ci e br
- | _ ->
- let t = tr_term tv bv env t in
- let ax =
- add_proof (Fun_def (id, vars, ty, t))
- in
- let p = Fatom (Eq (App (id, fol_vars), t)) in
- [ax, foralls vars p]
- end
- | DeclPred _ ->
- let value = tr_formula tv bv env t in
- let p = Iff (Fatom (Pred (id, fol_vars)), value) in
- [id, foralls vars p]
- | _ ->
- assert false
- end
- | DeclType _ ->
- raise NotFO
- | Axiom _ -> assert false)
- in
- let axioms = List.map (fun (id,ax) -> Axiom (id, ax)) axioms in
- globals_stack := axioms @ !globals_stack
- | None ->
- () (* Coq axiom *)
- end
- | IndRef i ->
- iter_all_constructors i
- (fun _ c ->
- let rc = global_of_constr c in
- try
- begin match tr_global env rc with
- | DeclFun (_, _, [], _) -> ()
- | DeclFun (idc, _, al, _) -> injection idc al
- | _ -> ()
- end
- with NotFO ->
- ())
- | _ -> ()
-
-and equations_for_case env id vars tv bv ci e br = match kind_of_term e with
- | Var x when List.exists (fun (y, _) -> string_of_id x = y) vars ->
- let eqs = ref [] in
- iter_all_constructors ci.ci_ind
- (fun j cj ->
- try
- let cjr = global_of_constr cj in
- begin match tr_global env cjr with
- | DeclFun (idc, _, l, _) ->
- let b = br.(j) in
- let rec_vars, b = decompose_lam b in
- let rec_vars, env = coq_rename_vars env rec_vars in
- let coq_rec_vars = List.map mkVar rec_vars in
- let b = substl coq_rec_vars b in
- let rec_vars = List.rev rec_vars in
- let coq_rec_term = applist (cj, List.rev coq_rec_vars) in
- let b = replace_vars [x, coq_rec_term] b in
- let bv = bv @ rec_vars in
- let rec_vars = List.map string_of_id rec_vars in
- let fol_var x = Fol.App (x, []) in
- let fol_rec_vars = List.map fol_var rec_vars in
- let fol_rec_term = App (idc, fol_rec_vars) in
- let rec_vars = List.combine rec_vars l in
- let fol_vars = List.map fst vars in
- let fol_vars = List.map fol_var fol_vars in
- let fol_vars = List.map (fun y -> match y with
- | App (id, _) ->
- if id = string_of_id x
- then fol_rec_term
- else y
- | _ -> y)
- fol_vars in
- let vars = vars @ rec_vars in
- let rec remove l e = match l with
- | [] -> []
- | (y, t)::l' -> if y = string_of_id e then l'
- else (y, t)::(remove l' e) in
- let vars = remove vars x in
- let p =
- Fatom (Eq (App (id, fol_vars),
- tr_term tv bv env b))
- in
- eqs := (id ^ "_" ^ idc, foralls vars p) :: !eqs
- | _ ->
- assert false end
- with NotFO ->
- ());
- !eqs
- | _ ->
- raise NotFO
-
-(* assumption: t:T:Set *)
-and tr_term tv bv env t =
- try
- tr_arith_constant t
- with NotArithConstant ->
- match kind_of_term t with
- (* binary operations on integers *)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zplus ->
- Plus (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zminus ->
- Moins (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zmult ->
- Mult (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Zdiv ->
- Div (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a|]) when f = Lazy.force coq_Zopp ->
- Opp (tr_term tv bv env a)
- (* binary operations on reals *)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rplus ->
- Plus (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rminus ->
- Moins (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rmult ->
- Mult (tr_term tv bv env a, tr_term tv bv env b)
- | Term.App (f, [|a;b|]) when f = Lazy.force coq_Rdiv ->
- Div (tr_term tv bv env a, tr_term tv bv env b)
- | Term.Var id when List.mem id bv ->
- App (string_of_id id, [])
- | _ ->
- let f, cl = decompose_app t in
- begin try
- let r = global_of_constr f in
- match tr_global env r with
- | DeclFun (s, k, _, _) ->
- let cl = skip_k_args k cl in
- Fol.App (s, List.map (tr_term tv bv env) cl)
- | _ ->
- raise NotFO
- with
- | Not_found ->
- raise NotFO
- | NotFO -> (* we need to abstract some part of (f cl) *)
- let rec abstract app = function
- | [] ->
- Fol.App (make_term_abstraction tv env app, [])
- | x :: l as args ->
- begin try
- let s = make_term_abstraction tv env app in
- Fol.App (s, List.map (tr_term tv bv env) args)
- with NotFO ->
- abstract (applist (app, [x])) l
- end
- in
- let app,l = match cl with
- | x :: l -> applist (f, [x]), l | [] -> raise NotFO
- in
- abstract app l
- end
-
-and quantifiers n a b tv bv env =
- let vars, env = coq_rename_vars env [n,a] in
- let id = match vars with [x] -> x | _ -> assert false in
- let b = subst1 (mkVar id) b in
- let t = tr_type tv env a in
- let bv = id :: bv in
- id, t, bv, env, b
-
-(* assumption: f is of type Prop *)
-and tr_formula tv bv env f =
- let c, args = decompose_app f in
- match kind_of_term c, args with
- | Var id, [] ->
- Fatom (Pred (rename_global (VarRef id), []))
- | _, [t;a;b] when c = build_coq_eq () ->
- let ty = Typing.type_of env Evd.empty t in
- if is_Set ty || is_Type ty then
- let _ = tr_type tv env t in
- Fatom (Eq (tr_term tv bv env a, tr_term tv bv env b))
- else
- raise NotFO
- (* comparisons on integers *)
- | _, [a;b] when c = Lazy.force coq_Zle ->
- Fatom (Le (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Zlt ->
- Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Zge ->
- Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Zgt ->
- Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b))
- (* comparisons on reals *)
- | _, [a;b] when c = Lazy.force coq_Rle ->
- Fatom (Le (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Rlt ->
- Fatom (Lt (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Rge ->
- Fatom (Ge (tr_term tv bv env a, tr_term tv bv env b))
- | _, [a;b] when c = Lazy.force coq_Rgt ->
- Fatom (Gt (tr_term tv bv env a, tr_term tv bv env b))
- | _, [] when c = build_coq_False () ->
- False
- | _, [] when c = build_coq_True () ->
- True
- | _, [a] when c = build_coq_not () ->
- Not (tr_formula tv bv env a)
- | _, [a;b] when c = build_coq_and () ->
- And (tr_formula tv bv env a, tr_formula tv bv env b)
- | _, [a;b] when c = build_coq_or () ->
- Or (tr_formula tv bv env a, tr_formula tv bv env b)
- | _, [a;b] when c = Lazy.force coq_iff ->
- Iff (tr_formula tv bv env a, tr_formula tv bv env b)
- | Prod (n, a, b), _ ->
- if is_Prop (Typing.type_of env Evd.empty a) then
- Imp (tr_formula tv bv env a, tr_formula tv bv env b)
- else
- let id, t, bv, env, b = quantifiers n a b tv bv env in
- Forall (string_of_id id, t, tr_formula tv bv env b)
- | _, [_; a] when c = build_coq_ex () ->
- begin match kind_of_term a with
- | Lambda(n, a, b) ->
- let id, t, bv, env, b = quantifiers n a b tv bv env in
- Exists (string_of_id id, t, tr_formula tv bv env b)
- | _ ->
- (* unusual case of the shape (ex p) *)
- raise NotFO (* TODO: we could eta-expanse *)
- end
- | _ ->
- begin try
- let r = global_of_constr c in
- match tr_global env r with
- | DeclPred (s, k, _) ->
- let args = skip_k_args k args in
- Fatom (Pred (s, List.map (tr_term tv bv env) args))
- | _ ->
- raise NotFO
- with Not_found ->
- raise NotFO
- end
-
-
-let tr_goal gl =
- Hashtbl.clear locals;
- let tr_one_hyp (id, ty) =
- try
- let s = rename_global (VarRef id) in
- let d = tr_decl (pf_env gl) s ty in
- Hashtbl.add locals id (Gfo d);
- d
- with NotFO ->
- Hashtbl.add locals id Gnot_fo;
- raise NotFO
- in
- let hyps =
- List.fold_right
- (fun h acc -> try tr_one_hyp h :: acc with NotFO -> acc)
- (pf_hyps_types gl) []
- in
- let c = tr_formula [] [] (pf_env gl) (pf_concl gl) in
- let hyps = List.rev_append !globals_stack (List.rev hyps) in
- hyps, c
-
-
-type prover = Simplify | Ergo | Yices | CVCLite | Harvey | Zenon | Gwhy | CVC3 | Z3
-
-let remove_files = List.iter (fun f -> try Sys.remove f with _ -> ())
-
-let sprintf = Format.sprintf
-
-let file_contents f =
- let buf = Buffer.create 1024 in
- try
- let c = open_in f in
- begin try
- while true do
- let s = input_line c in Buffer.add_string buf s;
- Buffer.add_char buf '\n'
- done;
- assert false
- with End_of_file ->
- close_in c;
- Buffer.contents buf
- end
- with _ ->
- sprintf "(cannot open %s)" f
-
-let timeout_sys_command cmd =
- if !debug then Format.eprintf "command line: %s@." cmd;
- let out = Filename.temp_file "out" "" in
- let cmd = sprintf "why-cpulimit %d %s > %s 2>&1" !timeout cmd out in
- let ret = Sys.command cmd in
- if !debug then
- Format.eprintf "Output file %s:@.%s@." out (file_contents out);
- ret, out
-
-let timeout_or_failure c cmd out =
- if c = 152 then
- Timeout
- else
- Failure
- (sprintf "command %s failed with output:\n%s " cmd (file_contents out))
-
-let call_prover ?(opt="") file =
- if !debug then Format.eprintf "calling prover on %s@." file;
- let out = Filename.temp_file "out" "" in
- let cmd =
- sprintf "why-dp -timeout %d -batch %s > %s 2>&1" !timeout file out in
- match Sys.command cmd with
- 0 -> Valid None
- | 1 -> Failure (sprintf "could not run why-dp\n%s" (file_contents out))
- | 2 -> Invalid
- | 3 -> DontKnow
- | 4 -> Timeout
- | 5 -> Failure (sprintf "prover failed:\n%s" (file_contents out))
- | n -> Failure (sprintf "Unknown exit status of why-dp: %d" n)
-
-let prelude_files = ref ([] : string list)
-
-let set_prelude l = prelude_files := l
-
-let (dp_prelude_obj,_) =
- declare_object
- {(default_object "Dp_prelude") with
- cache_function = (fun (_,x) -> set_prelude x);
- load_function = (fun _ (_,x) -> set_prelude x)}
-
-let dp_prelude x = Lib.add_anonymous_leaf (dp_prelude_obj x)
-
-let why_files f = String.concat " " (!prelude_files @ [f])
-
-let call_simplify fwhy =
- let cmd =
- sprintf "why --simplify %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fsx = Filename.chop_suffix fwhy ".why" ^ "_why.sx" in
-(*
- let cmd =
- sprintf "why-cpulimit %d Simplify %s > out 2>&1 && grep -q -w Valid out"
- !timeout fsx
- in
- let out = Sys.command cmd in
- let r =
- if out = 0 then Valid None else if out = 1 then Invalid else Timeout
- in
-*)
- let r = call_prover fsx in
- if not !debug then remove_files [fwhy; fsx];
- r
-
-let call_ergo fwhy =
- let cmd = sprintf "why --alt-ergo %s" (why_files fwhy) in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fwhy = Filename.chop_suffix fwhy ".why" ^ "_why.why" in
- (*let ftrace = Filename.temp_file "ergo_trace" "" in*)
- (*NB: why-dp can't handle -cctrace
- let cmd =
- if !trace then
- sprintf "alt-ergo -cctrace %s %s" ftrace fwhy
-
- else
- sprintf "alt-ergo %s" fwhy
- in*)
- let r = call_prover fwhy in
- if not !debug then remove_files [fwhy; (*out*)];
- r
-
-
-let call_zenon fwhy =
- let cmd =
- sprintf "why --no-zenon-prelude --zenon %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fznn = Filename.chop_suffix fwhy ".why" ^ "_why.znn" in
-(* why-dp won't let us having coqterm...
- let out = Filename.temp_file "dp_out" "" in
- let cmd =
- sprintf "timeout %d zenon -ocoqterm %s > %s 2>&1" !timeout fznn out
- in
- let c = Sys.command cmd in
- if not !debug then remove_files [fwhy; fznn];
- if c = 137 then
- Timeout
- else begin
- if c <> 0 then anomaly ("command failed: " ^ cmd);
- if Sys.command (sprintf "grep -q -w Error %s" out) = 0 then
- error "Zenon failed";
- let c = Sys.command (sprintf "grep -q PROOF-FOUND %s" out) in
- if c = 0 then Valid (Some out) else Invalid
- end
- *)
- let r = call_prover fznn in
- if not !debug then remove_files [fwhy; fznn];
- r
-
-let call_smt ~smt fwhy =
- let cmd =
- sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
- let opt = "-smt-solver " ^ smt in
- let r = call_prover ~opt fsmt in
- if not !debug then remove_files [fwhy; fsmt];
- r
-
-(*
-let call_yices fwhy =
- let cmd =
- sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
- let cmd =
- sprintf "why-cpulimit %d yices -pc 0 -smt %s > out 2>&1 && grep -q -w unsat out"
- !timeout fsmt
- in
- let out = Sys.command cmd in
- let r =
- if out = 0 then Valid None else if out = 1 then Invalid else Timeout
- in
- if not !debug then remove_files [fwhy; fsmt];
- r
-
-let call_cvc3 fwhy =
- let cmd =
- sprintf "why -smtlib --encoding sstrat %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fsmt = Filename.chop_suffix fwhy ".why" ^ "_why.smt" in
- let cmd =
- sprintf "why-cpulimit %d cvc3 -lang smt %s > out 2>&1 && grep -q -w unsat out"
- !timeout fsmt
- in
- let out = Sys.command cmd in
- let r =
- if out = 0 then Valid None else if out = 1 then Invalid else Timeout
- in
- if not !debug then remove_files [fwhy; fsmt];
- r
-*)
-
-let call_cvcl fwhy =
- let cmd =
- sprintf "why --cvcl --encoding sstrat %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let fcvc = Filename.chop_suffix fwhy ".why" ^ "_why.cvc" in
-(*
- let cmd =
- sprintf "timeout %d cvcl < %s > out 2>&1 && grep -q -w Valid out"
- !timeout fcvc
- in
- let out = Sys.command cmd in
- let r =
- if out = 0 then Valid None else if out = 1 then Invalid else Timeout
- in
-*)
- let r = call_prover fcvc in
- if not !debug then remove_files [fwhy; fcvc];
- r
-
-let call_harvey fwhy =
- let cmd =
- sprintf "why --harvey --encoding strat %s" (why_files fwhy)
- in
- if Sys.command cmd <> 0 then error ("call to " ^ cmd ^ " failed");
- let frv = Filename.chop_suffix fwhy ".why" ^ "_why.rv" in
-(*
- let out = Sys.command (sprintf "rvc -e -t %s > /dev/null 2>&1" frv) in
- if out <> 0 then anomaly ("call to rvc -e -t " ^ frv ^ " failed");
- let f = Filename.chop_suffix frv ".rv" ^ "-0.baf" in
- let outf = Filename.temp_file "rv" ".out" in
- let out =
- Sys.command (sprintf "timeout %d rv -e\"-T 2000\" %s > %s 2>&1"
- !timeout f outf)
- in
- let r =
- if out <> 0 then
- Timeout
- else
- let cmd =
- sprintf "grep \"Proof obligation in\" %s | grep -q \"is valid\"" outf
- in
- if Sys.command cmd = 0 then Valid None else Invalid
- in
- if not !debug then remove_files [fwhy; frv; outf];
-*)
- let r = call_prover frv in
- if not !debug then remove_files [fwhy; frv];
- r
-
-let call_gwhy fwhy =
- let cmd = sprintf "gwhy %s" (why_files fwhy) in
- if Sys.command cmd <> 0 then ignore (Sys.command (sprintf "emacs %s" fwhy));
- NoAnswer
-
-let ergo_proof_from_file f gl =
- let s =
- let buf = Buffer.create 1024 in
- let c = open_in f in
- try
- while true do Buffer.add_string buf (input_line c) done; assert false
- with End_of_file ->
- close_in c;
- Buffer.contents buf
- in
- let parsed_constr = Pcoq.parse_string Pcoq.Constr.constr s in
- let t = Constrintern.interp_constr (project gl) (pf_env gl) parsed_constr in
- exact_check t gl
-
-let call_prover prover q =
- let fwhy = Filename.temp_file "coq_dp" ".why" in
- Dp_why.output_file fwhy q;
- match prover with
- | Simplify -> call_simplify fwhy
- | Ergo -> call_ergo fwhy
- | CVC3 -> call_smt ~smt:"cvc3" fwhy
- | Yices -> call_smt ~smt:"yices" fwhy
- | Z3 -> call_smt ~smt:"z3" fwhy
- | Zenon -> call_zenon fwhy
- | CVCLite -> call_cvcl fwhy
- | Harvey -> call_harvey fwhy
- | Gwhy -> call_gwhy fwhy
-
-let dp prover gl =
- Coqlib.check_required_library ["Coq";"ZArith";"ZArith"];
- let concl_type = pf_type_of gl (pf_concl gl) in
- if not (is_Prop concl_type) then error "Conclusion is not a Prop";
- try
- let q = tr_goal gl in
- begin match call_prover prover q with
- | Valid (Some f) when prover = Zenon -> Dp_zenon.proof_from_file f gl
- | Valid (Some f) when prover = Ergo -> ergo_proof_from_file f gl
- | Valid _ -> Tactics.admit_as_an_axiom gl
- | Invalid -> error "Invalid"
- | DontKnow -> error "Don't know"
- | Timeout -> error "Timeout"
- | Failure s -> error s
- | NoAnswer -> Tacticals.tclIDTAC gl
- end
- with NotFO ->
- error "Not a first order goal"
-
-
-let simplify = tclTHEN intros (dp Simplify)
-let ergo = tclTHEN intros (dp Ergo)
-let cvc3 = tclTHEN intros (dp CVC3)
-let yices = tclTHEN intros (dp Yices)
-let z3 = tclTHEN intros (dp Z3)
-let cvc_lite = tclTHEN intros (dp CVCLite)
-let harvey = dp Harvey
-let zenon = tclTHEN intros (dp Zenon)
-let gwhy = tclTHEN intros (dp Gwhy)
-
-let dp_hint l =
- let env = Global.env () in
- let one_hint (qid,r) =
- if not (mem_global r) then begin
- let ty = Global.type_of_global r in
- let s = Typing.type_of env Evd.empty ty in
- if is_Prop s then
- try
- let id = rename_global r in
- let tv, env, ty = decomp_type_quantifiers env ty in
- let d = Axiom (id, tr_formula tv [] env ty) in
- add_global r (Gfo d);
- globals_stack := d :: !globals_stack
- with NotFO ->
- add_global r Gnot_fo;
- msg_warning
- (pr_reference qid ++
- str " ignored (not a first order proposition)")
- else begin
- add_global r Gnot_fo;
- msg_warning
- (pr_reference qid ++ str " ignored (not a proposition)")
- end
- end
- in
- List.iter one_hint (List.map (fun qid -> qid, Nametab.global qid) l)
-
-let (dp_hint_obj,_) =
- declare_object
- {(default_object "Dp_hint") with
- cache_function = (fun (_,l) -> dp_hint l);
- load_function = (fun _ (_,l) -> dp_hint l)}
-
-let dp_hint l = Lib.add_anonymous_leaf (dp_hint_obj l)
-
-let dp_predefined qid s =
- let r = Nametab.global qid in
- let ty = Global.type_of_global r in
- let env = Global.env () in
- let id = rename_global r in
- try
- let d = match tr_decl env id ty with
- | DeclType (_, n) -> DeclType (s, n)
- | DeclFun (_, n, tyl, ty) -> DeclFun (s, n, tyl, ty)
- | DeclPred (_, n, tyl) -> DeclPred (s, n, tyl)
- | Axiom _ as d -> d
- in
- match d with
- | Axiom _ -> msg_warning (str " ignored (axiom)")
- | d -> add_global r (Gfo d)
- with NotFO ->
- msg_warning (str " ignored (not a first order declaration)")
-
-let (dp_predefined_obj,_) =
- declare_object
- {(default_object "Dp_predefined") with
- cache_function = (fun (_,(id,s)) -> dp_predefined id s);
- load_function = (fun _ (_,(id,s)) -> dp_predefined id s)}
-
-let dp_predefined id s = Lib.add_anonymous_leaf (dp_predefined_obj (id,s))
-
-let _ = declare_summary "Dp options"
- { freeze_function =
- (fun () -> !debug, !trace, !timeout, !prelude_files);
- unfreeze_function =
- (fun (d,tr,tm,pr) ->
- debug := d; trace := tr; timeout := tm; prelude_files := pr);
- init_function =
- (fun () ->
- debug := false; trace := false; timeout := 10;
- prelude_files := []) }
diff --git a/plugins/dp/dp.mli b/plugins/dp/dp.mli
deleted file mode 100644
index f40f8688..00000000
--- a/plugins/dp/dp.mli
+++ /dev/null
@@ -1,20 +0,0 @@
-
-open Libnames
-open Proof_type
-
-val simplify : tactic
-val ergo : tactic
-val cvc3 : tactic
-val yices : tactic
-val cvc_lite : tactic
-val harvey : tactic
-val zenon : tactic
-val gwhy : tactic
-val z3: tactic
-
-val dp_hint : reference list -> unit
-val dp_timeout : int -> unit
-val dp_debug : bool -> unit
-val dp_trace : bool -> unit
-val dp_prelude : string list -> unit
-val dp_predefined : reference -> string -> unit
diff --git a/plugins/dp/dp_plugin.mllib b/plugins/dp/dp_plugin.mllib
deleted file mode 100644
index 63252d6a..00000000
--- a/plugins/dp/dp_plugin.mllib
+++ /dev/null
@@ -1,5 +0,0 @@
-Dp_why
-Dp_zenon
-Dp
-G_dp
-Dp_plugin_mod
diff --git a/plugins/dp/dp_why.ml b/plugins/dp/dp_why.ml
deleted file mode 100644
index 199c3087..00000000
--- a/plugins/dp/dp_why.ml
+++ /dev/null
@@ -1,185 +0,0 @@
-
-(* Pretty-print PFOL (see fol.mli) in Why syntax *)
-
-open Format
-open Fol
-
-type proof =
- | Immediate of Term.constr
- | Fun_def of string * (string * typ) list * typ * term
-
-let proofs = Hashtbl.create 97
-let proof_name =
- let r = ref 0 in fun () -> incr r; "dp_axiom__" ^ string_of_int !r
-
-let add_proof pr = let n = proof_name () in Hashtbl.add proofs n pr; n
-
-let find_proof = Hashtbl.find proofs
-
-let rec print_list sep print fmt = function
- | [] -> ()
- | [x] -> print fmt x
- | x :: r -> print fmt x; sep fmt (); print_list sep print fmt r
-
-let space fmt () = fprintf fmt "@ "
-let comma fmt () = fprintf fmt ",@ "
-
-let is_why_keyword =
- let h = Hashtbl.create 17 in
- List.iter
- (fun s -> Hashtbl.add h s ())
- ["absurd"; "and"; "array"; "as"; "assert"; "axiom"; "begin";
- "bool"; "do"; "done"; "else"; "end"; "exception"; "exists";
- "external"; "false"; "for"; "forall"; "fun"; "function"; "goal";
- "if"; "in"; "int"; "invariant"; "label"; "let"; "logic"; "not";
- "of"; "or"; "parameter"; "predicate"; "prop"; "raise"; "raises";
- "reads"; "real"; "rec"; "ref"; "returns"; "then"; "true"; "try";
- "type"; "unit"; "variant"; "void"; "while"; "with"; "writes" ];
- Hashtbl.mem h
-
-let ident fmt s =
- if is_why_keyword s then fprintf fmt "coq__%s" s else fprintf fmt "%s" s
-
-let rec print_typ fmt = function
- | Tvar x -> fprintf fmt "'%a" ident x
- | Tid ("int", []) -> fprintf fmt "int"
- | Tid ("real", []) -> fprintf fmt "real"
- | Tid (x, []) -> fprintf fmt "%a" ident x
- | Tid (x, [t]) -> fprintf fmt "%a %a" print_typ t ident x
- | Tid (x,tl) -> fprintf fmt "(%a) %a" (print_list comma print_typ) tl ident x
-
-let print_arg fmt (id,typ) = fprintf fmt "%a: %a" ident id print_typ typ
-
-let rec print_term fmt = function
- | Cst n ->
- fprintf fmt "%s" (Big_int.string_of_big_int n)
- | RCst s ->
- fprintf fmt "%s.0" (Big_int.string_of_big_int s)
- | Power2 n ->
- fprintf fmt "0x1p%s" (Big_int.string_of_big_int n)
- | Plus (a, b) ->
- fprintf fmt "@[(%a +@ %a)@]" print_term a print_term b
- | Moins (a, b) ->
- fprintf fmt "@[(%a -@ %a)@]" print_term a print_term b
- | Mult (a, b) ->
- fprintf fmt "@[(%a *@ %a)@]" print_term a print_term b
- | Div (a, b) ->
- fprintf fmt "@[(%a /@ %a)@]" print_term a print_term b
- | Opp (a) ->
- fprintf fmt "@[(-@ %a)@]" print_term a
- | App (id, []) ->
- fprintf fmt "%a" ident id
- | App (id, tl) ->
- fprintf fmt "@[%a(%a)@]" ident id print_terms tl
-
-and print_terms fmt tl =
- print_list comma print_term fmt tl
-
-let rec print_predicate fmt p =
- let pp = print_predicate in
- match p with
- | True ->
- fprintf fmt "true"
- | False ->
- fprintf fmt "false"
- | Fatom (Eq (a, b)) ->
- fprintf fmt "@[(%a =@ %a)@]" print_term a print_term b
- | Fatom (Le (a, b)) ->
- fprintf fmt "@[(%a <=@ %a)@]" print_term a print_term b
- | Fatom (Lt (a, b))->
- fprintf fmt "@[(%a <@ %a)@]" print_term a print_term b
- | Fatom (Ge (a, b)) ->
- fprintf fmt "@[(%a >=@ %a)@]" print_term a print_term b
- | Fatom (Gt (a, b)) ->
- fprintf fmt "@[(%a >@ %a)@]" print_term a print_term b
- | Fatom (Pred (id, [])) ->
- fprintf fmt "%a" ident id
- | Fatom (Pred (id, tl)) ->
- fprintf fmt "@[%a(%a)@]" ident id print_terms tl
- | Imp (a, b) ->
- fprintf fmt "@[(%a ->@ %a)@]" pp a pp b
- | Iff (a, b) ->
- fprintf fmt "@[(%a <->@ %a)@]" pp a pp b
- | And (a, b) ->
- fprintf fmt "@[(%a and@ %a)@]" pp a pp b
- | Or (a, b) ->
- fprintf fmt "@[(%a or@ %a)@]" pp a pp b
- | Not a ->
- fprintf fmt "@[(not@ %a)@]" pp a
- | Forall (id, t, p) ->
- fprintf fmt "@[(forall %a:%a.@ %a)@]" ident id print_typ t pp p
- | Exists (id, t, p) ->
- fprintf fmt "@[(exists %a:%a.@ %a)@]" ident id print_typ t pp p
-
-let rec remove_iff args = function
- Forall (id,t,p) -> remove_iff ((id,t)::args) p
- | Iff(_,b) -> List.rev args, b
- | _ -> raise Not_found
-
-let print_query fmt (decls,concl) =
- let find_declared_preds l =
- function
- DeclPred (id,_,args) -> (id,args) :: l
- | _ -> l
- in
- let find_defined_preds declared l = function
- Axiom(id,f) ->
- (try
- let _decl = List.assoc id declared in
- (id,remove_iff [] f)::l
- with Not_found -> l)
- | _ -> l
- in
- let declared_preds =
- List.fold_left find_declared_preds [] decls in
- let defined_preds =
- List.fold_left (find_defined_preds declared_preds) [] decls
- in
- let print_dtype = function
- | DeclType (id, 0) ->
- fprintf fmt "@[type %a@]@\n@\n" ident id
- | DeclType (id, 1) ->
- fprintf fmt "@[type 'a %a@]@\n@\n" ident id
- | DeclType (id, n) ->
- fprintf fmt "@[type (";
- for i = 1 to n do
- fprintf fmt "'a%d" i; if i < n then fprintf fmt ", "
- done;
- fprintf fmt ") %a@]@\n@\n" ident id
- | DeclFun _ | DeclPred _ | Axiom _ ->
- ()
- in
- let print_dvar_dpred = function
- | DeclFun (id, _, [], t) ->
- fprintf fmt "@[logic %a : -> %a@]@\n@\n" ident id print_typ t
- | DeclFun (id, _, l, t) ->
- fprintf fmt "@[logic %a : %a -> %a@]@\n@\n"
- ident id (print_list comma print_typ) l print_typ t
- | DeclPred (id, _, []) when not (List.mem_assoc id defined_preds) ->
- fprintf fmt "@[logic %a : -> prop @]@\n@\n" ident id
- | DeclPred (id, _, l) when not (List.mem_assoc id defined_preds) ->
- fprintf fmt "@[logic %a : %a -> prop@]@\n@\n"
- ident id (print_list comma print_typ) l
- | DeclType _ | Axiom _ | DeclPred _ ->
- ()
- in
- let print_assert = function
- | Axiom(id,_) when List.mem_assoc id defined_preds ->
- let args, def = List.assoc id defined_preds in
- fprintf fmt "@[predicate %a(%a) =@\n%a@]@\n" ident id
- (print_list comma print_arg) args print_predicate def
- | Axiom (id, f) ->
- fprintf fmt "@[<hov 2>axiom %a:@ %a@]@\n@\n" ident id print_predicate f
- | DeclType _ | DeclFun _ | DeclPred _ ->
- ()
- in
- List.iter print_dtype decls;
- List.iter print_dvar_dpred decls;
- List.iter print_assert decls;
- fprintf fmt "@[<hov 2>goal coq___goal: %a@]" print_predicate concl
-
-let output_file f q =
- let c = open_out f in
- let fmt = formatter_of_out_channel c in
- fprintf fmt "@[%a@]@." print_query q;
- close_out c
diff --git a/plugins/dp/dp_why.mli b/plugins/dp/dp_why.mli
deleted file mode 100644
index 0efa24a2..00000000
--- a/plugins/dp/dp_why.mli
+++ /dev/null
@@ -1,17 +0,0 @@
-
-open Fol
-
-(* generation of the Why file *)
-
-val output_file : string -> query -> unit
-
-(* table to translate the proofs back to Coq (used in dp_zenon) *)
-
-type proof =
- | Immediate of Term.constr
- | Fun_def of string * (string * typ) list * typ * term
-
-val add_proof : proof -> string
-val find_proof : string -> proof
-
-
diff --git a/plugins/dp/dp_zenon.mli b/plugins/dp/dp_zenon.mli
deleted file mode 100644
index 0a727d1f..00000000
--- a/plugins/dp/dp_zenon.mli
+++ /dev/null
@@ -1,7 +0,0 @@
-
-open Fol
-
-val set_debug : bool -> unit
-
-val proof_from_file : string -> Proof_type.tactic
-
diff --git a/plugins/dp/dp_zenon.mll b/plugins/dp/dp_zenon.mll
deleted file mode 100644
index 949e91e3..00000000
--- a/plugins/dp/dp_zenon.mll
+++ /dev/null
@@ -1,189 +0,0 @@
-
-{
-
- open Lexing
- open Pp
- open Util
- open Names
- open Tacmach
- open Dp_why
- open Tactics
- open Tacticals
-
- let debug = ref false
- let set_debug b = debug := b
-
- let buf = Buffer.create 1024
-
- let string_of_global env ref =
- Libnames.string_of_qualid (Nametab.shortest_qualid_of_global env ref)
-
- let axioms = ref []
-
- (* we cannot interpret the terms as we read them (since some lemmas
- may need other lemmas to be already interpreted) *)
- type lemma = { l_id : string; l_type : string; l_proof : string }
- type zenon_proof = lemma list * string
-
-}
-
-let ident = ['a'-'z' 'A'-'Z' '_' '0'-'9' '\'']+
-let space = [' ' '\t' '\r']
-
-rule start = parse
-| "(* BEGIN-PROOF *)" "\n" { scan lexbuf }
-| _ { start lexbuf }
-| eof { anomaly "malformed Zenon proof term" }
-
-(* here we read the lemmas and the main proof term;
- meanwhile we maintain the set of axioms that were used *)
-
-and scan = parse
-| "Let" space (ident as id) space* ":"
- { let t = read_coq_term lexbuf in
- let p = read_lemma_proof lexbuf in
- let l,pr = scan lexbuf in
- { l_id = id; l_type = t; l_proof = p } :: l, pr }
-| "Definition theorem:"
- { let t = read_main_proof lexbuf in [], t }
-| _ | eof
- { anomaly "malformed Zenon proof term" }
-
-and read_coq_term = parse
-| "." "\n"
- { let s = Buffer.contents buf in Buffer.clear buf; s }
-| "coq__" (ident as id) (* a Why keyword renamed *)
- { Buffer.add_string buf id; read_coq_term lexbuf }
-| ("dp_axiom__" ['0'-'9']+) as id
- { axioms := id :: !axioms; Buffer.add_string buf id; read_coq_term lexbuf }
-| _ as c
- { Buffer.add_char buf c; read_coq_term lexbuf }
-| eof
- { anomaly "malformed Zenon proof term" }
-
-and read_lemma_proof = parse
-| "Proof" space
- { read_coq_term lexbuf }
-| _ | eof
- { anomaly "malformed Zenon proof term" }
-
-(* skip the main proof statement and then read its term *)
-and read_main_proof = parse
-| ":=" "\n"
- { read_coq_term lexbuf }
-| _
- { read_main_proof lexbuf }
-| eof
- { anomaly "malformed Zenon proof term" }
-
-
-{
-
- let read_zenon_proof f =
- Buffer.clear buf;
- let c = open_in f in
- let lb = from_channel c in
- let p = start lb in
- close_in c;
- if not !debug then begin try Sys.remove f with _ -> () end;
- p
-
- let constr_of_string gl s =
- let parse_constr = Pcoq.parse_string Pcoq.Constr.constr in
- Constrintern.interp_constr (project gl) (pf_env gl) (parse_constr s)
-
- (* we are lazy here: we build strings containing Coq terms using a *)
- (* pretty-printer Fol -> Coq *)
- module Coq = struct
- open Format
- open Fol
-
- let rec print_list sep print fmt = function
- | [] -> ()
- | [x] -> print fmt x
- | x :: r -> print fmt x; sep fmt (); print_list sep print fmt r
-
- let space fmt () = fprintf fmt "@ "
- let comma fmt () = fprintf fmt ",@ "
-
- let rec print_typ fmt = function
- | Tvar x -> fprintf fmt "%s" x
- | Tid ("int", []) -> fprintf fmt "Z"
- | Tid (x, []) -> fprintf fmt "%s" x
- | Tid (x, [t]) -> fprintf fmt "(%s %a)" x print_typ t
- | Tid (x,tl) ->
- fprintf fmt "(%s %a)" x (print_list comma print_typ) tl
-
- let rec print_term fmt = function
- | Cst n ->
- fprintf fmt "%s" (Big_int.string_of_big_int n)
- | RCst s ->
- fprintf fmt "%s" (Big_int.string_of_big_int s)
- | Power2 n ->
- fprintf fmt "@[(powerRZ 2 %s)@]" (Big_int.string_of_big_int n)
-
- (* TODO: bug, it might be operations on reals *)
- | Plus (a, b) ->
- fprintf fmt "@[(Zplus %a %a)@]" print_term a print_term b
- | Moins (a, b) ->
- fprintf fmt "@[(Zminus %a %a)@]" print_term a print_term b
- | Mult (a, b) ->
- fprintf fmt "@[(Zmult %a %a)@]" print_term a print_term b
- | Div (a, b) ->
- fprintf fmt "@[(Zdiv %a %a)@]" print_term a print_term b
- | Opp (a) ->
- fprintf fmt "@[(Zopp %a)@]" print_term a
- | App (id, []) ->
- fprintf fmt "%s" id
- | App (id, tl) ->
- fprintf fmt "@[(%s %a)@]" id print_terms tl
-
- and print_terms fmt tl =
- print_list space print_term fmt tl
-
- (* builds the text for "forall vars, f vars = t" *)
- let fun_def_axiom f vars t =
- let binder fmt (x,t) = fprintf fmt "(%s: %a)" x print_typ t in
- fprintf str_formatter
- "@[(forall %a, %s %a = %a)@]@."
- (print_list space binder) vars f
- (print_list space (fun fmt (x,_) -> pp_print_string fmt x)) vars
- print_term t;
- flush_str_formatter ()
-
- end
-
- let prove_axiom id = match Dp_why.find_proof id with
- | Immediate t ->
- exact_check t
- | Fun_def (f, vars, ty, t) ->
- tclTHENS
- (fun gl ->
- let s = Coq.fun_def_axiom f vars t in
- if !debug then Format.eprintf "axiom fun def = %s@." s;
- let c = constr_of_string gl s in
- assert_tac (Name (id_of_string id)) c gl)
- [tclTHEN intros reflexivity; tclIDTAC]
-
- let exact_string s gl =
- let c = constr_of_string gl s in
- exact_check c gl
-
- let interp_zenon_proof (ll,p) =
- let interp_lemma l gl =
- let ty = constr_of_string gl l.l_type in
- tclTHENS
- (assert_tac (Name (id_of_string l.l_id)) ty)
- [exact_string l.l_proof; tclIDTAC]
- gl
- in
- tclTHEN (tclMAP interp_lemma ll) (exact_string p)
-
- let proof_from_file f =
- axioms := [];
- msgnl (str "proof_from_file " ++ str f);
- let zp = read_zenon_proof f in
- msgnl (str "proof term is " ++ str (snd zp));
- tclTHEN (tclMAP prove_axiom !axioms) (interp_zenon_proof zp)
-
-}
diff --git a/plugins/dp/fol.mli b/plugins/dp/fol.mli
deleted file mode 100644
index 4fb763a6..00000000
--- a/plugins/dp/fol.mli
+++ /dev/null
@@ -1,58 +0,0 @@
-
-(* Polymorphic First-Order Logic (that is Why's input logic) *)
-
-type typ =
- | Tvar of string
- | Tid of string * typ list
-
-type term =
- | Cst of Big_int.big_int
- | RCst of Big_int.big_int
- | Power2 of Big_int.big_int
- | Plus of term * term
- | Moins of term * term
- | Mult of term * term
- | Div of term * term
- | Opp of term
- | App of string * term list
-
-and atom =
- | Eq of term * term
- | Le of term * term
- | Lt of term * term
- | Ge of term * term
- | Gt of term * term
- | Pred of string * term list
-
-and form =
- | Fatom of atom
- | Imp of form * form
- | Iff of form * form
- | And of form * form
- | Or of form * form
- | Not of form
- | Forall of string * typ * form
- | Exists of string * typ * form
- | True
- | False
-
-(* the integer indicates the number of type variables *)
-type decl =
- | DeclType of string * int
- | DeclFun of string * int * typ list * typ
- | DeclPred of string * int * typ list
- | Axiom of string * form
-
-type query = decl list * form
-
-
-(* prover result *)
-
-type prover_answer =
- | Valid of string option
- | Invalid
- | DontKnow
- | Timeout
- | NoAnswer
- | Failure of string
-
diff --git a/plugins/dp/g_dp.ml4 b/plugins/dp/g_dp.ml4
deleted file mode 100644
index fc957ea6..00000000
--- a/plugins/dp/g_dp.ml4
+++ /dev/null
@@ -1,79 +0,0 @@
-(************************************************************************)
-(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
-(* \VV/ **************************************************************)
-(* // * This file is distributed under the terms of the *)
-(* * GNU Lesser General Public License Version 2.1 *)
-(************************************************************************)
-
-(*i camlp4deps: "parsing/grammar.cma" i*)
-
-(* $Id: g_dp.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
-open Dp
-
-TACTIC EXTEND Simplify
- [ "simplify" ] -> [ simplify ]
-END
-
-TACTIC EXTEND Ergo
- [ "ergo" ] -> [ ergo ]
-END
-
-TACTIC EXTEND Yices
- [ "yices" ] -> [ yices ]
-END
-
-TACTIC EXTEND CVC3
- [ "cvc3" ] -> [ cvc3 ]
-END
-
-TACTIC EXTEND Z3
- [ "z3" ] -> [ z3 ]
-END
-
-TACTIC EXTEND CVCLite
- [ "cvcl" ] -> [ cvc_lite ]
-END
-
-TACTIC EXTEND Harvey
- [ "harvey" ] -> [ harvey ]
-END
-
-TACTIC EXTEND Zenon
- [ "zenon" ] -> [ zenon ]
-END
-
-TACTIC EXTEND Gwhy
- [ "gwhy" ] -> [ gwhy ]
-END
-
-(* should be part of basic tactics syntax *)
-TACTIC EXTEND admit
- [ "admit" ] -> [ Tactics.admit_as_an_axiom ]
-END
-
-VERNAC COMMAND EXTEND Dp_hint
- [ "Dp_hint" ne_global_list(l) ] -> [ dp_hint l ]
-END
-
-VERNAC COMMAND EXTEND Dp_timeout
-| [ "Dp_timeout" natural(n) ] -> [ dp_timeout n ]
-END
-
-VERNAC COMMAND EXTEND Dp_prelude
-| [ "Dp_prelude" string_list(l) ] -> [ dp_prelude l ]
-END
-
-VERNAC COMMAND EXTEND Dp_predefined
-| [ "Dp_predefined" global(g) "=>" string(s) ] -> [ dp_predefined g s ]
-END
-
-VERNAC COMMAND EXTEND Dp_debug
-| [ "Dp_debug" ] -> [ dp_debug true; Dp_zenon.set_debug true ]
-END
-
-VERNAC COMMAND EXTEND Dp_trace
-| [ "Dp_trace" ] -> [ dp_trace true ]
-END
-
diff --git a/plugins/dp/test2.v b/plugins/dp/test2.v
deleted file mode 100644
index 0940b135..00000000
--- a/plugins/dp/test2.v
+++ /dev/null
@@ -1,80 +0,0 @@
-Require Import ZArith.
-Require Import Classical.
-Require Import List.
-
-Open Scope list_scope.
-Open Scope Z_scope.
-
-Dp_debug.
-Dp_timeout 3.
-Require Export zenon.
-
-Definition neg (z:Z) : Z := match z with
- | Z0 => Z0
- | Zpos p => Zneg p
- | Zneg p => Zpos p
- end.
-
-Goal forall z, neg (neg z) = z.
- Admitted.
-
-Open Scope nat_scope.
-Print plus.
-
-Goal forall x, x+0=x.
- induction x; ergo.
- (* simplify resoud le premier, pas le second *)
- Admitted.
-
-Goal 1::2::3::nil = 1::2::(1+2)::nil.
- zenon.
- Admitted.
-
-Definition T := nat.
-Parameter fct : T -> nat.
-Goal fct O = O.
- Admitted.
-
-Fixpoint even (n:nat) : Prop :=
- match n with
- O => True
- | S O => False
- | S (S p) => even p
- end.
-
-Goal even 4%nat.
- try zenon.
- Admitted.
-
-Definition p (A B:Set) (a:A) (b:B) : list (A*B) := cons (a,b) nil.
-
-Definition head :=
-fun (A : Set) (l : list A) =>
-match l with
-| nil => None (A:=A)
-| x :: _ => Some x
-end.
-
-Goal forall x, head _ (p _ _ 1 2) = Some x -> fst x = 1.
-
-Admitted.
-
-(*
-BUG avec head prédéfini : manque eta-expansion sur A:Set
-
-Goal forall x, head _ (p _ _ 1 2) = Some x -> fst x = 1.
-
-Print value.
-Print Some.
-
-zenon.
-*)
-
-Inductive IN (A:Set) : A -> list A -> Prop :=
- | IN1 : forall x l, IN A x (x::l)
- | IN2: forall x l, IN A x l -> forall y, IN A x (y::l).
-Implicit Arguments IN [A].
-
-Goal forall x, forall (l:list nat), IN x l -> IN x (1%nat::l).
- zenon.
-Print In.
diff --git a/plugins/dp/tests.v b/plugins/dp/tests.v
deleted file mode 100644
index dc85d2ee..00000000
--- a/plugins/dp/tests.v
+++ /dev/null
@@ -1,300 +0,0 @@
-
-Require Import ZArith.
-Require Import Classical.
-Require Export Reals.
-
-
-(* real numbers *)
-
-Lemma real_expr: (0 <= 9 * 4)%R.
-ergo.
-Qed.
-
-Lemma powerRZ_translation: (powerRZ 2 15 < powerRZ 2 17)%R.
-ergo.
-Qed.
-
-Dp_debug.
-Dp_timeout 3.
-
-(* module renamings *)
-
-Module M.
- Parameter t : Set.
-End M.
-
-Lemma test_module_0 : forall x:M.t, x=x.
-ergo.
-Qed.
-
-Module N := M.
-
-Lemma test_module_renaming_0 : forall x:N.t, x=x.
-ergo.
-Qed.
-
-Dp_predefined M.t => "int".
-
-Lemma test_module_renaming_1 : forall x:N.t, x=x.
-ergo.
-Qed.
-
-(* Coq lists *)
-
-Require Export List.
-
-Lemma test_pol_0 : forall l:list nat, l=l.
-ergo.
-Qed.
-
-Parameter nlist: list nat -> Prop.
-
-Lemma poly_1 : forall l, nlist l -> True.
-intros.
-simplify.
-Qed.
-
-(* user lists *)
-
-Inductive list (A:Set) : Set :=
-| nil : list A
-| cons: forall a:A, list A -> list A.
-
-Fixpoint app (A:Set) (l m:list A) {struct l} : list A :=
-match l with
-| nil => m
-| cons a l1 => cons A a (app A l1 m)
-end.
-
-Lemma entail: (nil Z) = app Z (nil Z) (nil Z) -> True.
-intros; ergo.
-Qed.
-
-(* polymorphism *)
-Require Import List.
-
-Inductive mylist (A:Set) : Set :=
- mynil : mylist A
-| mycons : forall a:A, mylist A -> mylist A.
-
-Parameter my_nlist: mylist nat -> Prop.
-
- Goal forall l, my_nlist l -> True.
- intros.
- simplify.
-Qed.
-
-(* First example with the 0 and the equality translated *)
-
-Goal 0 = 0.
-simplify.
-Qed.
-
-(* Examples in the Propositional Calculus
- and theory of equality *)
-
-Parameter A C : Prop.
-
-Goal A -> A.
-simplify.
-Qed.
-
-
-Goal A -> (A \/ C).
-
-simplify.
-Qed.
-
-
-Parameter x y z : Z.
-
-Goal x = y -> y = z -> x = z.
-ergo.
-Qed.
-
-
-Goal ((((A -> C) -> A) -> A) -> C) -> C.
-
-ergo.
-Qed.
-
-(* Arithmetic *)
-Open Scope Z_scope.
-
-Goal 1 + 1 = 2.
-yices.
-Qed.
-
-
-Goal 2*x + 10 = 18 -> x = 4.
-
-simplify.
-Qed.
-
-
-(* Universal quantifier *)
-
-Goal (forall (x y : Z), x = y) -> 0=1.
-try zenon.
-ergo.
-Qed.
-
-Goal forall (x: nat), (x + 0 = x)%nat.
-
-induction x0; ergo.
-Qed.
-
-
-(* No decision procedure can solve this problem
- Goal forall (x a b : Z), a * x + b = 0 -> x = - b/a.
-*)
-
-
-(* Functions definitions *)
-
-Definition fst (x y : Z) : Z := x.
-
-Goal forall (g : Z -> Z) (x y : Z), g (fst x y) = g x.
-
-simplify.
-Qed.
-
-
-(* Eta-expansion example *)
-
-Definition snd_of_3 (x y z : Z) : Z := y.
-
-Definition f : Z -> Z -> Z := snd_of_3 0.
-
-Goal forall (x y z z1 : Z), snd_of_3 x y z = f y z1.
-
-simplify.
-Qed.
-
-
-(* Inductive types definitions - call to dp/injection function *)
-
-Inductive even : Z -> Prop :=
-| even_0 : even 0
-| even_plus2 : forall z : Z, even z -> even (z + 2).
-
-
-(* Simplify and Zenon can't prove this goal before the timeout
- unlike CVC Lite *)
-
-Goal even 4.
-ergo.
-Qed.
-
-
-Definition skip_z (z : Z) (n : nat) := n.
-
-Definition skip_z1 := skip_z.
-
-Goal forall (z : Z) (n : nat), skip_z z n = skip_z1 z n.
-yices.
-Qed.
-
-
-(* Axioms definitions and dp_hint *)
-
-Parameter add : nat -> nat -> nat.
-Axiom add_0 : forall (n : nat), add 0%nat n = n.
-Axiom add_S : forall (n1 n2 : nat), add (S n1) n2 = S (add n1 n2).
-
-Dp_hint add_0.
-Dp_hint add_S.
-
-(* Simplify can't prove this goal before the timeout
- unlike zenon *)
-
-Goal forall n : nat, add n 0 = n.
-induction n ; yices.
-Qed.
-
-
-Definition pred (n : nat) : nat := match n with
- | 0%nat => 0%nat
- | S n' => n'
-end.
-
-Goal forall n : nat, n <> 0%nat -> pred (S n) <> 0%nat.
-yices.
-(*zenon.*)
-Qed.
-
-
-Fixpoint plus (n m : nat) {struct n} : nat :=
- match n with
- | 0%nat => m
- | S n' => S (plus n' m)
-end.
-
-Goal forall n : nat, plus n 0%nat = n.
-
-induction n; ergo.
-Qed.
-
-
-(* Mutually recursive functions *)
-
-Fixpoint even_b (n : nat) : bool := match n with
- | O => true
- | S m => odd_b m
-end
-with odd_b (n : nat) : bool := match n with
- | O => false
- | S m => even_b m
-end.
-
-Goal even_b (S (S O)) = true.
-ergo.
-(*
-simplify.
-zenon.
-*)
-Qed.
-
-
-(* sorts issues *)
-
-Parameter foo : Set.
-Parameter ff : nat -> foo -> foo -> nat.
-Parameter g : foo -> foo.
-Goal (forall x:foo, ff 0 x x = O) -> forall y, ff 0 (g y) (g y) = O.
-yices.
-(*zenon.*)
-Qed.
-
-
-
-(* abstractions *)
-
-Parameter poly_f : forall A:Set, A->A.
-
-Goal forall x:nat, poly_f nat x = poly_f nat x.
-ergo.
-(*zenon.*)
-Qed.
-
-
-
-(* Anonymous mutually recursive functions : no equations are produced
-
-Definition mrf :=
- fix even2 (n : nat) : bool := match n with
- | O => true
- | S m => odd2 m
- end
- with odd2 (n : nat) : bool := match n with
- | O => false
- | S m => even2 m
- end for even.
-
- Thus this goal is unsolvable
-
-Goal mrf (S (S O)) = true.
-
-zenon.
-
-*)
diff --git a/plugins/dp/vo.itarget b/plugins/dp/vo.itarget
deleted file mode 100644
index 4d282709..00000000
--- a/plugins/dp/vo.itarget
+++ /dev/null
@@ -1 +0,0 @@
-Dp.vo
diff --git a/plugins/dp/zenon.v b/plugins/dp/zenon.v
deleted file mode 100644
index f2400a7f..00000000
--- a/plugins/dp/zenon.v
+++ /dev/null
@@ -1,94 +0,0 @@
-(* Copyright 2004 INRIA *)
-(* $Id: zenon.v 11996 2009-03-20 01:22:58Z letouzey $ *)
-
-Require Export Classical.
-
-Lemma zenon_nottrue :
- (~True -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_noteq : forall (T : Type) (t : T),
- ((t <> t) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_and : forall P Q : Prop,
- (P -> Q -> False) -> (P /\ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_or : forall P Q : Prop,
- (P -> False) -> (Q -> False) -> (P \/ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_imply : forall P Q : Prop,
- (~P -> False) -> (Q -> False) -> ((P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_equiv : forall P Q : Prop,
- (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notand : forall P Q : Prop,
- (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notor : forall P Q : Prop,
- (~P -> ~Q -> False) -> (~(P \/ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notimply : forall P Q : Prop,
- (P -> ~Q -> False) -> (~(P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notequiv : forall P Q : Prop,
- (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_ex : forall (T : Type) (P : T -> Prop),
- (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T),
- ((P t) -> False) -> ((forall x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T),
- (~(P t) -> False) -> (~(exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notall : forall (T : Type) (P : T -> Prop),
- (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False).
-Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed.
-
-Lemma zenon_equal_base : forall (T : Type) (f : T), f = f.
-Proof. auto. Qed.
-
-Lemma zenon_equal_step :
- forall (S T : Type) (fa fb : S -> T) (a b : S),
- (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)).
-Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed.
-
-Lemma zenon_pnotp : forall P Q : Prop,
- (P = Q) -> (P -> ~Q -> False).
-Proof. intros P Q Ha. rewrite Ha. auto. Qed.
-
-Lemma zenon_notequal : forall (T : Type) (a b : T),
- (a = b) -> (a <> b -> False).
-Proof. auto. Qed.
-
-Ltac zenon_intro id :=
- intro id || let nid := fresh in (intro nid; clear nid)
-.
-
-Definition zenon_and_s := fun P Q a b => zenon_and P Q b a.
-Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a.
-Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a.
-Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a.
-Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a.
-Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a.
-Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a.
-Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a.
-Definition zenon_ex_s := fun T P a b => zenon_ex T P b a.
-Definition zenon_notall_s := fun T P a b => zenon_notall T P b a.
-
-Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b.
-Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x.
diff --git a/plugins/extraction/ExtrOcamlBasic.v b/plugins/extraction/ExtrOcamlBasic.v
index eab2f67c..3a54b252 100644
--- a/plugins/extraction/ExtrOcamlBasic.v
+++ b/plugins/extraction/ExtrOcamlBasic.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(** Extraction to Ocaml : use of basic Ocaml types *)
-Scheme Equality for nat.
-
Extract Inductive bool => bool [ true false ].
Extract Inductive option => option [ Some None ].
Extract Inductive unit => unit [ "()" ].
diff --git a/plugins/extraction/ExtrOcamlBigIntConv.v b/plugins/extraction/ExtrOcamlBigIntConv.v
index e38d41e3..265fbc52 100644
--- a/plugins/extraction/ExtrOcamlBigIntConv.v
+++ b/plugins/extraction/ExtrOcamlBigIntConv.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/extraction/ExtrOcamlIntConv.v b/plugins/extraction/ExtrOcamlIntConv.v
index b059b2a0..cb866dc8 100644
--- a/plugins/extraction/ExtrOcamlIntConv.v
+++ b/plugins/extraction/ExtrOcamlIntConv.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/extraction/ExtrOcamlNatBigInt.v b/plugins/extraction/ExtrOcamlNatBigInt.v
index 1fb83c5b..fb45a8be 100644
--- a/plugins/extraction/ExtrOcamlNatBigInt.v
+++ b/plugins/extraction/ExtrOcamlNatBigInt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(** Extraction of [nat] into Ocaml's [big_int] *)
-Require Import Arith Even Div2 EqNat MinMax Euclid.
+Require Import Arith Even Div2 EqNat Euclid.
Require Import ExtrOcamlBasic.
(** NB: The extracted code should be linked with [nums.cm(x)a]
@@ -36,7 +36,7 @@ Extract Constant pred => "fun n -> Big.max Big.zero (Big.pred n)".
Extract Constant minus => "fun n m -> Big.max Big.zero (Big.sub n m)".
Extract Constant max => "Big.max".
Extract Constant min => "Big.min".
-Extract Constant nat_beq => "Big.eq".
+(*Extract Constant nat_beq => "Big.eq".*)
Extract Constant EqNat.beq_nat => "Big.eq".
Extract Constant EqNat.eq_nat_decide => "Big.eq".
diff --git a/plugins/extraction/ExtrOcamlNatInt.v b/plugins/extraction/ExtrOcamlNatInt.v
index e577ebe1..956ece79 100644
--- a/plugins/extraction/ExtrOcamlNatInt.v
+++ b/plugins/extraction/ExtrOcamlNatInt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,12 +8,16 @@
(** Extraction of [nat] into Ocaml's [int] *)
-Require Import Arith Even Div2 EqNat MinMax Euclid.
+Require Import Arith Even Div2 EqNat Euclid.
Require Import ExtrOcamlBasic.
(** Disclaimer: trying to obtain efficient certified programs
by extracting [nat] into [int] is definitively *not* a good idea:
+ - This is just a syntactic adaptation, many things can go wrong,
+ such as name captures (e.g. if you have a constant named "int"
+ in your development, or a module named "Pervasives"). See bug #2878.
+
- Since [int] is bounded while [nat] is (theoretically) infinite,
you have to make sure by yourself that your program will not
manipulate numbers greater than [max_int]. Otherwise you should
@@ -34,18 +38,18 @@ Require Import ExtrOcamlBasic.
(** Mapping of [nat] into [int]. The last string corresponds to
a [nat_case], see documentation of [Extract Inductive]. *)
-Extract Inductive nat => int [ "0" "succ" ]
+Extract Inductive nat => int [ "0" "Pervasives.succ" ]
"(fun fO fS n -> if n=0 then fO () else fS (n-1))".
(** Efficient (but uncertified) versions for usual [nat] functions *)
Extract Constant plus => "(+)".
-Extract Constant pred => "fun n -> max 0 (n-1)".
-Extract Constant minus => "fun n m -> max 0 (n-m)".
+Extract Constant pred => "fun n -> Pervasives.max 0 (n-1)".
+Extract Constant minus => "fun n m -> Pervasives.max 0 (n-m)".
Extract Constant mult => "( * )".
-Extract Inlined Constant max => max.
-Extract Inlined Constant min => min.
-Extract Inlined Constant nat_beq => "(=)".
+Extract Inlined Constant max => "Pervasives.max".
+Extract Inlined Constant min => "Pervasives.min".
+(*Extract Inlined Constant nat_beq => "(=)".*)
Extract Inlined Constant EqNat.beq_nat => "(=)".
Extract Inlined Constant EqNat.eq_nat_decide => "(=)".
@@ -72,4 +76,4 @@ Definition test n m (H:m>0) :=
nat_compare n (q*m+r).
Recursive Extraction test fact.
-*) \ No newline at end of file
+*)
diff --git a/plugins/extraction/ExtrOcamlString.v b/plugins/extraction/ExtrOcamlString.v
index 48260e3d..3d86d712 100644
--- a/plugins/extraction/ExtrOcamlString.v
+++ b/plugins/extraction/ExtrOcamlString.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/extraction/ExtrOcamlZBigInt.v b/plugins/extraction/ExtrOcamlZBigInt.v
index 5ca6bd7b..a6ba9aa2 100644
--- a/plugins/extraction/ExtrOcamlZBigInt.v
+++ b/plugins/extraction/ExtrOcamlZBigInt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(** Extraction of [positive], [N] and [Z] into Ocaml's [big_int] *)
-Require Import ZArith NArith ZOdiv_def.
+Require Import ZArith NArith.
Require Import ExtrOcamlBasic.
(** NB: The extracted code should be linked with [nums.cm(x)a]
@@ -36,50 +36,52 @@ Extract Inductive N => "Big.big_int"
(** Efficient (but uncertified) versions for usual functions *)
-Extract Constant Pplus => "Big.add".
-Extract Constant Psucc => "Big.succ".
-Extract Constant Ppred => "fun n -> Big.max Big.one (Big.pred n)".
-Extract Constant Pminus => "fun n m -> Big.max Big.one (Big.sub n m)".
-Extract Constant Pmult => "Big.mult".
-Extract Constant Pmin => "Big.min".
-Extract Constant Pmax => "Big.max".
-Extract Constant Pcompare =>
+Extract Constant Pos.add => "Big.add".
+Extract Constant Pos.succ => "Big.succ".
+Extract Constant Pos.pred => "fun n -> Big.max Big.one (Big.pred n)".
+Extract Constant Pos.sub => "fun n m -> Big.max Big.one (Big.sub n m)".
+Extract Constant Pos.mul => "Big.mult".
+Extract Constant Pos.min => "Big.min".
+Extract Constant Pos.max => "Big.max".
+Extract Constant Pos.compare =>
+ "fun x y -> Big.compare_case Eq Lt Gt x y".
+Extract Constant Pos.compare_cont =>
"fun x y c -> Big.compare_case c Lt Gt x y".
-Extract Constant Nplus => "Big.add".
-Extract Constant Nsucc => "Big.succ".
-Extract Constant Npred => "fun n -> Big.max Big.zero (Big.pred n)".
-Extract Constant Nminus => "fun n m -> Big.max Big.zero (Big.sub n m)".
-Extract Constant Nmult => "Big.mult".
-Extract Constant Nmin => "Big.min".
-Extract Constant Nmax => "Big.max".
-Extract Constant Ndiv =>
+Extract Constant N.add => "Big.add".
+Extract Constant N.succ => "Big.succ".
+Extract Constant N.pred => "fun n -> Big.max Big.zero (Big.pred n)".
+Extract Constant N.sub => "fun n m -> Big.max Big.zero (Big.sub n m)".
+Extract Constant N.mul => "Big.mult".
+Extract Constant N.min => "Big.min".
+Extract Constant N.max => "Big.max".
+Extract Constant N.div =>
"fun a b -> if Big.eq b Big.zero then Big.zero else Big.div a b".
-Extract Constant Nmod =>
+Extract Constant N.modulo =>
"fun a b -> if Big.eq b Big.zero then Big.zero else Big.modulo a b".
-Extract Constant Ncompare => "Big.compare_case Eq Lt Gt".
-
-Extract Constant Zplus => "Big.add".
-Extract Constant Zsucc => "Big.succ".
-Extract Constant Zpred => "Big.pred".
-Extract Constant Zminus => "Big.sub".
-Extract Constant Zmult => "Big.mult".
-Extract Constant Zopp => "Big.opp".
-Extract Constant Zabs => "Big.abs".
-Extract Constant Zmin => "Big.min".
-Extract Constant Zmax => "Big.max".
-Extract Constant Zcompare => "Big.compare_case Eq Lt Gt".
-
-Extract Constant Z_of_N => "fun p -> p".
-Extract Constant Zabs_N => "Big.abs".
-
-(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod).
+Extract Constant N.compare => "Big.compare_case Eq Lt Gt".
+
+Extract Constant Z.add => "Big.add".
+Extract Constant Z.succ => "Big.succ".
+Extract Constant Z.pred => "Big.pred".
+Extract Constant Z.sub => "Big.sub".
+Extract Constant Z.mul => "Big.mult".
+Extract Constant Z.opp => "Big.opp".
+Extract Constant Z.abs => "Big.abs".
+Extract Constant Z.min => "Big.min".
+Extract Constant Z.max => "Big.max".
+Extract Constant Z.compare => "Big.compare_case Eq Lt Gt".
+
+Extract Constant Z.of_N => "fun p -> p".
+Extract Constant Z.abs_N => "Big.abs".
+
+(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod).
For the moment we don't even try *)
(** Test:
Require Import ZArith NArith.
Extraction "/tmp/test.ml"
- Pplus Ppred Pminus Pmult Pcompare Npred Nminus Ndiv Nmod Ncompare
- Zplus Zmult BinInt.Zcompare Z_of_N Zabs_N Zdiv.Zdiv Zmod.
+ Pos.add Pos.pred Pos.sub Pos.mul Pos.compare N.pred N.sub N.div N.modulo N.compare
+ Z.add Z.mul Z.compare Z.of_N Z.abs_N Z.div Z.modulo.
*)
diff --git a/plugins/extraction/ExtrOcamlZInt.v b/plugins/extraction/ExtrOcamlZInt.v
index a7046626..ab634329 100644
--- a/plugins/extraction/ExtrOcamlZInt.v
+++ b/plugins/extraction/ExtrOcamlZInt.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(** Extraction of [positive], [N] and [Z] into Ocaml's [int] *)
-Require Import ZArith NArith ZOdiv_def.
+Require Import ZArith NArith.
Require Import ExtrOcamlBasic.
(** Disclaimer: trying to obtain efficient certified programs
@@ -33,46 +33,48 @@ Extract Inductive N => int [ "0" "" ]
(** Efficient (but uncertified) versions for usual functions *)
-Extract Constant Pplus => "(+)".
-Extract Constant Psucc => "succ".
-Extract Constant Ppred => "fun n -> max 1 (n-1)".
-Extract Constant Pminus => "fun n m -> max 1 (n-m)".
-Extract Constant Pmult => "( * )".
-Extract Constant Pmin => "min".
-Extract Constant Pmax => "max".
-Extract Constant Pcompare =>
+Extract Constant Pos.add => "(+)".
+Extract Constant Pos.succ => "Pervasives.succ".
+Extract Constant Pos.pred => "fun n -> Pervasives.max 1 (n-1)".
+Extract Constant Pos.sub => "fun n m -> Pervasives.max 1 (n-m)".
+Extract Constant Pos.mul => "( * )".
+Extract Constant Pos.min => "Pervasives.min".
+Extract Constant Pos.max => "Pervasives.max".
+Extract Constant Pos.compare =>
+ "fun x y -> if x=y then Eq else if x<y then Lt else Gt".
+Extract Constant Pos.compare_cont =>
"fun x y c -> if x=y then c else if x<y then Lt else Gt".
-Extract Constant Nplus => "(+)".
-Extract Constant Nsucc => "succ".
-Extract Constant Npred => "fun n -> max 0 (n-1)".
-Extract Constant Nminus => "fun n m -> max 0 (n-m)".
-Extract Constant Nmult => "( * )".
-Extract Constant Nmin => "min".
-Extract Constant Nmax => "max".
-Extract Constant Ndiv => "fun a b -> if b=0 then 0 else a/b".
-Extract Constant Nmod => "fun a b -> if b=0 then a else a mod b".
-Extract Constant Ncompare =>
+Extract Constant N.add => "(+)".
+Extract Constant N.succ => "Pervasives.succ".
+Extract Constant N.pred => "fun n -> Pervasives.max 0 (n-1)".
+Extract Constant N.sub => "fun n m -> Pervasives.max 0 (n-m)".
+Extract Constant N.mul => "( * )".
+Extract Constant N.min => "Pervasives.min".
+Extract Constant N.max => "Pervasives.max".
+Extract Constant N.div => "fun a b -> if b=0 then 0 else a/b".
+Extract Constant N.modulo => "fun a b -> if b=0 then a else a mod b".
+Extract Constant N.compare =>
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
-Extract Constant Zplus => "(+)".
-Extract Constant Zsucc => "succ".
-Extract Constant Zpred => "pred".
-Extract Constant Zminus => "(-)".
-Extract Constant Zmult => "( * )".
-Extract Constant Zopp => "(~-)".
-Extract Constant Zabs => "abs".
-Extract Constant Zmin => "min".
-Extract Constant Zmax => "max".
-Extract Constant Zcompare =>
+Extract Constant Z.add => "(+)".
+Extract Constant Z.succ => "Pervasives.succ".
+Extract Constant Z.pred => "Pervasives.pred".
+Extract Constant Z.sub => "(-)".
+Extract Constant Z.mul => "( * )".
+Extract Constant Z.opp => "(~-)".
+Extract Constant Z.abs => "Pervasives.abs".
+Extract Constant Z.min => "Pervasives.min".
+Extract Constant Z.max => "Pervasives.max".
+Extract Constant Z.compare =>
"fun x y -> if x=y then Eq else if x<y then Lt else Gt".
-Extract Constant Z_of_N => "fun p -> p".
-Extract Constant Zabs_N => "abs".
+Extract Constant Z.of_N => "fun p -> p".
+Extract Constant Z.abs_N => "Pervasives.abs".
-(** Zdiv and Zmod are quite complex to define in terms of (/) and (mod).
+(** Z.div and Z.modulo are quite complex to define in terms of (/) and (mod).
For the moment we don't even try *)
diff --git a/plugins/extraction/big.ml b/plugins/extraction/big.ml
index ae04ba6d..ddb57a25 100644
--- a/plugins/extraction/big.ml
+++ b/plugins/extraction/big.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/extraction/common.ml b/plugins/extraction/common.ml
index 9713fcd2..92b5949e 100644
--- a/plugins/extraction/common.ml
+++ b/plugins/extraction/common.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: common.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Pp
open Util
open Names
@@ -35,17 +33,41 @@ let is_mp_bound = function MPbound _ -> true | _ -> false
let pp_par par st = if par then str "(" ++ st ++ str ")" else st
+(** [pp_apply] : a head part applied to arguments, possibly with parenthesis *)
+
let pp_apply st par args = match args with
| [] -> st
| _ -> hov 2 (pp_par par (st ++ spc () ++ prlist_with_sep spc identity args))
+(** Same as [pp_apply], but with also protection of the head by parenthesis *)
+
+let pp_apply2 st par args =
+ let par' = args <> [] || par in
+ pp_apply (pp_par par' st) par args
+
let pr_binding = function
| [] -> mt ()
| l -> str " " ++ prlist_with_sep (fun () -> str " ") pr_id l
+let pp_tuple_light f = function
+ | [] -> mt ()
+ | [x] -> f true x
+ | l ->
+ pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) (f false) l)
+
+let pp_tuple f = function
+ | [] -> mt ()
+ | [x] -> f x
+ | l -> pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) f l)
+
+let pp_boxed_tuple f = function
+ | [] -> mt ()
+ | [x] -> f x
+ | l -> pp_par true (hov 0 (prlist_with_sep (fun () -> str "," ++ spc ()) f l))
+
(** By default, in module Format, you can do horizontal placing of blocks
even if they include newlines, as long as the number of chars in the
- blocks are less that a line length. To avoid this awkward situation,
+ blocks is less that a line length. To avoid this awkward situation,
we attach a big virtual size to [fnl] newlines. *)
let fnl () = stras (1000000,"") ++ fnl ()
@@ -54,8 +76,6 @@ let fnl2 () = fnl () ++ fnl ()
let space_if = function true -> str " " | false -> mt ()
-let sec_space_if = function true -> spc () | false -> mt ()
-
let is_digit = function
| '0'..'9' -> true
| _ -> false
@@ -177,7 +197,7 @@ let empty_env () = [], get_global_ids ()
let mktable autoclean =
let h = Hashtbl.create 97 in
if autoclean then register_cleanup (fun () -> Hashtbl.clear h);
- (Hashtbl.add h, Hashtbl.find h, fun () -> Hashtbl.clear h)
+ (Hashtbl.replace h, Hashtbl.find h, fun () -> Hashtbl.clear h)
(* We might have built [global_reference] whose canonical part is
inaccurate. We must hence compare only the user part,
@@ -352,12 +372,13 @@ let ref_renaming_fun (k,r) =
let l = mp_renaming mp in
let l = if lang () <> Ocaml && not (modular ()) then [""] else l in
let s =
+ let idg = safe_basename_of_global r in
if l = [""] (* this happens only at toplevel of the monolithic case *)
then
let globs = Idset.elements (get_global_ids ()) in
- let id = next_ident_away (kindcase_id k (safe_basename_of_global r)) globs in
+ let id = next_ident_away (kindcase_id k idg) globs in
string_of_id id
- else modular_rename k (safe_basename_of_global r)
+ else modular_rename k idg
in
add_global_ids (id_of_string s);
s::l
diff --git a/plugins/extraction/common.mli b/plugins/extraction/common.mli
index 22bad6cd..f5d90a43 100644
--- a/plugins/extraction/common.mli
+++ b/plugins/extraction/common.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: common.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Names
open Libnames
open Miniml
@@ -22,10 +20,19 @@ open Pp
val fnl : unit -> std_ppcmds
val fnl2 : unit -> std_ppcmds
val space_if : bool -> std_ppcmds
-val sec_space_if : bool -> std_ppcmds
val pp_par : bool -> std_ppcmds -> std_ppcmds
+
+(** [pp_apply] : a head part applied to arguments, possibly with parenthesis *)
val pp_apply : std_ppcmds -> bool -> std_ppcmds list -> std_ppcmds
+
+(** Same as [pp_apply], but with also protection of the head by parenthesis *)
+val pp_apply2 : std_ppcmds -> bool -> std_ppcmds list -> std_ppcmds
+
+val pp_tuple_light : (bool -> 'a -> std_ppcmds) -> 'a list -> std_ppcmds
+val pp_tuple : ('a -> std_ppcmds) -> 'a list -> std_ppcmds
+val pp_boxed_tuple : ('a -> std_ppcmds) -> 'a list -> std_ppcmds
+
val pr_binding : identifier list -> std_ppcmds
val rename_id : identifier -> Idset.t -> identifier
diff --git a/plugins/extraction/extract_env.ml b/plugins/extraction/extract_env.ml
index 3fa674d3..b7ee3c1a 100644
--- a/plugins/extraction/extract_env.ml
+++ b/plugins/extraction/extract_env.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: extract_env.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Term
open Declarations
open Names
@@ -40,21 +38,19 @@ let toplevel_env () =
in l,seb
| _ -> failwith "caught"
in
- match current_toplevel () with
- | _ -> SEBstruct (List.rev (map_succeed get_reference seg))
-
+ SEBstruct (List.rev (map_succeed get_reference seg))
+
let environment_until dir_opt =
let rec parse = function
| [] when dir_opt = None -> [current_toplevel (), toplevel_env ()]
| [] -> []
| d :: l ->
- let mb = Global.lookup_module (MPfile d) in
- (* If -dont-load-proof has been used, mod_expr is None,
- we try with mod_type *)
- let meb = Option.default mb.mod_type mb.mod_expr in
- if dir_opt = Some d then [MPfile d, meb]
- else (MPfile d, meb) :: (parse l)
+ match (Global.lookup_module (MPfile d)).mod_expr with
+ | Some meb ->
+ if dir_opt = Some d then [MPfile d, meb]
+ else (MPfile d, meb) :: (parse l)
+ | _ -> assert false
in parse (Library.loaded_libraries ())
@@ -68,6 +64,9 @@ module type VISIT = sig
(* Add the module_path and all its prefixes to the mp visit list *)
val add_mp : module_path -> unit
+ (* Same, but we'll keep all fields of these modules *)
+ val add_mp_all : module_path -> unit
+
(* Add kernel_name / constant / reference / ... in the visit lists.
These functions silently add the mp of their arg in the mp list *)
val add_ind : mutual_inductive -> unit
@@ -81,6 +80,7 @@ module type VISIT = sig
val needed_ind : mutual_inductive -> bool
val needed_con : constant -> bool
val needed_mp : module_path -> bool
+ val needed_mp_all : module_path -> bool
end
module Visit : VISIT = struct
@@ -88,16 +88,26 @@ module Visit : VISIT = struct
(for inductives and modules names) and a Cset_env for constants
(and still the remaining MPset) *)
type must_visit =
- { mutable ind : KNset.t; mutable con : KNset.t; mutable mp : MPset.t }
+ { mutable ind : KNset.t; mutable con : KNset.t;
+ mutable mp : MPset.t; mutable mp_all : MPset.t }
(* the imperative internal visit lists *)
- let v = { ind = KNset.empty ; con = KNset.empty ; mp = MPset.empty }
+ let v = { ind = KNset.empty ; con = KNset.empty ;
+ mp = MPset.empty; mp_all = MPset.empty }
(* the accessor functions *)
- let reset () = v.ind <- KNset.empty; v.con <- KNset.empty; v.mp <- MPset.empty
+ let reset () =
+ v.ind <- KNset.empty;
+ v.con <- KNset.empty;
+ v.mp <- MPset.empty;
+ v.mp_all <- MPset.empty
let needed_ind i = KNset.mem (user_mind i) v.ind
let needed_con c = KNset.mem (user_con c) v.con
- let needed_mp mp = MPset.mem mp v.mp
+ let needed_mp mp = MPset.mem mp v.mp || MPset.mem mp v.mp_all
+ let needed_mp_all mp = MPset.mem mp v.mp_all
let add_mp mp =
check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp
+ let add_mp_all mp =
+ check_loaded_modfile mp; v.mp <- MPset.union (prefixes_mp mp) v.mp;
+ v.mp_all <- MPset.add mp v.mp_all
let add_ind i =
let kn = user_mind i in
v.ind <- KNset.add kn v.ind; add_mp (modpath kn)
@@ -120,12 +130,17 @@ let check_arity env cb =
let check_fix env cb i =
match cb.const_body with
- | None -> raise Impossible
- | Some lbody ->
- match kind_of_term (Declarations.force lbody) with
+ | Def lbody ->
+ (match kind_of_term (Declarations.force lbody) with
| Fix ((_,j),recd) when i=j -> check_arity env cb; (true,recd)
| CoFix (j,recd) when i=j -> check_arity env cb; (false,recd)
- | _ -> raise Impossible
+ | _ -> raise Impossible)
+ | Undef _ | OpaqueDef _ -> raise Impossible
+
+let prec_declaration_equal (na1, ca1, ta1) (na2, ca2, ta2) =
+ na1 = na2 &&
+ array_equal eq_constr ca1 ca2 &&
+ array_equal eq_constr ta1 ta2
let factor_fix env l cb msb =
let _,recd as check = check_fix env cb 0 in
@@ -139,7 +154,10 @@ let factor_fix env l cb msb =
(fun j ->
function
| (l,SFBconst cb') ->
- if check <> check_fix env cb' (j+1) then raise Impossible;
+ let check' = check_fix env cb' (j+1) in
+ if not (fst check = fst check' &&
+ prec_declaration_equal (snd check) (snd check'))
+ then raise Impossible;
labels.(j+1) <- l;
| _ -> raise Impossible) msb';
labels, recd, msb''
@@ -157,7 +175,8 @@ let rec seb2mse = function
let expand_seb env mp seb =
let seb,_,_,_ =
- Mod_typing.translate_struct_module_entry env mp true (seb2mse seb)
+ let inl = Some (Flags.get_inline_level()) in
+ Mod_typing.translate_struct_module_entry env mp inl (seb2mse seb)
in seb
(** When possible, we use the nicer, shorter, algebraic type structures
@@ -179,13 +198,14 @@ let rec msid_of_seb = function
| SEBwith (seb,_) -> msid_of_seb seb
| _ -> assert false
-let env_for_mtb_with env mp seb idl =
+let env_for_mtb_with_def env mp seb idl =
let sig_b = match seb with
| SEBstruct(sig_b) -> sig_b
| _ -> assert false
in
let l = label_of_id (List.hd idl) in
- let before = fst (list_split_when (fun (l',_) -> l=l') sig_b) in
+ let spot = function (l',SFBconst _) -> l = l' | _ -> false in
+ let before = fst (list_split_when spot sig_b) in
Modops.add_signature mp before empty_delta_resolver env
(* From a [structure_body] (i.e. a list of [structure_field_body])
@@ -200,9 +220,8 @@ let rec extract_sfb_spec env mp = function
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
| (l,SFBmind _) :: msig ->
- let kn = make_kn mp empty_dirpath l in
- let mind = mind_of_kn kn in
- let s = Sind (kn, extract_inductive env mind) in
+ let mind = make_mind mp empty_dirpath l in
+ let s = Sind (mind, extract_inductive env mind) in
let specs = extract_sfb_spec env mp msig in
if logical_spec s then specs
else begin Visit.add_spec_deps s; (l,Spec s) :: specs end
@@ -223,15 +242,15 @@ let rec extract_sfb_spec env mp = function
*)
and extract_seb_spec env mp1 (seb,seb_alg) = match seb_alg with
- | SEBident mp -> Visit.add_mp mp; MTident mp
+ | SEBident mp -> Visit.add_mp_all mp; MTident mp
| SEBwith(seb',With_definition_body(idl,cb))->
- let env' = env_for_mtb_with env (msid_of_seb seb') seb idl in
+ let env' = env_for_mtb_with_def env (msid_of_seb seb') seb idl in
let mt = extract_seb_spec env mp1 (seb,seb') in
(match extract_with_type env' cb with (* cb peut contenir des kn *)
| None -> mt
| Some (vl,typ) -> MTwith(mt,ML_With_type(idl,vl,typ)))
| SEBwith(seb',With_module_body(idl,mp))->
- Visit.add_mp mp;
+ Visit.add_mp_all mp;
MTwith(extract_seb_spec env mp1 (seb,seb'),
ML_With_module(idl,mp))
| SEBfunctor (mbid, mtb, seb_alg') ->
@@ -283,11 +302,10 @@ let rec extract_sfb env mp all = function
else ms)
| (l,SFBmind mib) :: msb ->
let ms = extract_sfb env mp all msb in
- let kn = make_kn mp empty_dirpath l in
- let mind = mind_of_kn kn in
+ let mind = make_mind mp empty_dirpath l in
let b = Visit.needed_ind mind in
if all || b then
- let d = Dind (kn, extract_inductive env mind) in
+ let d = Dind (mind, extract_inductive env mind) in
if (not b) && (logical_decl d) then ms
else begin Visit.add_decl_deps d; (l,SEdecl d) :: ms end
else ms
@@ -312,7 +330,7 @@ and extract_seb env mp all = function
extract_seb env mp all (expand_seb env mp seb)
| SEBident mp ->
if is_modfile mp && not (modular ()) then error_MPfile_as_mod mp false;
- Visit.add_mp mp; MEident mp
+ Visit.add_mp_all mp; MEident mp
| SEBapply (meb, meb',_) ->
MEapply (extract_seb env mp true meb,
extract_seb env mp true meb')
@@ -346,11 +364,12 @@ let unpack = function MEstruct (_,sel) -> sel | _ -> assert false
let mono_environment refs mpl =
Visit.reset ();
List.iter Visit.add_ref refs;
- List.iter Visit.add_mp mpl;
+ List.iter Visit.add_mp_all mpl;
let env = Global.env () in
let l = List.rev (environment_until None) in
List.rev_map
- (fun (mp,m) -> mp, unpack (extract_seb env mp false m)) l
+ (fun (mp,m) -> mp, unpack (extract_seb env mp (Visit.needed_mp_all mp) m))
+ l
(**************************************)
(*S Part II : Input/Output primitives *)
@@ -378,8 +397,10 @@ let mono_filename f =
in
let id =
if lang () <> Haskell then default_id
- else try id_of_string (Filename.basename f)
- with _ -> error "Extraction: provided filename is not a valid identifier"
+ else
+ try id_of_string (Filename.basename f)
+ with e when Errors.noncritical e ->
+ error "Extraction: provided filename is not a valid identifier"
in
Some (f^d.file_suffix), Option.map ((^) f) d.sig_suffix, id
@@ -454,8 +475,8 @@ let print_structure_to_file (fn,si,mo) dry struc =
msg_with ft (d.preamble mo opened unsafe_needs);
msg_with ft (d.pp_struct struc);
Option.iter close_out cout;
- with e ->
- Option.iter close_out cout; raise e
+ with reraise ->
+ Option.iter close_out cout; raise reraise
end;
if not dry then Option.iter info_file fn;
(* Now, let's print the signature *)
@@ -468,8 +489,8 @@ let print_structure_to_file (fn,si,mo) dry struc =
msg_with ft (d.sig_preamble mo opened unsafe_needs);
msg_with ft (d.pp_sig (signature_of_structure struc));
close_out cout;
- with e ->
- close_out cout; raise e
+ with reraise ->
+ close_out cout; raise reraise
end;
info_file si)
(if dry then None else si);
@@ -488,13 +509,18 @@ let print_structure_to_file (fn,si,mo) dry struc =
let reset () =
Visit.reset (); reset_tables (); reset_renaming_tables Everything
-let init modular =
+let init modular library =
check_inside_section (); check_inside_module ();
set_keywords (descr ()).keywords;
set_modular modular;
+ set_library library;
reset ();
if modular && lang () = Scheme then error_scheme ()
+let warns () =
+ warning_opaques (access_opaque ());
+ warning_axioms ()
+
(* From a list of [reference], let's retrieve whether they correspond
to modules or [global_reference]. Warn the user if both is possible. *)
@@ -503,7 +529,10 @@ let rec locate_ref = function
| r::l ->
let q = snd (qualid_of_reference r) in
let mpo = try Some (Nametab.locate_module q) with Not_found -> None
- and ro = try Some (Nametab.locate q) with Not_found -> None in
+ and ro =
+ try Some (Smartlocate.global_with_alias r)
+ with e when Errors.noncritical e -> None
+ in
match mpo, ro with
| None, None -> Nametab.error_global_not_found q
| None, Some r -> let refs,mps = locate_ref l in r::refs,mps
@@ -518,25 +547,43 @@ let rec locate_ref = function
\verb!Extraction "file"! [qualid1] ... [qualidn]. *)
let full_extr f (refs,mps) =
- init false;
+ init false false;
List.iter (fun mp -> if is_modfile mp then error_MPfile_as_mod mp true) mps;
- let struc = optimize_struct refs (mono_environment refs mps) in
- warning_axioms ();
+ let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
+ warns ();
print_structure_to_file (mono_filename f) false struc;
reset ()
let full_extraction f lr = full_extr f (locate_ref lr)
+(*s Separate extraction is similar to recursive extraction, with the output
+ decomposed in many files, one per Coq .v file *)
+
+let separate_extraction lr =
+ init true false;
+ let refs,mps = locate_ref lr in
+ let struc = optimize_struct (refs,mps) (mono_environment refs mps) in
+ warns ();
+ let print = function
+ | (MPfile dir as mp, sel) as e ->
+ print_structure_to_file (module_filename mp) false [e]
+ | _ -> assert false
+ in
+ List.iter print struc;
+ reset ()
+
(*s Simple extraction in the Coq toplevel. The vernacular command
is \verb!Extraction! [qualid]. *)
-let simple_extraction r = match locate_ref [r] with
+let simple_extraction r =
+ Vernacentries.dump_global (Genarg.AN r);
+ match locate_ref [r] with
| ([], [mp]) as p -> full_extr None p
| [r],[] ->
- init false;
- let struc = optimize_struct [r] (mono_environment [r] []) in
+ init false false;
+ let struc = optimize_struct ([r],[]) (mono_environment [r] []) in
let d = get_decl_in_structure r struc in
- warning_axioms ();
+ warns ();
if is_custom r then msgnl (str "(** User defined extraction *)");
print_one_decl struc (modpath_of_r r) d;
reset ()
@@ -547,12 +594,12 @@ let simple_extraction r = match locate_ref [r] with
\verb!(Recursive) Extraction Library! [M]. *)
let extraction_library is_rec m =
- init true;
+ init true true;
let dir_m =
let q = qualid_of_ident m in
try Nametab.full_name_module q with Not_found -> error_unknown_module q
in
- Visit.add_mp (MPfile dir_m);
+ Visit.add_mp_all (MPfile dir_m);
let env = Global.env () in
let l = List.rev (environment_until (Some dir_m)) in
let select l (mp,meb) =
@@ -561,8 +608,8 @@ let extraction_library is_rec m =
else l
in
let struc = List.fold_left select [] l in
- let struc = optimize_struct [] struc in
- warning_axioms ();
+ let struc = optimize_struct ([],[]) struc in
+ warns ();
let print = function
| (MPfile dir as mp, sel) as e ->
let dry = not is_rec && dir <> dir_m in
diff --git a/plugins/extraction/extract_env.mli b/plugins/extraction/extract_env.mli
index 145cd6b3..75ac111d 100644
--- a/plugins/extraction/extract_env.mli
+++ b/plugins/extraction/extract_env.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: extract_env.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s This module declares the extraction commands. *)
open Names
@@ -15,9 +13,15 @@ open Libnames
val simple_extraction : reference -> unit
val full_extraction : string option -> reference list -> unit
+val separate_extraction : reference list -> unit
val extraction_library : bool -> identifier -> unit
(* For debug / external output via coqtop.byte + Drop : *)
val mono_environment :
global_reference list -> module_path list -> Miniml.ml_structure
+
+(* Used by the Relation Extraction plugin *)
+
+val print_one_decl :
+ Miniml.ml_structure -> module_path -> Miniml.ml_decl -> unit
diff --git a/plugins/extraction/extraction.ml b/plugins/extraction/extraction.ml
index 27f32a4a..e5357336 100644
--- a/plugins/extraction/extraction.ml
+++ b/plugins/extraction/extraction.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: extraction.ml 14786 2011-12-10 12:55:19Z letouzey $ i*)
-
(*i*)
open Util
open Names
@@ -48,8 +46,6 @@ let sort_of env c =
Retyping.get_sort_family_of ~polyprop env none (strip_outer_cast c)
with SingletonInductiveBecomesProp id -> error_singleton_become_prop id
-let is_axiom env kn = (Environ.lookup_constant kn env).const_body = None
-
(*S Generation of flags and signatures. *)
(* The type [flag] gives us information about any Coq term:
@@ -134,7 +130,7 @@ let rec nb_default_params env c =
(* Enriching a signature with implicit information *)
-let sign_with_implicits r s =
+let sign_with_implicits r s nb_params =
let implicits = implicits_of_global r in
let rec add_impl i = function
| [] -> []
@@ -143,7 +139,7 @@ let sign_with_implicits r s =
if sign = Keep && List.mem i implicits then Kill Kother else sign
in sign' :: add_impl (succ i) s
in
- add_impl 1 s
+ add_impl (1+nb_params) s
(* Enriching a exception message *)
@@ -153,7 +149,7 @@ let rec handle_exn r n fn_name = function
(fun i ->
assert ((0 < i) && (i <= n));
MLexn ("IMPLICIT "^ msg_non_implicit r (n+1-i) (fn_name i)))
- with _ -> MLexn s)
+ with e when Errors.noncritical e -> MLexn s)
| a -> ast_map (handle_exn r n fn_name) a
(*S Management of type variable contexts. *)
@@ -197,6 +193,27 @@ let parse_ind_args si args relmax =
| _ -> parse (i+1) (j+1) s)
in parse 1 1 si
+let oib_equal o1 o2 =
+ id_ord o1.mind_typename o2.mind_typename = 0 &&
+ list_equal eq_rel_declaration o1.mind_arity_ctxt o2.mind_arity_ctxt &&
+ begin match o1.mind_arity, o2.mind_arity with
+ | Monomorphic {mind_user_arity=c1; mind_sort=s1},
+ Monomorphic {mind_user_arity=c2; mind_sort=s2} ->
+ eq_constr c1 c2 && s1 = s2
+ | ma1, ma2 -> ma1 = ma2 end &&
+ o1.mind_consnames = o2.mind_consnames
+
+let mib_equal m1 m2 =
+ array_equal oib_equal m1.mind_packets m1.mind_packets &&
+ m1.mind_record = m2.mind_record &&
+ m1.mind_finite = m2.mind_finite &&
+ m1.mind_ntypes = m2.mind_ntypes &&
+ list_equal eq_named_declaration m1.mind_hyps m2.mind_hyps &&
+ m1.mind_nparams = m2.mind_nparams &&
+ m1.mind_nparams_rec = m2.mind_nparams_rec &&
+ list_equal eq_rel_declaration m1.mind_params_ctxt m2.mind_params_ctxt &&
+ m1.mind_constraints = m2.mind_constraints
+
(*S Extraction of a type. *)
(* [extract_type env db c args] is used to produce an ML type from the
@@ -215,7 +232,7 @@ let rec extract_type env db j c args =
extract_type env db j d (Array.to_list args' @ args)
| Lambda (_,_,d) ->
(match args with
- | [] -> assert false (* otherwise the lambda would be reductible. *)
+ | [] -> assert false (* A lambda cannot be a type. *)
| a :: args -> extract_type env db j (subst1 a d) args)
| Prod (n,t,d) ->
assert (args = []);
@@ -255,12 +272,13 @@ let rec extract_type env db j c args =
let cb = lookup_constant kn env in
let typ = Typeops.type_of_constant_type env cb.const_type in
(match flag_of_type env typ with
+ | (Logic,_) -> assert false (* Cf. logical cases above *)
| (Info, TypeScheme) ->
let mlt = extract_type_app env db (r, type_sign env typ) args in
(match cb.const_body with
- | None -> mlt
- | Some _ when is_custom r -> mlt
- | Some lbody ->
+ | Undef _ | OpaqueDef _ -> mlt
+ | Def _ when is_custom r -> mlt
+ | Def lbody ->
let newc = applist (Declarations.force lbody, args) in
let mlt' = extract_type env db j newc [] in
(* ML type abbreviations interact badly with Coq *)
@@ -269,10 +287,11 @@ let rec extract_type env db j c args =
(* The shortest is [mlt], which use abbreviations *)
(* If possible, we take [mlt], otherwise [mlt']. *)
if expand env mlt = expand env mlt' then mlt else mlt')
- | _ -> (* only other case here: Info, Default, i.e. not an ML type *)
+ | (Info, Default) ->
+ (* Not an ML type, for example [(c:forall X, X->X) Type nat] *)
(match cb.const_body with
- | None -> Tunknown (* Brutal approximation ... *)
- | Some lbody ->
+ | Undef _ | OpaqueDef _ -> Tunknown (* Brutal approx ... *)
+ | Def lbody ->
(* We try to reduce. *)
let newc = applist (Declarations.force lbody, args) in
extract_type env db j newc []))
@@ -282,14 +301,6 @@ let rec extract_type env db j c args =
| Case _ | Fix _ | CoFix _ -> Tunknown
| _ -> assert false
-(* [extract_maybe_type] calls [extract_type] when used on a Coq type,
- and otherwise returns [Tdummy] or [Tunknown] *)
-
-and extract_maybe_type env db c =
- let t = whd_betadeltaiota env none (type_of env c) in
- if isSort t then extract_type env db 0 c []
- else if sort_of env t = InProp then Tdummy Kother else Tunknown
-
(*s Auxiliary function dealing with type application.
Precondition: [r] is a type scheme represented by the signature [s],
and is completely applied: [List.length args = List.length s]. *)
@@ -337,13 +348,18 @@ and extract_ind env kn = (* kn is supposed to be in long form *)
We hence check that the mib has not changed from recording
time to retrieving time. Ideally we should also check the env. *)
let (mib0,ml_ind) = lookup_ind kn in
- if not (mib = mib0) then raise Not_found;
+ if not (mib_equal mib mib0) then raise Not_found;
ml_ind
with Not_found ->
- (* First, if this inductive is aliased via a Module, *)
- (* we process the original inductive. *)
- let equiv =
- if (canonical_mind kn) = (user_mind kn) then
+ (* First, if this inductive is aliased via a Module,
+ we process the original inductive if possible.
+ When at toplevel of the monolithic case, we cannot do much
+ (cf Vector and bug #2570) *)
+ let equiv =
+ if lang () <> Ocaml ||
+ (not (modular ()) && at_toplevel (mind_modpath kn)) ||
+ kn_ord (canonical_mind kn) (user_mind kn) = 0
+ then
NoEquiv
else
begin
@@ -370,8 +386,7 @@ and extract_ind env kn = (* kn is supposed to be in long form *)
ip_logical = (not b);
ip_sign = s;
ip_vars = v;
- ip_types = t;
- ip_optim_id_ok = None })
+ ip_types = t })
mib.mind_packets
in
@@ -412,7 +427,8 @@ and extract_ind env kn = (* kn is supposed to be in long form *)
if Array.length p.ip_types <> 1 then raise (I Standard);
let typ = p.ip_types.(0) in
let l = List.filter (fun t -> not (isDummy (expand env t))) typ in
- if List.length l = 1 && not (type_mem_kn kn (List.hd l))
+ if not (keep_singleton ()) &&
+ List.length l = 1 && not (type_mem_kn kn (List.hd l))
then raise (I Singleton);
if l = [] then raise (I Standard);
if not mib.mind_record then raise (I Standard);
@@ -464,6 +480,7 @@ and extract_ind env kn = (* kn is supposed to be in long form *)
ind_equiv = equiv }
in
add_ind kn mib i;
+ add_inductive_kind kn i.ind_kind;
i
(*s [extract_type_cons] extracts the type of an inductive
@@ -496,8 +513,8 @@ and mlt_env env r = match r with
let cb = Environ.lookup_constant kn env in
let typ = Typeops.type_of_constant_type env cb.const_type in
match cb.const_body with
- | None -> None
- | Some l_body ->
+ | Undef _ | OpaqueDef _ -> None
+ | Def l_body ->
(match flag_of_type env typ with
| Info,TypeScheme ->
let body = Declarations.force l_body in
@@ -560,6 +577,8 @@ let rec extract_term env mle mlt c args =
| LetIn (n, c1, t1, c2) ->
let id = id_of_name n in
let env' = push_rel (Name id, Some c1, t1) env in
+ (* We directly push the args inside the [LetIn].
+ TODO: the opt_let_app flag is supposed to prevent that *)
let args' = List.map (lift 1) args in
(try
check_default env t1;
@@ -648,20 +667,23 @@ and extract_cst_app env mle mlt kn args =
let head = put_magic_if magic1 (MLglob (ConstRef kn)) in
(* Now, the extraction of the arguments. *)
let s_full = type2signature env (snd schema) in
- let s_full = sign_with_implicits (ConstRef kn) s_full in
+ let s_full = sign_with_implicits (ConstRef kn) s_full 0 in
let s = sign_no_final_keeps s_full in
let ls = List.length s in
let la = List.length args in
(* The ml arguments, already expunged from known logical ones *)
let mla = make_mlargs env mle s args metas in
let mla =
- if not magic1 then
+ if magic1 || lang () <> Ocaml then mla
+ else
try
+ (* for better optimisations later, we discard dependent args
+ of projections and replace them by fake args that will be
+ removed during final pretty-print. *)
let l,l' = list_chop (projection_arity (ConstRef kn)) mla in
if l' <> [] then (List.map (fun _ -> MLexn "Proj Args") l) @ l'
else mla
- with _ -> mla
- else mla
+ with e when Errors.noncritical e -> mla
in
(* For strict languages, purely logical signatures with at least
one [Kill Kother] lead to a dummy lam. So a [MLdummy] is left
@@ -707,7 +729,7 @@ and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
let type_cons = instantiation (nb_tvars, type_cons) in
(* Then, the usual variables [s], [ls], [la], ... *)
let s = List.map (type2sign env) types in
- let s = sign_with_implicits (ConstructRef cp) s in
+ let s = sign_with_implicits (ConstructRef cp) s params_nb in
let ls = List.length s in
let la = List.length args in
assert (la <= ls + params_nb);
@@ -727,8 +749,8 @@ and extract_cons_app env mle mlt (((kn,i) as ip,j) as cp) args =
| Tglob (_,l) -> List.map type_simpl l
| _ -> assert false
in
- let info = {c_kind = mi.ind_kind; c_typs = typeargs} in
- put_magic_if magic1 (MLcons (info, ConstructRef cp, mla))
+ let typ = Tglob(IndRef ip, typeargs) in
+ put_magic_if magic1 (MLcons (typ, ConstructRef cp, mla))
in
(* Different situations depending of the number of arguments: *)
if la < params_nb then
@@ -786,28 +808,28 @@ and extract_case env mle ((kn,i) as ip,c,br) mlt =
let l = List.map f oi.ip_types.(i) in
(* the corresponding signature *)
let s = List.map (type2sign env) oi.ip_types.(i) in
- let s = sign_with_implicits r s in
+ let s = sign_with_implicits r s mi.ind_nparams in
(* Extraction of the branch (in functional form). *)
let e = extract_maybe_term env mle (type_recomp (l,mlt)) br.(i) in
(* We suppress dummy arguments according to signature. *)
let ids,e = case_expunge s e in
let e' = handle_exn r (List.length s) (fun _ -> Anonymous) e in
- (r, List.rev ids, e')
+ (List.rev ids, Pusual r, e')
in
if mi.ind_kind = Singleton then
begin
(* Informative singleton case: *)
(* [match c with C i -> t] becomes [let i = c' in t'] *)
assert (br_size = 1);
- let (_,ids,e') = extract_branch 0 in
+ let (ids,_,e') = extract_branch 0 in
assert (List.length ids = 1);
MLletin (tmp_id (List.hd ids),a,e')
end
else
(* Standard case: we apply [extract_branch]. *)
let typs = List.map type_simpl (Array.to_list metas) in
- let info = { m_kind = mi.ind_kind; m_typs = typs; m_same = BranchNone }
- in MLcase (info, a, Array.init br_size extract_branch)
+ let typ = Tglob (IndRef ip,typs) in
+ MLcase (typ, a, Array.init br_size extract_branch)
(*s Extraction of a (co)-fixpoint. *)
@@ -857,7 +879,7 @@ let extract_std_constant env kn body typ =
let l,t' = type_decomp (expand env (var2var' t)) in
let s = List.map (type2sign env) l in
(* Check for user-declared implicit information *)
- let s = sign_with_implicits (ConstRef kn) s in
+ let s = sign_with_implicits (ConstRef kn) s 0 in
(* Decomposing the top level lambdas of [body].
If there isn't enough, it's ok, as long as remaining args
aren't to be pruned (and initial lambdas aren't to be all
@@ -869,7 +891,7 @@ let extract_std_constant env kn body typ =
and m = nb_lam body in
if n <= m then decompose_lam_n n body
else
- let s,s' = list_split_at m s in
+ let s,s' = list_chop m s in
if List.for_all ((=) Keep) s' &&
(lang () = Haskell || sign_kind s <> UnsafeLogicalSig)
then decompose_lam_n m body
@@ -878,7 +900,7 @@ let extract_std_constant env kn body typ =
(* Should we do one eta-expansion to avoid non-generalizable '_a ? *)
let rels, c =
let n = List.length rels in
- let s,s' = list_split_at n s in
+ let s,s' = list_chop n s in
let k = sign_kind s in
let empty_s = (k = EmptySig || k = SafeLogicalSig) in
if lang () = Ocaml && empty_s && not (gentypvar_ok c)
@@ -888,7 +910,7 @@ let extract_std_constant env kn body typ =
in
let n = List.length rels in
let s = list_firstn n s in
- let l,l' = list_split_at n l in
+ let l,l' = list_chop n l in
let t' = type_recomp (l',t') in
(* The initial ML environment. *)
let mle = List.fold_left Mlenv.push_std_type Mlenv.empty l in
@@ -904,6 +926,19 @@ let extract_std_constant env kn body typ =
in
trm, type_expunge_from_sign env s t
+(* Extracts the type of an axiom, honors the Extraction Implicit declaration. *)
+let extract_axiom env kn typ =
+ reset_meta_count ();
+ (* The short type [t] (i.e. possibly with abbreviations). *)
+ let t = snd (record_constant_type env kn (Some typ)) in
+ (* The real type [t']: without head products, expanded, *)
+ (* and with [Tvar] translated to [Tvar'] (not instantiable). *)
+ let l,_ = type_decomp (expand env (var2var' t)) in
+ let s = List.map (type2sign env) l in
+ (* Check for user-declared implicit information *)
+ let s = sign_with_implicits (ConstRef kn) s 0 in
+ type_expunge_from_sign env s t
+
let extract_fixpoint env vkn (fi,ti,ci) =
let n = Array.length vkn in
let types = Array.make n (Tdummy Kother)
@@ -925,34 +960,45 @@ let extract_fixpoint env vkn (fi,ti,ci) =
let extract_constant env kn cb =
let r = ConstRef kn in
let typ = Typeops.type_of_constant_type env cb.const_type in
- match cb.const_body with
- | None -> (* A logical axiom is risky, an informative one is fatal. *)
- (match flag_of_type env typ with
- | (Info,TypeScheme) ->
- if not (is_custom r) then add_info_axiom r;
- let n = type_scheme_nb_args env typ in
- let ids = iterate (fun l -> anonymous_name::l) n [] in
- Dtype (r, ids, Taxiom)
- | (Info,Default) ->
- if not (is_custom r) then add_info_axiom r;
- let t = snd (record_constant_type env kn (Some typ)) in
- Dterm (r, MLaxiom, type_expunge env t)
- | (Logic,TypeScheme) ->
- add_log_axiom r; Dtype (r, [], Tdummy Ktype)
- | (Logic,Default) ->
- add_log_axiom r; Dterm (r, MLdummy, Tdummy Kother))
- | Some body ->
- (match flag_of_type env typ with
- | (Logic, Default) -> Dterm (r, MLdummy, Tdummy Kother)
- | (Logic, TypeScheme) -> Dtype (r, [], Tdummy Ktype)
- | (Info, Default) ->
- let e,t = extract_std_constant env kn (force body) typ in
- Dterm (r,e,t)
- | (Info, TypeScheme) ->
- let s,vl = type_sign_vl env typ in
- let db = db_from_sign s in
- let t = extract_type_scheme env db (force body) (List.length s)
- in Dtype (r, vl, t))
+ let warn_info () = if not (is_custom r) then add_info_axiom r in
+ let warn_log () = if not (constant_has_body cb) then add_log_axiom r
+ in
+ let mk_typ_ax () =
+ let n = type_scheme_nb_args env typ in
+ let ids = iterate (fun l -> anonymous_name::l) n [] in
+ Dtype (r, ids, Taxiom)
+ in
+ let mk_typ c =
+ let s,vl = type_sign_vl env typ in
+ let db = db_from_sign s in
+ let t = extract_type_scheme env db c (List.length s)
+ in Dtype (r, vl, t)
+ in
+ let mk_ax () =
+ let t = extract_axiom env kn typ in
+ Dterm (r, MLaxiom, t)
+ in
+ let mk_def c =
+ let e,t = extract_std_constant env kn c typ in
+ Dterm (r,e,t)
+ in
+ match flag_of_type env typ with
+ | (Logic,TypeScheme) -> warn_log (); Dtype (r, [], Tdummy Ktype)
+ | (Logic,Default) -> warn_log (); Dterm (r, MLdummy, Tdummy Kother)
+ | (Info,TypeScheme) ->
+ (match cb.const_body with
+ | Undef _ -> warn_info (); mk_typ_ax ()
+ | Def c -> mk_typ (force c)
+ | OpaqueDef c ->
+ add_opaque r;
+ if access_opaque () then mk_typ (force_opaque c) else mk_typ_ax ())
+ | (Info,Default) ->
+ (match cb.const_body with
+ | Undef _ -> warn_info (); mk_ax ()
+ | Def c -> mk_def (force c)
+ | OpaqueDef c ->
+ add_opaque r;
+ if access_opaque () then mk_def (force_opaque c) else mk_ax ())
let extract_constant_spec env kn cb =
let r = ConstRef kn in
@@ -963,8 +1009,8 @@ let extract_constant_spec env kn cb =
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
(match cb.const_body with
- | None -> Stype (r, vl, None)
- | Some body ->
+ | Undef _ | OpaqueDef _ -> Stype (r, vl, None)
+ | Def body ->
let db = db_from_sign s in
let t = extract_type_scheme env db (force body) (List.length s)
in Stype (r, vl, Some t))
@@ -977,9 +1023,13 @@ let extract_with_type env cb =
match flag_of_type env typ with
| (Info, TypeScheme) ->
let s,vl = type_sign_vl env typ in
- let body = Option.get cb.const_body in
let db = db_from_sign s in
- let t = extract_type_scheme env db (force body) (List.length s) in
+ let c = match cb.const_body with
+ | Def body -> force body
+ (* A "with Definition ..." is necessarily transparent *)
+ | Undef _ | OpaqueDef _ -> assert false
+ in
+ let t = extract_type_scheme env db c (List.length s) in
Some (vl, t)
| _ -> None
@@ -995,7 +1045,7 @@ let extract_inductive env kn =
let l' = filter (succ i) l in
if isDummy (expand env t) || List.mem i implicits then l'
else t::l'
- in filter 1 l
+ in filter (1+ind.ind_nparams) l
in
let packets =
Array.mapi (fun i p -> { p with ip_types = Array.mapi (f i) p.ip_types })
diff --git a/plugins/extraction/extraction.mli b/plugins/extraction/extraction.mli
index 8a2125fe..1eb9ca8e 100644
--- a/plugins/extraction/extraction.mli
+++ b/plugins/extraction/extraction.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: extraction.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s Extraction from Coq terms to Miniml. *)
open Names
diff --git a/plugins/extraction/g_extraction.ml4 b/plugins/extraction/g_extraction.ml4
index ebd4de0d..7dabb560 100644
--- a/plugins/extraction/g_extraction.ml4
+++ b/plugins/extraction/g_extraction.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -63,6 +63,12 @@ VERNAC COMMAND EXTEND Extraction
-> [ full_extraction (Some f) l ]
END
+VERNAC COMMAND EXTEND SeparateExtraction
+(* Same, with content splitted in several files *)
+| [ "Separate" "Extraction" ne_global_list(l) ]
+ -> [ separate_extraction l ]
+END
+
(* Modular extraction (one Coq library = one ML module) *)
VERNAC COMMAND EXTEND ExtractionLibrary
| [ "Extraction" "Library" ident(m) ]
diff --git a/plugins/extraction/haskell.ml b/plugins/extraction/haskell.ml
index aeacef93..b6fc5ac8 100644
--- a/plugins/extraction/haskell.ml
+++ b/plugins/extraction/haskell.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: haskell.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s Production of Haskell syntax. *)
open Pp
@@ -47,15 +45,15 @@ let preamble mod_name used_modules usf =
(if used_modules = [] then mt () else fnl ()) ++
(if not usf.magic then mt ()
else str "\
-unsafeCoerce :: a -> b
-#ifdef __GLASGOW_HASKELL__
-import qualified GHC.Base
-unsafeCoerce = GHC.Base.unsafeCoerce#
-#else
--- HUGS
-import qualified IOExts
-unsafeCoerce = IOExts.unsafeCoerce
-#endif" ++ fnl2 ())
+\nunsafeCoerce :: a -> b\
+\n#ifdef __GLASGOW_HASKELL__\
+\nimport qualified GHC.Base\
+\nunsafeCoerce = GHC.Base.unsafeCoerce#\
+\n#else\
+\n-- HUGS\
+\nimport qualified IOExts\
+\nunsafeCoerce = IOExts.unsafeCoerce\
+\n#endif" ++ fnl2 ())
++
(if not usf.mldummy then mt ()
else str "__ :: any" ++ fnl () ++
@@ -78,17 +76,19 @@ let pp_global k r =
let kn_sig =
let specif = MPfile (dirpath_of_string "Coq.Init.Specif") in
- make_kn specif empty_dirpath (mk_label "sig")
+ make_mind specif empty_dirpath (mk_label "sig")
let rec pp_type par vl t =
let rec pp_rec par = function
| Tmeta _ | Tvar' _ -> assert false
- | Tvar i -> (try pr_id (List.nth vl (pred i)) with _ -> (str "a" ++ int i))
+ | Tvar i ->
+ (try pr_id (List.nth vl (pred i))
+ with e when Errors.noncritical e -> (str "a" ++ int i))
| Tglob (r,[]) -> pp_global Type r
- | Tglob (r,l) ->
- if r = IndRef (mind_of_kn kn_sig,0) then
+ | Tglob (IndRef(kn,0),l)
+ when not (keep_singleton ()) && kn = mk_ind "Coq.Init.Specif" "sig" ->
pp_type true vl (List.hd l)
- else
+ | Tglob (r,l) ->
pp_par par
(pp_global Type r ++ spc () ++
prlist_with_sep spc (pp_type true vl) l)
@@ -113,8 +113,8 @@ let expr_needs_par = function
let rec pp_expr par env args =
- let par' = args <> [] || par
- and apply st = pp_apply st par args in
+ let apply st = pp_apply st par args
+ and apply2 st = pp_apply2 st par args in
function
| MLrel n ->
let id = get_db_name n env in apply (pr_id id)
@@ -125,7 +125,7 @@ let rec pp_expr par env args =
let fl,a' = collect_lams a in
let fl,env' = push_vars (List.map id_of_mlid fl) env in
let st = (pp_abst (List.rev fl) ++ pp_expr false env' [] a') in
- apply (pp_par par' st)
+ apply2 st
| MLletin (id,a1,a2) ->
let i,env' = push_vars [id_of_mlid id] env in
let pp_id = pr_id (List.hd i)
@@ -135,37 +135,42 @@ let rec pp_expr par env args =
str "let {" ++ cut () ++
hov 1 (pp_id ++ str " = " ++ pp_a1 ++ str "}")
in
- apply
- (pp_par par'
- (hv 0 (hv 0 (hv 1 pp_def ++ spc () ++ str "in") ++
- spc () ++ hov 0 pp_a2)))
+ apply2 (hv 0 (hv 0 (hv 1 pp_def ++ spc () ++ str "in") ++
+ spc () ++ hov 0 pp_a2))
| MLglob r ->
apply (pp_global Term r)
- | MLcons _ as c when is_native_char c -> assert (args=[]); pp_native_char c
- | MLcons (_,r,[]) ->
- assert (args=[]); pp_global Cons r
- | MLcons (_,r,[a]) ->
- assert (args=[]);
- pp_par par (pp_global Cons r ++ spc () ++ pp_expr true env [] a)
- | MLcons (_,r,args') ->
- assert (args=[]);
- pp_par par (pp_global Cons r ++ spc () ++
- prlist_with_sep spc (pp_expr true env []) args')
+ | MLcons (_,r,a) as c ->
+ assert (args=[]);
+ begin match a with
+ | _ when is_native_char c -> pp_native_char c
+ | [] -> pp_global Cons r
+ | [a] ->
+ pp_par par (pp_global Cons r ++ spc () ++ pp_expr true env [] a)
+ | _ ->
+ pp_par par (pp_global Cons r ++ spc () ++
+ prlist_with_sep spc (pp_expr true env []) a)
+ end
+ | MLtuple l ->
+ assert (args=[]);
+ pp_boxed_tuple (pp_expr true env []) l
| MLcase (_,t, pv) when is_custom_match pv ->
- let mkfun (_,ids,e) =
+ if not (is_regular_match pv) then
+ error "Cannot mix yet user-given match and general patterns.";
+ let mkfun (ids,_,e) =
if ids <> [] then named_lams (List.rev ids) e
else dummy_lams (ast_lift 1 e) 1
in
- apply
- (pp_par par'
- (hov 2
- (str (find_custom_match pv) ++ fnl () ++
- prvect (fun tr -> pp_expr true env [] (mkfun tr) ++ fnl ()) pv
- ++ pp_expr true env [] t)))
- | MLcase (info,t, pv) ->
- apply (pp_par par'
- (v 0 (str "case " ++ pp_expr false env [] t ++ str " of {" ++
- fnl () ++ pp_pat env info pv)))
+ let pp_branch tr = pp_expr true env [] (mkfun tr) ++ fnl () in
+ let inner =
+ str (find_custom_match pv) ++ fnl () ++
+ prvect pp_branch pv ++
+ pp_expr true env [] t
+ in
+ apply2 (hov 2 inner)
+ | MLcase (typ,t,pv) ->
+ apply2
+ (v 0 (str "case " ++ pp_expr false env [] t ++ str " of {" ++
+ fnl () ++ pp_pat env pv))
| MLfix (i,ids,defs) ->
let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
pp_fix par env' i (Array.of_list (List.rev ids'),defs) args
@@ -178,44 +183,31 @@ let rec pp_expr par env args =
pp_apply (str "unsafeCoerce") par (pp_expr true env [] a :: args)
| MLaxiom -> pp_par par (str "Prelude.error \"AXIOM TO BE REALIZED\"")
-and pp_pat env info pv =
- let pp_one_pat (name,ids,t) =
- let ids,env' = push_vars (List.rev_map id_of_mlid ids) env in
- let par = expr_needs_par t in
- hov 2 (str " " ++ pp_global Cons name ++
- (match ids with
- | [] -> mt ()
- | _ -> (str " " ++
- prlist_with_sep spc pr_id (List.rev ids))) ++
- str " ->" ++ spc () ++ pp_expr par env' [] t)
- in
- let factor_br, factor_set = try match info.m_same with
- | BranchFun ints ->
- let i = Intset.choose ints in
- branch_as_fun info.m_typs pv.(i), ints
- | BranchCst ints ->
- let i = Intset.choose ints in
- ast_pop (branch_as_cst pv.(i)), ints
- | BranchNone -> MLdummy, Intset.empty
- with _ -> MLdummy, Intset.empty
- in
- let last = Array.length pv - 1 in
+and pp_cons_pat par r ppl =
+ pp_par par
+ (pp_global Cons r ++ space_if (ppl<>[]) ++ prlist_with_sep spc identity ppl)
+
+and pp_gen_pat par ids env = function
+ | Pcons (r,l) -> pp_cons_pat par r (List.map (pp_gen_pat true ids env) l)
+ | Pusual r -> pp_cons_pat par r (List.map pr_id ids)
+ | Ptuple l -> pp_boxed_tuple (pp_gen_pat false ids env) l
+ | Pwild -> str "_"
+ | Prel n -> pr_id (get_db_name n env)
+
+and pp_one_pat env (ids,p,t) =
+ let ids',env' = push_vars (List.rev_map id_of_mlid ids) env in
+ hov 2 (str " " ++
+ pp_gen_pat false (List.rev ids') env' p ++
+ str " ->" ++ spc () ++
+ pp_expr (expr_needs_par t) env' [] t)
+
+and pp_pat env pv =
prvecti
- (fun i x -> if Intset.mem i factor_set then mt () else
- (pp_one_pat pv.(i) ++
- if i = last && Intset.is_empty factor_set then str "}" else
- (str ";" ++ fnl ()))) pv
- ++
- if Intset.is_empty factor_set then mt () else
- let par = expr_needs_par factor_br in
- match info.m_same with
- | BranchFun _ ->
- let ids, env' = push_vars [anonymous_name] env in
- hov 2 (str " " ++ pr_id (List.hd ids) ++ str " ->" ++ spc () ++
- pp_expr par env' [] factor_br ++ str "}")
- | BranchCst _ ->
- hov 2 (str " _ ->" ++ spc () ++ pp_expr par env [] factor_br ++ str "}")
- | BranchNone -> mt ()
+ (fun i x ->
+ pp_one_pat env pv.(i) ++
+ if i = Array.length pv - 1 then str "}" else
+ (str ";" ++ fnl ()))
+ pv
(*s names of the functions ([ids]) are already pushed in [env],
and passed here just for convenience. *)
@@ -293,12 +285,10 @@ let rec pp_ind first kn i ind =
(*s Pretty-printing of a declaration. *)
-let pp_string_parameters ids = prlist (fun id -> str id ++ str " ")
-
let pp_decl = function
| Dind (kn,i) when i.ind_kind = Singleton ->
- pp_singleton (mind_of_kn kn) i.ind_packets.(0) ++ fnl ()
- | Dind (kn,i) -> hov 0 (pp_ind true (mind_of_kn kn) 0 i)
+ pp_singleton kn i.ind_packets.(0) ++ fnl ()
+ | Dind (kn,i) -> hov 0 (pp_ind true kn 0 i)
| Dtype (r, l, t) ->
if is_inline_custom r then mt ()
else
diff --git a/plugins/extraction/haskell.mli b/plugins/extraction/haskell.mli
index eb774db7..5e76be48 100644
--- a/plugins/extraction/haskell.mli
+++ b/plugins/extraction/haskell.mli
@@ -1,12 +1,10 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: haskell.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
val haskell_descr : Miniml.language_descr
diff --git a/plugins/extraction/miniml.mli b/plugins/extraction/miniml.mli
index aaf2d0c3..856a481e 100644
--- a/plugins/extraction/miniml.mli
+++ b/plugins/extraction/miniml.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: miniml.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s Target language for extraction: a core ML called MiniML. *)
open Pp
@@ -73,8 +71,7 @@ type ml_ind_packet = {
ip_logical : bool;
ip_sign : signature;
ip_vars : identifier list;
- ip_types : (ml_type list) array;
- mutable ip_optim_id_ok : bool option
+ ip_types : (ml_type list) array
}
(* [ip_nparams] contains the number of parameters. *)
@@ -99,28 +96,17 @@ type ml_ident =
| Tmp of identifier
(** We now store some typing information on constructors
- and cases to avoid type-unsafe optimisations.
- For cases, we also store the set of branches to merge
- in a common pattern, either "_ -> c" or "x -> f x"
+ and cases to avoid type-unsafe optimisations. This will be
+ either the type of the applied constructor or the type
+ of the head of the match.
*)
-type constructor_info = {
- c_kind : inductive_kind;
- c_typs : ml_type list;
-}
-
-type branch_same =
- | BranchNone
- | BranchFun of Intset.t
- | BranchCst of Intset.t
+(** Nota : the constructor [MLtuple] and the extension of [MLcase]
+ to general patterns have been proposed by P.N. Tollitte for
+ his Relation Extraction plugin. [MLtuple] is currently not
+ used by the main extraction, as well as deep patterns. *)
-type match_info = {
- m_kind : inductive_kind;
- m_typs : ml_type list;
- m_same : branch_same
-}
-
-type ml_branch = global_reference * ml_ident list * ml_ast
+type ml_branch = ml_ident list * ml_pattern * ml_ast
and ml_ast =
| MLrel of int
@@ -128,24 +114,32 @@ and ml_ast =
| MLlam of ml_ident * ml_ast
| MLletin of ml_ident * ml_ast * ml_ast
| MLglob of global_reference
- | MLcons of constructor_info * global_reference * ml_ast list
- | MLcase of match_info * ml_ast * ml_branch array
+ | MLcons of ml_type * global_reference * ml_ast list
+ | MLtuple of ml_ast list
+ | MLcase of ml_type * ml_ast * ml_branch array
| MLfix of int * identifier array * ml_ast array
| MLexn of string
| MLdummy
| MLaxiom
| MLmagic of ml_ast
+and ml_pattern =
+ | Pcons of global_reference * ml_pattern list
+ | Ptuple of ml_pattern list
+ | Prel of int (** Cf. the idents in the branch. [Prel 1] is the last one. *)
+ | Pwild
+ | Pusual of global_reference (** Shortcut for Pcons (r,[Prel n;...;Prel 1]) **)
+
(*s ML declarations. *)
type ml_decl =
- | Dind of kernel_name * ml_ind
+ | Dind of mutual_inductive * ml_ind
| Dtype of global_reference * identifier list * ml_type
| Dterm of global_reference * ml_ast * ml_type
| Dfix of global_reference array * ml_ast array * ml_type array
type ml_spec =
- | Sind of kernel_name * ml_ind
+ | Sind of mutual_inductive * ml_ind
| Stype of global_reference * identifier list * ml_type option
| Sval of global_reference * ml_type
diff --git a/plugins/extraction/mlutil.ml b/plugins/extraction/mlutil.ml
index 3c7ee0f2..d0bf387a 100644
--- a/plugins/extraction/mlutil.ml
+++ b/plugins/extraction/mlutil.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: mlutil.ml 14786 2011-12-10 12:55:19Z letouzey $ i*)
-
(*i*)
open Pp
open Util
@@ -56,18 +54,6 @@ let new_meta _ =
incr meta_count;
Tmeta {id = !meta_count; contents = None}
-(*s Sustitution of [Tvar i] by [t] in a ML type. *)
-
-let type_subst i t0 t =
- let rec subst t = match t with
- | Tvar j when i = j -> t0
- | Tmeta {contents=None} -> t
- | Tmeta {contents=Some u} -> subst u
- | Tarr (a,b) -> Tarr (subst a, subst b)
- | Tglob (r, l) -> Tglob (r, List.map subst l)
- | a -> a
- in subst t
-
(* Simultaneous substitution of [[Tvar 1; ... ; Tvar n]] by [l] in a ML type. *)
let type_subst_list l t =
@@ -378,54 +364,61 @@ let ast_iter_rel f =
| MLlam (_,a) -> iter (n+1) a
| MLletin (_,a,b) -> iter n a; iter (n+1) b
| MLcase (_,a,v) ->
- iter n a; Array.iter (fun (_,l,t) -> iter (n + (List.length l)) t) v
+ iter n a; Array.iter (fun (l,_,t) -> iter (n + (List.length l)) t) v
| MLfix (_,ids,v) -> let k = Array.length ids in Array.iter (iter (n+k)) v
| MLapp (a,l) -> iter n a; List.iter (iter n) l
- | MLcons (_,_,l) -> List.iter (iter n) l
+ | MLcons (_,_,l) | MLtuple l -> List.iter (iter n) l
| MLmagic a -> iter n a
| MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
in iter 0
(*s Map over asts. *)
-let ast_map_case f (c,ids,a) = (c,ids,f a)
+let ast_map_branch f (c,ids,a) = (c,ids,f a)
+
+(* Warning: in [ast_map] we assume that [f] does not change the type
+ of [MLcons] and of [MLcase] heads *)
let ast_map f = function
| MLlam (i,a) -> MLlam (i, f a)
| MLletin (i,a,b) -> MLletin (i, f a, f b)
- | MLcase (i,a,v) -> MLcase (i,f a, Array.map (ast_map_case f) v)
+ | MLcase (typ,a,v) -> MLcase (typ,f a, Array.map (ast_map_branch f) v)
| MLfix (i,ids,v) -> MLfix (i, ids, Array.map f v)
| MLapp (a,l) -> MLapp (f a, List.map f l)
- | MLcons (i,c,l) -> MLcons (i,c, List.map f l)
+ | MLcons (typ,c,l) -> MLcons (typ,c, List.map f l)
+ | MLtuple l -> MLtuple (List.map f l)
| MLmagic a -> MLmagic (f a)
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
(*s Map over asts, with binding depth as parameter. *)
-let ast_map_lift_case f n (c,ids,a) = (c,ids, f (n+(List.length ids)) a)
+let ast_map_lift_branch f n (ids,p,a) = (ids,p, f (n+(List.length ids)) a)
+
+(* Same warning as for [ast_map]... *)
let ast_map_lift f n = function
| MLlam (i,a) -> MLlam (i, f (n+1) a)
| MLletin (i,a,b) -> MLletin (i, f n a, f (n+1) b)
- | MLcase (i,a,v) -> MLcase (i,f n a,Array.map (ast_map_lift_case f n) v)
+ | MLcase (typ,a,v) -> MLcase (typ,f n a,Array.map (ast_map_lift_branch f n) v)
| MLfix (i,ids,v) ->
let k = Array.length ids in MLfix (i,ids,Array.map (f (k+n)) v)
| MLapp (a,l) -> MLapp (f n a, List.map (f n) l)
- | MLcons (i,c,l) -> MLcons (i,c, List.map (f n) l)
+ | MLcons (typ,c,l) -> MLcons (typ,c, List.map (f n) l)
+ | MLtuple l -> MLtuple (List.map (f n) l)
| MLmagic a -> MLmagic (f n a)
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom as a -> a
(*s Iter over asts. *)
-let ast_iter_case f (c,ids,a) = f a
+let ast_iter_branch f (c,ids,a) = f a
let ast_iter f = function
| MLlam (i,a) -> f a
| MLletin (i,a,b) -> f a; f b
- | MLcase (_,a,v) -> f a; Array.iter (ast_iter_case f) v
+ | MLcase (_,a,v) -> f a; Array.iter (ast_iter_branch f) v
| MLfix (i,ids,v) -> Array.iter f v
| MLapp (a,l) -> f a; List.iter f l
- | MLcons (_,c,l) -> List.iter f l
+ | MLcons (_,_,l) | MLtuple l -> List.iter f l
| MLmagic a -> f a
| MLrel _ | MLglob _ | MLexn _ | MLdummy | MLaxiom -> ()
@@ -446,15 +439,6 @@ let ast_occurs_itvl k k' t =
ast_iter_rel (fun i -> if (k <= i) && (i <= k') then raise Found) t; false
with Found -> true
-(*s Number of occurences of [Rel k] (resp. [Rel 1]) in [t]. *)
-
-let nb_occur_k k t =
- let cpt = ref 0 in
- ast_iter_rel (fun i -> if i = k then incr cpt) t;
- !cpt
-
-let nb_occur t = nb_occur_k 1 t
-
(* Number of occurences of [Rel 1] in [t], with special treatment of match:
occurences in different branches aren't added, but we rather use max. *)
@@ -464,13 +448,13 @@ let nb_occur_match =
| MLcase(_,a,v) ->
(nb k a) +
Array.fold_left
- (fun r (_,ids,a) -> max r (nb (k+(List.length ids)) a)) 0 v
+ (fun r (ids,_,a) -> max r (nb (k+(List.length ids)) a)) 0 v
| MLletin (_,a,b) -> (nb k a) + (nb (k+1) b)
| MLfix (_,ids,v) -> let k = k+(Array.length ids) in
Array.fold_left (fun r a -> r+(nb k a)) 0 v
| MLlam (_,a) -> nb (k+1) a
| MLapp (a,l) -> List.fold_left (fun r a -> r+(nb k a)) (nb k a) l
- | MLcons (_,_,l) -> List.fold_left (fun r a -> r+(nb k a)) 0 l
+ | MLcons (_,_,l) | MLtuple l -> List.fold_left (fun r a -> r+(nb k a)) 0 l
| MLmagic a -> nb k a
| MLglob _ | MLexn _ | MLdummy | MLaxiom -> 0
in nb 1
@@ -530,6 +514,39 @@ let gen_subst v d t =
| a -> ast_map_lift subst n a
in subst 0 t
+(*S Operations concerning match patterns *)
+
+let is_basic_pattern = function
+ | Prel _ | Pwild -> true
+ | Pusual _ | Pcons _ | Ptuple _ -> false
+
+let has_deep_pattern br =
+ let deep = function
+ | Pcons (_,l) | Ptuple l -> not (List.for_all is_basic_pattern l)
+ | Pusual _ | Prel _ | Pwild -> false
+ in
+ array_exists (function (_,pat,_) -> deep pat) br
+
+let is_regular_match br =
+ if Array.length br = 0 then false (* empty match becomes MLexn *)
+ else
+ try
+ let get_r (ids,pat,c) =
+ match pat with
+ | Pusual r -> r
+ | Pcons (r,l) ->
+ if not (list_for_all_i (fun i -> (=) (Prel i)) 1 (List.rev l))
+ then raise Impossible;
+ r
+ | _ -> raise Impossible
+ in
+ let ind = match get_r br.(0) with
+ | ConstructRef (ind,_) -> ind
+ | _ -> raise Impossible
+ in
+ array_for_all_i (fun i tr -> get_r tr = ConstructRef (ind,i+1)) 0 br
+ with Impossible -> false
+
(*S Operations concerning lambdas. *)
(*s [collect_lams MLlam(id1,...MLlam(idn,t)...)] returns
@@ -577,7 +594,6 @@ let rec many_lams id a = function
| 0 -> a
| n -> many_lams id (MLlam (id,a)) (pred n)
-let anonym_lams a n = many_lams anonymous a n
let anonym_tmp_lams a n = many_lams (Tmp anonymous_name) a n
let dummy_lams a n = many_lams Dummy a n
@@ -679,26 +695,31 @@ let rec ast_glob_subst s t = match t with
expansion of type definitions.
*)
-(*s [branch_as_function b typs (r,l,c)] tries to see branch [c]
+(*s [branch_as_function b typ (l,p,c)] tries to see branch [c]
as a function [f] applied to [MLcons(r,l)]. For that it transforms
any [MLcons(r,l)] in [MLrel 1] and raises [Impossible]
if any variable in [l] occurs outside such a [MLcons] *)
-let branch_as_fun typs (r,l,c) =
+let branch_as_fun typ (l,p,c) =
let nargs = List.length l in
+ let cons = match p with
+ | Pusual r -> MLcons (typ, r, eta_args nargs)
+ | Pcons (r,pl) ->
+ let pat2rel = function Prel i -> MLrel i | _ -> raise Impossible in
+ MLcons (typ, r, List.map pat2rel pl)
+ | _ -> raise Impossible
+ in
let rec genrec n = function
| MLrel i as c ->
let i' = i-n in
if i'<1 then c
else if i'>nargs then MLrel (i-nargs+1)
else raise Impossible
- | MLcons(i,r',args) when
- r=r' && (test_eta_args_lift n nargs args) && typs = i.c_typs ->
- MLrel (n+1)
+ | MLcons _ as cons' when cons' = ast_lift n cons -> MLrel (n+1)
| a -> ast_map_lift genrec n a
in genrec 0 c
-(*s [branch_as_cst (r,l,c)] tries to see branch [c] as a constant
+(*s [branch_as_cst (l,p,c)] tries to see branch [c] as a constant
independent from the pattern [MLcons(r,l)]. For that is raises [Impossible]
if any variable in [l] occurs in [c], and otherwise returns [c] lifted to
appear like a function with one arg (for uniformity with [branch_as_fun]).
@@ -706,7 +727,7 @@ let branch_as_fun typs (r,l,c) =
empty, i.e. when [r] is a constant constructor
*)
-let branch_as_cst (_,l,c) =
+let branch_as_cst (l,_,c) =
let n = List.length l in
if ast_occurs_itvl 1 n c then raise Impossible;
ast_lift (1-n) c
@@ -745,20 +766,27 @@ let census_add, census_max, census_clean =
constant.
*)
-let factor_branches o typs br =
- census_clean ();
- for i = 0 to Array.length br - 1 do
- if o.opt_case_idr then
- (try census_add (branch_as_fun typs br.(i)) i with Impossible -> ());
- if o.opt_case_cst then
- (try census_add (branch_as_cst br.(i)) i with Impossible -> ());
- done;
- let br_factor, br_set = census_max MLdummy in
- census_clean ();
- let n = Intset.cardinal br_set in
- if n = 0 then None
- else if Array.length br >= 2 && n < 2 then None
- else Some (br_factor, br_set)
+let is_opt_pat (_,p,_) = match p with
+ | Prel _ | Pwild -> true
+ | _ -> false
+
+let factor_branches o typ br =
+ if array_exists is_opt_pat br then None (* already optimized *)
+ else begin
+ census_clean ();
+ for i = 0 to Array.length br - 1 do
+ if o.opt_case_idr then
+ (try census_add (branch_as_fun typ br.(i)) i with Impossible -> ());
+ if o.opt_case_cst then
+ (try census_add (branch_as_cst br.(i)) i with Impossible -> ());
+ done;
+ let br_factor, br_set = census_max MLdummy in
+ census_clean ();
+ let n = Intset.cardinal br_set in
+ if n = 0 then None
+ else if Array.length br >= 2 && n < 2 then None
+ else Some (br_factor, br_set)
+ end
(*s If all branches are functions, try to permut the case and the functions. *)
@@ -781,14 +809,14 @@ let rec permut_case_fun br acc =
let br = Array.copy br in
let ids = ref [] in
for i = 0 to Array.length br - 1 do
- let (r,l,t) = br.(i) in
+ let (l,p,t) = br.(i) in
let local_nb = nb_lams t in
if local_nb < !nb then (* t = MLexn ... *)
- br.(i) <- (r,l,remove_n_lams local_nb t)
+ br.(i) <- (l,p,remove_n_lams local_nb t)
else begin
let local_ids,t = collect_n_lams !nb t in
ids := merge_ids !ids local_ids;
- br.(i) <- (r,l,permut_rels !nb (List.length l) t)
+ br.(i) <- (l,p,permut_rels !nb (List.length l) t)
end
done;
(!ids,br)
@@ -796,32 +824,43 @@ let rec permut_case_fun br acc =
(*S Generalized iota-reduction. *)
-(* Definition of a generalized iota-redex: it's a [MLcase(e,_)]
- with [(is_iota_gen e)=true]. Any generalized iota-redex is
- transformed into beta-redexes. *)
-
-let rec is_iota_gen = function
- | MLcons _ -> true
- | MLcase(_,_,br)-> array_for_all (fun (_,_,t)->is_iota_gen t) br
- | _ -> false
-
-let constructor_index = function
- | ConstructRef (_,j) -> pred j
- | _ -> assert false
-
-let iota_gen br =
+(* Definition of a generalized iota-redex: it's a [MLcase(e,br)]
+ where the head [e] is a [MLcons] or made of [MLcase]'s with
+ [MLcons] as leaf branches.
+ A generalized iota-redex is transformed into beta-redexes. *)
+
+(* In [iota_red], we try to simplify a [MLcase(_,MLcons(typ,r,a),br)].
+ Argument [i] is the branch we consider, we should lift what
+ comes from [br] by [lift] *)
+
+let rec iota_red i lift br ((typ,r,a) as cons) =
+ if i >= Array.length br then raise Impossible;
+ let (ids,p,c) = br.(i) in
+ match p with
+ | Pusual r' | Pcons (r',_) when r'<>r -> iota_red (i+1) lift br cons
+ | Pusual r' ->
+ let c = named_lams (List.rev ids) c in
+ let c = ast_lift lift c
+ in MLapp (c,a)
+ | Prel 1 when List.length ids = 1 ->
+ let c = MLlam (List.hd ids, c) in
+ let c = ast_lift lift c
+ in MLapp(c,[MLcons(typ,r,a)])
+ | Pwild when ids = [] -> ast_lift lift c
+ | _ -> raise Impossible (* TODO: handle some more cases *)
+
+(* [iota_gen] is an extension of [iota_red] where we allow to
+ traverse matches in the head of the first match *)
+
+let iota_gen br hd =
let rec iota k = function
- | MLcons (i,r,a) ->
- let (_,ids,c) = br.(constructor_index r) in
- let c = List.fold_right (fun id t -> MLlam (id,t)) ids c in
- let c = ast_lift k c in
- MLapp (c,a)
- | MLcase(i,e,br') ->
+ | MLcons (typ,r,a) -> iota_red 0 k br (typ,r,a)
+ | MLcase(typ,e,br') ->
let new_br =
- Array.map (fun (n,i,c)->(n,i,iota (k+(List.length i)) c)) br'
- in MLcase(i,e, new_br)
- | _ -> assert false
- in iota 0
+ Array.map (fun (i,p,c)->(i,p,iota (k+(List.length i)) c)) br'
+ in MLcase(typ,e,new_br)
+ | _ -> raise Impossible
+ in iota 0 hd
let is_atomic = function
| MLrel _ | MLglob _ | MLexn _ | MLdummy -> true
@@ -840,7 +879,7 @@ let is_program_branch = function
(try
ignore (int_of_string (String.sub s n (String.length s - n)));
String.sub s 0 n = br
- with _ -> false)
+ with e when Errors.noncritical e -> false)
| Tmp _ | Dummy -> false
let expand_linear_let o id e =
@@ -853,9 +892,9 @@ let expand_linear_let o id e =
let rec simpl o = function
| MLapp (f, []) -> simpl o f
| MLapp (f, a) -> simpl_app o (List.map (simpl o) a) (simpl o f)
- | MLcase (i,e,br) ->
- let br = Array.map (fun (n,l,t) -> (n,l,simpl o t)) br in
- simpl_case o i br (simpl o e)
+ | MLcase (typ,e,br) ->
+ let br = Array.map (fun (l,p,t) -> (l,p,simpl o t)) br in
+ simpl_case o typ br (simpl o e)
| MLletin(Dummy,_,e) -> simpl o (ast_pop e)
| MLletin(id,c,e) ->
let e = simpl o e in
@@ -891,40 +930,50 @@ and simpl_app o a = function
| MLletin (id,e1,e2) when o.opt_let_app ->
(* Application of a letin: we push arguments inside *)
MLletin (id, e1, simpl o (MLapp (e2, List.map (ast_lift 1) a)))
- | MLcase (i,e,br) when o.opt_case_app ->
+ | MLcase (typ,e,br) when o.opt_case_app ->
(* Application of a case: we push arguments inside *)
let br' =
Array.map
- (fun (n,l,t) ->
+ (fun (l,p,t) ->
let k = List.length l in
let a' = List.map (ast_lift k) a in
- (n, l, simpl o (MLapp (t,a')))) br
- in simpl o (MLcase (i,e,br'))
+ (l, p, simpl o (MLapp (t,a')))) br
+ in simpl o (MLcase (typ,e,br'))
| (MLdummy | MLexn _) as e -> e
(* We just discard arguments in those cases. *)
| f -> MLapp (f,a)
(* Invariant : all empty matches should now be [MLexn] *)
-and simpl_case o i br e =
- if o.opt_case_iot && (is_iota_gen e) then (* Generalized iota-redex *)
+and simpl_case o typ br e =
+ try
+ (* Generalized iota-redex *)
+ if not o.opt_case_iot then raise Impossible;
simpl o (iota_gen br e)
- else
+ with Impossible ->
(* Swap the case and the lam if possible *)
let ids,br = if o.opt_case_fun then permut_case_fun br [] else [],br in
let n = List.length ids in
if n <> 0 then
- simpl o (named_lams ids (MLcase (i,ast_lift n e, br)))
+ simpl o (named_lams ids (MLcase (typ, ast_lift n e, br)))
else
(* Can we merge several branches as the same constant or function ? *)
- match factor_branches o i.m_typs br with
+ if lang() = Scheme || is_custom_match br
+ then MLcase (typ, e, br)
+ else match factor_branches o typ br with
| Some (f,ints) when Intset.cardinal ints = Array.length br ->
- (* If all branches have been factorized, we remove the match *)
- simpl o (MLletin (Tmp anonymous_name, e, f))
+ (* If all branches have been factorized, we remove the match *)
+ simpl o (MLletin (Tmp anonymous_name, e, f))
| Some (f,ints) ->
- let same = if ast_occurs 1 f then BranchFun ints else BranchCst ints
- in MLcase ({i with m_same=same}, e, br)
- | None -> MLcase (i, e, br)
+ let last_br =
+ if ast_occurs 1 f then ([Tmp anonymous_name], Prel 1, f)
+ else ([], Pwild, ast_pop f)
+ in
+ let brl = Array.to_list br in
+ let brl_opt = list_filter_i (fun i _ -> not (Intset.mem i ints)) brl in
+ let brl_opt = brl_opt @ [last_br] in
+ MLcase (typ, e, Array.of_list brl_opt)
+ | None -> MLcase (typ, e, br)
(*S Local prop elimination. *)
(* We try to eliminate as many [prop] as possible inside an [ml_ast]. *)
@@ -1149,28 +1198,24 @@ let optimize_fix a =
(* Utility functions used in the decision of inlining. *)
+let ml_size_branch size pv = Array.fold_left (fun a (_,_,t) -> a + size t) 0 pv
+
let rec ml_size = function
| MLapp(t,l) -> List.length l + ml_size t + ml_size_list l
| MLlam(_,t) -> 1 + ml_size t
- | MLcons(_,_,l) -> ml_size_list l
- | MLcase(_,t,pv) ->
- 1 + ml_size t + (Array.fold_right (fun (_,_,t) a -> a + ml_size t) pv 0)
+ | MLcons(_,_,l) | MLtuple l -> ml_size_list l
+ | MLcase(_,t,pv) -> 1 + ml_size t + ml_size_branch ml_size pv
| MLfix(_,_,f) -> ml_size_array f
| MLletin (_,_,t) -> ml_size t
| MLmagic t -> ml_size t
- | _ -> 0
+ | MLglob _ | MLrel _ | MLexn _ | MLdummy | MLaxiom -> 0
and ml_size_list l = List.fold_left (fun a t -> a + ml_size t) 0 l
-and ml_size_array l = Array.fold_left (fun a t -> a + ml_size t) 0 l
+and ml_size_array a = Array.fold_left (fun a t -> a + ml_size t) 0 a
let is_fix = function MLfix _ -> true | _ -> false
-let rec is_constr = function
- | MLcons _ -> true
- | MLlam(_,t) -> is_constr t
- | _ -> false
-
(*s Strictness *)
(* A variable is strict if the evaluation of the whole term implies
@@ -1219,7 +1264,7 @@ let rec non_stricts add cand = function
(* so we make an union (in fact a merge). *)
let cand = non_stricts false cand t in
Array.fold_left
- (fun c (_,i,t)->
+ (fun c (i,_,t)->
let n = List.length i in
let cand = lift n cand in
let cand = pop n (non_stricts add cand t) in
@@ -1265,12 +1310,14 @@ let inline_test r t =
if not (auto_inline ()) then false
else
let c = match r with ConstRef c -> c | _ -> assert false in
- let body = try (Global.lookup_constant c).const_body with _ -> None in
- if body = None then false
- else
- let t1 = eta_red t in
- let t2 = snd (collect_lams t1) in
- not (is_fix t2) && ml_size t < 12 && is_not_strict t
+ let has_body =
+ try constant_has_body (Global.lookup_constant c)
+ with e when Errors.noncritical e -> false
+ in
+ has_body &&
+ (let t1 = eta_red t in
+ let t2 = snd (collect_lams t1) in
+ not (is_fix t2) && ml_size t < 12 && is_not_strict t)
let con_of_string s =
let null = empty_dirpath in
diff --git a/plugins/extraction/mlutil.mli b/plugins/extraction/mlutil.mli
index 54a1baaa..e10b6070 100644
--- a/plugins/extraction/mlutil.mli
+++ b/plugins/extraction/mlutil.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: mlutil.mli 14786 2011-12-10 12:55:19Z letouzey $ i*)
-
open Util
open Names
open Term
@@ -20,7 +18,6 @@ open Table
val reset_meta_count : unit -> unit
val new_meta : 'a -> ml_type
-val type_subst : int -> ml_type -> ml_type -> ml_type
val type_subst_list : ml_type list -> ml_type -> ml_type
val type_subst_vect : ml_type array -> ml_type -> ml_type
@@ -118,9 +115,11 @@ val normalize : ml_ast -> ml_ast
val optimize_fix : ml_ast -> ml_ast
val inline : global_reference -> ml_ast -> bool
+val is_basic_pattern : ml_pattern -> bool
+val has_deep_pattern : ml_branch array -> bool
+val is_regular_match : ml_branch array -> bool
+
exception Impossible
-val branch_as_fun : ml_type list -> ml_branch -> ml_ast
-val branch_as_cst : ml_branch -> ml_ast
(* Classification of signatures *)
diff --git a/plugins/extraction/modutil.ml b/plugins/extraction/modutil.ml
index ffa38def..bd997d2d 100644
--- a/plugins/extraction/modutil.ml
+++ b/plugins/extraction/modutil.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: modutil.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Names
open Declarations
open Environ
@@ -28,9 +26,9 @@ let rec msid_of_mt = function
(*s Apply some functions upon all [ml_decl] and [ml_spec] found in a
[ml_structure]. *)
-let struct_iter do_decl do_spec s =
+let se_iter do_decl do_spec do_mp =
let rec mt_iter = function
- | MTident _ -> ()
+ | MTident mp -> do_mp mp
| MTfunsig (_,mt,mt') -> mt_iter mt; mt_iter mt'
| MTwith (mt,ML_With_type(idl,l,t))->
let mp_mt = msid_of_mt mt in
@@ -40,7 +38,12 @@ let struct_iter do_decl do_spec s =
in
let r = ConstRef (make_con mp_w empty_dirpath (label_of_id l')) in
mt_iter mt; do_decl (Dtype(r,l,t))
- | MTwith (mt,_)->mt_iter mt
+ | MTwith (mt,ML_With_module(idl,mp))->
+ let mp_mt = msid_of_mt mt in
+ let mp_w =
+ List.fold_left (fun mp l -> MPdot(mp,label_of_id l)) mp_mt idl
+ in
+ mt_iter mt; do_mp mp_w; do_mp mp
| MTsig (_, sign) -> List.iter spec_iter sign
and spec_iter = function
| (_,Spec s) -> do_spec s
@@ -53,12 +56,16 @@ let struct_iter do_decl do_spec s =
me_iter m.ml_mod_expr; mt_iter m.ml_mod_type
| (_,SEmodtype m) -> mt_iter m
and me_iter = function
- | MEident _ -> ()
+ | MEident mp -> do_mp mp
| MEfunctor (_,mt,me) -> me_iter me; mt_iter mt
| MEapply (me,me') -> me_iter me; me_iter me'
| MEstruct (msid, sel) -> List.iter se_iter sel
in
- List.iter (function (_,sel) -> List.iter se_iter sel) s
+ se_iter
+
+let struct_iter do_decl do_spec do_mp s =
+ List.iter
+ (function (_,sel) -> List.iter (se_iter do_decl do_spec do_mp) sel) s
(*s Apply some fonctions upon all references in [ml_type], [ml_ast],
[ml_decl], [ml_spec] and [ml_structure]. *)
@@ -76,18 +83,26 @@ let type_iter_references do_type t =
| _ -> ()
in iter t
+let patt_iter_references do_cons p =
+ let rec iter = function
+ | Pcons (r,l) -> do_cons r; List.iter iter l
+ | Pusual r -> do_cons r
+ | Ptuple l -> List.iter iter l
+ | Prel _ | Pwild -> ()
+ in iter p
+
let ast_iter_references do_term do_cons do_type a =
let rec iter a =
ast_iter iter a;
match a with
| MLglob r -> do_term r
- | MLcons (i,r,_) ->
- if lang () = Ocaml then record_iter_references do_term i.c_kind;
- do_cons r
- | MLcase (i,_,v) ->
- if lang () = Ocaml then record_iter_references do_term i.m_kind;
- Array.iter (fun (r,_,_) -> do_cons r) v
- | _ -> ()
+ | MLcons (_,r,_) -> do_cons r
+ | MLcase (ty,_,v) ->
+ type_iter_references do_type ty;
+ Array.iter (fun (_,p,_) -> patt_iter_references do_cons p) v
+
+ | MLrel _ | MLlam _ | MLapp _ | MLletin _ | MLtuple _ | MLfix _ | MLexn _
+ | MLdummy | MLaxiom | MLmagic _ -> ()
in iter a
let ind_iter_references do_term do_cons do_type kn ind =
@@ -108,15 +123,14 @@ let decl_iter_references do_term do_cons do_type =
let type_iter = type_iter_references do_type
and ast_iter = ast_iter_references do_term do_cons do_type in
function
- | Dind (kn,ind) -> ind_iter_references do_term do_cons do_type
- (mind_of_kn kn) ind
+ | Dind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
| Dtype (r,_,t) -> do_type r; type_iter t
| Dterm (r,a,t) -> do_term r; ast_iter a; type_iter t
| Dfix(rv,c,t) ->
Array.iter do_term rv; Array.iter ast_iter c; Array.iter type_iter t
let spec_iter_references do_term do_cons do_type = function
- | Sind (kn,ind) -> ind_iter_references do_term do_cons do_type (mind_of_kn kn) ind
+ | Sind (kn,ind) -> ind_iter_references do_term do_cons do_type kn ind
| Stype (r,_,ot) -> do_type r; Option.iter (type_iter_references do_type) ot
| Sval (r,t) -> do_term r; type_iter_references do_type t
@@ -133,7 +147,7 @@ let decl_ast_search f = function
| _ -> ()
let struct_ast_search f s =
- try struct_iter (decl_ast_search f) (fun _ -> ()) s; false
+ try struct_iter (decl_ast_search f) (fun _ -> ()) (fun _ -> ()) s; false
with Found -> true
let rec type_search f = function
@@ -157,7 +171,9 @@ let spec_type_search f = function
| Sval (_,u) -> type_search f u
let struct_type_search f s =
- try struct_iter (decl_type_search f) (spec_type_search f) s; false
+ try
+ struct_iter (decl_type_search f) (spec_type_search f) (fun _ -> ()) s;
+ false
with Found -> true
@@ -186,6 +202,15 @@ let signature_of_structure s =
(*s Searching one [ml_decl] in a [ml_structure] by its [global_reference] *)
+let is_modular = function
+ | SEdecl _ -> false
+ | SEmodule _ | SEmodtype _ -> true
+
+let rec search_structure l m = function
+ | [] -> raise Not_found
+ | (lab,d)::_ when lab=l && is_modular d = m -> d
+ | _::fields -> search_structure l m fields
+
let get_decl_in_structure r struc =
try
let base_mp,ll = labels_of_ref r in
@@ -194,7 +219,7 @@ let get_decl_in_structure r struc =
let rec go ll sel = match ll with
| [] -> assert false
| l :: ll ->
- match List.assoc l sel with
+ match search_structure l (ll<>[]) sel with
| SEdecl d -> d
| SEmodtype m -> assert false
| SEmodule m ->
@@ -230,34 +255,32 @@ let dfix_to_mlfix rv av i =
let c = Array.map (subst 0) av
in MLfix(i, ids, c)
+(* [optim_se] applies the [normalize] function everywhere and does the
+ inlining of code. The inlined functions are kept for the moment in
+ order to preserve the global interface, later [depcheck_se] will get
+ rid of them if possible *)
+
let rec optim_se top to_appear s = function
| [] -> []
| (l,SEdecl (Dterm (r,a,t))) :: lse ->
let a = normalize (ast_glob_subst !s a) in
let i = inline r a in
if i then s := Refmap'.add r a !s;
- if top && i && not (modular ()) && not (List.mem r to_appear)
- then optim_se top to_appear s lse
- else
- let d = match optimize_fix a with
- | MLfix (0, _, [|c|]) ->
- Dfix ([|r|], [|ast_subst (MLglob r) c|], [|t|])
- | a -> Dterm (r, a, t)
- in (l,SEdecl d) :: (optim_se top to_appear s lse)
+ let d = match optimize_fix a with
+ | MLfix (0, _, [|c|]) ->
+ Dfix ([|r|], [|ast_subst (MLglob r) c|], [|t|])
+ | a -> Dterm (r, a, t)
+ in
+ (l,SEdecl d) :: (optim_se top to_appear s lse)
| (l,SEdecl (Dfix (rv,av,tv))) :: lse ->
let av = Array.map (fun a -> normalize (ast_glob_subst !s a)) av in
- let all = ref true in
(* This fake body ensures that no fixpoint will be auto-inlined. *)
let fake_body = MLfix (0,[||],[||]) in
for i = 0 to Array.length rv - 1 do
if inline rv.(i) fake_body
then s := Refmap'.add rv.(i) (dfix_to_mlfix rv av i) !s
- else all := false
done;
- if !all && top && not (modular ())
- && (array_for_all (fun r -> not (List.mem r to_appear)) rv)
- then optim_se top to_appear s lse
- else (l,SEdecl (Dfix (rv, av, tv))) :: (optim_se top to_appear s lse)
+ (l,SEdecl (Dfix (rv, av, tv))) :: (optim_se top to_appear s lse)
| (l,SEmodule m) :: lse ->
let m = { m with ml_mod_expr = optim_me to_appear s m.ml_mod_expr}
in (l,SEmodule m) :: (optim_se top to_appear s lse)
@@ -271,7 +294,8 @@ and optim_me to_appear s = function
| MEfunctor (mbid,mt,me) -> MEfunctor (mbid,mt, optim_me to_appear s me)
(* After these optimisations, some dependencies may not be needed anymore.
- For monolithic extraction, we recompute a minimal set of dependencies. *)
+ For non-library extraction, we recompute a minimal set of dependencies
+ for first-level definitions (no module pruning yet). *)
exception NoDepCheck
@@ -281,15 +305,19 @@ let base_r = function
| ConstructRef ((kn,_),_) -> IndRef (kn,0)
| _ -> assert false
-let reset_needed, add_needed, found_needed, is_needed =
- let needed = ref Refset'.empty in
- ((fun l -> needed := Refset'.empty),
+let reset_needed, add_needed, add_needed_mp, found_needed, is_needed =
+ let needed = ref Refset'.empty
+ and needed_mps = ref MPset.empty in
+ ((fun l -> needed := Refset'.empty; needed_mps := MPset.empty),
(fun r -> needed := Refset'.add (base_r r) !needed),
+ (fun mp -> needed_mps := MPset.add mp !needed_mps),
(fun r -> needed := Refset'.remove (base_r r) !needed),
- (fun r -> Refset'.mem (base_r r) !needed))
+ (fun r ->
+ let r = base_r r in
+ Refset'.mem r !needed || MPset.mem (modpath_of_r r) !needed_mps))
let declared_refs = function
- | Dind (kn,_) -> [IndRef (mind_of_kn kn,0)]
+ | Dind (kn,_) -> [IndRef (kn,0)]
| Dtype (r,_,_) -> [r]
| Dterm (r,_,_) -> [r]
| Dfix (rv,_,_) -> Array.to_list rv
@@ -300,7 +328,7 @@ let declared_refs = function
let compute_deps_decl = function
| Dind (kn,ind) ->
(* Todo Later : avoid dependencies when Extract Inductive *)
- ind_iter_references add_needed add_needed add_needed (mind_of_kn kn) ind
+ ind_iter_references add_needed add_needed add_needed kn ind
| Dtype (r,ids,t) ->
if not (is_custom r) then type_iter_references add_needed t
| Dterm (r,u,t) ->
@@ -310,6 +338,15 @@ let compute_deps_decl = function
| Dfix _ as d ->
decl_iter_references add_needed add_needed add_needed d
+let compute_deps_spec = function
+ | Sind (kn,ind) ->
+ (* Todo Later : avoid dependencies when Extract Inductive *)
+ ind_iter_references add_needed add_needed add_needed kn ind
+ | Stype (r,ids,t) ->
+ if not (is_custom r) then Option.iter (type_iter_references add_needed) t
+ | Sval (r,t) ->
+ type_iter_references add_needed t
+
let rec depcheck_se = function
| [] -> []
| ((l,SEdecl d) as t) :: se ->
@@ -317,7 +354,9 @@ let rec depcheck_se = function
let refs = declared_refs d in
let refs' = List.filter is_needed refs in
if refs' = [] then
- (List.iter remove_info_axiom refs; se')
+ (List.iter remove_info_axiom refs;
+ List.iter remove_opaque refs;
+ se')
else begin
List.iter found_needed refs';
(* Hack to avoid extracting unused part of a Dfix *)
@@ -327,14 +366,17 @@ let rec depcheck_se = function
((l,SEdecl (Dfix (rv,trms',tys))) :: se')
| _ -> (compute_deps_decl d; t::se')
end
- | _ -> raise NoDepCheck
+ | t :: se ->
+ let se' = depcheck_se se in
+ se_iter compute_deps_decl compute_deps_spec add_needed_mp t;
+ t :: se'
let rec depcheck_struct = function
| [] -> []
| (mp,lse)::struc ->
let struc' = depcheck_struct struc in
let lse' = depcheck_se lse in
- (mp,lse')::struc'
+ if lse' = [] then struc' else (mp,lse')::struc'
let check_implicits = function
| MLexn s ->
@@ -350,13 +392,15 @@ let check_implicits = function
let optimize_struct to_appear struc =
let subst = ref (Refmap'.empty : ml_ast Refmap'.t) in
let opt_struc =
- List.map (fun (mp,lse) -> (mp, optim_se true to_appear subst lse)) struc
+ List.map (fun (mp,lse) -> (mp, optim_se true (fst to_appear) subst lse))
+ struc
in
- let opt_struc = List.filter (fun (_,lse) -> lse<>[]) opt_struc in
ignore (struct_ast_search check_implicits opt_struc);
- try
- if modular () then raise NoDepCheck;
+ if library () then
+ List.filter (fun (_,lse) -> lse<>[]) opt_struc
+ else begin
reset_needed ();
- List.iter add_needed to_appear;
+ List.iter add_needed (fst to_appear);
+ List.iter add_needed_mp (snd to_appear);
depcheck_struct opt_struc
- with NoDepCheck -> opt_struc
+ end
diff --git a/plugins/extraction/modutil.mli b/plugins/extraction/modutil.mli
index 26d07872..fb8d5e1b 100644
--- a/plugins/extraction/modutil.mli
+++ b/plugins/extraction/modutil.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: modutil.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Names
open Declarations
open Environ
@@ -38,4 +36,5 @@ val get_decl_in_structure : global_reference -> ml_structure -> ml_decl
optimizations. The first argument is the list of objects we want to appear.
*)
-val optimize_struct : global_reference list -> ml_structure -> ml_structure
+val optimize_struct : global_reference list * module_path list ->
+ ml_structure -> ml_structure
diff --git a/plugins/extraction/ocaml.ml b/plugins/extraction/ocaml.ml
index c07a1758..4e8d8145 100644
--- a/plugins/extraction/ocaml.ml
+++ b/plugins/extraction/ocaml.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ocaml.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s Production of Ocaml syntax. *)
open Pp
@@ -31,22 +29,6 @@ let pp_tvar id =
then str ("'"^s)
else str ("' "^s)
-let pp_tuple_light f = function
- | [] -> mt ()
- | [x] -> f true x
- | l ->
- pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) (f false) l)
-
-let pp_tuple f = function
- | [] -> mt ()
- | [x] -> f x
- | l -> pp_par true (prlist_with_sep (fun () -> str "," ++ spc ()) f l)
-
-let pp_boxed_tuple f = function
- | [] -> mt ()
- | [x] -> f x
- | l -> pp_par true (hov 0 (prlist_with_sep (fun () -> str "," ++ spc ()) f l))
-
let pp_abst = function
| [] -> mt ()
| l ->
@@ -59,6 +41,10 @@ let pp_parameters l =
let pp_string_parameters l =
(pp_boxed_tuple str l ++ space_if (l<>[]))
+let pp_letin pat def body =
+ let fstline = str "let " ++ pat ++ str " =" ++ spc () ++ def in
+ hv 0 (hv 0 (hov 2 fstline ++ spc () ++ str "in") ++ spc () ++ hov 0 body)
+
(*s Ocaml renaming issues. *)
let keywords =
@@ -133,11 +119,13 @@ let rec pp_type par vl t =
let rec pp_rec par = function
| Tmeta _ | Tvar' _ | Taxiom -> assert false
| Tvar i -> (try pp_tvar (List.nth vl (pred i))
- with _ -> (str "'a" ++ int i))
+ with e when Errors.noncritical e ->
+ (str "'a" ++ int i))
| Tglob (r,[a1;a2]) when is_infix r ->
pp_par par (pp_rec true a1 ++ str (get_infix r) ++ pp_rec true a2)
| Tglob (r,[]) -> pp_global Type r
- | Tglob (IndRef(kn,0),l) when kn = mk_ind "Coq.Init.Specif" "sig" ->
+ | Tglob (IndRef(kn,0),l)
+ when not (keep_singleton ()) && kn = mk_ind "Coq.Init.Specif" "sig" ->
pp_tuple_light pp_rec l
| Tglob (r,l) ->
pp_tuple_light pp_rec l ++ spc () ++ pp_global Type r
@@ -154,10 +142,19 @@ let rec pp_type par vl t =
de Bruijn variables. [args] is the list of collected arguments
(already pretty-printed). *)
+let is_bool_patt p s =
+ try
+ let r = match p with
+ | Pusual r -> r
+ | Pcons (r,[]) -> r
+ | _ -> raise Not_found
+ in
+ find_custom r = s
+ with Not_found -> false
+
+
let is_ifthenelse = function
- | [|(r1,[],_);(r2,[],_)|] ->
- (try (find_custom r1 = "true") && (find_custom r2 = "false")
- with Not_found -> false)
+ | [|([],p1,_);([],p2,_)|] -> is_bool_patt p1 "true" && is_bool_patt p2 "false"
| _ -> false
let expr_needs_par = function
@@ -167,8 +164,8 @@ let expr_needs_par = function
| _ -> false
let rec pp_expr par env args =
- let par' = args <> [] || par
- and apply st = pp_apply st par args in
+ let apply st = pp_apply st par args
+ and apply2 st = pp_apply2 st par args in
function
| MLrel n ->
let id = get_db_name n env in apply (pr_id id)
@@ -179,109 +176,23 @@ let rec pp_expr par env args =
let fl,a' = collect_lams a in
let fl = List.map id_of_mlid fl in
let fl,env' = push_vars fl env in
- let st = (pp_abst (List.rev fl) ++ pp_expr false env' [] a') in
- apply (pp_par par' st)
+ let st = pp_abst (List.rev fl) ++ pp_expr false env' [] a' in
+ apply2 st
| MLletin (id,a1,a2) ->
let i,env' = push_vars [id_of_mlid id] env in
let pp_id = pr_id (List.hd i)
and pp_a1 = pp_expr false env [] a1
and pp_a2 = pp_expr (not par && expr_needs_par a2) env' [] a2 in
- hv 0
- (apply
- (pp_par par'
- (hv 0
- (hov 2
- (str "let " ++ pp_id ++ str " =" ++ spc () ++ pp_a1) ++
- spc () ++ str "in") ++
- spc () ++ hov 0 pp_a2)))
+ hv 0 (apply2 (pp_letin pp_id pp_a1 pp_a2))
| MLglob r ->
(try
let args = list_skipn (projection_arity r) args in
let record = List.hd args in
pp_apply (record ++ str "." ++ pp_global Term r) par (List.tl args)
- with _ -> apply (pp_global Term r))
- | MLcons _ as c when is_native_char c -> assert (args=[]); pp_native_char c
- | MLcons ({c_kind = Coinductive},r,[]) ->
- assert (args=[]);
- pp_par par (str "lazy " ++ pp_global Cons r)
- | MLcons ({c_kind = Coinductive},r,args') ->
- assert (args=[]);
- let tuple = pp_tuple (pp_expr true env []) args' in
- pp_par par (str "lazy (" ++ pp_global Cons r ++ spc() ++ tuple ++str ")")
- | MLcons (_,r,[]) ->
- assert (args=[]);
- pp_global Cons r
- | MLcons ({c_kind = Record fields}, r, args') ->
- assert (args=[]);
- pp_record_pat (pp_fields r fields, List.map (pp_expr true env []) args')
- | MLcons (_,r,[arg1;arg2]) when is_infix r ->
- assert (args=[]);
- pp_par par
- ((pp_expr true env [] arg1) ++ str (get_infix r) ++
- (pp_expr true env [] arg2))
- | MLcons (_,r,args') ->
- assert (args=[]);
- let tuple = pp_tuple (pp_expr true env []) args' in
- if str_global Cons r = "" (* hack Extract Inductive prod *)
- then tuple
- else pp_par par (pp_global Cons r ++ spc () ++ tuple)
- | MLcase (_, t, pv) when is_custom_match pv ->
- let mkfun (_,ids,e) =
- if ids <> [] then named_lams (List.rev ids) e
- else dummy_lams (ast_lift 1 e) 1
- in
- apply
- (pp_par par'
- (hov 2
- (str (find_custom_match pv) ++ fnl () ++
- prvect (fun tr -> pp_expr true env [] (mkfun tr) ++ fnl ()) pv
- ++ pp_expr true env [] t)))
- | MLcase (info, t, pv) ->
- let expr = if info.m_kind = Coinductive then
- (str "Lazy.force" ++ spc () ++ pp_expr true env [] t)
- else
- (pp_expr false env [] t)
- in
- (try
- (* First, can this match be printed as a mere record projection ? *)
- let fields =
- match info.m_kind with Record f -> f | _ -> raise Impossible
- in
- let (r, ids, c) = pv.(0) in
- let n = List.length ids in
- let free_of_patvar a = not (List.exists (ast_occurs_itvl 1 n) a) in
- let proj_hd i =
- pp_expr true env [] t ++ str "." ++ pp_field r fields i
- in
- match c with
- | MLrel i when i <= n -> apply (pp_par par' (proj_hd (n-i)))
- | MLapp (MLrel i, a) when (i <= n) && (free_of_patvar a) ->
- let ids,env' = push_vars (List.rev_map id_of_mlid ids) env in
- (pp_apply (proj_hd (n-i))
- par ((List.map (pp_expr true env' []) a) @ args))
- | _ -> raise Impossible
- with Impossible ->
- (* Second, can this match be printed as a let-in ? *)
- if Array.length pv = 1 then
- let s1,s2 = pp_one_pat env info pv.(0) in
- apply
- (hv 0
- (pp_par par'
- (hv 0
- (hov 2 (str "let " ++ s1 ++ str " =" ++ spc () ++ expr)
- ++ spc () ++ str "in") ++
- spc () ++ hov 0 s2)))
- else
- (* Otherwise, standard match *)
- apply
- (pp_par par'
- (try pp_ifthenelse par' env expr pv
- with Not_found ->
- v 0 (str "match " ++ expr ++ str " with" ++ fnl () ++
- pp_pat env info pv))))
+ with e when Errors.noncritical e -> apply (pp_global Term r))
| MLfix (i,ids,defs) ->
let ids',env' = push_vars (List.rev (Array.to_list ids)) env in
- pp_fix par env' i (Array.of_list (List.rev ids'),defs) args
+ pp_fix par env' i (Array.of_list (List.rev ids'),defs) args
| MLexn s ->
(* An [MLexn] may be applied, but I don't really care. *)
pp_par par (str "assert false" ++ spc () ++ str ("(* "^s^" *)"))
@@ -291,7 +202,96 @@ let rec pp_expr par env args =
pp_apply (str "Obj.magic") par (pp_expr true env [] a :: args)
| MLaxiom ->
pp_par par (str "failwith \"AXIOM TO BE REALIZED\"")
-
+ | MLcons (_,r,a) as c ->
+ assert (args=[]);
+ begin match a with
+ | _ when is_native_char c -> pp_native_char c
+ | [a1;a2] when is_infix r ->
+ let pp = pp_expr true env [] in
+ pp_par par (pp a1 ++ str (get_infix r) ++ pp a2)
+ | _ when is_coinductive r ->
+ let ne = (a<>[]) in
+ let tuple = space_if ne ++ pp_tuple (pp_expr true env []) a in
+ pp_par par (str "lazy " ++ pp_par ne (pp_global Cons r ++ tuple))
+ | [] -> pp_global Cons r
+ | _ ->
+ let fds = get_record_fields r in
+ if fds <> [] then
+ pp_record_pat (pp_fields r fds, List.map (pp_expr true env []) a)
+ else
+ let tuple = pp_tuple (pp_expr true env []) a in
+ if str_global Cons r = "" (* hack Extract Inductive prod *)
+ then tuple
+ else pp_par par (pp_global Cons r ++ spc () ++ tuple)
+ end
+ | MLtuple l ->
+ assert (args = []);
+ pp_boxed_tuple (pp_expr true env []) l
+ | MLcase (_, t, pv) when is_custom_match pv ->
+ if not (is_regular_match pv) then
+ error "Cannot mix yet user-given match and general patterns.";
+ let mkfun (ids,_,e) =
+ if ids <> [] then named_lams (List.rev ids) e
+ else dummy_lams (ast_lift 1 e) 1
+ in
+ let pp_branch tr = pp_expr true env [] (mkfun tr) ++ fnl () in
+ let inner =
+ str (find_custom_match pv) ++ fnl () ++
+ prvect pp_branch pv ++
+ pp_expr true env [] t
+ in
+ apply2 (hov 2 inner)
+ | MLcase (typ, t, pv) ->
+ let head =
+ if not (is_coinductive_type typ) then pp_expr false env [] t
+ else (str "Lazy.force" ++ spc () ++ pp_expr true env [] t)
+ in
+ (* First, can this match be printed as a mere record projection ? *)
+ (try pp_record_proj par env typ t pv args
+ with Impossible ->
+ (* Second, can this match be printed as a let-in ? *)
+ if Array.length pv = 1 then
+ let s1,s2 = pp_one_pat env pv.(0) in
+ hv 0 (apply2 (pp_letin s1 head s2))
+ else
+ (* Third, can this match be printed as [if ... then ... else] ? *)
+ (try apply2 (pp_ifthenelse env head pv)
+ with Not_found ->
+ (* Otherwise, standard match *)
+ apply2
+ (v 0 (str "match " ++ head ++ str " with" ++ fnl () ++
+ pp_pat env pv))))
+
+and pp_record_proj par env typ t pv args =
+ (* Can a match be printed as a mere record projection ? *)
+ let fields = record_fields_of_type typ in
+ if fields = [] then raise Impossible;
+ if Array.length pv <> 1 then raise Impossible;
+ if has_deep_pattern pv then raise Impossible;
+ let (ids,pat,body) = pv.(0) in
+ let n = List.length ids in
+ let no_patvar a = not (List.exists (ast_occurs_itvl 1 n) a) in
+ let rel_i,a = match body with
+ | MLrel i when i <= n -> i,[]
+ | MLapp(MLrel i, a) when i<=n && no_patvar a -> i,a
+ | _ -> raise Impossible
+ in
+ let rec lookup_rel i idx = function
+ | Prel j :: l -> if i = j then idx else lookup_rel i (idx+1) l
+ | Pwild :: l -> lookup_rel i (idx+1) l
+ | _ -> raise Impossible
+ in
+ let r,idx = match pat with
+ | Pusual r -> r, n-rel_i
+ | Pcons (r,l) -> r, lookup_rel rel_i 0 l
+ | _ -> raise Impossible
+ in
+ if is_infix r then raise Impossible;
+ let env' = snd (push_vars (List.rev_map id_of_mlid ids) env) in
+ let pp_args = (List.map (pp_expr true env' []) a) @ args in
+ let pp_head = pp_expr true env [] t ++ str "." ++ pp_field r fields idx
+ in
+ pp_apply pp_head par pp_args
and pp_record_pat (fields, args) =
str "{ " ++
@@ -300,9 +300,27 @@ and pp_record_pat (fields, args) =
(List.combine fields args) ++
str " }"
-and pp_ifthenelse par env expr pv = match pv with
- | [|(tru,[],the);(fal,[],els)|] when
- (find_custom tru = "true") && (find_custom fal = "false")
+and pp_cons_pat r ppl =
+ if is_infix r && List.length ppl = 2 then
+ List.hd ppl ++ str (get_infix r) ++ List.hd (List.tl ppl)
+ else
+ let fields = get_record_fields r in
+ if fields <> [] then pp_record_pat (pp_fields r fields, ppl)
+ else if str_global Cons r = "" then
+ pp_boxed_tuple identity ppl (* Hack Extract Inductive prod *)
+ else
+ pp_global Cons r ++ space_if (ppl<>[]) ++ pp_boxed_tuple identity ppl
+
+and pp_gen_pat ids env = function
+ | Pcons (r, l) -> pp_cons_pat r (List.map (pp_gen_pat ids env) l)
+ | Pusual r -> pp_cons_pat r (List.map pr_id ids)
+ | Ptuple l -> pp_boxed_tuple (pp_gen_pat ids env) l
+ | Pwild -> str "_"
+ | Prel n -> pr_id (get_db_name n env)
+
+and pp_ifthenelse env expr pv = match pv with
+ | [|([],tru,the);([],fal,els)|] when
+ (is_bool_patt tru "true") && (is_bool_patt fal "false")
->
hv 0 (hov 2 (str "if " ++ expr) ++ spc () ++
hov 2 (str "then " ++
@@ -311,66 +329,34 @@ and pp_ifthenelse par env expr pv = match pv with
hov 2 (pp_expr (expr_needs_par els) env [] els)))
| _ -> raise Not_found
-and pp_one_pat env info (r,ids,t) =
- let ids,env' = push_vars (List.rev_map id_of_mlid ids) env in
- let expr = pp_expr (expr_needs_par t) env' [] t in
- let patt = match info.m_kind with
- | Record fields ->
- pp_record_pat (pp_fields r fields, List.rev_map pr_id ids)
- | _ -> match List.rev ids with
- | [i1;i2] when is_infix r -> pr_id i1 ++ str (get_infix r) ++ pr_id i2
- | [] -> pp_global Cons r
- | ids ->
- (* hack Extract Inductive prod *)
- (if str_global Cons r = "" then mt () else pp_global Cons r ++ spc ())
- ++ pp_boxed_tuple pr_id ids
- in
- patt, expr
-
-and pp_pat env info pv =
- let factor_br, factor_set = try match info.m_same with
- | BranchFun ints ->
- let i = Intset.choose ints in
- branch_as_fun info.m_typs pv.(i), ints
- | BranchCst ints ->
- let i = Intset.choose ints in
- ast_pop (branch_as_cst pv.(i)), ints
- | BranchNone -> MLdummy, Intset.empty
- with _ -> MLdummy, Intset.empty
- in
- let last = Array.length pv - 1 in
+and pp_one_pat env (ids,p,t) =
+ let ids',env' = push_vars (List.rev_map id_of_mlid ids) env in
+ pp_gen_pat (List.rev ids') env' p,
+ pp_expr (expr_needs_par t) env' [] t
+
+and pp_pat env pv =
prvecti
- (fun i x -> if Intset.mem i factor_set then mt () else
- let s1,s2 = pp_one_pat env info x in
+ (fun i x ->
+ let s1,s2 = pp_one_pat env x in
hv 2 (hov 4 (str "| " ++ s1 ++ str " ->") ++ spc () ++ hov 2 s2) ++
- if i = last && Intset.is_empty factor_set then mt () else fnl ())
+ if i = Array.length pv - 1 then mt () else fnl ())
pv
- ++
- if Intset.is_empty factor_set then mt () else
- let par = expr_needs_par factor_br in
- match info.m_same with
- | BranchFun _ ->
- let ids, env' = push_vars [anonymous_name] env in
- hv 2 (str "| " ++ pr_id (List.hd ids) ++ str " ->" ++ spc () ++
- hov 2 (pp_expr par env' [] factor_br))
- | BranchCst _ ->
- hv 2 (str "| _ ->" ++ spc () ++ hov 2 (pp_expr par env [] factor_br))
- | BranchNone -> mt ()
and pp_function env t =
let bl,t' = collect_lams t in
let bl,env' = push_vars (List.map id_of_mlid bl) env in
match t' with
- | MLcase(i,MLrel 1,pv) when
- i.m_kind = Standard && not (is_custom_match pv) ->
- if not (ast_occurs 1 (MLcase(i,MLdummy,pv))) then
+ | MLcase(Tglob(r,_),MLrel 1,pv) when
+ not (is_coinductive r) && get_record_fields r = [] &&
+ not (is_custom_match pv) ->
+ if not (ast_occurs 1 (MLcase(Tunknown,MLdummy,pv))) then
pr_binding (List.rev (List.tl bl)) ++
str " = function" ++ fnl () ++
- v 0 (pp_pat env' i pv)
+ v 0 (pp_pat env' pv)
else
pr_binding (List.rev bl) ++
str " = match " ++ pr_id (List.hd bl) ++ str " with" ++ fnl () ++
- v 0 (pp_pat env' i pv)
+ v 0 (pp_pat env' pv)
| _ ->
pr_binding (List.rev bl) ++
str " =" ++ fnl () ++ str " " ++
@@ -451,7 +437,7 @@ let pp_logical_ind packet =
fnl ()
let pp_singleton kn packet =
- let name = pp_global Type (IndRef (mind_of_kn kn,0)) in
+ let name = pp_global Type (IndRef (kn,0)) in
let l = rename_tvars keywords packet.ip_vars in
hov 2 (str "type " ++ pp_parameters l ++ name ++ str " =" ++ spc () ++
pp_type false l (List.hd packet.ip_types.(0)) ++ fnl () ++
@@ -459,7 +445,7 @@ let pp_singleton kn packet =
pr_id packet.ip_consnames.(0)))
let pp_record kn fields ip_equiv packet =
- let ind = IndRef (mind_of_kn kn,0) in
+ let ind = IndRef (kn,0) in
let name = pp_global Type ind in
let fieldnames = pp_fields ind fields in
let l = List.combine fieldnames packet.ip_types.(0) in
@@ -482,20 +468,20 @@ let pp_ind co kn ind =
let init= ref (str "type ") in
let names =
Array.mapi (fun i p -> if p.ip_logical then mt () else
- pp_global Type (IndRef (mind_of_kn kn,i)))
+ pp_global Type (IndRef (kn,i)))
ind.ind_packets
in
let cnames =
Array.mapi
(fun i p -> if p.ip_logical then [||] else
- Array.mapi (fun j _ -> pp_global Cons (ConstructRef ((mind_of_kn kn,i),j+1)))
+ Array.mapi (fun j _ -> pp_global Cons (ConstructRef ((kn,i),j+1)))
p.ip_types)
ind.ind_packets
in
let rec pp i =
if i >= Array.length ind.ind_packets then mt ()
else
- let ip = (mind_of_kn kn,i) in
+ let ip = (kn,i) in
let ip_equiv = ind.ind_equiv, i in
let p = ind.ind_packets.(i) in
if is_custom (IndRef ip) then pp (i+1)
diff --git a/plugins/extraction/ocaml.mli b/plugins/extraction/ocaml.mli
index c0b4e5b3..f55e2fd6 100644
--- a/plugins/extraction/ocaml.mli
+++ b/plugins/extraction/ocaml.mli
@@ -1,12 +1,10 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: ocaml.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
val ocaml_descr : Miniml.language_descr
diff --git a/plugins/extraction/scheme.ml b/plugins/extraction/scheme.ml
index 1f04ca59..7915bc82 100644
--- a/plugins/extraction/scheme.ml
+++ b/plugins/extraction/scheme.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: scheme.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*s Production of Scheme syntax. *)
open Pp
@@ -87,7 +85,7 @@ let rec pp_expr env args =
++ spc () ++ hov 0 (pp_expr env' [] a2)))))
| MLglob r ->
apply (pp_global Term r)
- | MLcons (info,r,args') ->
+ | MLcons (_,r,args') ->
assert (args=[]);
let st =
str "`" ++
@@ -95,9 +93,12 @@ let rec pp_expr env args =
(if args' = [] then mt () else spc ()) ++
prlist_with_sep spc (pp_cons_args env) args')
in
- if info.c_kind = Coinductive then paren (str "delay " ++ st) else st
+ if is_coinductive r then paren (str "delay " ++ st) else st
+ | MLtuple _ -> error "Cannot handle tuples in Scheme yet."
+ | MLcase (_,_,pv) when not (is_regular_match pv) ->
+ error "Cannot handle general patterns in Scheme yet."
| MLcase (_,t,pv) when is_custom_match pv ->
- let mkfun (_,ids,e) =
+ let mkfun (ids,_,e) =
if ids <> [] then named_lams (List.rev ids) e
else dummy_lams (ast_lift 1 e) 1
in
@@ -107,9 +108,9 @@ let rec pp_expr env args =
(str (find_custom_match pv) ++ fnl () ++
prvect (fun tr -> pp_expr env [] (mkfun tr) ++ fnl ()) pv
++ pp_expr env [] t)))
- | MLcase (info,t, pv) ->
- let e =
- if info.m_kind <> Coinductive then pp_expr env [] t
+ | MLcase (typ,t, pv) ->
+ let e =
+ if not (is_coinductive_type typ) then pp_expr env [] t
else paren (str "force" ++ spc () ++ pp_expr env [] t)
in
apply (v 3 (paren (str "match " ++ e ++ fnl () ++ pp_pat env pv)))
@@ -126,14 +127,18 @@ let rec pp_expr env args =
| MLaxiom -> paren (str "error \"AXIOM TO BE REALIZED\"")
and pp_cons_args env = function
- | MLcons (info,r,args) when info.c_kind<>Coinductive ->
+ | MLcons (_,r,args) when is_coinductive r ->
paren (pp_global Cons r ++
(if args = [] then mt () else spc ()) ++
prlist_with_sep spc (pp_cons_args env) args)
| e -> str "," ++ pp_expr env [] e
-
-and pp_one_pat env (r,ids,t) =
+and pp_one_pat env (ids,p,t) =
+ let r = match p with
+ | Pusual r -> r
+ | Pcons (r,l) -> r (* cf. the check [is_regular_match] above *)
+ | _ -> assert false
+ in
let ids,env' = push_vars (List.rev_map id_of_mlid ids) env in
let args =
if ids = [] then mt ()
diff --git a/plugins/extraction/scheme.mli b/plugins/extraction/scheme.mli
index c7c3d8b5..405842f0 100644
--- a/plugins/extraction/scheme.mli
+++ b/plugins/extraction/scheme.mli
@@ -1,11 +1,9 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: scheme.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
val scheme_descr : Miniml.language_descr
diff --git a/plugins/extraction/table.ml b/plugins/extraction/table.ml
index 67cf2210..497ddf03 100644
--- a/plugins/extraction/table.ml
+++ b/plugins/extraction/table.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: table.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Names
open Term
open Declarations
@@ -21,23 +19,11 @@ open Util
open Pp
open Miniml
-(** Sets and maps for [global_reference] that work modulo equivalent
- on the user part of the name (otherwise use Refset / Refmap ) *)
-
-module RefOrd = struct
- type t = global_reference
- let compare x y =
- let make_name = function
- | ConstRef con -> ConstRef(constant_of_kn(user_con con))
- | IndRef (kn,i) -> IndRef(mind_of_kn(user_mind kn),i)
- | ConstructRef ((kn,i),j)-> ConstructRef((mind_of_kn(user_mind kn),i),j)
- | VarRef id -> VarRef id
- in
- Pervasives.compare (make_name x) (make_name y)
-end
+(** Sets and maps for [global_reference] that use the "user" [kernel_name]
+ instead of the canonical one *)
-module Refmap' = Map.Make(RefOrd)
-module Refset' = Set.Make(RefOrd)
+module Refmap' = Map.Make(RefOrdered_env)
+module Refset' = Set.Make(RefOrdered_env)
(*S Utilities about [module_path] and [kernel_names] and [global_reference] *)
@@ -71,11 +57,6 @@ let raw_string_of_modfile = function
| MPfile f -> String.capitalize (string_of_id (List.hd (repr_dirpath f)))
| _ -> assert false
-let rec modfile_of_mp = function
- | (MPfile _) as mp -> mp
- | MPdot (mp,_) -> modfile_of_mp mp
- | _ -> raise Not_found
-
let current_toplevel () = fst (Lib.current_prefix ())
let is_toplevel mp =
@@ -109,12 +90,6 @@ let common_prefix_from_list mp0 mpl =
| mp :: l -> if MPset.mem mp prefixes then Some mp else f l
in f mpl
-let rec parse_labels ll = function
- | MPdot (mp,l) -> parse_labels (l::ll) mp
- | mp -> mp,ll
-
-let labels_of_mp mp = parse_labels [] mp
-
let rec parse_labels2 ll mp1 = function
| mp when mp1=mp -> mp,ll
| MPdot (mp,l) -> parse_labels2 (l::ll) mp1 mp
@@ -125,10 +100,6 @@ let labels_of_ref r =
let mp,_,l = repr_of_r r in
parse_labels2 [l] mp_top mp
-let rec add_labels_mp mp = function
- | [] -> mp
- | l :: ll -> add_labels_mp (MPdot (mp,l)) ll
-
(*S The main tables: constants, inductives, records, ... *)
@@ -156,6 +127,39 @@ let add_ind kn mib ml_ind =
inductives := Mindmap_env.add kn (mib,ml_ind) !inductives
let lookup_ind kn = Mindmap_env.find kn !inductives
+let inductive_kinds =
+ ref (Mindmap_env.empty : inductive_kind Mindmap_env.t)
+let init_inductive_kinds () = inductive_kinds := Mindmap_env.empty
+let add_inductive_kind kn k =
+ inductive_kinds := Mindmap_env.add kn k !inductive_kinds
+let is_coinductive r =
+ let kn = match r with
+ | ConstructRef ((kn,_),_) -> kn
+ | IndRef (kn,_) -> kn
+ | _ -> assert false
+ in
+ try Mindmap_env.find kn !inductive_kinds = Coinductive
+ with Not_found -> false
+
+let is_coinductive_type = function
+ | Tglob (r,_) -> is_coinductive r
+ | _ -> false
+
+let get_record_fields r =
+ let kn = match r with
+ | ConstructRef ((kn,_),_) -> kn
+ | IndRef (kn,_) -> kn
+ | _ -> assert false
+ in
+ try match Mindmap_env.find kn !inductive_kinds with
+ | Record f -> f
+ | _ -> []
+ with Not_found -> []
+
+let record_fields_of_type = function
+ | Tglob (r,_) -> get_record_fields r
+ | _ -> []
+
(*s Recursors table. *)
(* NB: here we can use the equivalence between canonical
@@ -203,29 +207,55 @@ let add_info_axiom r = info_axioms := Refset'.add r !info_axioms
let remove_info_axiom r = info_axioms := Refset'.remove r !info_axioms
let add_log_axiom r = log_axioms := Refset'.add r !log_axioms
-(*s Extraction mode: modular or monolithic *)
+let opaques = ref Refset'.empty
+let init_opaques () = opaques := Refset'.empty
+let add_opaque r = opaques := Refset'.add r !opaques
+let remove_opaque r = opaques := Refset'.remove r !opaques
+
+(*s Extraction modes: modular or monolithic, library or minimal ?
+
+Nota:
+ - Recursive Extraction : monolithic, minimal
+ - Separate Extraction : modular, minimal
+ - Extraction Library : modular, library
+*)
let modular_ref = ref false
+let library_ref = ref false
let set_modular b = modular_ref := b
let modular () = !modular_ref
+let set_library b = library_ref := b
+let library () = !library_ref
+
(*s Printing. *)
(* The following functions work even on objects not in [Global.env ()].
- WARNING: for inductive objects, an extract_inductive must have been
- done before. *)
-
-let safe_basename_of_global = function
- | ConstRef kn -> let _,_,l = repr_con kn in id_of_label l
- | IndRef (kn,i) -> (snd (lookup_ind kn)).ind_packets.(i).ip_typename
- | ConstructRef ((kn,i),j) ->
- (snd (lookup_ind kn)).ind_packets.(i).ip_consnames.(j-1)
- | _ -> assert false
+ Warning: for inductive objects, this only works if an [extract_inductive]
+ have been done earlier, otherwise we can only ask the Nametab about
+ currently visible objects. *)
+
+let safe_basename_of_global r =
+ let last_chance r =
+ try Nametab.basename_of_global r
+ with Not_found ->
+ anomaly "Inductive object unknown to extraction and not globally visible"
+ in
+ match r with
+ | ConstRef kn -> id_of_label (con_label kn)
+ | IndRef (kn,0) -> id_of_label (mind_label kn)
+ | IndRef (kn,i) ->
+ (try (snd (lookup_ind kn)).ind_packets.(i).ip_typename
+ with Not_found -> last_chance r)
+ | ConstructRef ((kn,i),j) ->
+ (try (snd (lookup_ind kn)).ind_packets.(i).ip_consnames.(j-1)
+ with Not_found -> last_chance r)
+ | VarRef _ -> assert false
let string_of_global r =
try string_of_qualid (Nametab.shortest_qualid_of_global Idset.empty r)
- with _ -> string_of_id (safe_basename_of_global r)
+ with e when Errors.noncritical e -> string_of_id (safe_basename_of_global r)
let safe_pr_global r = str (string_of_global r)
@@ -233,7 +263,7 @@ let safe_pr_global r = str (string_of_global r)
let safe_pr_long_global r =
try Printer.pr_global r
- with _ -> match r with
+ with e when Errors.noncritical e -> match r with
| ConstRef kn ->
let mp,_,l = repr_con kn in
str ((string_of_mp mp)^"."^(string_of_label l))
@@ -272,7 +302,28 @@ let warning_axioms () =
str "Having invalid logical axiom in the environment when extracting" ++
spc () ++ str "may lead to incorrect or non-terminating ML terms." ++
fnl ())
- end
+ end;
+ if !Flags.load_proofs = Flags.Dont && info_axioms@log_axioms <> [] then
+ msg_warning
+ (str "Some of these axioms might be due to option -dont-load-proofs.")
+
+let warning_opaques accessed =
+ let opaques = Refset'.elements !opaques in
+ if opaques = [] then ()
+ else
+ let lst = hov 1 (spc () ++ prlist_with_sep spc safe_pr_global opaques) in
+ if accessed then
+ msg_warning
+ (str "The extraction is currently set to bypass opacity,\n" ++
+ str "the following opaque constant bodies have been accessed :" ++
+ lst ++ str "." ++ fnl ())
+ else
+ msg_warning
+ (str "The extraction now honors the opacity constraints by default,\n" ++
+ str "the following opaque constants have been extracted as axioms :" ++
+ lst ++ str "." ++ fnl () ++
+ str "If necessary, use \"Set Extraction AccessOpaque\" to change this."
+ ++ fnl ())
let warning_both_mod_and_cst q mp r =
msg_warning
@@ -386,31 +437,34 @@ let info_file f =
(* The objects defined below should survive an arbitrary time,
so we register them to coq save/undo mechanism. *)
-(*s Extraction AutoInline *)
+let my_bool_option name initval =
+ let flag = ref initval in
+ let access = fun () -> !flag in
+ let _ = declare_bool_option
+ {optsync = true;
+ optdepr = false;
+ optname = "Extraction "^name;
+ optkey = ["Extraction"; name];
+ optread = access;
+ optwrite = (:=) flag }
+ in
+ access
-let auto_inline_ref = ref false
+(*s Extraction AccessOpaque *)
-let auto_inline () = !auto_inline_ref
+let access_opaque = my_bool_option "AccessOpaque" true
-let _ = declare_bool_option
- {optsync = true;
- optname = "Extraction AutoInline";
- optkey = ["Extraction"; "AutoInline"];
- optread = auto_inline;
- optwrite = (:=) auto_inline_ref}
+(*s Extraction AutoInline *)
+
+let auto_inline = my_bool_option "AutoInline" false
(*s Extraction TypeExpand *)
-let type_expand_ref = ref true
+let type_expand = my_bool_option "TypeExpand" true
-let type_expand () = !type_expand_ref
+(*s Extraction KeepSingleton *)
-let _ = declare_bool_option
- {optsync = true;
- optname = "Extraction TypeExpand";
- optkey = ["Extraction"; "TypeExpand"];
- optread = type_expand;
- optwrite = (:=) type_expand_ref}
+let keep_singleton = my_bool_option "KeepSingleton" false
(*s Extraction Optimize *)
@@ -461,6 +515,7 @@ let optims () = !opt_flag_ref
let _ = declare_bool_option
{optsync = true;
+ optdepr = false;
optname = "Extraction Optimize";
optkey = ["Extraction"; "Optimize"];
optread = (fun () -> !int_flag_ref <> 0);
@@ -468,6 +523,7 @@ let _ = declare_bool_option
let _ = declare_int_option
{ optsync = true;
+ optdepr = false;
optname = "Extraction Flag";
optkey = ["Extraction";"Flag"];
optread = (fun _ -> Some !int_flag_ref);
@@ -484,7 +540,7 @@ let lang_ref = ref Ocaml
let lang () = !lang_ref
-let (extr_lang,_) =
+let extr_lang : lang -> obj =
declare_object
{(default_object "Extraction Lang") with
cache_function = (fun (_,l) -> lang_ref := l);
@@ -516,12 +572,14 @@ let add_inline_entries b l =
(* Registration of operations for rollback. *)
-let (inline_extraction,_) =
+let inline_extraction : bool * global_reference list -> obj =
declare_object
{(default_object "Extraction Inline") with
cache_function = (fun (_,(b,l)) -> add_inline_entries b l);
load_function = (fun _ (_,(b,l)) -> add_inline_entries b l);
classify_function = (fun o -> Substitute o);
+ discharge_function =
+ (fun (_,(b,l)) -> Some (b, List.map pop_global_reference l));
subst_function =
(fun (s,(b,l)) -> (b,(List.map (fun x -> fst (subst_global s x)) l)))
}
@@ -534,8 +592,7 @@ let _ = declare_summary "Extraction Inline"
(* Grammar entries. *)
let extraction_inline b l =
- check_inside_section ();
- let refs = List.map Nametab.global l in
+ let refs = List.map Smartlocate.global_with_alias l in
List.iter
(fun r -> match r with
| ConstRef _ -> ()
@@ -559,7 +616,7 @@ let print_extraction_inline () =
(* Reset part *)
-let (reset_inline,_) =
+let reset_inline : unit -> obj =
declare_object
{(default_object "Reset Extraction Inline") with
cache_function = (fun (_,_)-> inline_table := empty_inline_table);
@@ -598,7 +655,7 @@ let add_implicits r l =
(* Registration of operations for rollback. *)
-let (implicit_extraction,_) =
+let implicit_extraction : global_reference * int_or_id list -> obj =
declare_object
{(default_object "Extraction Implicit") with
cache_function = (fun (_,(r,l)) -> add_implicits r l);
@@ -616,7 +673,7 @@ let _ = declare_summary "Extraction Implicit"
let extraction_implicit r l =
check_inside_section ();
- Lib.add_anonymous_leaf (implicit_extraction (Nametab.global r,l))
+ Lib.add_anonymous_leaf (implicit_extraction (Smartlocate.global_with_alias r,l))
(*s Extraction Blacklist of filenames not to use while extracting *)
@@ -658,12 +715,11 @@ let add_blacklist_entries l =
(* Registration of operations for rollback. *)
-let (blacklist_extraction,_) =
+let blacklist_extraction : string list -> obj =
declare_object
{(default_object "Extraction Blacklist") with
cache_function = (fun (_,l) -> add_blacklist_entries l);
load_function = (fun _ (_,l) -> add_blacklist_entries l);
- classify_function = (fun o -> Libobject.Keep o);
subst_function = (fun (_,x) -> x)
}
@@ -686,7 +742,7 @@ let print_extraction_blacklist () =
(* Reset part *)
-let (reset_blacklist,_) =
+let reset_blacklist : unit -> obj =
declare_object
{(default_object "Reset Extraction Blacklist") with
cache_function = (fun (_,_)-> blacklist_table := Idset.empty);
@@ -719,8 +775,10 @@ let add_custom_match r s =
let indref_of_match pv =
if Array.length pv = 0 then raise Not_found;
- match pv.(0) with
- | (ConstructRef (ip,_), _, _) -> IndRef ip
+ let (_,pat,_) = pv.(0) in
+ match pat with
+ | Pusual (ConstructRef (ip,_)) -> IndRef ip
+ | Pcons (ConstructRef (ip,_),_) -> IndRef ip
| _ -> raise Not_found
let is_custom_match pv =
@@ -732,7 +790,7 @@ let find_custom_match pv =
(* Registration of operations for rollback. *)
-let (in_customs,_) =
+let in_customs : global_reference * string list * string -> obj =
declare_object
{(default_object "ML extractions") with
cache_function = (fun (_,(r,ids,s)) -> add_custom r ids s);
@@ -747,7 +805,7 @@ let _ = declare_summary "ML extractions"
unfreeze_function = ((:=) customs);
init_function = (fun () -> customs := Refmap'.empty) }
-let (in_custom_matchs,_) =
+let in_custom_matchs : global_reference * string -> obj =
declare_object
{(default_object "ML extractions custom matchs") with
cache_function = (fun (_,(r,s)) -> add_custom_match r s);
@@ -765,7 +823,7 @@ let _ = declare_summary "ML extractions custom match"
let extract_constant_inline inline r ids s =
check_inside_section ();
- let g = Nametab.global r in
+ let g = Smartlocate.global_with_alias r in
match g with
| ConstRef kn ->
let env = Global.env () in
@@ -783,7 +841,8 @@ let extract_constant_inline inline r ids s =
let extract_inductive r s l optstr =
check_inside_section ();
- let g = Nametab.global r in
+ let g = Smartlocate.global_with_alias r in
+ Dumpglob.add_glob (loc_of_reference r) g;
match g with
| IndRef ((kn,i) as ip) ->
let mib = Global.lookup_mind kn in
@@ -805,5 +864,6 @@ let extract_inductive r s l optstr =
(*s Tables synchronization. *)
let reset_tables () =
- init_terms (); init_types (); init_inductives (); init_recursors ();
- init_projs (); init_axioms (); reset_modfile ()
+ init_terms (); init_types (); init_inductives ();
+ init_inductive_kinds (); init_recursors ();
+ init_projs (); init_axioms (); init_opaques (); reset_modfile ()
diff --git a/plugins/extraction/table.mli b/plugins/extraction/table.mli
index b70d3efa..192426c3 100644
--- a/plugins/extraction/table.mli
+++ b/plugins/extraction/table.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: table.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Names
open Libnames
open Miniml
@@ -21,6 +19,7 @@ val safe_basename_of_global : global_reference -> identifier
(*s Warning and Error messages. *)
val warning_axioms : unit -> unit
+val warning_opaques : bool -> unit
val warning_both_mod_and_cst :
qualid -> module_path -> global_reference -> unit
val warning_id : string -> unit
@@ -59,10 +58,8 @@ val at_toplevel : module_path -> bool
val visible_con : constant -> bool
val mp_length : module_path -> int
val prefixes_mp : module_path -> MPset.t
-val modfile_of_mp : module_path -> module_path
val common_prefix_from_list :
module_path -> module_path list -> module_path option
-val add_labels_mp : module_path -> label list -> module_path
val get_nth_label_mp : int -> module_path -> label
val labels_of_ref : global_reference -> module_path * label list
@@ -77,6 +74,14 @@ val lookup_type : constant -> ml_schema
val add_ind : mutual_inductive -> mutual_inductive_body -> ml_ind -> unit
val lookup_ind : mutual_inductive -> mutual_inductive_body * ml_ind
+val add_inductive_kind : mutual_inductive -> inductive_kind -> unit
+val is_coinductive : global_reference -> bool
+val is_coinductive_type : ml_type -> bool
+(* What are the fields of a record (empty for a non-record) *)
+val get_record_fields :
+ global_reference -> global_reference option list
+val record_fields_of_type : ml_type -> global_reference option list
+
val add_recursors : Environ.env -> mutual_inductive -> unit
val is_recursor : global_reference -> bool
@@ -88,8 +93,15 @@ val add_info_axiom : global_reference -> unit
val remove_info_axiom : global_reference -> unit
val add_log_axiom : global_reference -> unit
+val add_opaque : global_reference -> unit
+val remove_opaque : global_reference -> unit
+
val reset_tables : unit -> unit
+(*s AccessOpaque parameter *)
+
+val access_opaque : unit -> bool
+
(*s AutoInline parameter *)
val auto_inline : unit -> bool
@@ -98,6 +110,10 @@ val auto_inline : unit -> bool
val type_expand : unit -> bool
+(*s KeepSingleton parameter *)
+
+val keep_singleton : unit -> bool
+
(*s Optimize parameter *)
type opt_flag =
@@ -120,11 +136,20 @@ val optims : unit -> opt_flag
type lang = Ocaml | Haskell | Scheme
val lang : unit -> lang
-(*s Extraction mode: modular or monolithic *)
+(*s Extraction modes: modular or monolithic, library or minimal ?
+
+Nota:
+ - Recursive Extraction : monolithic, minimal
+ - Separate Extraction : modular, minimal
+ - Extraction Library : modular, library
+*)
val set_modular : bool -> unit
val modular : unit -> bool
+val set_library : bool -> unit
+val library : unit -> bool
+
(*s Table for custom inlining *)
val to_inline : global_reference -> bool
@@ -158,6 +183,7 @@ val extract_constant_inline :
val extract_inductive :
reference -> string -> string list -> string option -> unit
+
type int_or_id = ArgInt of int | ArgId of identifier
val extraction_implicit : reference -> int_or_id list -> unit
diff --git a/plugins/field/LegacyField.v b/plugins/field/LegacyField.v
index 9017f8d5..504304c6 100644
--- a/plugins/field/LegacyField.v
+++ b/plugins/field/LegacyField.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyField.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export LegacyField_Compl.
Require Export LegacyField_Theory.
Require Export LegacyField_Tactic.
diff --git a/plugins/field/LegacyField_Compl.v b/plugins/field/LegacyField_Compl.v
index 52e049a5..5e9ae430 100644
--- a/plugins/field/LegacyField_Compl.v
+++ b/plugins/field/LegacyField_Compl.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyField_Compl.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import List.
Definition assoc_2nd :=
diff --git a/plugins/field/LegacyField_Tactic.v b/plugins/field/LegacyField_Tactic.v
index f6626e4a..41d2998c 100644
--- a/plugins/field/LegacyField_Tactic.v
+++ b/plugins/field/LegacyField_Tactic.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyField_Tactic.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import List.
Require Import LegacyRing.
Require Export LegacyField_Compl.
@@ -152,7 +150,7 @@ Ltac apply_assoc FT lvar trm :=
match constr:(t = trm) with
| (?X1 = ?X1) => idtac
| _ =>
- rewrite <- (assoc_correct FT trm); change (assoc trm) with t in |- *
+ rewrite <- (assoc_correct FT trm); change (assoc trm) with t
end.
(**** Distribution *****)
@@ -163,7 +161,7 @@ Ltac apply_distrib FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (distrib_correct FT trm);
- change (distrib trm) with t in |- *
+ change (distrib trm) with t
end.
(**** Multiplication by the inverse product ****)
@@ -177,7 +175,7 @@ Ltac weak_reduce :=
| |- context [(interp_ExprA ?X1 ?X2 _)] =>
cbv beta iota zeta
delta [interp_ExprA assoc_2nd eq_nat_dec mult_of_list X1 X2 A Azero
- Aone Aplus Amult Aopp Ainv] in |- *
+ Aone Aplus Amult Aopp Ainv]
end.
Ltac multiply mul :=
@@ -201,7 +199,7 @@ Ltac apply_multiply FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (multiply_correct FT trm);
- change (multiply trm) with t in |- *
+ change (multiply trm) with t
end.
(**** Permutations and simplification ****)
@@ -212,7 +210,7 @@ Ltac apply_inverse mul FT lvar trm :=
| (?X1 = ?X1) => idtac
| _ =>
rewrite <- (inverse_correct FT trm mul);
- [ change (inverse_simplif mul trm) with t in |- * | assumption ]
+ [ change (inverse_simplif mul trm) with t | assumption ]
end.
(**** Inverse test ****)
@@ -254,11 +252,11 @@ Ltac apply_simplif sfun :=
Ltac unfolds FT :=
match get_component Aminus FT with
- | Some ?X1 => unfold X1 in |- *
+ | Some ?X1 => unfold X1
| _ => idtac
end;
match get_component Adiv FT with
- | Some ?X1 => unfold X1 in |- *
+ | Some ?X1 => unfold X1
| _ => idtac
end.
@@ -269,8 +267,8 @@ Ltac reduce FT :=
with AmultT := get_component Amult FT
with AoppT := get_component Aopp FT
with AinvT := get_component Ainv FT in
- (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] in |- * ||
- compute in |- *).
+ (cbv beta iota zeta delta -[AzeroT AoneT AplusT AmultT AoppT AinvT] ||
+ compute).
Ltac field_gen_aux FT :=
let AplusT := get_component Aplus FT in
@@ -282,7 +280,7 @@ Ltac field_gen_aux FT :=
cut
(let ft := FT in
let vm := lvar in interp_ExprA ft vm trm1 = interp_ExprA ft vm trm2);
- [ compute in |- *; auto
+ [ compute; auto
| intros ft vm; apply_simplif apply_distrib;
apply_simplif apply_assoc; multiply mul;
[ apply_simplif apply_multiply;
diff --git a/plugins/field/LegacyField_Theory.v b/plugins/field/LegacyField_Theory.v
index 8d10bc8e..1d581a8f 100644
--- a/plugins/field/LegacyField_Theory.v
+++ b/plugins/field/LegacyField_Theory.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyField_Theory.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import List.
Require Import Peano_dec.
Require Import LegacyRing.
@@ -46,20 +44,20 @@ Proof.
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
- (right; red in |- *; intro; inversion H3; auto).
+ (right; red; intro; inversion H3; auto).
elim (H1 e0); intro y; elim (H2 e); intro y0;
try
(left; rewrite y; rewrite y0; auto) ||
- (right; red in |- *; intro; inversion H3; auto).
+ (right; red; intro; inversion H3; auto).
elim (H0 e); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H1; auto.
+ right; red; intro; inversion H1; auto.
elim (H0 e); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H1; auto.
+ right; red; intro; inversion H1; auto.
elim (eq_nat_dec n n0); intro y.
left; rewrite y; auto.
- right; red in |- *; intro; inversion H; auto.
+ right; red; intro; inversion H; auto.
Defined.
Definition eq_nat_dec := Eval compute in eq_nat_dec.
@@ -154,7 +152,7 @@ Lemma r_AmultT_mult :
forall r r1 r2:AT, AmultT r r1 = AmultT r r2 -> r <> AzeroT -> r1 = r2.
Proof.
intros; transitivity (AmultT (AmultT (AinvT r) r) r1).
- rewrite Th_inv_defT; [ symmetry in |- *; apply AmultT_1l; auto | auto ].
+ rewrite Th_inv_defT; [ symmetry ; apply AmultT_1l; auto | auto ].
transitivity (AmultT (AmultT (AinvT r) r) r2).
repeat rewrite AmultT_assoc; rewrite H; trivial.
rewrite Th_inv_defT; [ apply AmultT_1l; auto | auto ].
@@ -183,7 +181,7 @@ Qed.
Lemma Rmult_neq_0_reg :
forall r1 r2:AT, AmultT r1 r2 <> AzeroT -> r1 <> AzeroT /\ r2 <> AzeroT.
Proof.
- intros r1 r2 H; split; red in |- *; intro; apply H; rewrite H0; legacy ring.
+ intros r1 r2 H; split; red; intro; apply H; rewrite H0; legacy ring.
Qed.
(************************)
@@ -264,11 +262,11 @@ Lemma merge_mult_correct1 :
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
-unfold merge_mult at 1 in |- *; fold merge_mult in |- *;
- unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
- rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
- fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
- fold interp_ExprA in |- *; auto.
+unfold merge_mult at 1; fold merge_mult;
+ unfold interp_ExprA at 2; fold interp_ExprA;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
+ fold interp_ExprA; unfold interp_ExprA at 5;
+ fold interp_ExprA; auto.
Qed.
Lemma merge_mult_correct :
@@ -276,7 +274,7 @@ Lemma merge_mult_correct :
interp_ExprA lvar (merge_mult e1 e2) = interp_ExprA lvar (EAmult e1 e2).
Proof.
simple induction e1; auto; intros.
-elim e0; try (intros; simpl in |- *; legacy ring).
+elim e0; try (intros; simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AmultT (interp_ExprA lvar e2)
@@ -286,7 +284,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2;
(AmultT (AmultT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_mult_correct1;
- simpl in |- *; legacy ring.
+ simpl; legacy ring.
legacy ring.
Qed.
@@ -297,8 +295,8 @@ Lemma assoc_mult_correct1 :
interp_ExprA lvar (assoc_mult (EAmult e1 e2)).
Proof.
simple induction e1; auto; intros.
-rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_mult_correct;
- simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
+rewrite <- (H e0 lvar); simpl; rewrite merge_mult_correct;
+ simpl; rewrite merge_mult_correct; simpl;
auto.
Qed.
@@ -308,21 +306,21 @@ Lemma assoc_mult_correct :
Proof.
simple induction e; auto; intros.
elim e0; intros.
-intros; simpl in |- *; legacy ring.
-simpl in |- *; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
+intros; simpl; legacy ring.
+simpl; rewrite (AmultT_1l (interp_ExprA lvar (assoc_mult e1)));
rewrite (AmultT_1l (interp_ExprA lvar e1)); apply H0.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite merge_mult_correct; simpl in |- *;
- rewrite merge_mult_correct; simpl in |- *; rewrite AmultT_assoc;
- rewrite assoc_mult_correct1; rewrite H2; simpl in |- *;
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite merge_mult_correct; simpl;
+ rewrite merge_mult_correct; simpl; rewrite AmultT_assoc;
+ rewrite assoc_mult_correct1; rewrite H2; simpl;
rewrite <- assoc_mult_correct1 in H1; unfold interp_ExprA at 3 in H1;
fold interp_ExprA in H1; rewrite (H0 lvar) in H1;
rewrite (AmultT_comm (interp_ExprA lvar e3) (interp_ExprA lvar e1));
rewrite <- AmultT_assoc; rewrite H1; rewrite AmultT_assoc;
legacy ring.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
Qed.
Lemma merge_plus_correct1 :
@@ -332,11 +330,11 @@ Lemma merge_plus_correct1 :
Proof.
intros e1 e2; generalize e1; generalize e2; clear e1 e2.
simple induction e2; auto; intros.
-unfold merge_plus at 1 in |- *; fold merge_plus in |- *;
- unfold interp_ExprA at 2 in |- *; fold interp_ExprA in |- *;
- rewrite (H0 e e3 lvar); unfold interp_ExprA at 1 in |- *;
- fold interp_ExprA in |- *; unfold interp_ExprA at 5 in |- *;
- fold interp_ExprA in |- *; auto.
+unfold merge_plus at 1; fold merge_plus;
+ unfold interp_ExprA at 2; fold interp_ExprA;
+ rewrite (H0 e e3 lvar); unfold interp_ExprA at 1;
+ fold interp_ExprA; unfold interp_ExprA at 5;
+ fold interp_ExprA; auto.
Qed.
Lemma merge_plus_correct :
@@ -344,7 +342,7 @@ Lemma merge_plus_correct :
interp_ExprA lvar (merge_plus e1 e2) = interp_ExprA lvar (EAplus e1 e2).
Proof.
simple induction e1; auto; intros.
-elim e0; try intros; try (simpl in |- *; legacy ring).
+elim e0; try intros; try (simpl; legacy ring).
unfold interp_ExprA in H2; fold interp_ExprA in H2;
cut
(AplusT (interp_ExprA lvar e2)
@@ -354,7 +352,7 @@ unfold interp_ExprA in H2; fold interp_ExprA in H2;
(AplusT (AplusT (interp_ExprA lvar e) (interp_ExprA lvar e4))
(interp_ExprA lvar e2)) (interp_ExprA lvar e3)).
intro H3; rewrite H3; rewrite <- H2; rewrite merge_plus_correct1;
- simpl in |- *; legacy ring.
+ simpl; legacy ring.
legacy ring.
Qed.
@@ -364,8 +362,8 @@ Lemma assoc_plus_correct :
interp_ExprA lvar (assoc (EAplus e1 e2)).
Proof.
simple induction e1; auto; intros.
-rewrite <- (H e0 lvar); simpl in |- *; rewrite merge_plus_correct;
- simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
+rewrite <- (H e0 lvar); simpl; rewrite merge_plus_correct;
+ simpl; rewrite merge_plus_correct; simpl;
auto.
Qed.
@@ -375,11 +373,11 @@ Lemma assoc_correct :
Proof.
simple induction e; auto; intros.
elim e0; intros.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
- rewrite merge_plus_correct; simpl in |- *; rewrite AplusT_assoc;
- rewrite assoc_plus_correct; rewrite H2; simpl in |- *;
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite merge_plus_correct; simpl;
+ rewrite merge_plus_correct; simpl; rewrite AplusT_assoc;
+ rewrite assoc_plus_correct; rewrite H2; simpl;
apply
(r_AplusT_plus (interp_ExprA lvar (assoc e1))
(AplusT (interp_ExprA lvar (assoc e2))
@@ -388,7 +386,7 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
(interp_ExprA lvar e1))); rewrite <- AplusT_assoc;
rewrite
(AplusT_comm (interp_ExprA lvar (assoc e1)) (interp_ExprA lvar (assoc e2)))
- ; rewrite assoc_plus_correct; rewrite H1; simpl in |- *;
+ ; rewrite assoc_plus_correct; rewrite H1; simpl;
rewrite (H0 lvar);
rewrite <-
(AplusT_assoc (AplusT (interp_ExprA lvar e2) (interp_ExprA lvar e1))
@@ -401,15 +399,15 @@ simpl in |- *; rewrite merge_plus_correct; simpl in |- *;
rewrite <-
(AplusT_assoc (interp_ExprA lvar e2) (interp_ExprA lvar e3)
(interp_ExprA lvar e1)); apply AplusT_comm.
-unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
- fold interp_ExprA in |- *; rewrite assoc_mult_correct;
- rewrite (H0 lvar); simpl in |- *; auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-simpl in |- *; rewrite (H0 lvar); auto.
-unfold assoc in |- *; fold assoc in |- *; unfold interp_ExprA in |- *;
- fold interp_ExprA in |- *; rewrite assoc_mult_correct;
- simpl in |- *; auto.
+unfold assoc; fold assoc; unfold interp_ExprA;
+ fold interp_ExprA; rewrite assoc_mult_correct;
+ rewrite (H0 lvar); simpl; auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+simpl; rewrite (H0 lvar); auto.
+unfold assoc; fold assoc; unfold interp_ExprA;
+ fold interp_ExprA; rewrite assoc_mult_correct;
+ simpl; auto.
Qed.
(**** Distribution *****)
@@ -453,7 +451,7 @@ Lemma distrib_mult_right_correct :
interp_ExprA lvar (distrib_mult_right e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
-simple induction e1; try intros; simpl in |- *; auto.
+simple induction e1; try intros; simpl; auto.
rewrite AmultT_comm; rewrite AmultT_AplusT_distr; rewrite (H e2 lvar);
rewrite (H0 e2 lvar); legacy ring.
Qed.
@@ -463,10 +461,10 @@ Lemma distrib_mult_left_correct :
interp_ExprA lvar (distrib_mult_left e1 e2) =
AmultT (interp_ExprA lvar e1) (interp_ExprA lvar e2).
Proof.
-simple induction e1; try intros; simpl in |- *.
-rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl in |- *;
+simple induction e1; try intros; simpl.
+rewrite AmultT_Ol; rewrite distrib_mult_right_correct; simpl;
apply AmultT_Or.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
rewrite AmultT_comm;
rewrite
(AmultT_AplusT_distr (interp_ExprA lvar e2) (interp_ExprA lvar e)
@@ -474,10 +472,10 @@ rewrite AmultT_comm;
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e));
rewrite (AmultT_comm (interp_ExprA lvar e2) (interp_ExprA lvar e0));
rewrite (H e2 lvar); rewrite (H0 e2 lvar); auto.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
-rewrite distrib_mult_right_correct; simpl in |- *; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
+rewrite distrib_mult_right_correct; simpl; apply AmultT_comm.
Qed.
Lemma distrib_correct :
@@ -485,13 +483,13 @@ Lemma distrib_correct :
interp_ExprA lvar (distrib e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
- unfold distrib in |- *; simpl in |- *; auto.
-simpl in |- *; rewrite <- (H lvar); rewrite <- (H0 lvar);
- unfold distrib in |- *; simpl in |- *; apply distrib_mult_left_correct.
-simpl in |- *; fold AoppT in |- *; rewrite <- (H lvar);
- unfold distrib in |- *; simpl in |- *; rewrite distrib_mult_right_correct;
- simpl in |- *; fold AoppT in |- *; legacy ring.
+simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib; simpl; auto.
+simpl; rewrite <- (H lvar); rewrite <- (H0 lvar);
+ unfold distrib; simpl; apply distrib_mult_left_correct.
+simpl; fold AoppT; rewrite <- (H lvar);
+ unfold distrib; simpl; rewrite distrib_mult_right_correct;
+ simpl; fold AoppT; legacy ring.
Qed.
(**** Multiplication by the inverse product ****)
@@ -502,7 +500,7 @@ Lemma mult_eq :
interp_ExprA lvar (EAmult a e1) = interp_ExprA lvar (EAmult a e2) ->
interp_ExprA lvar e1 = interp_ExprA lvar e2.
Proof.
- simpl in |- *; intros;
+ simpl; intros;
apply
(r_AmultT_mult (interp_ExprA lvar a) (interp_ExprA lvar e1)
(interp_ExprA lvar e2)); assumption.
@@ -525,16 +523,16 @@ Lemma multiply_aux_correct :
interp_ExprA lvar (multiply_aux a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
-simple induction e; simpl in |- *; intros; try rewrite merge_mult_correct;
+simple induction e; simpl; intros; try rewrite merge_mult_correct;
auto.
- simpl in |- *; rewrite (H0 lvar); legacy ring.
+ simpl; rewrite (H0 lvar); legacy ring.
Qed.
Lemma multiply_correct :
forall (e:ExprA) (lvar:list (AT * nat)),
interp_ExprA lvar (multiply e) = interp_ExprA lvar e.
Proof.
- simple induction e; simpl in |- *; auto.
+ simple induction e; simpl; auto.
intros; apply multiply_aux_correct.
Qed.
@@ -585,27 +583,27 @@ Lemma monom_remove_correct :
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
simple induction e; intros.
-simpl in |- *; case (eqExprA EAzero (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA EAone (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
- [ inversion e2 | simpl in |- *; trivial ].
-simpl in |- *; case (eqExprA e0 (EAinv a)); intros.
-rewrite e2; simpl in |- *; fold AinvT in |- *.
+simpl; case (eqExprA EAzero (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
+simpl; case (eqExprA EAone (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
+simpl; case (eqExprA (EAplus e0 e1) (EAinv a)); intros;
+ [ inversion e2 | simpl; trivial ].
+simpl; case (eqExprA e0 (EAinv a)); intros.
+rewrite e2; simpl; fold AinvT.
rewrite <-
(AmultT_assoc (interp_ExprA lvar a) (AinvT (interp_ExprA lvar a))
(interp_ExprA lvar e1)); rewrite AinvT_r; [ legacy ring | assumption ].
-simpl in |- *; rewrite H0; auto; legacy ring.
-simpl in |- *; fold AoppT in |- *; case (eqExprA (EAopp e0) (EAinv a));
- intros; [ inversion e1 | simpl in |- *; trivial ].
-unfold monom_remove in |- *; case (eqExprA (EAinv e0) (EAinv a)); intros.
+simpl; rewrite H0; auto; legacy ring.
+simpl; fold AoppT; case (eqExprA (EAopp e0) (EAinv a));
+ intros; [ inversion e1 | simpl; trivial ].
+unfold monom_remove; case (eqExprA (EAinv e0) (EAinv a)); intros.
case (eqExprA e0 a); intros.
-rewrite e2; simpl in |- *; fold AinvT in |- *; rewrite AinvT_r; auto.
-inversion e1; simpl in |- *; exfalso; auto.
-simpl in |- *; trivial.
-unfold monom_remove in |- *; case (eqExprA (EAvar n) (EAinv a)); intros;
- [ inversion e0 | simpl in |- *; trivial ].
+rewrite e2; simpl; fold AinvT; rewrite AinvT_r; auto.
+inversion e1; simpl; exfalso; auto.
+simpl; trivial.
+unfold monom_remove; case (eqExprA (EAvar n) (EAinv a)); intros;
+ [ inversion e0 | simpl; trivial ].
Qed.
Lemma monom_simplif_rem_correct :
@@ -614,7 +612,7 @@ Lemma monom_simplif_rem_correct :
interp_ExprA lvar (monom_simplif_rem a e) =
AmultT (interp_ExprA lvar a) (interp_ExprA lvar e).
Proof.
-simple induction a; simpl in |- *; intros; try rewrite monom_remove_correct;
+simple induction a; simpl; intros; try rewrite monom_remove_correct;
auto.
elim (Rmult_neq_0_reg (interp_ExprA lvar e) (interp_ExprA lvar e0) H1);
intros.
@@ -628,9 +626,9 @@ Lemma monom_simplif_correct :
interp_ExprA lvar (monom_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; case (eqExprA a e0); intros.
+simpl; case (eqExprA a e0); intros.
rewrite <- e2; apply monom_simplif_rem_correct; auto.
-simpl in |- *; trivial.
+simpl; trivial.
Qed.
Lemma inverse_correct :
@@ -639,8 +637,8 @@ Lemma inverse_correct :
interp_ExprA lvar (inverse_simplif a e) = interp_ExprA lvar e.
Proof.
simple induction e; intros; auto.
-simpl in |- *; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
-unfold inverse_simplif in |- *; rewrite monom_simplif_correct; auto.
+simpl; rewrite (H0 a lvar H1); rewrite monom_simplif_correct; auto.
+unfold inverse_simplif; rewrite monom_simplif_correct; auto.
Qed.
End Theory_of_fields.
diff --git a/plugins/field/field.ml4 b/plugins/field/field.ml4
index 37aa457d..6c9fd325 100644
--- a/plugins/field/field.ml4
+++ b/plugins/field/field.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: field.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Names
open Pp
open Proof_type
@@ -39,18 +37,20 @@ let constr_of_opt a opt =
| None -> mkApp (init_constant "None",[|ac3|])
| Some f -> mkApp (init_constant "Some",[|ac3;constr_of f|])
+module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
+
(* Table of theories *)
-let th_tab = ref (Gmap.empty : (constr,constr) Gmap.t)
+let th_tab = ref (Cmap.empty : constr Cmap.t)
let lookup env typ =
- try Gmap.find typ !th_tab
+ try Cmap.find typ !th_tab
with Not_found ->
errorlabstrm "field"
(str "No field is declared for type" ++ spc() ++
Printer.pr_lconstr_env env typ)
let _ =
- let init () = th_tab := Gmap.empty in
+ let init () = th_tab := Cmap.empty in
let freeze () = !th_tab in
let unfreeze fs = th_tab := fs in
Summary.declare_summary "field"
@@ -59,7 +59,7 @@ let _ =
Summary.init_function = init }
let load_addfield _ = ()
-let cache_addfield (_,(typ,th)) = th_tab := Gmap.add typ th !th_tab
+let cache_addfield (_,(typ,th)) = th_tab := Cmap.add typ th !th_tab
let subst_addfield (subst,(typ,th as obj)) =
let typ' = subst_mps subst typ in
let th' = subst_mps subst th in
@@ -67,7 +67,7 @@ let subst_addfield (subst,(typ,th as obj)) =
(typ',th')
(* Declaration of the Add Field library object *)
-let (in_addfield,out_addfield)=
+let in_addfield : types * constr -> Libobject.obj =
Libobject.declare_object {(Libobject.default_object "ADD_FIELD") with
Libobject.open_function = (fun i o -> if i=1 then cache_addfield o);
Libobject.cache_function = cache_addfield;
diff --git a/plugins/firstorder/formula.ml b/plugins/firstorder/formula.ml
index 1f3fd595..f0043140 100644
--- a/plugins/firstorder/formula.ml
+++ b/plugins/firstorder/formula.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: formula.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Hipattern
open Names
open Term
diff --git a/plugins/firstorder/formula.mli b/plugins/firstorder/formula.mli
index a831c087..fe6238ab 100644
--- a/plugins/firstorder/formula.mli
+++ b/plugins/firstorder/formula.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: formula.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Names
open Libnames
diff --git a/plugins/firstorder/g_ground.ml4 b/plugins/firstorder/g_ground.ml4
index 8e68506c..29d41b81 100644
--- a/plugins/firstorder/g_ground.ml4
+++ b/plugins/firstorder/g_ground.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_ground.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Formula
open Sequent
open Ground
@@ -29,6 +27,7 @@ let ground_depth=ref 3
let _=
let gdopt=
{ optsync=true;
+ optdepr=false;
optname="Firstorder Depth";
optkey=["Firstorder";"Depth"];
optread=(fun ()->Some !ground_depth);
@@ -44,6 +43,7 @@ let congruence_depth=ref 100
let _=
let gdopt=
{ optsync=true;
+ optdepr=false;
optname="Congruence Depth";
optkey=["Congruence";"Depth"];
optread=(fun ()->Some !congruence_depth);
@@ -85,7 +85,7 @@ let gen_ground_tac flag taco ids bases gl=
extend_with_auto_hints bases (extend_with_ref_list ids seq gl) gl in
let result=ground_tac solver startseq gl in
qflag:=backup;result
- with e ->qflag:=backup;raise e
+ with reraise ->qflag:=backup;raise reraise
(* special for compatibility with Intuition
@@ -111,7 +111,6 @@ let pr_firstorder_using_glob _ _ _ = prlist_with_sep pr_comma (pr_or_var (pr_loc
let pr_firstorder_using_typed _ _ _ = prlist_with_sep pr_comma pr_global
ARGUMENT EXTEND firstorder_using
- TYPED AS reference_list
PRINTED BY pr_firstorder_using_typed
RAW_TYPED AS reference_list
RAW_PRINTED BY pr_firstorder_using_raw
@@ -135,8 +134,6 @@ TACTIC EXTEND firstorder
| [ "firstorder" tactic_opt(t) firstorder_using(l)
"with" ne_preident_list(l') ] ->
[ gen_ground_tac true (Option.map eval_tactic t) l l' ]
-| [ "firstorder" tactic_opt(t) ] ->
- [ gen_ground_tac true (Option.map eval_tactic t) [] [] ]
END
TACTIC EXTEND gintuition
diff --git a/plugins/firstorder/ground.ml b/plugins/firstorder/ground.ml
index 163b9891..4d907b2c 100644
--- a/plugins/firstorder/ground.ml
+++ b/plugins/firstorder/ground.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ground.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Formula
open Sequent
open Rules
@@ -18,32 +16,6 @@ open Tactics
open Tacticals
open Libnames
-(*
-let old_search=ref !Auto.searchtable
-
-(* I use this solution as a means to know whether hints have changed,
-but this prevents the GC from collecting the previous table,
-resulting in some limited space wasting*)
-
-let update_flags ()=
- if not ( !Auto.searchtable == !old_search ) then
- begin
- old_search:=!Auto.searchtable;
- let predref=ref Names.KNpred.empty in
- let f p_a_t =
- match p_a_t.Auto.code with
- Auto.Unfold_nth (ConstRef kn)->
- predref:=Names.KNpred.add kn !predref
- | _ ->() in
- let g _ l=List.iter f l in
- let h _ hdb=Auto.Hint_db.iter g hdb in
- Util.Stringmap.iter h !Auto.searchtable;
- red_flags:=
- Closure.RedFlags.red_add_transparent
- Closure.betaiotazeta (Names.Idpred.full,!predref)
- end
-*)
-
let update_flags ()=
let predref=ref Names.Cpred.empty in
let f coe=
@@ -61,7 +33,7 @@ let ground_tac solver startseq gl=
update_flags ();
let rec toptac skipped seq gl=
if Tacinterp.get_debug()=Tactic_debug.DebugOn 0
- then Pp.msgnl (Printer.pr_goal (sig_it gl));
+ then Pp.msgnl (Printer.pr_goal gl);
tclORELSE (axiom_tac seq.gl seq)
begin
try
diff --git a/plugins/firstorder/ground.mli b/plugins/firstorder/ground.mli
index 8328bb3a..8b2ba20c 100644
--- a/plugins/firstorder/ground.mli
+++ b/plugins/firstorder/ground.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ground.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
val ground_tac: Tacmach.tactic ->
(Proof_type.goal Tacmach.sigma -> Sequent.t) -> Tacmach.tactic
diff --git a/plugins/firstorder/instances.ml b/plugins/firstorder/instances.ml
index 4802aaa3..4b07c609 100644
--- a/plugins/firstorder/instances.ml
+++ b/plugins/firstorder/instances.ml
@@ -1,20 +1,18 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: instances.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Formula
open Sequent
open Unify
open Rules
open Util
open Term
-open Rawterm
+open Glob_term
open Tacmach
open Tactics
open Tacticals
@@ -35,11 +33,11 @@ let compare_instance inst1 inst2=
| Phantom(_),Real((m,_),_)-> if m=0 then -1 else 1
| Real((m,_),_),Phantom(_)-> if m=0 then 1 else -1
-let compare_gr id1 id2=
+let compare_gr id1 id2 =
if id1==id2 then 0 else
if id1==dummy_id then 1
else if id2==dummy_id then -1
- else Pervasives.compare id1 id2
+ else Libnames.RefOrdered.compare id1 id2
module OrderedInstance=
struct
@@ -125,13 +123,13 @@ let mk_open_instance id gl m t=
let rec raux n t=
if n=0 then t else
match t with
- RLambda(loc,name,k,_,t0)->
+ GLambda(loc,name,k,_,t0)->
let t1=raux (n-1) t0 in
- RLambda(loc,name,k,RHole (dummy_loc,Evd.BinderType name),t1)
+ GLambda(loc,name,k,GHole (dummy_loc,Evd.BinderType name),t1)
| _-> anomaly "can't happen" in
let ntt=try
Pretyping.Default.understand evmap env (raux m rawt)
- with _ ->
+ with e when Errors.noncritical e ->
error "Untypable instance, maybe higher-order non-prenex quantification" in
decompose_lam_n_assum m ntt
@@ -181,12 +179,12 @@ let right_instance_tac inst continue seq=
[tclTHENLIST
[introf;
(fun gls->
- split (Rawterm.ImplicitBindings
+ split (Glob_term.ImplicitBindings
[mkVar (Tacmach.pf_nth_hyp_id gls 1)]) gls);
tclSOLVE [wrap 0 true continue (deepen seq)]];
tclTRY assumption]
| Real ((0,t),_) ->
- (tclTHEN (split (Rawterm.ImplicitBindings [t]))
+ (tclTHEN (split (Glob_term.ImplicitBindings [t]))
(tclSOLVE [wrap 0 true continue (deepen seq)]))
| Real ((m,t),_) ->
tclFAIL 0 (Pp.str "not implemented ... yet")
diff --git a/plugins/firstorder/instances.mli b/plugins/firstorder/instances.mli
index 537e40e7..edccf213 100644
--- a/plugins/firstorder/instances.mli
+++ b/plugins/firstorder/instances.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: instances.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Term
open Tacmach
open Names
diff --git a/plugins/firstorder/rules.ml b/plugins/firstorder/rules.ml
index e6d73fb6..33bb522f 100644
--- a/plugins/firstorder/rules.ml
+++ b/plugins/firstorder/rules.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: rules.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util
open Names
open Term
diff --git a/plugins/firstorder/rules.mli b/plugins/firstorder/rules.mli
index a5a6b614..d56efbcb 100644
--- a/plugins/firstorder/rules.mli
+++ b/plugins/firstorder/rules.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: rules.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Tacmach
open Names
diff --git a/plugins/firstorder/sequent.ml b/plugins/firstorder/sequent.ml
index faac286e..43de96ab 100644
--- a/plugins/firstorder/sequent.ml
+++ b/plugins/firstorder/sequent.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: sequent.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Util
open Formula
@@ -59,71 +57,10 @@ struct
(priority e1.pat) - (priority e2.pat)
end
-(* [compare_constr f c1 c2] compare [c1] and [c2] using [f] to compare
- the immediate subterms of [c1] of [c2] if needed; Cast's,
- application associativity, binders name and Cases annotations are
- not taken into account *)
-
-let rec compare_list f l1 l2=
- match l1,l2 with
- [],[]-> 0
- | [],_ -> -1
- | _,[] -> 1
- | (h1::q1),(h2::q2) -> (f =? (compare_list f)) h1 h2 q1 q2
-
-let compare_array f v1 v2=
- let l=Array.length v1 in
- let c=l - Array.length v2 in
- if c=0 then
- let rec comp_aux i=
- if i<0 then 0
- else
- let ci=f v1.(i) v2.(i) in
- if ci=0 then
- comp_aux (i-1)
- else ci
- in comp_aux (l-1)
- else c
-
-let compare_constr_int f t1 t2 =
- match kind_of_term t1, kind_of_term t2 with
- | Rel n1, Rel n2 -> n1 - n2
- | Meta m1, Meta m2 -> m1 - m2
- | Var id1, Var id2 -> Pervasives.compare id1 id2
- | Sort s1, Sort s2 -> Pervasives.compare s1 s2
- | Cast (c1,_,_), _ -> f c1 t2
- | _, Cast (c2,_,_) -> f t1 c2
- | Prod (_,t1,c1), Prod (_,t2,c2)
- | Lambda (_,t1,c1), Lambda (_,t2,c2) ->
- (f =? f) t1 t2 c1 c2
- | LetIn (_,b1,t1,c1), LetIn (_,b2,t2,c2) ->
- ((f =? f) ==? f) b1 b2 t1 t2 c1 c2
- | App (_,_), App (_,_) ->
- let c1,l1=decompose_app t1
- and c2,l2=decompose_app t2 in
- (f =? (compare_list f)) c1 c2 l1 l2
- | Evar (e1,l1), Evar (e2,l2) ->
- ((-) =? (compare_array f)) e1 e2 l1 l2
- | Const c1, Const c2 -> Pervasives.compare c1 c2
- | Ind c1, Ind c2 -> Pervasives.compare c1 c2
- | Construct c1, Construct c2 -> Pervasives.compare c1 c2
- | Case (_,p1,c1,bl1), Case (_,p2,c2,bl2) ->
- ((f =? f) ==? (compare_array f)) p1 p2 c1 c2 bl1 bl2
- | Fix (ln1,(_,tl1,bl1)), Fix (ln2,(_,tl2,bl2)) ->
- ((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
- ln1 ln2 tl1 tl2 bl1 bl2
- | CoFix(ln1,(_,tl1,bl1)), CoFix(ln2,(_,tl2,bl2)) ->
- ((Pervasives.compare =? (compare_array f)) ==? (compare_array f))
- ln1 ln2 tl1 tl2 bl1 bl2
- | _ -> Pervasives.compare t1 t2
-
-let rec compare_constr m n=
- compare_constr_int compare_constr m n
-
module OrderedConstr=
struct
type t=constr
- let compare=compare_constr
+ let compare=constr_ord
end
type h_item = global_reference * (int*constr) option
@@ -132,7 +69,7 @@ module Hitem=
struct
type t = h_item
let compare (id1,co1) (id2,co2)=
- (Pervasives.compare
+ (Libnames.RefOrdered.compare
=? (fun oc1 oc2 ->
match oc1,oc2 with
Some (m1,c1),Some (m2,c2) ->
@@ -283,7 +220,7 @@ let extend_with_auto_hints l seq gl=
seqref:=add_formula Hint gr typ !seqref gl
with Not_found->())
| _-> () in
- let g _ l=List.iter f l in
+ let g _ l = List.iter f l in
let h dbname=
let hdb=
try
diff --git a/plugins/firstorder/sequent.mli b/plugins/firstorder/sequent.mli
index ef052605..9e99e23b 100644
--- a/plugins/firstorder/sequent.mli
+++ b/plugins/firstorder/sequent.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: sequent.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Util
open Formula
diff --git a/plugins/firstorder/unify.ml b/plugins/firstorder/unify.ml
index 4e0ad108..73c7f79c 100644
--- a/plugins/firstorder/unify.ml
+++ b/plugins/firstorder/unify.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: unify.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Util
open Formula
open Tacmach
@@ -91,9 +89,8 @@ let unif t1 t2=
let value i t=
let add x y=
if x<0 then y else if y<0 then x else x+y in
- let tref=mkMeta i in
let rec vaux term=
- if term=tref then 0 else
+ if isMeta term && destMeta term = i then 0 else
let f v t=add v (vaux t) in
let vr=fold_constr f (-1) term in
if vr<0 then -1 else vr+1 in
diff --git a/plugins/firstorder/unify.mli b/plugins/firstorder/unify.mli
index 4e0d88d3..a13709f4 100644
--- a/plugins/firstorder/unify.mli
+++ b/plugins/firstorder/unify.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: unify.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
exception UFAIL of constr*constr
diff --git a/plugins/fourier/Fourier.v b/plugins/fourier/Fourier.v
index d6447111..f37d0027 100644
--- a/plugins/fourier/Fourier.v
+++ b/plugins/fourier/Fourier.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Fourier.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* "Fourier's method to solve linear inequations/equations systems.".*)
Require Export LegacyRing.
diff --git a/plugins/fourier/Fourier_util.v b/plugins/fourier/Fourier_util.v
index 7c5b5ed7..b10c304c 100644
--- a/plugins/fourier/Fourier_util.v
+++ b/plugins/fourier/Fourier_util.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Fourier_util.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export Rbase.
Comments "Lemmas used by the tactic Fourier".
@@ -18,7 +16,7 @@ intros; apply Rmult_lt_compat_l; assumption.
Qed.
Lemma Rfourier_le : forall x1 y1 a:R, x1 <= y1 -> 0 < a -> a * x1 <= a * y1.
-red in |- *.
+red.
intros.
case H; auto with real.
Qed.
@@ -65,19 +63,19 @@ Lemma Rfourier_le_le :
x1 <= y1 -> x2 <= y2 -> 0 < a -> x1 + a * x2 <= y1 + a * y2.
intros x1 y1 x2 y2 a H H0 H1; try assumption.
case H0; intros.
-red in |- *.
+red.
left; try assumption.
apply Rfourier_le_lt; auto with real.
rewrite H2.
case H; intros.
-red in |- *.
+red.
left; try assumption.
rewrite (Rplus_comm x1 (a * y2)).
rewrite (Rplus_comm y1 (a * y2)).
apply Rplus_lt_compat_l.
try exact H3.
rewrite H3.
-red in |- *.
+red.
right; try assumption.
auto with real.
Qed.
@@ -86,7 +84,7 @@ Lemma Rlt_zero_pos_plus1 : forall x:R, 0 < x -> 0 < 1 + x.
intros x H; try assumption.
rewrite Rplus_comm.
apply Rle_lt_0_plus_1.
-red in |- *; auto with real.
+red; auto with real.
Qed.
Lemma Rlt_mult_inv_pos : forall x y:R, 0 < x -> 0 < y -> 0 < x * / y.
@@ -103,12 +101,12 @@ Qed.
Lemma Rle_zero_pos_plus1 : forall x:R, 0 <= x -> 0 <= 1 + x.
intros x H; try assumption.
case H; intros.
-red in |- *.
+red.
left; try assumption.
apply Rlt_zero_pos_plus1; auto with real.
rewrite <- H0.
replace (1 + 0) with 1.
-red in |- *; left.
+red; left.
exact Rlt_zero_1.
ring.
Qed.
@@ -116,28 +114,28 @@ Qed.
Lemma Rle_mult_inv_pos : forall x y:R, 0 <= x -> 0 < y -> 0 <= x * / y.
intros x y H H0; try assumption.
case H; intros.
-red in |- *; left.
+red; left.
apply Rlt_mult_inv_pos; auto with real.
rewrite <- H1.
-red in |- *; right; ring.
+red; right; ring.
Qed.
Lemma Rle_zero_1 : 0 <= 1.
-red in |- *; left.
+red; left.
exact Rlt_zero_1.
Qed.
Lemma Rle_not_lt : forall n d:R, 0 <= n * / d -> ~ 0 < - n * / d.
-intros n d H; red in |- *; intros H0; try exact H0.
+intros n d H; red; intros H0; try exact H0.
generalize (Rgt_not_le 0 (n * / d)).
intros H1; elim H1; try assumption.
replace (n * / d) with (- - (n * / d)).
replace 0 with (- -0).
replace (- (n * / d)) with (- n * / d).
replace (-0) with 0.
-red in |- *.
+red.
apply Ropp_gt_lt_contravar.
-red in |- *.
+red.
exact H0.
ring.
ring.
@@ -164,7 +162,7 @@ ring.
Qed.
Lemma Rnot_lt_lt : forall x y:R, ~ 0 < y - x -> ~ x < y.
-unfold not in |- *; intros.
+unfold not; intros.
apply H.
apply Rplus_lt_reg_r with x.
replace (x + 0) with x.
@@ -175,7 +173,7 @@ ring.
Qed.
Lemma Rnot_le_le : forall x y:R, ~ 0 <= y - x -> ~ x <= y.
-unfold not in |- *; intros.
+unfold not; intros.
apply H.
case H0; intros.
left.
@@ -190,7 +188,7 @@ rewrite H1; ring.
Qed.
Lemma Rfourier_gt_to_lt : forall x y:R, y > x -> x < y.
-unfold Rgt in |- *; intros; assumption.
+unfold Rgt; intros; assumption.
Qed.
Lemma Rfourier_ge_to_le : forall x y:R, y >= x -> x <= y.
diff --git a/plugins/fourier/fourier.ml b/plugins/fourier/fourier.ml
index 1a92c716..1574e21e 100644
--- a/plugins/fourier/fourier.ml
+++ b/plugins/fourier/fourier.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: fourier.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* Méthode d'élimination de Fourier *)
(* Référence:
Auteur(s) : Fourier, Jean-Baptiste-Joseph
@@ -177,7 +175,7 @@ let unsolvable lie =
raise (Failure "contradiction found"))
|_->assert false)
lr)
- with _ -> ());
+ with e when Errors.noncritical e -> ());
!res
;;
diff --git a/plugins/fourier/fourierR.ml b/plugins/fourier/fourierR.ml
index 2cabcf52..e0e4f7d6 100644
--- a/plugins/fourier/fourierR.ml
+++ b/plugins/fourier/fourierR.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: fourierR.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* La tactique Fourier ne fonctionne de manière sûre que si les coefficients
@@ -31,17 +29,23 @@ qui donne le coefficient d'un terme du calcul des constructions,
qui est zéro si le terme n'y est pas.
*)
-type flin = {fhom:(constr , rational)Hashtbl.t;
+module Constrhash = Hashtbl.Make
+ (struct type t = constr
+ let equal = eq_constr
+ let hash = hash_constr
+ end)
+
+type flin = {fhom: rational Constrhash.t;
fcste:rational};;
-let flin_zero () = {fhom=Hashtbl.create 50;fcste=r0};;
+let flin_zero () = {fhom=Constrhash.create 50;fcste=r0};;
-let flin_coef f x = try (Hashtbl.find f.fhom x) with _-> r0;;
+let flin_coef f x = try (Constrhash.find f.fhom x) with Not_found -> r0;;
let flin_add f x c =
let cx = flin_coef f x in
- Hashtbl.remove f.fhom x;
- Hashtbl.add f.fhom x (rplus cx c);
+ Constrhash.remove f.fhom x;
+ Constrhash.add f.fhom x (rplus cx c);
f
;;
let flin_add_cste f c =
@@ -53,20 +57,20 @@ let flin_one () = flin_add_cste (flin_zero()) r1;;
let flin_plus f1 f2 =
let f3 = flin_zero() in
- Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
- Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
+ Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f2.fhom;
flin_add_cste (flin_add_cste f3 f1.fcste) f2.fcste;
;;
let flin_minus f1 f2 =
let f3 = flin_zero() in
- Hashtbl.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
- Hashtbl.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
+ Constrhash.iter (fun x c -> let _=flin_add f3 x c in ()) f1.fhom;
+ Constrhash.iter (fun x c -> let _=flin_add f3 x (rop c) in ()) f2.fhom;
flin_add_cste (flin_add_cste f3 f1.fcste) (rop f2.fcste);
;;
let flin_emult a f =
let f2 = flin_zero() in
- Hashtbl.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
+ Constrhash.iter (fun x c -> let _=flin_add f2 x (rmult a c) in ()) f.fhom;
flin_add_cste f2 (rmult a f.fcste);
;;
@@ -137,10 +141,12 @@ let rec flin_of_constr c =
(try (let a=(rational_of_constr args.(0)) in
try (let b = (rational_of_constr args.(1)) in
(flin_add_cste (flin_zero()) (rmult a b)))
- with _-> (flin_add (flin_zero())
+ with e when Errors.noncritical e ->
+ (flin_add (flin_zero())
args.(1)
a))
- with _-> (flin_add (flin_zero())
+ with e when Errors.noncritical e ->
+ (flin_add (flin_zero())
args.(0)
(rational_of_constr args.(1))))
| "Rinv"->
@@ -150,7 +156,8 @@ let rec flin_of_constr c =
(let b=(rational_of_constr args.(1)) in
try (let a = (rational_of_constr args.(0)) in
(flin_add_cste (flin_zero()) (rdiv a b)))
- with _-> (flin_add (flin_zero())
+ with e when Errors.noncritical e ->
+ (flin_add (flin_zero())
args.(0)
(rinv b)))
|_->assert false)
@@ -160,14 +167,15 @@ let rec flin_of_constr c =
|"R0" -> flin_zero ()
|_-> assert false)
|_-> assert false)
- with _ -> flin_add (flin_zero())
+ with e when Errors.noncritical e ->
+ flin_add (flin_zero())
c
r1
;;
let flin_to_alist f =
let res=ref [] in
- Hashtbl.iter (fun x c -> res:=(c,x)::(!res)) f;
+ Constrhash.iter (fun x c -> res:=(c,x)::(!res)) f;
!res
;;
@@ -256,17 +264,17 @@ let ineq1_of_constr (h,t) =
let fourier_lineq lineq1 =
let nvar=ref (-1) in
- let hvar=Hashtbl.create 50 in (* la table des variables des inéquations *)
+ let hvar=Constrhash.create 50 in (* la table des variables des inéquations *)
List.iter (fun f ->
- Hashtbl.iter (fun x _ -> if not (Hashtbl.mem hvar x) then begin
+ Constrhash.iter (fun x _ -> if not (Constrhash.mem hvar x) then begin
nvar:=(!nvar)+1;
- Hashtbl.add hvar x (!nvar)
+ Constrhash.add hvar x (!nvar)
end)
f.hflin.fhom)
lineq1;
let sys= List.map (fun h->
let v=Array.create ((!nvar)+1) r0 in
- Hashtbl.iter (fun x c -> v.(Hashtbl.find hvar x)<-c)
+ Constrhash.iter (fun x c -> v.(Constrhash.find hvar x)<-c)
h.hflin.fhom;
((Array.to_list v)@[rop h.hflin.fcste],h.hstrict))
lineq1 in
@@ -490,13 +498,13 @@ let rec fourier gl=
|_->assert false)
|_->assert false
in tac gl)
- with _ ->
+ with e when Errors.noncritical e ->
(* les hypothèses *)
let hyps = List.map (fun (h,t)-> (mkVar h,t))
(list_of_sign (pf_hyps gl)) in
let lineq =ref [] in
List.iter (fun h -> try (lineq:=(ineq1_of_constr h)@(!lineq))
- with _ -> ())
+ with e when Errors.noncritical e -> ())
hyps;
(* lineq = les inéquations découlant des hypothèses *)
if !lineq=[] then Util.error "No inequalities";
diff --git a/plugins/fourier/g_fourier.ml4 b/plugins/fourier/g_fourier.ml4
index ea766830..7c7cf64f 100644
--- a/plugins/fourier/g_fourier.ml4
+++ b/plugins/fourier/g_fourier.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_fourier.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open FourierR
TACTIC EXTEND fourier
diff --git a/plugins/funind/Recdef.v b/plugins/funind/Recdef.v
index 763ed82f..b2955e90 100644
--- a/plugins/funind/Recdef.v
+++ b/plugins/funind/Recdef.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/funind/functional_principles_proofs.ml b/plugins/funind/functional_principles_proofs.ml
index 3590e698..48205019 100644
--- a/plugins/funind/functional_principles_proofs.ml
+++ b/plugins/funind/functional_principles_proofs.ml
@@ -1,7 +1,6 @@
open Printer
open Util
open Term
-open Termops
open Namegen
open Names
open Declarations
@@ -34,10 +33,14 @@ let observennl strm =
let do_observe_tac s tac g =
try let v = tac g in (* msgnl (goal ++ fnl () ++ (str s)++(str " ")++(str "finished")); *) v
- with e ->
- let goal = begin try (Printer.pr_goal (sig_it g)) with _ -> assert false end in
+ with reraise ->
+ let e = Cerrors.process_vernac_interp_error reraise in
+ let goal =
+ try (Printer.pr_goal g)
+ with e when Errors.noncritical e -> assert false
+ in
msgnl (str "observation "++ s++str " raised exception " ++
- Cerrors.explain_exn e ++ str " on goal " ++ goal );
+ Errors.print e ++ str " on goal " ++ goal );
raise e;;
let observe_tac_stream s tac g =
@@ -119,7 +122,7 @@ let is_trivial_eq t =
eq_constr t1 t2 && eq_constr a1 a2
| _ -> false
end
- with _ -> false
+ with e when Errors.noncritical e -> false
in
(* observe (str "is_trivial_eq " ++ Printer.pr_lconstr t ++ (if res then str " true" else str " false")); *)
res
@@ -145,7 +148,7 @@ let is_incompatible_eq t =
(eq_constr u1 u2 &&
incompatible_constructor_terms t1 t2)
| _ -> false
- with _ -> false
+ with e when Errors.noncritical e -> false
in
if res then observe (str "is_incompatible_eq " ++ Printer.pr_lconstr t);
res
@@ -232,7 +235,7 @@ let change_eq env sigma hyp_id (context:rel_context) x t end_of_type =
then
(jmeq_refl (),(args.(1),args.(0)),(args.(3),args.(2)),args.(0))
else nochange "not an equality"
- with _ -> nochange "not an equality"
+ with e when Errors.noncritical e -> nochange "not an equality"
in
if not ((closed0 (fst t1)) && (closed0 (snd t1)))then nochange "not a closed lhs";
let rec compute_substitution sub t1 t2 =
@@ -263,7 +266,7 @@ let change_eq env sigma hyp_id (context:rel_context) x t end_of_type =
in
let sub = compute_substitution Intmap.empty (snd t1) (snd t2) in
let sub = compute_substitution sub (fst t1) (fst t2) in
- let end_of_type_with_pop = pop end_of_type in (*the equation will be removed *)
+ let end_of_type_with_pop = Termops.pop end_of_type in (*the equation will be removed *)
let new_end_of_type =
(* Ugly hack to prevent Map.fold order change between ocaml-3.08.3 and ocaml-3.08.4
Can be safely replaced by the next comment for Ocaml >= 3.08.4
@@ -286,7 +289,7 @@ let change_eq env sigma hyp_id (context:rel_context) x t end_of_type =
try
let witness = Intmap.find i sub in
if b' <> None then anomaly "can not redefine a rel!";
- (pop end_of_type,ctxt_size,mkLetIn(x',witness,t',witness_fun))
+ (Termops.pop end_of_type,ctxt_size,mkLetIn(x',witness,t',witness_fun))
with Not_found ->
(mkProd_or_LetIn decl end_of_type, ctxt_size + 1, mkLambda_or_LetIn decl witness_fun)
)
@@ -350,9 +353,9 @@ let isLetIn t =
let h_reduce_with_zeta =
h_reduce
- (Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
+ (Glob_term.Cbv
+ {Glob_term.all_flags
+ with Glob_term.rDelta = false;
})
@@ -388,7 +391,7 @@ let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
let coq_I = Coqlib.build_coq_I () in
let rec scan_type context type_of_hyp : tactic =
if isLetIn type_of_hyp then
- let real_type_of_hyp = it_mkProd_or_LetIn ~init:type_of_hyp context in
+ let real_type_of_hyp = it_mkProd_or_LetIn type_of_hyp context in
let reduced_type_of_hyp = nf_betaiotazeta real_type_of_hyp in
(* length of context didn't change ? *)
let new_context,new_typ_of_hyp =
@@ -406,13 +409,13 @@ let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
then
begin
let (x,t_x,t') = destProd type_of_hyp in
- let actual_real_type_of_hyp = it_mkProd_or_LetIn ~init:t' context in
+ let actual_real_type_of_hyp = it_mkProd_or_LetIn t' context in
if is_property ptes_infos t_x actual_real_type_of_hyp then
begin
let pte,pte_args = (destApp t_x) in
let (* fix_info *) prove_rec_hyp = (Idmap.find (destVar pte) ptes_infos).proving_tac in
- let popped_t' = pop t' in
- let real_type_of_hyp = it_mkProd_or_LetIn ~init:popped_t' context in
+ let popped_t' = Termops.pop t' in
+ let real_type_of_hyp = it_mkProd_or_LetIn popped_t' context in
let prove_new_type_of_hyp =
let context_length = List.length context in
tclTHENLIST
@@ -461,9 +464,9 @@ let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
(* observe (str "In "++Ppconstr.pr_id hyp_id++ *)
(* str " removing useless precond True" *)
(* ); *)
- let popped_t' = pop t' in
+ let popped_t' = Termops.pop t' in
let real_type_of_hyp =
- it_mkProd_or_LetIn ~init:popped_t' context
+ it_mkProd_or_LetIn popped_t' context
in
let prove_trivial =
let nb_intro = List.length context in
@@ -489,9 +492,9 @@ let clean_hyp_with_heq ptes_infos eq_hyps hyp_id env sigma =
]
else if is_trivial_eq t_x
then (* t_x := t = t => we remove this precond *)
- let popped_t' = pop t' in
+ let popped_t' = Termops.pop t' in
let real_type_of_hyp =
- it_mkProd_or_LetIn ~init:popped_t' context
+ it_mkProd_or_LetIn popped_t' context
in
let hd,args = destApp t_x in
let get_args hd args =
@@ -589,7 +592,7 @@ let treat_new_case ptes_infos nb_prod continue_tac term dyn_infos =
let fun_body =
mkLambda(Anonymous,
pf_type_of g' term,
- replace_term term (mkRel 1) dyn_infos.info
+ Termops.replace_term term (mkRel 1) dyn_infos.info
)
in
let new_body = pf_nf_betaiota g' (mkApp(fun_body,[| new_term_value |])) in
@@ -608,8 +611,8 @@ let treat_new_case ptes_infos nb_prod continue_tac term dyn_infos =
let my_orelse tac1 tac2 g =
try
tac1 g
- with e ->
-(* observe (str "using snd tac since : " ++ Cerrors.explain_exn e); *)
+ with e when Errors.noncritical e ->
+(* observe (str "using snd tac since : " ++ Errors.print e); *)
tac2 g
let instanciate_hyps_with_args (do_prove:identifier list -> tactic) hyps args_id =
@@ -909,8 +912,8 @@ let generalize_non_dep hyp g =
let to_revert,_ =
Environ.fold_named_context_reverse (fun (clear,keep) (hyp,_,_ as decl) ->
if List.mem hyp hyps
- or List.exists (occur_var_in_decl env hyp) keep
- or occur_var env hyp hyp_typ
+ or List.exists (Termops.occur_var_in_decl env hyp) keep
+ or Termops.occur_var env hyp hyp_typ
or Termops.is_section_variable hyp (* should be dangerous *)
then (clear,decl::keep)
else (hyp::clear,keep))
@@ -936,7 +939,7 @@ let generate_equation_lemma fnames f fun_num nb_params nb_args rec_args_num =
let f_def = Global.lookup_constant (destConst f) in
let eq_lhs = mkApp(f,Array.init (nb_params + nb_args) (fun i -> mkRel(nb_params + nb_args - i))) in
let f_body =
- force (Option.get f_def.const_body)
+ force (Option.get (body_of_constant f_def))
in
let params,f_body_with_params = decompose_lam_n nb_params f_body in
let (_,num),(_,_,bodies) = destFix f_body_with_params in
@@ -954,7 +957,7 @@ let generate_equation_lemma fnames f fun_num nb_params nb_args rec_args_num =
let type_ctxt,type_of_f = decompose_prod_n_assum (nb_params + nb_args)
(Typeops.type_of_constant_type (Global.env()) f_def.const_type) in
let eqn = mkApp(Lazy.force eq,[|type_of_f;eq_lhs;eq_rhs|]) in
- let lemma_type = it_mkProd_or_LetIn ~init:eqn type_ctxt in
+ let lemma_type = it_mkProd_or_LetIn eqn type_ctxt in
let f_id = id_of_label (con_label (destConst f)) in
let prove_replacement =
tclTHENSEQ
@@ -964,7 +967,7 @@ let generate_equation_lemma fnames f fun_num nb_params nb_args rec_args_num =
let rec_id = pf_nth_hyp_id g 1 in
tclTHENSEQ
[(* observe_tac "generalize_non_dep in generate_equation_lemma" *) (generalize_non_dep rec_id);
- (* observe_tac "h_case" *) (h_case false (mkVar rec_id,Rawterm.NoBindings));
+ (* observe_tac "h_case" *) (h_case false (mkVar rec_id,Glob_term.NoBindings));
intros_reflexivity] g
)
]
@@ -1009,7 +1012,7 @@ let do_replace params rec_arg_num rev_args_id f fun_num all_funs g =
| _ -> ()
in
- Tacinterp.constr_of_id (pf_env g) equation_lemma_id
+ Constrintern.construct_reference (pf_hyps g) equation_lemma_id
in
let nb_intro_to_do = nb_prod (pf_concl g) in
tclTHEN
@@ -1052,7 +1055,7 @@ let prove_princ_for_struct interactive_proof fun_num fnames all_funs _nparams :
}
in
let get_body const =
- match (Global.lookup_constant const ).const_body with
+ match body_of_constant (Global.lookup_constant const) with
| Some b ->
let body = force b in
Tacred.cbv_norm_flags
@@ -1212,7 +1215,11 @@ let prove_princ_for_struct interactive_proof fun_num fnames all_funs _nparams :
let ctxt,pte_app = (decompose_prod_assum (pf_concl gl)) in
let pte,pte_args = (decompose_app pte_app) in
try
- let pte = try destVar pte with _ -> anomaly "Property is not a variable" in
+ let pte =
+ try destVar pte
+ with e when Errors.noncritical e ->
+ anomaly "Property is not a variable"
+ in
let fix_info = Idmap.find pte ptes_to_fix in
let nb_args = fix_info.nb_realargs in
tclTHENSEQ
@@ -1300,7 +1307,7 @@ let prove_princ_for_struct interactive_proof fun_num fnames all_funs _nparams :
in
let fname = destConst (fst (decompose_app (List.hd (List.rev pte_args)))) in
tclTHENSEQ
- [unfold_in_concl [(all_occurrences,Names.EvalConstRef fname)];
+ [unfold_in_concl [(Termops.all_occurrences, Names.EvalConstRef fname)];
let do_prove =
build_proof
interactive_proof
@@ -1371,7 +1378,7 @@ let prove_with_tcc tcc_lemma_constr eqs : tactic =
(* let ids = List.filter (fun id -> not (List.mem id ids)) ids' in *)
(* rewrite *)
(* ) *)
- Eauto.gen_eauto false (false,5) [] (Some [])
+ Eauto.gen_eauto (false,5) [] (Some [])
]
gls
@@ -1400,10 +1407,10 @@ let build_clause eqs =
{
Tacexpr.onhyps =
Some (List.map
- (fun id -> (Rawterm.all_occurrences_expr,id),InHyp)
+ (fun id -> (Glob_term.all_occurrences_expr, id), Termops.InHyp)
eqs
);
- Tacexpr.concl_occs = Rawterm.no_occurrences_expr
+ Tacexpr.concl_occs = Glob_term.no_occurrences_expr
}
let rec rewrite_eqs_in_eqs eqs =
@@ -1416,7 +1423,7 @@ let rec rewrite_eqs_in_eqs eqs =
(fun id gl ->
observe_tac
(Format.sprintf "rewrite %s in %s " (string_of_id eq) (string_of_id id))
- (tclTRY (Equality.general_rewrite_in true all_occurrences (* dep proofs also: *) true id (mkVar eq) false))
+ (tclTRY (Equality.general_rewrite_in true Termops.all_occurrences true (* dep proofs also: *) true id (mkVar eq) false))
gl
)
eqs
@@ -1438,7 +1445,7 @@ let new_prove_with_tcc is_mes acc_inv hrec tcc_hyps eqs : tactic =
(fun g ->
if is_mes
then
- unfold_in_concl [(all_occurrences, evaluable_of_global_reference (delayed_force ltof_ref))] g
+ unfold_in_concl [(Termops.all_occurrences, evaluable_of_global_reference (delayed_force ltof_ref))] g
else tclIDTAC g
);
observe_tac "rew_and_finish"
@@ -1449,9 +1456,8 @@ let new_prove_with_tcc is_mes acc_inv hrec tcc_hyps eqs : tactic =
(
tclCOMPLETE(
Eauto.eauto_with_bases
- false
(true,5)
- [Lazy.force refl_equal]
+ [Evd.empty,Lazy.force refl_equal]
[Auto.Hint_db.empty empty_transparent_state false]
)
)
diff --git a/plugins/funind/functional_principles_types.ml b/plugins/funind/functional_principles_types.ml
index b756492b..04fcc8d4 100644
--- a/plugins/funind/functional_principles_types.ml
+++ b/plugins/funind/functional_principles_types.ml
@@ -1,7 +1,6 @@
open Printer
open Util
open Term
-open Termops
open Namegen
open Names
open Declarations
@@ -114,9 +113,8 @@ let compute_new_princ_type_from_rel rel_to_fun sorts princ_type =
in
let pre_princ =
it_mkProd_or_LetIn
- ~init:
(it_mkProd_or_LetIn
- ~init:(Option.fold_right
+ (Option.fold_right
mkProd_or_LetIn
princ_type_info.indarg
princ_type_info.concl
@@ -140,16 +138,10 @@ let compute_new_princ_type_from_rel rel_to_fun sorts princ_type =
in
let dummy_var = mkVar (id_of_string "________") in
let mk_replacement c i args =
- let res = mkApp(rel_to_fun.(i),Array.map pop (array_get_start args)) in
+ let res = mkApp(rel_to_fun.(i), Array.map Termops.pop (array_get_start args)) in
(* observe (str "replacing " ++ pr_lconstr c ++ str " by " ++ pr_lconstr res); *)
res
in
- let rec has_dummy_var t =
- fold_constr
- (fun b t -> b || (eq_constr t dummy_var) || (has_dummy_var t))
- false
- t
- in
let rec compute_new_princ_type remove env pre_princ : types*(constr list) =
let (new_princ_type,_) as res =
match kind_of_term pre_princ with
@@ -199,58 +191,58 @@ let compute_new_princ_type_from_rel rel_to_fun sorts princ_type =
begin
try
let new_t,binders_to_remove_from_t = compute_new_princ_type remove env t in
- let new_x : name = get_name (ids_of_context env) x in
+ let new_x : name = get_name (Termops.ids_of_context env) x in
let new_env = Environ.push_rel (x,None,t) env in
let new_b,binders_to_remove_from_b = compute_new_princ_type remove new_env b in
if List.exists (eq_constr (mkRel 1)) binders_to_remove_from_b
- then (pop new_b),filter_map (eq_constr (mkRel 1)) pop binders_to_remove_from_b
+ then (Termops.pop new_b), filter_map (eq_constr (mkRel 1)) Termops.pop binders_to_remove_from_b
else
(
bind_fun(new_x,new_t,new_b),
list_union_eq
eq_constr
binders_to_remove_from_t
- (List.map pop binders_to_remove_from_b)
+ (List.map Termops.pop binders_to_remove_from_b)
)
with
| Toberemoved ->
(* observe (str "Decl of "++Ppconstr.pr_name x ++ str " is removed "); *)
let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [dummy_var] 1 b) in
- new_b, List.map pop binders_to_remove_from_b
+ new_b, List.map Termops.pop binders_to_remove_from_b
| Toberemoved_with_rel (n,c) ->
(* observe (str "Decl of "++Ppconstr.pr_name x ++ str " is removed "); *)
let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [c] n b) in
- new_b, list_add_set_eq eq_constr (mkRel n) (List.map pop binders_to_remove_from_b)
+ new_b, list_add_set_eq eq_constr (mkRel n) (List.map Termops.pop binders_to_remove_from_b)
end
and compute_new_princ_type_for_letin remove env x v t b =
begin
try
let new_t,binders_to_remove_from_t = compute_new_princ_type remove env t in
let new_v,binders_to_remove_from_v = compute_new_princ_type remove env v in
- let new_x : name = get_name (ids_of_context env) x in
+ let new_x : name = get_name (Termops.ids_of_context env) x in
let new_env = Environ.push_rel (x,Some v,t) env in
let new_b,binders_to_remove_from_b = compute_new_princ_type remove new_env b in
if List.exists (eq_constr (mkRel 1)) binders_to_remove_from_b
- then (pop new_b),filter_map (eq_constr (mkRel 1)) pop binders_to_remove_from_b
+ then (Termops.pop new_b),filter_map (eq_constr (mkRel 1)) Termops.pop binders_to_remove_from_b
else
(
mkLetIn(new_x,new_v,new_t,new_b),
list_union_eq
eq_constr
(list_union_eq eq_constr binders_to_remove_from_t binders_to_remove_from_v)
- (List.map pop binders_to_remove_from_b)
+ (List.map Termops.pop binders_to_remove_from_b)
)
with
| Toberemoved ->
(* observe (str "Decl of "++Ppconstr.pr_name x ++ str " is removed "); *)
let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [dummy_var] 1 b) in
- new_b, List.map pop binders_to_remove_from_b
+ new_b, List.map Termops.pop binders_to_remove_from_b
| Toberemoved_with_rel (n,c) ->
(* observe (str "Decl of "++Ppconstr.pr_name x ++ str " is removed "); *)
let new_b,binders_to_remove_from_b = compute_new_princ_type remove env (substnl [c] n b) in
- new_b, list_add_set_eq eq_constr (mkRel n) (List.map pop binders_to_remove_from_b)
+ new_b, list_add_set_eq eq_constr (mkRel n) (List.map Termops.pop binders_to_remove_from_b)
end
and compute_new_princ_type_with_acc remove env e (c_acc,to_remove_acc) =
let new_e,to_remove_from_e = compute_new_princ_type remove env e
@@ -267,10 +259,10 @@ let compute_new_princ_type_from_rel rel_to_fun sorts princ_type =
(lift (List.length ptes_vars) pre_res)
in
it_mkProd_or_LetIn
- ~init:(it_mkProd_or_LetIn
- ~init:pre_res (List.map (fun (id,t,b) -> Name(Hashtbl.find tbl id), t,b)
- new_predicates)
- )
+ (it_mkProd_or_LetIn
+ pre_res (List.map (fun (id,t,b) -> Name(Hashtbl.find tbl id), t,b)
+ new_predicates)
+ )
princ_type_info.params
@@ -283,7 +275,7 @@ let change_property_sort toSort princ princName =
compose_prod args (mkSort toSort)
)
in
- let princName_as_constr = Tacinterp.constr_of_id (Global.env ()) princName in
+ let princName_as_constr = Constrintern.global_reference princName in
let init =
let nargs = (princ_info.nparams + (List.length princ_info.predicates)) in
mkApp(princName_as_constr,
@@ -291,8 +283,7 @@ let change_property_sort toSort princ princName =
(fun i -> mkRel (nargs - i )))
in
it_mkLambda_or_LetIn
- ~init:
- (it_mkLambda_or_LetIn ~init
+ (it_mkLambda_or_LetIn init
(List.map change_sort_in_predicate princ_info.predicates)
)
princ_info.params
@@ -311,11 +302,8 @@ let defined () =
"defined"
((try
str "On goal : " ++ fnl () ++ pr_open_subgoals () ++ fnl ()
- with _ -> mt ()
+ with e when Errors.noncritical e -> mt ()
) ++msg)
- | e -> raise e
-
-
let build_functional_principle interactive_proof old_princ_type sorts funs i proof_tac hook =
(* First we get the type of the old graph principle *)
@@ -384,10 +372,9 @@ let generate_functional_principle
(* Pp.msgnl (str "new principle := " ++ pr_lconstr value); *)
let ce =
{ const_entry_body = value;
+ const_entry_secctx = None;
const_entry_type = None;
- const_entry_opaque = false;
- const_entry_boxed = Flags.boxed_definitions()
- }
+ const_entry_opaque = false }
in
ignore(
Declare.declare_constant
@@ -411,7 +398,7 @@ let generate_functional_principle
Don't forget to close the goal if an error is raised !!!!
*)
save false new_princ_name entry g_kind hook
- with e ->
+ with e when Errors.noncritical e ->
begin
begin
try
@@ -423,7 +410,7 @@ let generate_functional_principle
then Pfedit.delete_current_proof ()
else ()
else ()
- with _ -> ()
+ with e when Errors.noncritical e -> ()
end;
raise (Defining_principle e)
end
@@ -450,7 +437,7 @@ let get_funs_constant mp dp =
in
function const ->
let find_constant_body const =
- match (Global.lookup_constant const ).const_body with
+ match body_of_constant (Global.lookup_constant const) with
| Some b ->
let body = force b in
let body = Tacred.cbv_norm_flags
@@ -475,7 +462,7 @@ let get_funs_constant mp dp =
let first_params = List.hd l_params in
List.iter
(fun params ->
- if not ((=) first_params params)
+ if not (list_equal (fun (n1, c1) (n2, c2) -> n1 = n2 && eq_constr c1 c2) first_params params)
then error "Not a mutal recursive block"
)
l_params
@@ -493,7 +480,10 @@ let get_funs_constant mp dp =
in
let first_infos = extract_info true (List.hd l_bodies) in
let check body = (* Hope this is correct *)
- if not (first_infos = (extract_info false body))
+ let eq_infos (ia1, na1, ta1, ca1) (ia2, na2, ta2, ca2) =
+ ia1 = ia2 && na1 = na2 && array_equal eq_constr ta1 ta2 && array_equal eq_constr ca1 ca2
+ in
+ if not (eq_infos first_infos (extract_info false body))
then error "Not a mutal recursive block"
in
List.iter check l_bodies
@@ -504,7 +494,7 @@ let get_funs_constant mp dp =
exception No_graph_found
exception Found_type of int
-let make_scheme (fas : (constant*Rawterm.rawsort) list) : Entries.definition_entry list =
+let make_scheme (fas : (constant*Glob_term.glob_sort) list) : Entries.definition_entry list =
let env = Global.env ()
and sigma = Evd.empty in
let funs = List.map fst fas in
@@ -561,7 +551,7 @@ let make_scheme (fas : (constant*Rawterm.rawsort) list) : Entries.definition_ent
0
(prove_princ_for_struct false 0 (Array.of_list funs))
(fun _ _ _ -> ())
- with e ->
+ with e when Errors.noncritical e ->
begin
begin
try
@@ -573,7 +563,7 @@ let make_scheme (fas : (constant*Rawterm.rawsort) list) : Entries.definition_ent
then Pfedit.delete_current_proof ()
else ()
else ()
- with _ -> ()
+ with e when Errors.noncritical e -> ()
end;
raise (Defining_principle e)
end
@@ -584,7 +574,7 @@ let make_scheme (fas : (constant*Rawterm.rawsort) list) : Entries.definition_ent
let finfos = find_Function_infos this_block_funs.(0) in
try
let equation = Option.get finfos.equation_lemma in
- (Global.lookup_constant equation).Declarations.const_opaque
+ Declarations.is_opaque (Global.lookup_constant equation)
with Option.IsNone -> (* non recursive definition *)
false
in
@@ -639,7 +629,7 @@ let make_scheme (fas : (constant*Rawterm.rawsort) list) : Entries.definition_ent
const
with Found_type i ->
let princ_body =
- Termops.it_mkLambda_or_LetIn ~init:(mkFix((idxs,i),decl)) ctxt
+ Termops.it_mkLambda_or_LetIn (mkFix((idxs,i),decl)) ctxt
in
{const with
Entries.const_entry_body = princ_body;
@@ -688,7 +678,7 @@ let build_case_scheme fa =
let env = Global.env ()
and sigma = Evd.empty in
(* let id_to_constr id = *)
-(* Tacinterp.constr_of_id env id *)
+(* Constrintern.global_reference id *)
(* in *)
let funs = (fun (_,f,_) ->
try Libnames.constr_of_global (Nametab.global f)
diff --git a/plugins/funind/functional_principles_types.mli b/plugins/funind/functional_principles_types.mli
index fb04c6ec..1c02c16e 100644
--- a/plugins/funind/functional_principles_types.mli
+++ b/plugins/funind/functional_principles_types.mli
@@ -27,8 +27,8 @@ val compute_new_princ_type_from_rel : constr array -> sorts array ->
exception No_graph_found
-val make_scheme : (constant*Rawterm.rawsort) list -> Entries.definition_entry list
+val make_scheme : (constant*Glob_term.glob_sort) list -> Entries.definition_entry list
-val build_scheme : (identifier*Libnames.reference*Rawterm.rawsort) list -> unit
-val build_case_scheme : (identifier*Libnames.reference*Rawterm.rawsort) -> unit
+val build_scheme : (identifier*Libnames.reference*Glob_term.glob_sort) list -> unit
+val build_case_scheme : (identifier*Libnames.reference*Glob_term.glob_sort) -> unit
diff --git a/plugins/funind/g_indfun.ml4 b/plugins/funind/g_indfun.ml4
index 41fafdf1..6b6e4838 100644
--- a/plugins/funind/g_indfun.ml4
+++ b/plugins/funind/g_indfun.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,19 +16,20 @@ open Indfun
open Genarg
open Pcoq
open Tacticals
+open Constr
let pr_binding prc = function
- | loc, Rawterm.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ cut () ++ prc c)
- | loc, Rawterm.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ cut () ++ prc c)
+ | loc, Glob_term.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ cut () ++ prc c)
+ | loc, Glob_term.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ cut () ++ prc c)
let pr_bindings prc prlc = function
- | Rawterm.ImplicitBindings l ->
+ | Glob_term.ImplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc prc l
- | Rawterm.ExplicitBindings l ->
+ | Glob_term.ExplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc (fun b -> str"(" ++ pr_binding prlc b ++ str")") l
- | Rawterm.NoBindings -> mt ()
+ | Glob_term.NoBindings -> mt ()
let pr_with_bindings prc prlc (c,bl) =
prc c ++ hv 0 (pr_bindings prc prlc bl)
@@ -55,7 +56,6 @@ let pr_fun_ind_using_typed prc prlc _ opt_c =
ARGUMENT EXTEND fun_ind_using
- TYPED AS constr_with_bindings_opt
PRINTED BY pr_fun_ind_using_typed
RAW_TYPED AS constr_with_bindings_opt
RAW_PRINTED BY pr_fun_ind_using
@@ -129,85 +129,36 @@ ARGUMENT EXTEND auto_using'
| [ ] -> [ [] ]
END
-let pr_rec_annotation2_aux s r id l =
- str ("{"^s^" ") ++ Ppconstr.pr_constr_expr r ++
- Util.pr_opt Nameops.pr_id id ++
- Pptactic.pr_auto_using Ppconstr.pr_constr_expr l ++ str "}"
-
-let pr_rec_annotation2 = function
- | Struct id -> str "{struct" ++ Nameops.pr_id id ++ str "}"
- | Wf(r,id,l) -> pr_rec_annotation2_aux "wf" r id l
- | Mes(r,id,l) -> pr_rec_annotation2_aux "measure" r id l
-
-VERNAC ARGUMENT EXTEND rec_annotation2
-PRINTED BY pr_rec_annotation2
- [ "{" "struct" ident(id) "}"] -> [ Struct id ]
-| [ "{" "wf" constr(r) ident_opt(id) auto_using'(l) "}" ] -> [ Wf(r,id,l) ]
-| [ "{" "measure" constr(r) ident_opt(id) auto_using'(l) "}" ] -> [ Mes(r,id,l) ]
-END
-
-let pr_binder2 (idl,c) =
- str "(" ++ Util.prlist_with_sep spc Nameops.pr_id idl ++ spc () ++
- str ": " ++ Ppconstr.pr_lconstr_expr c ++ str ")"
+module Gram = Pcoq.Gram
+module Vernac = Pcoq.Vernac_
+module Tactic = Pcoq.Tactic
-VERNAC ARGUMENT EXTEND binder2
-PRINTED BY pr_binder2
- [ "(" ne_ident_list(idl) ":" lconstr(c) ")"] -> [ (idl,c) ]
-END
+module FunctionGram =
+struct
+ let gec s = Gram.entry_create ("Function."^s)
+ (* types *)
+ let function_rec_definition_loc : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located Gram.entry = gec "function_rec_definition_loc"
+end
+open FunctionGram
-let make_binder2 (idl,c) =
- LocalRawAssum (List.map (fun id -> (Util.dummy_loc,Name id)) idl,Topconstr.default_binder_kind,c)
-
-let pr_rec_definition2 (id,bl,annot,type_,def) =
- Nameops.pr_id id ++ spc () ++ Util.prlist_with_sep spc pr_binder2 bl ++
- Util.pr_opt pr_rec_annotation2 annot ++ spc () ++ str ":" ++ spc () ++
- Ppconstr.pr_lconstr_expr type_ ++ str " :=" ++ spc () ++
- Ppconstr.pr_lconstr_expr def
-
-VERNAC ARGUMENT EXTEND rec_definition2
-PRINTED BY pr_rec_definition2
- [ ident(id) binder2_list(bl)
- rec_annotation2_opt(annot) ":" lconstr(type_)
- ":=" lconstr(def)] ->
- [ (id,bl,annot,type_,def) ]
-END
+GEXTEND Gram
+ GLOBAL: function_rec_definition_loc ;
-let make_rec_definitions2 (id,bl,annot,type_,def) =
- let bl = List.map make_binder2 bl in
- let names = List.map snd (Topconstr.names_of_local_assums bl) in
- let check_one_name () =
- if List.length names > 1 then
- Util.user_err_loc
- (Util.dummy_loc,"Function",
- Pp.str "the recursive argument needs to be specified");
- in
- let check_exists_args an =
- try
- let id = match an with
- | Struct id -> id | Wf(_,Some id,_) -> id | Mes(_,Some id,_) -> id
- | Wf(_,None,_) | Mes(_,None,_) -> failwith "check_exists_args"
- in
- (try ignore(Util.list_index0 (Name id) names); annot
- with Not_found -> Util.user_err_loc
- (Util.dummy_loc,"Function",
- Pp.str "No argument named " ++ Nameops.pr_id id)
- )
- with Failure "check_exists_args" -> check_one_name ();annot
- in
- let ni =
- match annot with
- | None ->
- annot
- | Some an ->
- check_exists_args an
- in
- ((Util.dummy_loc,id), ni, bl, type_, def)
+ function_rec_definition_loc:
+ [ [ g = Vernac.rec_definition -> loc, g ]]
+ ;
+ END
+type 'a function_rec_definition_loc_argtype = ((Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) located, 'a) Genarg.abstract_argument_type
+let (wit_function_rec_definition_loc : Genarg.tlevel function_rec_definition_loc_argtype),
+ (globwit_function_rec_definition_loc : Genarg.glevel function_rec_definition_loc_argtype),
+ (rawwit_function_rec_definition_loc : Genarg.rlevel function_rec_definition_loc_argtype) =
+ Genarg.create_arg None "function_rec_definition_loc"
VERNAC COMMAND EXTEND Function
- ["Function" ne_rec_definition2_list_sep(recsl,"with")] ->
+ ["Function" ne_function_rec_definition_loc_list_sep(recsl,"with")] ->
[
- do_generate_principle false (List.map make_rec_definitions2 recsl);
+ do_generate_principle false (List.map snd recsl);
]
END
@@ -215,7 +166,7 @@ END
let pr_fun_scheme_arg (princ_name,fun_name,s) =
Nameops.pr_id princ_name ++ str " :=" ++ spc() ++ str "Induction for " ++
Libnames.pr_reference fun_name ++ spc() ++ str "Sort " ++
- Ppconstr.pr_rawsort s
+ Ppconstr.pr_glob_sort s
VERNAC ARGUMENT EXTEND fun_scheme_arg
PRINTED BY pr_fun_scheme_arg
@@ -224,17 +175,18 @@ END
let warning_error names e =
+ let e = Cerrors.process_vernac_interp_error e in
match e with
| Building_graph e ->
Pp.msg_warning
(str "Cannot define graph(s) for " ++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
- if do_observe () then (spc () ++ Cerrors.explain_exn e) else mt ())
+ if do_observe () then (spc () ++ Errors.print e) else mt ())
| Defining_principle e ->
Pp.msg_warning
(str "Cannot define principle(s) for "++
h 1 (prlist_with_sep (fun _ -> str","++spc ()) Libnames.pr_reference names) ++
- if do_observe () then Cerrors.explain_exn e else mt ())
+ if do_observe () then Errors.print e else mt ())
| _ -> raise e
@@ -256,14 +208,14 @@ VERNAC COMMAND EXTEND NewFunctionalScheme
try Functional_principles_types.build_scheme fas
with Functional_principles_types.No_graph_found ->
Util.error ("Cannot generate induction principle(s)")
- | e ->
+ | e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
| _ -> assert false (* we can only have non empty list *)
end
- | e ->
+ | e when Errors.noncritical e ->
let names = List.map (fun (_,na,_) -> na) fas in
warning_error names e
end
@@ -480,7 +432,7 @@ TACTIC EXTEND fauto
[ "fauto" tactic(tac)] ->
[
let heuristic = chose_heuristic None in
- finduction None heuristic (snd tac)
+ finduction None heuristic (Tacinterp.eval_tactic tac)
]
|
[ "fauto" ] ->
diff --git a/plugins/funind/rawterm_to_relation.ml b/plugins/funind/glob_term_to_relation.ml
index b74422a3..b9e0e62a 100644
--- a/plugins/funind/rawterm_to_relation.ml
+++ b/plugins/funind/glob_term_to_relation.ml
@@ -2,11 +2,11 @@ open Printer
open Pp
open Names
open Term
-open Rawterm
+open Glob_term
open Libnames
open Indfun_common
open Util
-open Rawtermops
+open Glob_termops
let observe strm =
if do_observe ()
@@ -23,31 +23,31 @@ type binder_type =
| Prod of name
| LetIn of name
-type raw_context = (binder_type*rawconstr) list
+type glob_context = (binder_type*glob_constr) list
(*
- compose_raw_context [(bt_1,n_1,t_1);......] rt returns
+ compose_glob_context [(bt_1,n_1,t_1);......] rt returns
b_1(n_1,t_1,.....,bn(n_k,t_k,rt)) where the b_i's are the
binders corresponding to the bt_i's
*)
-let compose_raw_context =
+let compose_glob_context =
let compose_binder (bt,t) acc =
match bt with
- | Lambda n -> mkRLambda(n,t,acc)
- | Prod n -> mkRProd(n,t,acc)
- | LetIn n -> mkRLetIn(n,t,acc)
+ | Lambda n -> mkGLambda(n,t,acc)
+ | Prod n -> mkGProd(n,t,acc)
+ | LetIn n -> mkGLetIn(n,t,acc)
in
List.fold_right compose_binder
(*
- The main part deals with building a list of raw constructor expressions
+ The main part deals with building a list of globalized constructor expressions
from the rhs of a fixpoint equation.
*)
type 'a build_entry_pre_return =
{
- context : raw_context; (* the binding context of the result *)
+ context : glob_context; (* the binding context of the result *)
value : 'a; (* The value *)
}
@@ -159,8 +159,8 @@ let apply_args ctxt body args =
| _,[] -> (* No more args *)
(ctxt,body)
| [],_ -> (* no more fun *)
- let f,args' = raw_decompose_app body in
- (ctxt,mkRApp(f,args'@args))
+ let f,args' = glob_decompose_app body in
+ (ctxt,mkGApp(f,args'@args))
| (Lambda Anonymous,t)::ctxt',arg::args' ->
do_apply avoid ctxt' body args'
| (Lambda (Name id),t)::ctxt',arg::args' ->
@@ -215,8 +215,8 @@ let combine_app f args =
let combine_lam n t b =
{
context = [];
- value = mkRLambda(n, compose_raw_context t.context t.value,
- compose_raw_context b.context b.value )
+ value = mkGLambda(n, compose_glob_context t.context t.value,
+ compose_glob_context b.context b.value )
}
@@ -269,8 +269,8 @@ let make_discr_match_brl i =
list_map_i
(fun j (_,idl,patl,_) ->
if j=i
- then (dummy_loc,idl,patl, mkRRef (Lazy.force coq_True_ref))
- else (dummy_loc,idl,patl, mkRRef (Lazy.force coq_False_ref))
+ then (dummy_loc,idl,patl, mkGRef (Lazy.force coq_True_ref))
+ else (dummy_loc,idl,patl, mkGRef (Lazy.force coq_False_ref))
)
0
(*
@@ -281,7 +281,7 @@ let make_discr_match_brl i =
*)
let make_discr_match brl =
fun el i ->
- mkRCases(None,
+ mkGCases(None,
make_discr_match_el el,
make_discr_match_brl i brl)
@@ -308,26 +308,27 @@ let build_constructors_of_type ind' argl =
(Global.env ())
construct
in
- let argl =
- if argl = []
- then
+ let argl = match argl with
+ | None ->
Array.to_list
- (Array.init (cst_narg - npar) (fun _ -> mkRHole ())
+ (Array.init cst_narg (fun _ -> mkGHole ())
)
- else argl
+ | Some l ->
+ Array.to_list
+ (Array.init npar (fun _ -> mkGHole ()))@l
in
let pat_as_term =
- mkRApp(mkRRef (ConstructRef(ind',i+1)),argl)
+ mkGApp(mkGRef (ConstructRef(ind',i+1)),argl)
in
- cases_pattern_of_rawconstr Anonymous pat_as_term
+ cases_pattern_of_glob_constr Anonymous pat_as_term
)
ind.Declarations.mind_consnames
(* [find_type_of] very naive attempts to discover the type of an if or a letin *)
let rec find_type_of nb b =
- let f,_ = raw_decompose_app b in
+ let f,_ = glob_decompose_app b in
match f with
- | RRef(_,ref) ->
+ | GRef(_,ref) ->
begin
let ind_type =
match ref with
@@ -350,8 +351,8 @@ let rec find_type_of nb b =
then raise (Invalid_argument "find_type_of : not a valid inductive");
ind_type
end
- | RCast(_,b,_) -> find_type_of nb b
- | RApp _ -> assert false (* we have decomposed any application via raw_decompose_app *)
+ | GCast(_,b,_) -> find_type_of nb b
+ | GApp _ -> assert false (* we have decomposed any application via glob_decompose_app *)
| _ -> raise (Invalid_argument "not a ref")
@@ -419,7 +420,7 @@ let add_pat_variables pat typ env : Environ.env =
let rec pattern_to_term_and_type env typ = function
| PatVar(loc,Anonymous) -> assert false
| PatVar(loc,Name id) ->
- mkRVar id
+ mkGVar id
| PatCstr(loc,constr,patternl,_) ->
let cst_narg =
Inductiveops.mis_constructor_nargs_env
@@ -445,7 +446,7 @@ let rec pattern_to_term_and_type env typ = function
let patl_as_term =
List.map2 (pattern_to_term_and_type env) (List.rev cs_args_types) patternl
in
- mkRApp(mkRRef(ConstructRef constr),
+ mkGApp(mkGRef(ConstructRef constr),
implicit_args@patl_as_term
)
@@ -472,7 +473,7 @@ let rec pattern_to_term_and_type env typ = function
and concatenate them (informally, each branch of a match produces a new constructor)
\end{itemize}
- WARNING: The terms constructed here are only USING the rawconstr syntax but are highly bad formed.
+ WARNING: The terms constructed here are only USING the glob_constr syntax but are highly bad formed.
We must wait to have complete all the current calculi to set the recursive calls.
At this point, each term [f t1 ... tn] (where f appears in [funnames]) is replaced by
a pseudo term [forall res, res t1 ... tn, res]. A reconstruction phase is done later.
@@ -481,15 +482,15 @@ let rec pattern_to_term_and_type env typ = function
*)
-let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
- observe (str " Entering : " ++ Printer.pr_rawconstr rt);
+let rec build_entry_lc env funnames avoid rt : glob_constr build_entry_return =
+ observe (str " Entering : " ++ Printer.pr_glob_constr rt);
match rt with
- | RRef _ | RVar _ | REvar _ | RPatVar _ | RSort _ | RHole _ ->
+ | GRef _ | GVar _ | GEvar _ | GPatVar _ | GSort _ | GHole _ ->
(* do nothing (except changing type of course) *)
mk_result [] rt avoid
- | RApp(_,_,_) ->
- let f,args = raw_decompose_app rt in
- let args_res : (rawconstr list) build_entry_return =
+ | GApp(_,_,_) ->
+ let f,args = glob_decompose_app rt in
+ let args_res : (glob_constr list) build_entry_return =
List.fold_right (* create the arguments lists of constructors and combine them *)
(fun arg ctxt_argsl ->
let arg_res = build_entry_lc env funnames ctxt_argsl.to_avoid arg in
@@ -500,19 +501,19 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
in
begin
match f with
- | RLambda _ ->
+ | GLambda _ ->
let rec aux t l =
match l with
| [] -> t
| u::l ->
match t with
- | RLambda(loc,na,_,nat,b) ->
- RLetIn(dummy_loc,na,u,aux b l)
+ | GLambda(loc,na,_,nat,b) ->
+ GLetIn(dummy_loc,na,u,aux b l)
| _ ->
- RApp(dummy_loc,t,l)
+ GApp(dummy_loc,t,l)
in
build_entry_lc env funnames avoid (aux f args)
- | RVar(_,id) when Idset.mem id funnames ->
+ | GVar(_,id) when Idset.mem id funnames ->
(* if we have [f t1 ... tn] with [f]$\in$[fnames]
then we create a fresh variable [res],
add [res] and its "value" (i.e. [res v1 ... vn]) to each
@@ -525,20 +526,20 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
let res_raw_type = Detyping.detype false [] (Termops.names_of_rel_context env) rt_typ in
let res = fresh_id args_res.to_avoid "res" in
let new_avoid = res::args_res.to_avoid in
- let res_rt = mkRVar res in
+ let res_rt = mkGVar res in
let new_result =
List.map
(fun arg_res ->
let new_hyps =
[Prod (Name res),res_raw_type;
- Prod Anonymous,mkRApp(res_rt,(mkRVar id)::arg_res.value)]
+ Prod Anonymous,mkGApp(res_rt,(mkGVar id)::arg_res.value)]
in
{context = arg_res.context@new_hyps; value = res_rt }
)
args_res.result
in
{ result = new_result; to_avoid = new_avoid }
- | RVar _ | REvar _ | RPatVar _ | RHole _ | RSort _ | RRef _ ->
+ | GVar _ | GEvar _ | GPatVar _ | GHole _ | GSort _ | GRef _ ->
(* if have [g t1 ... tn] with [g] not appearing in [funnames]
then
foreach [ctxt,v1 ... vn] in [args_res] we return
@@ -549,11 +550,11 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
result =
List.map
(fun args_res ->
- {args_res with value = mkRApp(f,args_res.value)})
+ {args_res with value = mkGApp(f,args_res.value)})
args_res.result
}
- | RApp _ -> assert false (* we have collected all the app in [raw_decompose_app] *)
- | RLetIn(_,n,t,b) ->
+ | GApp _ -> assert false (* we have collected all the app in [glob_decompose_app] *)
+ | GLetIn(_,n,t,b) ->
(* if we have [(let x := v in b) t1 ... tn] ,
we discard our work and compute the list of constructor for
[let x = v in (b t1 ... tn)] up to alpha conversion
@@ -567,7 +568,7 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
let new_b =
replace_var_by_term
id
- (RVar(dummy_loc,id))
+ (GVar(dummy_loc,id))
b
in
(Name new_id,new_b,new_avoid)
@@ -577,27 +578,26 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
env
funnames
avoid
- (mkRLetIn(new_n,t,mkRApp(new_b,args)))
- | RCases _ | RIf _ | RLetTuple _ ->
+ (mkGLetIn(new_n,t,mkGApp(new_b,args)))
+ | GCases _ | GIf _ | GLetTuple _ ->
(* we have [(match e1, ...., en with ..... end) t1 tn]
we first compute the result from the case and
then combine each of them with each of args one
*)
let f_res = build_entry_lc env funnames args_res.to_avoid f in
combine_results combine_app f_res args_res
- | RDynamic _ ->error "Not handled RDynamic"
- | RCast(_,b,_) ->
+ | GCast(_,b,_) ->
(* for an applied cast we just trash the cast part
and restart the work.
WARNING: We need to restart since [b] itself should be an application term
*)
- build_entry_lc env funnames avoid (mkRApp(b,args))
- | RRec _ -> error "Not handled RRec"
- | RProd _ -> error "Cannot apply a type"
+ build_entry_lc env funnames avoid (mkGApp(b,args))
+ | GRec _ -> error "Not handled GRec"
+ | GProd _ -> error "Cannot apply a type"
end (* end of the application treatement *)
- | RLambda(_,n,_,t,b) ->
+ | GLambda(_,n,_,t,b) ->
(* we first compute the list of constructor
corresponding to the body of the function,
then the one corresponding to the type
@@ -612,7 +612,7 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
let new_env = raw_push_named (new_n,None,t) env in
let b_res = build_entry_lc new_env funnames avoid b in
combine_results (combine_lam new_n) t_res b_res
- | RProd(_,n,_,t,b) ->
+ | GProd(_,n,_,t,b) ->
(* we first compute the list of constructor
corresponding to the body of the function,
then the one corresponding to the type
@@ -622,7 +622,7 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
let new_env = raw_push_named (n,None,t) env in
let b_res = build_entry_lc new_env funnames avoid b in
combine_results (combine_prod n) t_res b_res
- | RLetIn(_,n,v,b) ->
+ | GLetIn(_,n,v,b) ->
(* we first compute the list of constructor
corresponding to the body of the function,
then the one corresponding to the value [t]
@@ -638,23 +638,23 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
in
let b_res = build_entry_lc new_env funnames avoid b in
combine_results (combine_letin n) v_res b_res
- | RCases(_,_,_,el,brl) ->
+ | GCases(_,_,_,el,brl) ->
(* we create the discrimination function
and treat the case itself
*)
let make_discr = make_discr_match brl in
build_entry_lc_from_case env funnames make_discr el brl avoid
- | RIf(_,b,(na,e_option),lhs,rhs) ->
+ | GIf(_,b,(na,e_option),lhs,rhs) ->
let b_as_constr = Pretyping.Default.understand Evd.empty env b in
let b_typ = Typing.type_of env Evd.empty b_as_constr in
let (ind,_) =
try Inductiveops.find_inductive env Evd.empty b_typ
with Not_found ->
errorlabstrm "" (str "Cannot find the inductive associated to " ++
- Printer.pr_rawconstr b ++ str " in " ++
- Printer.pr_rawconstr rt ++ str ". try again with a cast")
+ Printer.pr_glob_constr b ++ str " in " ++
+ Printer.pr_glob_constr rt ++ str ". try again with a cast")
in
- let case_pats = build_constructors_of_type ind [] in
+ let case_pats = build_constructors_of_type ind None in
assert (Array.length case_pats = 2);
let brl =
list_map_i
@@ -663,19 +663,19 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
[lhs;rhs]
in
let match_expr =
- mkRCases(None,[(b,(Anonymous,None))],brl)
+ mkGCases(None,[(b,(Anonymous,None))],brl)
in
- (* Pp.msgnl (str "new case := " ++ Printer.pr_rawconstr match_expr); *)
+ (* Pp.msgnl (str "new case := " ++ Printer.pr_glob_constr match_expr); *)
build_entry_lc env funnames avoid match_expr
- | RLetTuple(_,nal,_,b,e) ->
+ | GLetTuple(_,nal,_,b,e) ->
begin
- let nal_as_rawconstr =
- List.map
+ let nal_as_glob_constr =
+ Some (List.map
(function
- Name id -> mkRVar id
- | Anonymous -> mkRHole ()
+ Name id -> mkGVar id
+ | Anonymous -> mkGHole ()
)
- nal
+ nal)
in
let b_as_constr = Pretyping.Default.understand Evd.empty env b in
let b_typ = Typing.type_of env Evd.empty b_as_constr in
@@ -683,26 +683,25 @@ let rec build_entry_lc env funnames avoid rt : rawconstr build_entry_return =
try Inductiveops.find_inductive env Evd.empty b_typ
with Not_found ->
errorlabstrm "" (str "Cannot find the inductive associated to " ++
- Printer.pr_rawconstr b ++ str " in " ++
- Printer.pr_rawconstr rt ++ str ". try again with a cast")
+ Printer.pr_glob_constr b ++ str " in " ++
+ Printer.pr_glob_constr rt ++ str ". try again with a cast")
in
- let case_pats = build_constructors_of_type ind nal_as_rawconstr in
+ let case_pats = build_constructors_of_type ind nal_as_glob_constr in
assert (Array.length case_pats = 1);
let br =
(dummy_loc,[],[case_pats.(0)],e)
in
- let match_expr = mkRCases(None,[b,(Anonymous,None)],[br]) in
+ let match_expr = mkGCases(None,[b,(Anonymous,None)],[br]) in
build_entry_lc env funnames avoid match_expr
end
- | RRec _ -> error "Not handled RRec"
- | RCast(_,b,_) ->
+ | GRec _ -> error "Not handled GRec"
+ | GCast(_,b,_) ->
build_entry_lc env funnames avoid b
- | RDynamic _ -> error "Not handled RDynamic"
and build_entry_lc_from_case env funname make_discr
(el:tomatch_tuples)
- (brl:Rawterm.cases_clauses) avoid :
- rawconstr build_entry_return =
+ (brl:Glob_term.cases_clauses) avoid :
+ glob_constr build_entry_return =
match el with
| [] -> assert false (* this case correspond to match <nothing> with .... !*)
| el ->
@@ -762,7 +761,7 @@ and build_entry_lc_from_case_term env types funname make_discr patterns_to_preve
(will be used in the following recursive calls)
*)
let new_env = List.fold_right2 add_pat_variables patl types env in
- let not_those_patterns : (identifier list -> rawconstr -> rawconstr) list =
+ let not_those_patterns : (identifier list -> glob_constr -> glob_constr) list =
List.map2
(fun pat typ ->
fun avoid pat'_as_term ->
@@ -778,9 +777,9 @@ and build_entry_lc_from_case_term env types funname make_discr patterns_to_preve
Detyping.detype false []
(Termops.names_of_rel_context env_with_pat_ids) typ_of_id
in
- mkRProd (Name id,raw_typ_of_id,acc))
+ mkGProd (Name id,raw_typ_of_id,acc))
pat_ids
- (raw_make_neq pat'_as_term (pattern_to_term renamed_pat))
+ (glob_make_neq pat'_as_term (pattern_to_term renamed_pat))
)
patl
types
@@ -835,7 +834,7 @@ and build_entry_lc_from_case_term env types funname make_discr patterns_to_preve
else acc
)
idl
- [(Prod Anonymous,raw_make_eq ~typ pat_as_term e)]
+ [(Prod Anonymous,glob_make_eq ~typ pat_as_term e)]
)
patl
matched_expr.value
@@ -879,16 +878,16 @@ let is_res id =
let same_raw_term rt1 rt2 =
match rt1,rt2 with
- | RRef(_,r1), RRef (_,r2) -> r1=r2
- | RHole _, RHole _ -> true
+ | GRef(_,r1), GRef (_,r2) -> r1=r2
+ | GHole _, GHole _ -> true
| _ -> false
let decompose_raw_eq lhs rhs =
let rec decompose_raw_eq lhs rhs acc =
- observe (str "decomposing eq for " ++ pr_rawconstr lhs ++ str " " ++ pr_rawconstr rhs);
- let (rhd,lrhs) = raw_decompose_app rhs in
- let (lhd,llhs) = raw_decompose_app lhs in
- observe (str "lhd := " ++ pr_rawconstr lhd);
- observe (str "rhd := " ++ pr_rawconstr rhd);
+ observe (str "decomposing eq for " ++ pr_glob_constr lhs ++ str " " ++ pr_glob_constr rhs);
+ let (rhd,lrhs) = glob_decompose_app rhs in
+ let (lhd,llhs) = glob_decompose_app lhs in
+ observe (str "lhd := " ++ pr_glob_constr lhd);
+ observe (str "rhd := " ++ pr_glob_constr rhd);
observe (str "llhs := " ++ int (List.length llhs));
observe (str "lrhs := " ++ int (List.length lrhs));
let sllhs = List.length llhs in
@@ -905,29 +904,29 @@ let decompose_raw_eq lhs rhs =
exception Continue
(*
The second phase which reconstruct the real type of the constructor.
- rebuild the raw constructors expression.
+ rebuild the globalized constructors expression.
eliminates some meaningless equalities, applies some rewrites......
*)
let rec rebuild_cons env nb_args relname args crossed_types depth rt =
- observe (str "rebuilding : " ++ pr_rawconstr rt);
+ observe (str "rebuilding : " ++ pr_glob_constr rt);
match rt with
- | RProd(_,n,k,t,b) ->
+ | GProd(_,n,k,t,b) ->
let not_free_in_t id = not (is_free_in id t) in
let new_crossed_types = t::crossed_types in
begin
match t with
- | RApp(_,(RVar(_,res_id) as res_rt),args') when is_res res_id ->
+ | GApp(_,(GVar(_,res_id) as res_rt),args') when is_res res_id ->
begin
match args' with
- | (RVar(_,this_relname))::args' ->
+ | (GVar(_,this_relname))::args' ->
(*i The next call to mk_rel_id is
valid since we are constructing the graph
Ensures by: obvious
i*)
let new_t =
- mkRApp(mkRVar(mk_rel_id this_relname),args'@[res_rt])
+ mkGApp(mkGVar(mk_rel_id this_relname),args'@[res_rt])
in
let t' = Pretyping.Default.understand Evd.empty env new_t in
let new_env = Environ.push_rel (n,None,t') env in
@@ -937,19 +936,20 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
args new_crossed_types
(depth + 1) b
in
- mkRProd(n,new_t,new_b),
+ mkGProd(n,new_t,new_b),
Idset.filter not_free_in_t id_to_exclude
| _ -> (* the first args is the name of the function! *)
assert false
end
- | RApp(loc1,RRef(loc2,eq_as_ref),[ty;RVar(loc3,id);rt])
+ | GApp(loc1,GRef(loc2,eq_as_ref),[ty;GVar(loc3,id);rt])
when eq_as_ref = Lazy.force Coqlib.coq_eq_ref && n = Anonymous
->
begin
try
- observe (str "computing new type for eq : " ++ pr_rawconstr rt);
+ observe (str "computing new type for eq : " ++ pr_glob_constr rt);
let t' =
- try Pretyping.Default.understand Evd.empty env t with _ -> raise Continue
+ try Pretyping.Default.understand Evd.empty env t
+ with e when Errors.noncritical e -> raise Continue
in
let is_in_b = is_free_in id b in
let _keep_eq =
@@ -968,7 +968,7 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
new_args new_crossed_types
(depth + 1) subst_b
in
- mkRProd(n,t,new_b),id_to_exclude
+ mkGProd(n,t,new_b),id_to_exclude
with Continue ->
let jmeq = Libnames.IndRef (destInd (jmeq ())) in
let ty' = Pretyping.Default.understand Evd.empty env ty in
@@ -979,20 +979,20 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
((Util.list_chop nparam args'))
in
let rt_typ =
- RApp(Util.dummy_loc,
- RRef (Util.dummy_loc,Libnames.IndRef ind),
+ GApp(Util.dummy_loc,
+ GRef (Util.dummy_loc,Libnames.IndRef ind),
(List.map
(fun p -> Detyping.detype false []
(Termops.names_of_rel_context env)
p) params)@(Array.to_list
(Array.make
(List.length args' - nparam)
- (mkRHole ()))))
+ (mkGHole ()))))
in
let eq' =
- RApp(loc1,RRef(loc2,jmeq),[ty;RVar(loc3,id);rt_typ;rt])
+ GApp(loc1,GRef(loc2,jmeq),[ty;GVar(loc3,id);rt_typ;rt])
in
- observe (str "computing new type for jmeq : " ++ pr_rawconstr eq');
+ observe (str "computing new type for jmeq : " ++ pr_glob_constr eq');
let eq'_as_constr = Pretyping.Default.understand Evd.empty env eq' in
observe (str " computing new type for jmeq : done") ;
let new_args =
@@ -1051,14 +1051,14 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
new_args new_crossed_types
(depth + 1) subst_b
in
- mkRProd(n,eq',new_b),id_to_exclude
+ mkGProd(n,eq',new_b),id_to_exclude
end
(* J.F:. keep this comment it explain how to remove some meaningless equalities
if keep_eq then
- mkRProd(n,t,new_b),id_to_exclude
+ mkGProd(n,t,new_b),id_to_exclude
else new_b, Idset.add id id_to_exclude
*)
- | RApp(loc1,RRef(loc2,eq_as_ref),[ty;rt1;rt2])
+ | GApp(loc1,GRef(loc2,eq_as_ref),[ty;rt1;rt2])
when eq_as_ref = Lazy.force Coqlib.coq_eq_ref && n = Anonymous
->
begin
@@ -1069,8 +1069,8 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
let new_rt =
List.fold_left
(fun acc (lhs,rhs) ->
- mkRProd(Anonymous,
- mkRApp(mkRRef(eq_as_ref),[mkRHole ();lhs;rhs]),acc)
+ mkGProd(Anonymous,
+ mkGApp(mkGRef(eq_as_ref),[mkGHole ();lhs;rhs]),acc)
)
b
l
@@ -1078,7 +1078,7 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
rebuild_cons env nb_args relname args crossed_types depth new_rt
else raise Continue
with Continue ->
- observe (str "computing new type for prod : " ++ pr_rawconstr rt);
+ observe (str "computing new type for prod : " ++ pr_glob_constr rt);
let t' = Pretyping.Default.understand Evd.empty env t in
let new_env = Environ.push_rel (n,None,t') env in
let new_b,id_to_exclude =
@@ -1091,10 +1091,10 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
| Name id when Idset.mem id id_to_exclude && depth >= nb_args ->
new_b,Idset.remove id
(Idset.filter not_free_in_t id_to_exclude)
- | _ -> mkRProd(n,t,new_b),Idset.filter not_free_in_t id_to_exclude
+ | _ -> mkGProd(n,t,new_b),Idset.filter not_free_in_t id_to_exclude
end
| _ ->
- observe (str "computing new type for prod : " ++ pr_rawconstr rt);
+ observe (str "computing new type for prod : " ++ pr_glob_constr rt);
let t' = Pretyping.Default.understand Evd.empty env t in
let new_env = Environ.push_rel (n,None,t') env in
let new_b,id_to_exclude =
@@ -1107,13 +1107,13 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
| Name id when Idset.mem id id_to_exclude && depth >= nb_args ->
new_b,Idset.remove id
(Idset.filter not_free_in_t id_to_exclude)
- | _ -> mkRProd(n,t,new_b),Idset.filter not_free_in_t id_to_exclude
+ | _ -> mkGProd(n,t,new_b),Idset.filter not_free_in_t id_to_exclude
end
- | RLambda(_,n,k,t,b) ->
+ | GLambda(_,n,k,t,b) ->
begin
let not_free_in_t id = not (is_free_in id t) in
let new_crossed_types = t :: crossed_types in
- observe (str "computing new type for lambda : " ++ pr_rawconstr rt);
+ observe (str "computing new type for lambda : " ++ pr_glob_constr rt);
let t' = Pretyping.Default.understand Evd.empty env t in
match n with
| Name id ->
@@ -1121,19 +1121,19 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
let new_b,id_to_exclude =
rebuild_cons new_env
nb_args relname
- (args@[mkRVar id])new_crossed_types
+ (args@[mkGVar id])new_crossed_types
(depth + 1 ) b
in
if Idset.mem id id_to_exclude && depth >= nb_args
then
new_b, Idset.remove id (Idset.filter not_free_in_t id_to_exclude)
else
- RProd(dummy_loc,n,k,t,new_b),Idset.filter not_free_in_t id_to_exclude
+ GProd(dummy_loc,n,k,t,new_b),Idset.filter not_free_in_t id_to_exclude
| _ -> anomaly "Should not have an anonymous function here"
(* We have renamed all the anonymous functions during alpha_renaming phase *)
end
- | RLetIn(_,n,t,b) ->
+ | GLetIn(_,n,t,b) ->
begin
let not_free_in_t id = not (is_free_in id t) in
let t' = Pretyping.Default.understand Evd.empty env t in
@@ -1147,10 +1147,10 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
match n with
| Name id when Idset.mem id id_to_exclude && depth >= nb_args ->
new_b,Idset.remove id (Idset.filter not_free_in_t id_to_exclude)
- | _ -> RLetIn(dummy_loc,n,t,new_b),
+ | _ -> GLetIn(dummy_loc,n,t,new_b),
Idset.filter not_free_in_t id_to_exclude
end
- | RLetTuple(_,nal,(na,rto),t,b) ->
+ | GLetTuple(_,nal,(na,rto),t,b) ->
assert (rto=None);
begin
let not_free_in_t id = not (is_free_in id t) in
@@ -1173,22 +1173,22 @@ let rec rebuild_cons env nb_args relname args crossed_types depth rt =
(* | Name id when Idset.mem id id_to_exclude -> *)
(* new_b,Idset.remove id (Idset.filter not_free_in_t id_to_exclude) *)
(* | _ -> *)
- RLetTuple(dummy_loc,nal,(na,None),t,new_b),
+ GLetTuple(dummy_loc,nal,(na,None),t,new_b),
Idset.filter not_free_in_t (Idset.union id_to_exclude id_to_exclude')
end
- | _ -> mkRApp(mkRVar relname,args@[rt]),Idset.empty
+ | _ -> mkGApp(mkGVar relname,args@[rt]),Idset.empty
(* debuging wrapper *)
let rebuild_cons env nb_args relname args crossed_types rt =
- observe (str "rebuild_cons : rt := "++ pr_rawconstr rt ++
- str "nb_args := " ++ str (string_of_int nb_args));
+(* observennl (str "rebuild_cons : rt := "++ pr_glob_constr rt ++ *)
+(* str "nb_args := " ++ str (string_of_int nb_args)); *)
let res =
rebuild_cons env nb_args relname args crossed_types 0 rt
in
- observe (str " leads to "++ pr_rawconstr (fst res));
+(* observe (str " leads to "++ pr_glob_constr (fst res)); *)
res
@@ -1200,30 +1200,30 @@ let rebuild_cons env nb_args relname args crossed_types rt =
TODO: Find a valid way to deal with implicit arguments here!
*)
let rec compute_cst_params relnames params = function
- | RRef _ | RVar _ | REvar _ | RPatVar _ -> params
- | RApp(_,RVar(_,relname'),rtl) when Idset.mem relname' relnames ->
+ | GRef _ | GVar _ | GEvar _ | GPatVar _ -> params
+ | GApp(_,GVar(_,relname'),rtl) when Idset.mem relname' relnames ->
compute_cst_params_from_app [] (params,rtl)
- | RApp(_,f,args) ->
+ | GApp(_,f,args) ->
List.fold_left (compute_cst_params relnames) params (f::args)
- | RLambda(_,_,_,t,b) | RProd(_,_,_,t,b) | RLetIn(_,_,t,b) | RLetTuple(_,_,_,t,b) ->
+ | GLambda(_,_,_,t,b) | GProd(_,_,_,t,b) | GLetIn(_,_,t,b) | GLetTuple(_,_,_,t,b) ->
let t_params = compute_cst_params relnames params t in
compute_cst_params relnames t_params b
- | RCases _ ->
+ | GCases _ ->
params (* If there is still cases at this point they can only be
discriminitation ones *)
- | RSort _ -> params
- | RHole _ -> params
- | RIf _ | RRec _ | RCast _ | RDynamic _ ->
+ | GSort _ -> params
+ | GHole _ -> params
+ | GIf _ | GRec _ | GCast _ ->
raise (UserError("compute_cst_params", str "Not handled case"))
and compute_cst_params_from_app acc (params,rtl) =
match params,rtl with
| _::_,[] -> assert false (* the rel has at least nargs + 1 arguments ! *)
- | ((Name id,_,is_defined) as param)::params',(RVar(_,id'))::rtl'
+ | ((Name id,_,is_defined) as param)::params',(GVar(_,id'))::rtl'
when id_ord id id' == 0 && not is_defined ->
compute_cst_params_from_app (param::acc) (params',rtl')
| _ -> List.rev acc
-let compute_params_name relnames (args : (Names.name * Rawterm.rawconstr * bool) list array) csts =
+let compute_params_name relnames (args : (Names.name * Glob_term.glob_constr * bool) list array) csts =
let rels_params =
Array.mapi
(fun i args ->
@@ -1242,13 +1242,13 @@ let compute_params_name relnames (args : (Names.name * Rawterm.rawconstr * bool)
if array_for_all
(fun l ->
let (n',nt',is_defined') = List.nth l i in
- n = n' && Topconstr.eq_rawconstr nt nt' && is_defined = is_defined')
+ n = n' && Topconstr.eq_glob_constr nt nt' && is_defined = is_defined')
rels_params
then
l := param::!l
)
rels_params.(0)
- with _ ->
+ with e when Errors.noncritical e ->
()
in
List.rev !l
@@ -1261,15 +1261,15 @@ let rec rebuild_return_type rt =
Topconstr.CArrow(loc,t,rebuild_return_type t')
| Topconstr.CLetIn(loc,na,t,t') ->
Topconstr.CLetIn(loc,na,t,rebuild_return_type t')
- | _ -> Topconstr.CArrow(dummy_loc,rt,Topconstr.CSort(dummy_loc,RType None))
+ | _ -> Topconstr.CArrow(dummy_loc,rt,Topconstr.CSort(dummy_loc,GType None))
let do_build_inductive
- funnames (funsargs: (Names.name * rawconstr * bool) list list)
+ funnames (funsargs: (Names.name * glob_constr * bool) list list)
returned_types
- (rtl:rawconstr list) =
+ (rtl:glob_constr list) =
let _time1 = System.get_time () in
-(* Pp.msgnl (prlist_with_sep fnl Printer.pr_rawconstr rtl); *)
+(* Pp.msgnl (prlist_with_sep fnl Printer.pr_glob_constr rtl); *)
let funnames_as_set = List.fold_right Idset.add funnames Idset.empty in
let funnames = Array.of_list funnames in
let funsargs = Array.of_list funsargs in
@@ -1286,7 +1286,7 @@ let do_build_inductive
let env =
Array.fold_right
(fun id env ->
- Environ.push_named (id,None,Typing.type_of env Evd.empty (Tacinterp.constr_of_id env id)) env
+ Environ.push_named (id,None,Typing.type_of env Evd.empty (Constrintern.global_reference id)) env
)
funnames
(Global.env ())
@@ -1294,19 +1294,19 @@ let do_build_inductive
let resa = Array.map (build_entry_lc env funnames_as_set []) rta in
let env_with_graphs =
let rel_arity i funargs = (* Reduilding arities (with parameters) *)
- let rel_first_args :(Names.name * Rawterm.rawconstr * bool ) list =
+ let rel_first_args :(Names.name * Glob_term.glob_constr * bool ) list =
funargs
in
List.fold_right
(fun (n,t,is_defined) acc ->
if is_defined
then
- Topconstr.CLetIn(dummy_loc,(dummy_loc, n),Constrextern.extern_rawconstr Idset.empty t,
+ Topconstr.CLetIn(dummy_loc,(dummy_loc, n),Constrextern.extern_glob_constr Idset.empty t,
acc)
else
Topconstr.CProdN
(dummy_loc,
- [[(dummy_loc,n)],Topconstr.default_binder_kind,Constrextern.extern_rawconstr Idset.empty t],
+ [[(dummy_loc,n)],Topconstr.default_binder_kind,Constrextern.extern_glob_constr Idset.empty t],
acc
)
)
@@ -1325,9 +1325,9 @@ let do_build_inductive
let constr i res =
List.map
(function result (* (args',concl') *) ->
- let rt = compose_raw_context result.context result.value in
+ let rt = compose_glob_context result.context result.value in
let nb_args = List.length funsargs.(i) in
- (* with_full_print (fun rt -> Pp.msgnl (str "raw constr " ++ pr_rawconstr rt)) rt; *)
+ (* with_full_print (fun rt -> Pp.msgnl (str "glob constr " ++ pr_glob_constr rt)) rt; *)
fst (
rebuild_cons env_with_graphs nb_args relnames.(i)
[]
@@ -1346,7 +1346,7 @@ let do_build_inductive
i*)
id_of_string ((string_of_id (mk_rel_id funnames.(i)))^"_"^(string_of_int !next_constructor_id))
in
- let rel_constructors i rt : (identifier*rawconstr) list =
+ let rel_constructors i rt : (identifier*glob_constr) list =
next_constructor_id := (-1);
List.map (fun constr -> (mk_constructor_id i),constr) (constr i rt)
in
@@ -1360,19 +1360,19 @@ let do_build_inductive
rel_constructors
in
let rel_arity i funargs = (* Reduilding arities (with parameters) *)
- let rel_first_args :(Names.name * Rawterm.rawconstr * bool ) list =
+ let rel_first_args :(Names.name * Glob_term.glob_constr * bool ) list =
(snd (list_chop nrel_params funargs))
in
List.fold_right
(fun (n,t,is_defined) acc ->
if is_defined
then
- Topconstr.CLetIn(dummy_loc,(dummy_loc, n),Constrextern.extern_rawconstr Idset.empty t,
+ Topconstr.CLetIn(dummy_loc,(dummy_loc, n),Constrextern.extern_glob_constr Idset.empty t,
acc)
else
Topconstr.CProdN
(dummy_loc,
- [[(dummy_loc,n)],Topconstr.default_binder_kind,Constrextern.extern_rawconstr Idset.empty t],
+ [[(dummy_loc,n)],Topconstr.default_binder_kind,Constrextern.extern_glob_constr Idset.empty t],
acc
)
)
@@ -1389,10 +1389,10 @@ let do_build_inductive
(fun (n,t,is_defined) ->
if is_defined
then
- Topconstr.LocalRawDef((dummy_loc,n), Constrextern.extern_rawconstr Idset.empty t)
+ Topconstr.LocalRawDef((dummy_loc,n), Constrextern.extern_glob_constr Idset.empty t)
else
Topconstr.LocalRawAssum
- ([(dummy_loc,n)], Topconstr.default_binder_kind, Constrextern.extern_rawconstr Idset.empty t)
+ ([(dummy_loc,n)], Topconstr.default_binder_kind, Constrextern.extern_glob_constr Idset.empty t)
)
rels_params
in
@@ -1402,7 +1402,7 @@ let do_build_inductive
false,((dummy_loc,id),
Flags.with_option
Flags.raw_print
- (Constrextern.extern_rawtype Idset.empty) ((* zeta_normalize *) t)
+ (Constrextern.extern_glob_type Idset.empty) ((* zeta_normalize *) t)
)
))
(rel_constructors)
@@ -1454,7 +1454,7 @@ let do_build_inductive
in
observe (msg);
raise e
- | e ->
+ | reraise ->
let _time3 = System.get_time () in
(* Pp.msgnl (str "error : "++ str (string_of_float (System.time_difference time2 time3))); *)
let repacked_rel_inds =
@@ -1465,16 +1465,16 @@ let do_build_inductive
str "while trying to define"++ spc () ++
Ppvernac.pr_vernac (Vernacexpr.VernacInductive(Decl_kinds.Finite,false,repacked_rel_inds))
++ fnl () ++
- Cerrors.explain_exn e
+ Errors.print reraise
in
observe msg;
- raise e
+ raise reraise
let build_inductive funnames funsargs returned_types rtl =
try
do_build_inductive funnames funsargs returned_types rtl
- with e -> raise (Building_graph e)
+ with e when Errors.noncritical e -> raise (Building_graph e)
diff --git a/plugins/funind/rawterm_to_relation.mli b/plugins/funind/glob_term_to_relation.mli
index a314050f..5c91292b 100644
--- a/plugins/funind/rawterm_to_relation.mli
+++ b/plugins/funind/glob_term_to_relation.mli
@@ -9,8 +9,8 @@
val build_inductive :
Names.identifier list -> (* The list of function name *)
- (Names.name*Rawterm.rawconstr*bool) list list -> (* The list of function args *)
+ (Names.name*Glob_term.glob_constr*bool) list list -> (* The list of function args *)
Topconstr.constr_expr list -> (* The list of function returned type *)
- Rawterm.rawconstr list -> (* the list of body *)
+ Glob_term.glob_constr list -> (* the list of body *)
unit
diff --git a/plugins/funind/rawtermops.ml b/plugins/funind/glob_termops.ml
index e31f1452..6cc932b1 100644
--- a/plugins/funind/rawtermops.ml
+++ b/plugins/funind/glob_termops.ml
@@ -1,89 +1,89 @@
open Pp
-open Rawterm
+open Glob_term
open Util
open Names
(* Ocaml 3.06 Map.S does not handle is_empty *)
let idmap_is_empty m = m = Idmap.empty
(*
- Some basic functions to rebuild rawconstr
+ Some basic functions to rebuild glob_constr
In each of them the location is Util.dummy_loc
*)
-let mkRRef ref = RRef(dummy_loc,ref)
-let mkRVar id = RVar(dummy_loc,id)
-let mkRApp(rt,rtl) = RApp(dummy_loc,rt,rtl)
-let mkRLambda(n,t,b) = RLambda(dummy_loc,n,Explicit,t,b)
-let mkRProd(n,t,b) = RProd(dummy_loc,n,Explicit,t,b)
-let mkRLetIn(n,t,b) = RLetIn(dummy_loc,n,t,b)
-let mkRCases(rto,l,brl) = RCases(dummy_loc,Term.RegularStyle,rto,l,brl)
-let mkRSort s = RSort(dummy_loc,s)
-let mkRHole () = RHole(dummy_loc,Evd.BinderType Anonymous)
-let mkRCast(b,t) = RCast(dummy_loc,b,CastConv (Term.DEFAULTcast,t))
+let mkGRef ref = GRef(dummy_loc,ref)
+let mkGVar id = GVar(dummy_loc,id)
+let mkGApp(rt,rtl) = GApp(dummy_loc,rt,rtl)
+let mkGLambda(n,t,b) = GLambda(dummy_loc,n,Explicit,t,b)
+let mkGProd(n,t,b) = GProd(dummy_loc,n,Explicit,t,b)
+let mkGLetIn(n,t,b) = GLetIn(dummy_loc,n,t,b)
+let mkGCases(rto,l,brl) = GCases(dummy_loc,Term.RegularStyle,rto,l,brl)
+let mkGSort s = GSort(dummy_loc,s)
+let mkGHole () = GHole(dummy_loc,Evd.BinderType Anonymous)
+let mkGCast(b,t) = GCast(dummy_loc,b,CastConv (Term.DEFAULTcast,t))
(*
- Some basic functions to decompose rawconstrs
+ Some basic functions to decompose glob_constrs
These are analogous to the ones constrs
*)
-let raw_decompose_prod =
- let rec raw_decompose_prod args = function
- | RProd(_,n,k,t,b) ->
- raw_decompose_prod ((n,t)::args) b
+let glob_decompose_prod =
+ let rec glob_decompose_prod args = function
+ | GProd(_,n,k,t,b) ->
+ glob_decompose_prod ((n,t)::args) b
| rt -> args,rt
in
- raw_decompose_prod []
-
-let raw_decompose_prod_or_letin =
- let rec raw_decompose_prod args = function
- | RProd(_,n,k,t,b) ->
- raw_decompose_prod ((n,None,Some t)::args) b
- | RLetIn(_,n,t,b) ->
- raw_decompose_prod ((n,Some t,None)::args) b
+ glob_decompose_prod []
+
+let glob_decompose_prod_or_letin =
+ let rec glob_decompose_prod args = function
+ | GProd(_,n,k,t,b) ->
+ glob_decompose_prod ((n,None,Some t)::args) b
+ | GLetIn(_,n,t,b) ->
+ glob_decompose_prod ((n,Some t,None)::args) b
| rt -> args,rt
in
- raw_decompose_prod []
+ glob_decompose_prod []
-let raw_compose_prod =
- List.fold_left (fun b (n,t) -> mkRProd(n,t,b))
+let glob_compose_prod =
+ List.fold_left (fun b (n,t) -> mkGProd(n,t,b))
-let raw_compose_prod_or_letin =
+let glob_compose_prod_or_letin =
List.fold_left (
fun concl decl ->
match decl with
- | (n,None,Some t) -> mkRProd(n,t,concl)
- | (n,Some bdy,None) -> mkRLetIn(n,bdy,concl)
+ | (n,None,Some t) -> mkGProd(n,t,concl)
+ | (n,Some bdy,None) -> mkGLetIn(n,bdy,concl)
| _ -> assert false)
-let raw_decompose_prod_n n =
- let rec raw_decompose_prod i args c =
+let glob_decompose_prod_n n =
+ let rec glob_decompose_prod i args c =
if i<=0 then args,c
else
match c with
- | RProd(_,n,_,t,b) ->
- raw_decompose_prod (i-1) ((n,t)::args) b
+ | GProd(_,n,_,t,b) ->
+ glob_decompose_prod (i-1) ((n,t)::args) b
| rt -> args,rt
in
- raw_decompose_prod n []
+ glob_decompose_prod n []
-let raw_decompose_prod_or_letin_n n =
- let rec raw_decompose_prod i args c =
+let glob_decompose_prod_or_letin_n n =
+ let rec glob_decompose_prod i args c =
if i<=0 then args,c
else
match c with
- | RProd(_,n,_,t,b) ->
- raw_decompose_prod (i-1) ((n,None,Some t)::args) b
- | RLetIn(_,n,t,b) ->
- raw_decompose_prod (i-1) ((n,Some t,None)::args) b
+ | GProd(_,n,_,t,b) ->
+ glob_decompose_prod (i-1) ((n,None,Some t)::args) b
+ | GLetIn(_,n,t,b) ->
+ glob_decompose_prod (i-1) ((n,Some t,None)::args) b
| rt -> args,rt
in
- raw_decompose_prod n []
+ glob_decompose_prod n []
-let raw_decompose_app =
+let glob_decompose_app =
let rec decompose_rapp acc rt =
-(* msgnl (str "raw_decompose_app on : "++ Printer.pr_rawconstr rt); *)
+(* msgnl (str "glob_decompose_app on : "++ Printer.pr_glob_constr rt); *)
match rt with
- | RApp(_,rt,rtl) ->
+ | GApp(_,rt,rtl) ->
decompose_rapp (List.fold_left (fun y x -> x::y) acc rtl) rt
| rt -> rt,List.rev acc
in
@@ -92,24 +92,24 @@ let raw_decompose_app =
-(* [raw_make_eq t1 t2] build the rawconstr corresponding to [t2 = t1] *)
-let raw_make_eq ?(typ= mkRHole ()) t1 t2 =
- mkRApp(mkRRef (Lazy.force Coqlib.coq_eq_ref),[typ;t2;t1])
+(* [glob_make_eq t1 t2] build the glob_constr corresponding to [t2 = t1] *)
+let glob_make_eq ?(typ= mkGHole ()) t1 t2 =
+ mkGApp(mkGRef (Lazy.force Coqlib.coq_eq_ref),[typ;t2;t1])
-(* [raw_make_neq t1 t2] build the rawconstr corresponding to [t1 <> t2] *)
-let raw_make_neq t1 t2 =
- mkRApp(mkRRef (Lazy.force Coqlib.coq_not_ref),[raw_make_eq t1 t2])
+(* [glob_make_neq t1 t2] build the glob_constr corresponding to [t1 <> t2] *)
+let glob_make_neq t1 t2 =
+ mkGApp(mkGRef (Lazy.force Coqlib.coq_not_ref),[glob_make_eq t1 t2])
-(* [raw_make_or P1 P2] build the rawconstr corresponding to [P1 \/ P2] *)
-let raw_make_or t1 t2 = mkRApp (mkRRef(Lazy.force Coqlib.coq_or_ref),[t1;t2])
+(* [glob_make_or P1 P2] build the glob_constr corresponding to [P1 \/ P2] *)
+let glob_make_or t1 t2 = mkGApp (mkGRef(Lazy.force Coqlib.coq_or_ref),[t1;t2])
-(* [raw_make_or_list [P1;...;Pn]] build the rawconstr corresponding
+(* [glob_make_or_list [P1;...;Pn]] build the glob_constr corresponding
to [P1 \/ ( .... \/ Pn)]
*)
-let rec raw_make_or_list = function
+let rec glob_make_or_list = function
| [] -> raise (Invalid_argument "mk_or")
| [e] -> e
- | e::l -> raw_make_or e (raw_make_or_list l)
+ | e::l -> glob_make_or e (glob_make_or_list l)
let remove_name_from_mapping mapping na =
@@ -120,70 +120,69 @@ let remove_name_from_mapping mapping na =
let change_vars =
let rec change_vars mapping rt =
match rt with
- | RRef _ -> rt
- | RVar(loc,id) ->
+ | GRef _ -> rt
+ | GVar(loc,id) ->
let new_id =
try
Idmap.find id mapping
with Not_found -> id
in
- RVar(loc,new_id)
- | REvar _ -> rt
- | RPatVar _ -> rt
- | RApp(loc,rt',rtl) ->
- RApp(loc,
+ GVar(loc,new_id)
+ | GEvar _ -> rt
+ | GPatVar _ -> rt
+ | GApp(loc,rt',rtl) ->
+ GApp(loc,
change_vars mapping rt',
List.map (change_vars mapping) rtl
)
- | RLambda(loc,name,k,t,b) ->
- RLambda(loc,
+ | GLambda(loc,name,k,t,b) ->
+ GLambda(loc,
name,
k,
change_vars mapping t,
change_vars (remove_name_from_mapping mapping name) b
)
- | RProd(loc,name,k,t,b) ->
- RProd(loc,
+ | GProd(loc,name,k,t,b) ->
+ GProd(loc,
name,
k,
change_vars mapping t,
change_vars (remove_name_from_mapping mapping name) b
)
- | RLetIn(loc,name,def,b) ->
- RLetIn(loc,
+ | GLetIn(loc,name,def,b) ->
+ GLetIn(loc,
name,
change_vars mapping def,
change_vars (remove_name_from_mapping mapping name) b
)
- | RLetTuple(loc,nal,(na,rto),b,e) ->
+ | GLetTuple(loc,nal,(na,rto),b,e) ->
let new_mapping = List.fold_left remove_name_from_mapping mapping nal in
- RLetTuple(loc,
+ GLetTuple(loc,
nal,
(na, Option.map (change_vars mapping) rto),
change_vars mapping b,
change_vars new_mapping e
)
- | RCases(loc,sty,infos,el,brl) ->
- RCases(loc,sty,
+ | GCases(loc,sty,infos,el,brl) ->
+ GCases(loc,sty,
infos,
List.map (fun (e,x) -> (change_vars mapping e,x)) el,
List.map (change_vars_br mapping) brl
)
- | RIf(loc,b,(na,e_option),lhs,rhs) ->
- RIf(loc,
+ | GIf(loc,b,(na,e_option),lhs,rhs) ->
+ GIf(loc,
change_vars mapping b,
(na,Option.map (change_vars mapping) e_option),
change_vars mapping lhs,
change_vars mapping rhs
)
- | RRec _ -> error "Local (co)fixes are not supported"
- | RSort _ -> rt
- | RHole _ -> rt
- | RCast(loc,b,CastConv (k,t)) ->
- RCast(loc,change_vars mapping b, CastConv (k,change_vars mapping t))
- | RCast(loc,b,CastCoerce) ->
- RCast(loc,change_vars mapping b,CastCoerce)
- | RDynamic _ -> error "Not handled RDynamic"
+ | GRec _ -> error "Local (co)fixes are not supported"
+ | GSort _ -> rt
+ | GHole _ -> rt
+ | GCast(loc,b,CastConv (k,t)) ->
+ GCast(loc,change_vars mapping b, CastConv (k,change_vars mapping t))
+ | GCast(loc,b,CastCoerce) ->
+ GCast(loc,change_vars mapping b,CastCoerce)
and change_vars_br mapping ((loc,idl,patl,res) as br) =
let new_mapping = List.fold_right Idmap.remove idl mapping in
if idmap_is_empty new_mapping
@@ -262,22 +261,22 @@ let get_pattern_id pat = raw_get_pattern_id pat []
let rec alpha_rt excluded rt =
let new_rt =
match rt with
- | RRef _ | RVar _ | REvar _ | RPatVar _ -> rt
- | RLambda(loc,Anonymous,k,t,b) ->
+ | GRef _ | GVar _ | GEvar _ | GPatVar _ -> rt
+ | GLambda(loc,Anonymous,k,t,b) ->
let new_id = Namegen.next_ident_away (id_of_string "_x") excluded in
let new_excluded = new_id :: excluded in
let new_t = alpha_rt new_excluded t in
let new_b = alpha_rt new_excluded b in
- RLambda(loc,Name new_id,k,new_t,new_b)
- | RProd(loc,Anonymous,k,t,b) ->
+ GLambda(loc,Name new_id,k,new_t,new_b)
+ | GProd(loc,Anonymous,k,t,b) ->
let new_t = alpha_rt excluded t in
let new_b = alpha_rt excluded b in
- RProd(loc,Anonymous,k,new_t,new_b)
- | RLetIn(loc,Anonymous,t,b) ->
+ GProd(loc,Anonymous,k,new_t,new_b)
+ | GLetIn(loc,Anonymous,t,b) ->
let new_t = alpha_rt excluded t in
let new_b = alpha_rt excluded b in
- RLetIn(loc,Anonymous,new_t,new_b)
- | RLambda(loc,Name id,k,t,b) ->
+ GLetIn(loc,Anonymous,new_t,new_b)
+ | GLambda(loc,Name id,k,t,b) ->
let new_id = Namegen.next_ident_away id excluded in
let t,b =
if new_id = id
@@ -289,8 +288,8 @@ let rec alpha_rt excluded rt =
let new_excluded = new_id::excluded in
let new_t = alpha_rt new_excluded t in
let new_b = alpha_rt new_excluded b in
- RLambda(loc,Name new_id,k,new_t,new_b)
- | RProd(loc,Name id,k,t,b) ->
+ GLambda(loc,Name new_id,k,new_t,new_b)
+ | GProd(loc,Name id,k,t,b) ->
let new_id = Namegen.next_ident_away id excluded in
let new_excluded = new_id::excluded in
let t,b =
@@ -302,8 +301,8 @@ let rec alpha_rt excluded rt =
in
let new_t = alpha_rt new_excluded t in
let new_b = alpha_rt new_excluded b in
- RProd(loc,Name new_id,k,new_t,new_b)
- | RLetIn(loc,Name id,t,b) ->
+ GProd(loc,Name new_id,k,new_t,new_b)
+ | GLetIn(loc,Name id,t,b) ->
let new_id = Namegen.next_ident_away id excluded in
let t,b =
if new_id = id
@@ -315,10 +314,10 @@ let rec alpha_rt excluded rt =
let new_excluded = new_id::excluded in
let new_t = alpha_rt new_excluded t in
let new_b = alpha_rt new_excluded b in
- RLetIn(loc,Name new_id,new_t,new_b)
+ GLetIn(loc,Name new_id,new_t,new_b)
- | RLetTuple(loc,nal,(na,rto),t,b) ->
+ | GLetTuple(loc,nal,(na,rto),t,b) ->
let rev_new_nal,new_excluded,mapping =
List.fold_left
(fun (nal,excluded,mapping) na ->
@@ -345,28 +344,27 @@ let rec alpha_rt excluded rt =
let new_t = alpha_rt new_excluded new_t in
let new_b = alpha_rt new_excluded new_b in
let new_rto = Option.map (alpha_rt new_excluded) new_rto in
- RLetTuple(loc,new_nal,(na,new_rto),new_t,new_b)
- | RCases(loc,sty,infos,el,brl) ->
+ GLetTuple(loc,new_nal,(na,new_rto),new_t,new_b)
+ | GCases(loc,sty,infos,el,brl) ->
let new_el =
List.map (function (rt,i) -> alpha_rt excluded rt, i) el
in
- RCases(loc,sty,infos,new_el,List.map (alpha_br excluded) brl)
- | RIf(loc,b,(na,e_o),lhs,rhs) ->
- RIf(loc,alpha_rt excluded b,
+ GCases(loc,sty,infos,new_el,List.map (alpha_br excluded) brl)
+ | GIf(loc,b,(na,e_o),lhs,rhs) ->
+ GIf(loc,alpha_rt excluded b,
(na,Option.map (alpha_rt excluded) e_o),
alpha_rt excluded lhs,
alpha_rt excluded rhs
)
- | RRec _ -> error "Not handled RRec"
- | RSort _ -> rt
- | RHole _ -> rt
- | RCast (loc,b,CastConv (k,t)) ->
- RCast(loc,alpha_rt excluded b,CastConv(k,alpha_rt excluded t))
- | RCast (loc,b,CastCoerce) ->
- RCast(loc,alpha_rt excluded b,CastCoerce)
- | RDynamic _ -> error "Not handled RDynamic"
- | RApp(loc,f,args) ->
- RApp(loc,
+ | GRec _ -> error "Not handled GRec"
+ | GSort _ -> rt
+ | GHole _ -> rt
+ | GCast (loc,b,CastConv (k,t)) ->
+ GCast(loc,alpha_rt excluded b,CastConv(k,alpha_rt excluded t))
+ | GCast (loc,b,CastCoerce) ->
+ GCast(loc,alpha_rt excluded b,CastCoerce)
+ | GApp(loc,f,args) ->
+ GApp(loc,
alpha_rt excluded f,
List.map (alpha_rt excluded) args
)
@@ -386,35 +384,34 @@ and alpha_br excluded (loc,ids,patl,res) =
*)
let is_free_in id =
let rec is_free_in = function
- | RRef _ -> false
- | RVar(_,id') -> id_ord id' id == 0
- | REvar _ -> false
- | RPatVar _ -> false
- | RApp(_,rt,rtl) -> List.exists is_free_in (rt::rtl)
- | RLambda(_,n,_,t,b) | RProd(_,n,_,t,b) | RLetIn(_,n,t,b) ->
+ | GRef _ -> false
+ | GVar(_,id') -> id_ord id' id == 0
+ | GEvar _ -> false
+ | GPatVar _ -> false
+ | GApp(_,rt,rtl) -> List.exists is_free_in (rt::rtl)
+ | GLambda(_,n,_,t,b) | GProd(_,n,_,t,b) | GLetIn(_,n,t,b) ->
let check_in_b =
match n with
| Name id' -> id_ord id' id <> 0
| _ -> true
in
is_free_in t || (check_in_b && is_free_in b)
- | RCases(_,_,_,el,brl) ->
+ | GCases(_,_,_,el,brl) ->
(List.exists (fun (e,_) -> is_free_in e) el) ||
List.exists is_free_in_br brl
- | RLetTuple(_,nal,_,b,t) ->
+ | GLetTuple(_,nal,_,b,t) ->
let check_in_nal =
not (List.exists (function Name id' -> id'= id | _ -> false) nal)
in
is_free_in t || (check_in_nal && is_free_in b)
- | RIf(_,cond,_,br1,br2) ->
+ | GIf(_,cond,_,br1,br2) ->
is_free_in cond || is_free_in br1 || is_free_in br2
- | RRec _ -> raise (UserError("",str "Not handled RRec"))
- | RSort _ -> false
- | RHole _ -> false
- | RCast (_,b,CastConv (_,t)) -> is_free_in b || is_free_in t
- | RCast (_,b,CastCoerce) -> is_free_in b
- | RDynamic _ -> raise (UserError("",str "Not handled RDynamic"))
+ | GRec _ -> raise (UserError("",str "Not handled GRec"))
+ | GSort _ -> false
+ | GHole _ -> false
+ | GCast (_,b,CastConv (_,t)) -> is_free_in b || is_free_in t
+ | GCast (_,b,CastCoerce) -> is_free_in b
and is_free_in_br (_,ids,_,rt) =
(not (List.mem id ids)) && is_free_in rt
in
@@ -425,7 +422,7 @@ let is_free_in id =
let rec pattern_to_term = function
| PatVar(loc,Anonymous) -> assert false
| PatVar(loc,Name id) ->
- mkRVar id
+ mkGVar id
| PatCstr(loc,constr,patternl,_) ->
let cst_narg =
Inductiveops.mis_constructor_nargs_env
@@ -436,13 +433,13 @@ let rec pattern_to_term = function
Array.to_list
(Array.init
(cst_narg - List.length patternl)
- (fun _ -> mkRHole ())
+ (fun _ -> mkGHole ())
)
in
let patl_as_term =
List.map pattern_to_term patternl
in
- mkRApp(mkRRef(Libnames.ConstructRef constr),
+ mkGApp(mkGRef(Libnames.ConstructRef constr),
implicit_args@patl_as_term
)
@@ -451,69 +448,68 @@ let rec pattern_to_term = function
let replace_var_by_term x_id term =
let rec replace_var_by_pattern rt =
match rt with
- | RRef _ -> rt
- | RVar(_,id) when id_ord id x_id == 0 -> term
- | RVar _ -> rt
- | REvar _ -> rt
- | RPatVar _ -> rt
- | RApp(loc,rt',rtl) ->
- RApp(loc,
+ | GRef _ -> rt
+ | GVar(_,id) when id_ord id x_id == 0 -> term
+ | GVar _ -> rt
+ | GEvar _ -> rt
+ | GPatVar _ -> rt
+ | GApp(loc,rt',rtl) ->
+ GApp(loc,
replace_var_by_pattern rt',
List.map replace_var_by_pattern rtl
)
- | RLambda(_,Name id,_,_,_) when id_ord id x_id == 0 -> rt
- | RLambda(loc,name,k,t,b) ->
- RLambda(loc,
+ | GLambda(_,Name id,_,_,_) when id_ord id x_id == 0 -> rt
+ | GLambda(loc,name,k,t,b) ->
+ GLambda(loc,
name,
k,
replace_var_by_pattern t,
replace_var_by_pattern b
)
- | RProd(_,Name id,_,_,_) when id_ord id x_id == 0 -> rt
- | RProd(loc,name,k,t,b) ->
- RProd(loc,
+ | GProd(_,Name id,_,_,_) when id_ord id x_id == 0 -> rt
+ | GProd(loc,name,k,t,b) ->
+ GProd(loc,
name,
k,
replace_var_by_pattern t,
replace_var_by_pattern b
)
- | RLetIn(_,Name id,_,_) when id_ord id x_id == 0 -> rt
- | RLetIn(loc,name,def,b) ->
- RLetIn(loc,
+ | GLetIn(_,Name id,_,_) when id_ord id x_id == 0 -> rt
+ | GLetIn(loc,name,def,b) ->
+ GLetIn(loc,
name,
replace_var_by_pattern def,
replace_var_by_pattern b
)
- | RLetTuple(_,nal,_,_,_)
+ | GLetTuple(_,nal,_,_,_)
when List.exists (function Name id -> id = x_id | _ -> false) nal ->
rt
- | RLetTuple(loc,nal,(na,rto),def,b) ->
- RLetTuple(loc,
+ | GLetTuple(loc,nal,(na,rto),def,b) ->
+ GLetTuple(loc,
nal,
(na,Option.map replace_var_by_pattern rto),
replace_var_by_pattern def,
replace_var_by_pattern b
)
- | RCases(loc,sty,infos,el,brl) ->
- RCases(loc,sty,
+ | GCases(loc,sty,infos,el,brl) ->
+ GCases(loc,sty,
infos,
List.map (fun (e,x) -> (replace_var_by_pattern e,x)) el,
List.map replace_var_by_pattern_br brl
)
- | RIf(loc,b,(na,e_option),lhs,rhs) ->
- RIf(loc, replace_var_by_pattern b,
+ | GIf(loc,b,(na,e_option),lhs,rhs) ->
+ GIf(loc, replace_var_by_pattern b,
(na,Option.map replace_var_by_pattern e_option),
replace_var_by_pattern lhs,
replace_var_by_pattern rhs
)
- | RRec _ -> raise (UserError("",str "Not handled RRec"))
- | RSort _ -> rt
- | RHole _ -> rt
- | RCast(loc,b,CastConv(k,t)) ->
- RCast(loc,replace_var_by_pattern b,CastConv(k,replace_var_by_pattern t))
- | RCast(loc,b,CastCoerce) ->
- RCast(loc,replace_var_by_pattern b,CastCoerce)
- | RDynamic _ -> raise (UserError("",str "Not handled RDynamic"))
+ | GRec _ -> raise (UserError("",str "Not handled GRec"))
+ | GSort _ -> rt
+ | GHole _ -> rt
+ | GCast(loc,b,CastConv(k,t)) ->
+ GCast(loc,replace_var_by_pattern b,CastConv(k,replace_var_by_pattern t))
+ | GCast(loc,b,CastCoerce) ->
+ GCast(loc,replace_var_by_pattern b,CastCoerce)
and replace_var_by_pattern_br ((loc,idl,patl,res) as br) =
if List.exists (fun id -> id_ord id x_id == 0) idl
then br
@@ -538,7 +534,8 @@ let rec are_unifiable_aux = function
else
let eqs' =
try ((List.combine cpl1 cpl2)@eqs)
- with _ -> anomaly "are_unifiable_aux"
+ with e when Errors.noncritical e ->
+ anomaly "are_unifiable_aux"
in
are_unifiable_aux eqs'
@@ -560,7 +557,8 @@ let rec eq_cases_pattern_aux = function
else
let eqs' =
try ((List.combine cpl1 cpl2)@eqs)
- with _ -> anomaly "eq_cases_pattern_aux"
+ with e when Errors.noncritical e ->
+ anomaly "eq_cases_pattern_aux"
in
eq_cases_pattern_aux eqs'
| _ -> raise NotUnifiable
@@ -586,28 +584,28 @@ let id_of_name = function
| Names.Name x -> x
(* TODO: finish Rec caes *)
-let ids_of_rawterm c =
- let rec ids_of_rawterm acc c =
+let ids_of_glob_constr c =
+ let rec ids_of_glob_constr acc c =
let idof = id_of_name in
match c with
- | RVar (_,id) -> id::acc
- | RApp (loc,g,args) ->
- ids_of_rawterm [] g @ List.flatten (List.map (ids_of_rawterm []) args) @ acc
- | RLambda (loc,na,k,ty,c) -> idof na :: ids_of_rawterm [] ty @ ids_of_rawterm [] c @ acc
- | RProd (loc,na,k,ty,c) -> idof na :: ids_of_rawterm [] ty @ ids_of_rawterm [] c @ acc
- | RLetIn (loc,na,b,c) -> idof na :: ids_of_rawterm [] b @ ids_of_rawterm [] c @ acc
- | RCast (loc,c,CastConv(k,t)) -> ids_of_rawterm [] c @ ids_of_rawterm [] t @ acc
- | RCast (loc,c,CastCoerce) -> ids_of_rawterm [] c @ acc
- | RIf (loc,c,(na,po),b1,b2) -> ids_of_rawterm [] c @ ids_of_rawterm [] b1 @ ids_of_rawterm [] b2 @ acc
- | RLetTuple (_,nal,(na,po),b,c) ->
- List.map idof nal @ ids_of_rawterm [] b @ ids_of_rawterm [] c @ acc
- | RCases (loc,sty,rtntypopt,tml,brchl) ->
- List.flatten (List.map (fun (_,idl,patl,c) -> idl @ ids_of_rawterm [] c) brchl)
- | RRec _ -> failwith "Fix inside a constructor branch"
- | (RSort _ | RHole _ | RRef _ | REvar _ | RPatVar _ | RDynamic _) -> []
+ | GVar (_,id) -> id::acc
+ | GApp (loc,g,args) ->
+ ids_of_glob_constr [] g @ List.flatten (List.map (ids_of_glob_constr []) args) @ acc
+ | GLambda (loc,na,k,ty,c) -> idof na :: ids_of_glob_constr [] ty @ ids_of_glob_constr [] c @ acc
+ | GProd (loc,na,k,ty,c) -> idof na :: ids_of_glob_constr [] ty @ ids_of_glob_constr [] c @ acc
+ | GLetIn (loc,na,b,c) -> idof na :: ids_of_glob_constr [] b @ ids_of_glob_constr [] c @ acc
+ | GCast (loc,c,CastConv(k,t)) -> ids_of_glob_constr [] c @ ids_of_glob_constr [] t @ acc
+ | GCast (loc,c,CastCoerce) -> ids_of_glob_constr [] c @ acc
+ | GIf (loc,c,(na,po),b1,b2) -> ids_of_glob_constr [] c @ ids_of_glob_constr [] b1 @ ids_of_glob_constr [] b2 @ acc
+ | GLetTuple (_,nal,(na,po),b,c) ->
+ List.map idof nal @ ids_of_glob_constr [] b @ ids_of_glob_constr [] c @ acc
+ | GCases (loc,sty,rtntypopt,tml,brchl) ->
+ List.flatten (List.map (fun (_,idl,patl,c) -> idl @ ids_of_glob_constr [] c) brchl)
+ | GRec _ -> failwith "Fix inside a constructor branch"
+ | (GSort _ | GHole _ | GRef _ | GEvar _ | GPatVar _) -> []
in
(* build the set *)
- List.fold_left (fun acc x -> Idset.add x acc) Idset.empty (ids_of_rawterm [] c)
+ List.fold_left (fun acc x -> Idset.add x acc) Idset.empty (ids_of_glob_constr [] c)
@@ -616,59 +614,58 @@ let ids_of_rawterm c =
let zeta_normalize =
let rec zeta_normalize_term rt =
match rt with
- | RRef _ -> rt
- | RVar _ -> rt
- | REvar _ -> rt
- | RPatVar _ -> rt
- | RApp(loc,rt',rtl) ->
- RApp(loc,
+ | GRef _ -> rt
+ | GVar _ -> rt
+ | GEvar _ -> rt
+ | GPatVar _ -> rt
+ | GApp(loc,rt',rtl) ->
+ GApp(loc,
zeta_normalize_term rt',
List.map zeta_normalize_term rtl
)
- | RLambda(loc,name,k,t,b) ->
- RLambda(loc,
+ | GLambda(loc,name,k,t,b) ->
+ GLambda(loc,
name,
k,
zeta_normalize_term t,
zeta_normalize_term b
)
- | RProd(loc,name,k,t,b) ->
- RProd(loc,
+ | GProd(loc,name,k,t,b) ->
+ GProd(loc,
name,
k,
zeta_normalize_term t,
zeta_normalize_term b
)
- | RLetIn(_,Name id,def,b) ->
+ | GLetIn(_,Name id,def,b) ->
zeta_normalize_term (replace_var_by_term id def b)
- | RLetIn(loc,Anonymous,def,b) -> zeta_normalize_term b
- | RLetTuple(loc,nal,(na,rto),def,b) ->
- RLetTuple(loc,
+ | GLetIn(loc,Anonymous,def,b) -> zeta_normalize_term b
+ | GLetTuple(loc,nal,(na,rto),def,b) ->
+ GLetTuple(loc,
nal,
(na,Option.map zeta_normalize_term rto),
zeta_normalize_term def,
zeta_normalize_term b
)
- | RCases(loc,sty,infos,el,brl) ->
- RCases(loc,sty,
+ | GCases(loc,sty,infos,el,brl) ->
+ GCases(loc,sty,
infos,
List.map (fun (e,x) -> (zeta_normalize_term e,x)) el,
List.map zeta_normalize_br brl
)
- | RIf(loc,b,(na,e_option),lhs,rhs) ->
- RIf(loc, zeta_normalize_term b,
+ | GIf(loc,b,(na,e_option),lhs,rhs) ->
+ GIf(loc, zeta_normalize_term b,
(na,Option.map zeta_normalize_term e_option),
zeta_normalize_term lhs,
zeta_normalize_term rhs
)
- | RRec _ -> raise (UserError("",str "Not handled RRec"))
- | RSort _ -> rt
- | RHole _ -> rt
- | RCast(loc,b,CastConv(k,t)) ->
- RCast(loc,zeta_normalize_term b,CastConv(k,zeta_normalize_term t))
- | RCast(loc,b,CastCoerce) ->
- RCast(loc,zeta_normalize_term b,CastCoerce)
- | RDynamic _ -> raise (UserError("",str "Not handled RDynamic"))
+ | GRec _ -> raise (UserError("",str "Not handled GRec"))
+ | GSort _ -> rt
+ | GHole _ -> rt
+ | GCast(loc,b,CastConv(k,t)) ->
+ GCast(loc,zeta_normalize_term b,CastConv(k,zeta_normalize_term t))
+ | GCast(loc,b,CastCoerce) ->
+ GCast(loc,zeta_normalize_term b,CastCoerce)
and zeta_normalize_br (loc,idl,patl,res) =
(loc,idl,patl,zeta_normalize_term res)
in
@@ -688,29 +685,28 @@ let expand_as =
in
let rec expand_as map rt =
match rt with
- | RRef _ | REvar _ | RPatVar _ | RSort _ | RHole _ -> rt
- | RVar(_,id) ->
+ | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> rt
+ | GVar(_,id) ->
begin
try
Idmap.find id map
with Not_found -> rt
end
- | RApp(loc,f,args) -> RApp(loc,expand_as map f,List.map (expand_as map) args)
- | RLambda(loc,na,k,t,b) -> RLambda(loc,na,k,expand_as map t, expand_as map b)
- | RProd(loc,na,k,t,b) -> RProd(loc,na,k,expand_as map t, expand_as map b)
- | RLetIn(loc,na,v,b) -> RLetIn(loc,na, expand_as map v,expand_as map b)
- | RLetTuple(loc,nal,(na,po),v,b) ->
- RLetTuple(loc,nal,(na,Option.map (expand_as map) po),
+ | GApp(loc,f,args) -> GApp(loc,expand_as map f,List.map (expand_as map) args)
+ | GLambda(loc,na,k,t,b) -> GLambda(loc,na,k,expand_as map t, expand_as map b)
+ | GProd(loc,na,k,t,b) -> GProd(loc,na,k,expand_as map t, expand_as map b)
+ | GLetIn(loc,na,v,b) -> GLetIn(loc,na, expand_as map v,expand_as map b)
+ | GLetTuple(loc,nal,(na,po),v,b) ->
+ GLetTuple(loc,nal,(na,Option.map (expand_as map) po),
expand_as map v, expand_as map b)
- | RIf(loc,e,(na,po),br1,br2) ->
- RIf(loc,expand_as map e,(na,Option.map (expand_as map) po),
+ | GIf(loc,e,(na,po),br1,br2) ->
+ GIf(loc,expand_as map e,(na,Option.map (expand_as map) po),
expand_as map br1, expand_as map br2)
- | RRec _ -> error "Not handled RRec"
- | RDynamic _ -> error "Not handled RDynamic"
- | RCast(loc,b,CastConv(kind,t)) -> RCast(loc,expand_as map b,CastConv(kind,expand_as map t))
- | RCast(loc,b,CastCoerce) -> RCast(loc,expand_as map b,CastCoerce)
- | RCases(loc,sty,po,el,brl) ->
- RCases(loc, sty, Option.map (expand_as map) po, List.map (fun (rt,t) -> expand_as map rt,t) el,
+ | GRec _ -> error "Not handled GRec"
+ | GCast(loc,b,CastConv(kind,t)) -> GCast(loc,expand_as map b,CastConv(kind,expand_as map t))
+ | GCast(loc,b,CastCoerce) -> GCast(loc,expand_as map b,CastCoerce)
+ | GCases(loc,sty,po,el,brl) ->
+ GCases(loc, sty, Option.map (expand_as map) po, List.map (fun (rt,t) -> expand_as map rt,t) el,
List.map (expand_as_br map) brl)
and expand_as_br map (loc,idl,cpl,rt) =
(loc,idl,cpl, expand_as (List.fold_left add_as map cpl) rt)
diff --git a/plugins/funind/glob_termops.mli b/plugins/funind/glob_termops.mli
new file mode 100644
index 00000000..bfd15357
--- /dev/null
+++ b/plugins/funind/glob_termops.mli
@@ -0,0 +1,126 @@
+open Glob_term
+
+(* Ocaml 3.06 Map.S does not handle is_empty *)
+val idmap_is_empty : 'a Names.Idmap.t -> bool
+
+
+(* [get_pattern_id pat] returns a list of all the variable appearing in [pat] *)
+val get_pattern_id : cases_pattern -> Names.identifier list
+
+(* [pattern_to_term pat] returns a glob_constr corresponding to [pat].
+ [pat] must not contain occurences of anonymous pattern
+*)
+val pattern_to_term : cases_pattern -> glob_constr
+
+(*
+ Some basic functions to rebuild glob_constr
+ In each of them the location is Util.dummy_loc
+*)
+val mkGRef : Libnames.global_reference -> glob_constr
+val mkGVar : Names.identifier -> glob_constr
+val mkGApp : glob_constr*(glob_constr list) -> glob_constr
+val mkGLambda : Names.name * glob_constr * glob_constr -> glob_constr
+val mkGProd : Names.name * glob_constr * glob_constr -> glob_constr
+val mkGLetIn : Names.name * glob_constr * glob_constr -> glob_constr
+val mkGCases : glob_constr option * tomatch_tuples * cases_clauses -> glob_constr
+val mkGSort : glob_sort -> glob_constr
+val mkGHole : unit -> glob_constr (* we only build Evd.BinderType Anonymous holes *)
+val mkGCast : glob_constr* glob_constr -> glob_constr
+(*
+ Some basic functions to decompose glob_constrs
+ These are analogous to the ones constrs
+*)
+val glob_decompose_prod : glob_constr -> (Names.name*glob_constr) list * glob_constr
+val glob_decompose_prod_or_letin :
+ glob_constr -> (Names.name*glob_constr option*glob_constr option) list * glob_constr
+val glob_decompose_prod_n : int -> glob_constr -> (Names.name*glob_constr) list * glob_constr
+val glob_decompose_prod_or_letin_n : int -> glob_constr ->
+ (Names.name*glob_constr option*glob_constr option) list * glob_constr
+val glob_compose_prod : glob_constr -> (Names.name*glob_constr) list -> glob_constr
+val glob_compose_prod_or_letin: glob_constr ->
+ (Names.name*glob_constr option*glob_constr option) list -> glob_constr
+val glob_decompose_app : glob_constr -> glob_constr*(glob_constr list)
+
+
+(* [glob_make_eq t1 t2] build the glob_constr corresponding to [t2 = t1] *)
+val glob_make_eq : ?typ:glob_constr -> glob_constr -> glob_constr -> glob_constr
+(* [glob_make_neq t1 t2] build the glob_constr corresponding to [t1 <> t2] *)
+val glob_make_neq : glob_constr -> glob_constr -> glob_constr
+(* [glob_make_or P1 P2] build the glob_constr corresponding to [P1 \/ P2] *)
+val glob_make_or : glob_constr -> glob_constr -> glob_constr
+
+(* [glob_make_or_list [P1;...;Pn]] build the glob_constr corresponding
+ to [P1 \/ ( .... \/ Pn)]
+*)
+val glob_make_or_list : glob_constr list -> glob_constr
+
+
+(* alpha_conversion functions *)
+
+
+
+(* Replace the var mapped in the glob_constr/context *)
+val change_vars : Names.identifier Names.Idmap.t -> glob_constr -> glob_constr
+
+
+
+(* [alpha_pat avoid pat] rename all the variables present in [pat] s.t.
+ the result does not share variables with [avoid]. This function create
+ a fresh variable for each occurence of the anonymous pattern.
+
+ Also returns a mapping from old variables to new ones and the concatenation of
+ [avoid] with the variables appearing in the result.
+*)
+ val alpha_pat :
+ Names.Idmap.key list ->
+ Glob_term.cases_pattern ->
+ Glob_term.cases_pattern * Names.Idmap.key list *
+ Names.identifier Names.Idmap.t
+
+(* [alpha_rt avoid rt] alpha convert [rt] s.t. the result repects barendregt
+ conventions and does not share bound variables with avoid
+*)
+val alpha_rt : Names.identifier list -> glob_constr -> glob_constr
+
+(* same as alpha_rt but for case branches *)
+val alpha_br : Names.identifier list ->
+ Util.loc * Names.identifier list * Glob_term.cases_pattern list *
+ Glob_term.glob_constr ->
+ Util.loc * Names.identifier list * Glob_term.cases_pattern list *
+ Glob_term.glob_constr
+
+
+(* Reduction function *)
+val replace_var_by_term :
+ Names.identifier ->
+ Glob_term.glob_constr -> Glob_term.glob_constr -> Glob_term.glob_constr
+
+
+
+(*
+ [is_free_in id rt] checks if [id] is a free variable in [rt]
+*)
+val is_free_in : Names.identifier -> glob_constr -> bool
+
+
+val are_unifiable : cases_pattern -> cases_pattern -> bool
+val eq_cases_pattern : cases_pattern -> cases_pattern -> bool
+
+
+
+(*
+ ids_of_pat : cases_pattern -> Idset.t
+ returns the set of variables appearing in a pattern
+*)
+val ids_of_pat : cases_pattern -> Names.Idset.t
+
+(* TODO: finish this function (Fix not treated) *)
+val ids_of_glob_constr: glob_constr -> Names.Idset.t
+
+(*
+ removing let_in construction in a glob_constr
+*)
+val zeta_normalize : Glob_term.glob_constr -> Glob_term.glob_constr
+
+
+val expand_as : glob_constr -> glob_constr
diff --git a/plugins/funind/indfun.ml b/plugins/funind/indfun.ml
index a61671f8..d2c065a0 100644
--- a/plugins/funind/indfun.ml
+++ b/plugins/funind/indfun.ml
@@ -4,7 +4,7 @@ open Term
open Pp
open Indfun_common
open Libnames
-open Rawterm
+open Glob_term
open Declarations
let is_rec_info scheme_info =
@@ -19,13 +19,11 @@ let is_rec_info scheme_info =
in
Util.list_fold_left_i test_branche 1 false (List.rev scheme_info.Tactics.branches)
-
let choose_dest_or_ind scheme_info =
if is_rec_info scheme_info
then Tactics.new_induct false
else Tactics.new_destruct false
-
let functional_induction with_clean c princl pat =
Dumpglob.pause ();
let res = let f,args = decompose_app c in
@@ -65,9 +63,8 @@ let functional_induction with_clean c princl pat =
errorlabstrm "" (str "Cannot find induction principle for "
++Printer.pr_lconstr (mkConst c') )
in
- (princ,Rawterm.NoBindings, Tacmach.pf_type_of g princ)
+ (princ,Glob_term.NoBindings, Tacmach.pf_type_of g princ)
| _ -> raise (UserError("",str "functional induction must be used with a function" ))
-
end
| Some ((princ,binding)) ->
princ,binding,Tacmach.pf_type_of g princ
@@ -78,14 +75,14 @@ let functional_induction with_clean c princl pat =
if princ_infos.Tactics.farg_in_concl
then [c] else []
in
- List.map (fun c -> Tacexpr.ElimOnConstr (c,NoBindings)) (args@c_list)
+ List.map (fun c -> Tacexpr.ElimOnConstr (Evd.empty,(c,NoBindings))) (args@c_list)
in
let princ' = Some (princ,bindings) in
let princ_vars =
List.fold_right
(fun a acc ->
try Idset.add (destVar a) acc
- with _ -> acc
+ with e when Errors.noncritical e -> acc
)
args
Idset.empty
@@ -104,9 +101,9 @@ let functional_induction with_clean c princl pat =
(Tacmach.pf_ids_of_hyps g)
in
let flag =
- Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
+ Glob_term.Cbv
+ {Glob_term.all_flags
+ with Glob_term.rDelta = false;
}
in
Tacticals.tclTHEN
@@ -114,7 +111,6 @@ let functional_induction with_clean c princl pat =
(Hiddentac.h_reduce flag Tacticals.allHypsAndConcl)
g
else Tacticals.tclIDTAC g
-
in
Tacticals.tclTHEN
(choose_dest_or_ind
@@ -129,94 +125,78 @@ let functional_induction with_clean c princl pat =
Dumpglob.continue ();
res
-
-
-
-type annot =
- Struct of identifier
- | Wf of Topconstr.constr_expr * identifier option * Topconstr.constr_expr list
- | Mes of Topconstr.constr_expr * identifier option * Topconstr.constr_expr list
-
-
-type newfixpoint_expr =
- identifier * annot * Topconstr.local_binder list * Topconstr.constr_expr * Topconstr.constr_expr
-
-let rec abstract_rawconstr c = function
+let rec abstract_glob_constr c = function
| [] -> c
- | Topconstr.LocalRawDef (x,b)::bl -> Topconstr.mkLetInC(x,b,abstract_rawconstr c bl)
+ | Topconstr.LocalRawDef (x,b)::bl -> Topconstr.mkLetInC(x,b,abstract_glob_constr c bl)
| Topconstr.LocalRawAssum (idl,k,t)::bl ->
List.fold_right (fun x b -> Topconstr.mkLambdaC([x],k,t,b)) idl
- (abstract_rawconstr c bl)
+ (abstract_glob_constr c bl)
let interp_casted_constr_with_implicits sigma env impls c =
-(* Constrintern.interp_rawconstr_with_implicits sigma env [] impls c *)
Constrintern.intern_gen false sigma env ~impls
~allow_patvar:false ~ltacvars:([],[]) c
-
(*
- Construct a fixpoint as a Rawterm
+ Construct a fixpoint as a Glob_term
and not as a constr
*)
+
let build_newrecursive
-(lnameargsardef) =
+ lnameargsardef =
let env0 = Global.env()
and sigma = Evd.empty
in
let (rec_sign,rec_impls) =
List.fold_left
- (fun (env,impls) ((_,recname),_,bl,arityc,_) ->
+ (fun (env,impls) ((_,recname),bl,arityc,_) ->
let arityc = Topconstr.prod_constr_expr arityc bl in
let arity = Constrintern.interp_type sigma env0 arityc in
let impl = Constrintern.compute_internalization_data env0 Constrintern.Recursive arity [] in
- (Environ.push_named (recname,None,arity) env, (recname, impl) :: impls))
- (env0,[]) lnameargsardef in
+ (Environ.push_named (recname,None,arity) env, Idmap.add recname impl impls))
+ (env0,Constrintern.empty_internalization_env) lnameargsardef in
let recdef =
(* Declare local notations *)
let fs = States.freeze() in
let def =
try
List.map
- (fun (_,_,bl,_,def) ->
- let def = abstract_rawconstr def bl in
+ (fun (_,bl,_,def) ->
+ let def = abstract_glob_constr def bl in
interp_casted_constr_with_implicits
sigma rec_sign rec_impls def
)
lnameargsardef
- with e ->
- States.unfreeze fs; raise e in
+ with reraise ->
+ States.unfreeze fs; raise reraise in
States.unfreeze fs; def
in
recdef,rec_impls
-
-let compute_annot (name,annot,args,types,body) =
- let names = List.map snd (Topconstr.names_of_local_assums args) in
- match annot with
- | None ->
- if List.length names > 1 then
- user_err_loc
- (dummy_loc,"Function",
- Pp.str "the recursive argument needs to be specified");
- let new_annot = (id_of_name (List.hd names)) in
- (name,Struct new_annot,args,types,body)
- | Some r -> (name,r,args,types,body)
-
+let build_newrecursive l =
+ let l' = List.map
+ (fun ((fixna,_,bll,ar,body_opt),lnot) ->
+ match body_opt with
+ | Some body ->
+ (fixna,bll,ar,body)
+ | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given")
+ ) l
+ in
+ build_newrecursive l'
(* Checks whether or not the mutual bloc is recursive *)
let rec is_rec names =
let names = List.fold_right Idset.add names Idset.empty in
let check_id id names = Idset.mem id names in
let rec lookup names = function
- | RVar(_,id) -> check_id id names
- | RRef _ | REvar _ | RPatVar _ | RSort _ | RHole _ | RDynamic _ -> false
- | RCast(_,b,_) -> lookup names b
- | RRec _ -> error "RRec not handled"
- | RIf(_,b,_,lhs,rhs) ->
+ | GVar(_,id) -> check_id id names
+ | GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ -> false
+ | GCast(_,b,_) -> lookup names b
+ | GRec _ -> error "GRec not handled"
+ | GIf(_,b,_,lhs,rhs) ->
(lookup names b) || (lookup names lhs) || (lookup names rhs)
- | RLetIn(_,na,t,b) | RLambda(_,na,_,t,b) | RProd(_,na,_,t,b) ->
+ | GLetIn(_,na,t,b) | GLambda(_,na,_,t,b) | GProd(_,na,_,t,b) ->
lookup names t || lookup (Nameops.name_fold Idset.remove na names) b
- | RLetTuple(_,nal,_,t,b) -> lookup names t ||
+ | GLetTuple(_,nal,_,t,b) -> lookup names t ||
lookup
(List.fold_left
(fun acc na -> Nameops.name_fold Idset.remove na acc)
@@ -224,8 +204,8 @@ let rec is_rec names =
nal
)
b
- | RApp(_,f,args) -> List.exists (lookup names) (f::args)
- | RCases(_,_,_,el,brl) ->
+ | GApp(_,f,args) -> List.exists (lookup names) (f::args)
+ | GCases(_,_,_,el,brl) ->
List.exists (fun (e,_) -> lookup names e) el ||
List.exists (lookup_br names) brl
and lookup_br names (_,idl,_,rt) =
@@ -240,9 +220,9 @@ let rec local_binders_length = function
| Topconstr.LocalRawDef _::bl -> 1 + local_binders_length bl
| Topconstr.LocalRawAssum (idl,_,_)::bl -> List.length idl + local_binders_length bl
-let prepare_body (name,annot,args,types,body) rt =
+let prepare_body ((name,_,args,types,_),_) rt =
let n = local_binders_length args in
-(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_rawconstr rt); *)
+(* Pp.msgnl (str "nb lambda to chop : " ++ str (string_of_int n) ++ fnl () ++Printer.pr_glob_constr rt); *)
let fun_args,rt' = chop_rlambda_n n rt in
(fun_args,rt')
@@ -251,7 +231,7 @@ let derive_inversion fix_names =
try
(* we first transform the fix_names identifier into their corresponding constant *)
let fix_names_as_constant =
- List.map (fun id -> destConst (Tacinterp.constr_of_id (Global.env ()) id)) fix_names
+ List.map (fun id -> destConst (Constrintern.global_reference id)) fix_names
in
(*
Then we check that the graphs have been defined
@@ -268,20 +248,22 @@ let derive_inversion fix_names =
Ensures by : register_built
i*)
(List.map
- (fun id -> destInd (Tacinterp.constr_of_id (Global.env ()) (mk_rel_id id)))
+ (fun id -> destInd (Constrintern.global_reference (mk_rel_id id)))
fix_names
)
- with e ->
+ with e when Errors.noncritical e ->
+ let e' = Cerrors.process_vernac_interp_error e in
msg_warning
- (str "Cannot built inversion information" ++
- if do_observe () then Cerrors.explain_exn e else mt ())
- with _ -> ()
+ (str "Cannot build inversion information" ++
+ if do_observe () then (fnl() ++ Errors.print e') else mt ())
+ with e when Errors.noncritical e -> ()
let warning_error names e =
+ let e = Cerrors.process_vernac_interp_error e in
let e_explain e =
match e with
- | ToShow e -> spc () ++ Cerrors.explain_exn e
- | _ -> if do_observe () then (spc () ++ Cerrors.explain_exn e) else mt ()
+ | ToShow e -> spc () ++ Errors.print e
+ | _ -> if do_observe () then (spc () ++ Errors.print e) else mt ()
in
match e with
| Building_graph e ->
@@ -297,10 +279,11 @@ let warning_error names e =
| _ -> raise e
let error_error names e =
+ let e = Cerrors.process_vernac_interp_error e in
let e_explain e =
match e with
- | ToShow e -> spc () ++ Cerrors.explain_exn e
- | _ -> if do_observe () then (spc () ++ Cerrors.explain_exn e) else mt ()
+ | ToShow e -> spc () ++ Errors.print e
+ | _ -> if do_observe () then (spc () ++ Errors.print e) else mt ()
in
match e with
| Building_graph e ->
@@ -311,16 +294,16 @@ let error_error names e =
| _ -> raise e
let generate_principle on_error
- is_general do_built fix_rec_l recdefs interactive_proof
+ is_general do_built (fix_rec_l:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) recdefs interactive_proof
(continue_proof : int -> Names.constant array -> Term.constr array -> int ->
Tacmach.tactic) : unit =
- let names = List.map (function ((_, name),_,_,_,_) -> name) fix_rec_l in
+ let names = List.map (function ((_, name),_,_,_,_),_ -> name) fix_rec_l in
let fun_bodies = List.map2 prepare_body fix_rec_l recdefs in
let funs_args = List.map fst fun_bodies in
- let funs_types = List.map (function (_,_,_,types,_) -> types) fix_rec_l in
+ let funs_types = List.map (function ((_,_,_,types,_),_) -> types) fix_rec_l in
try
(* We then register the Inductive graphs of the functions *)
- Rawterm_to_relation.build_inductive names funs_args funs_types recdefs;
+ Glob_term_to_relation.build_inductive names funs_args funs_types recdefs;
if do_built
then
begin
@@ -334,7 +317,7 @@ let generate_principle on_error
locate_ind
f_R_mut)
in
- let fname_kn (fname,_,_,_,_) =
+ let fname_kn ((fname,_,_,_,_),_) =
let f_ref = Ident fname in
locate_with_msg
(pr_reference f_ref++str ": Not an inductive type!")
@@ -363,24 +346,21 @@ let generate_principle on_error
Array.iter (add_Function is_general) funs_kn;
()
end
- with e ->
+ with e when Errors.noncritical e ->
on_error names e
-let register_struct is_rec fixpoint_exprl =
+let register_struct is_rec (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
match fixpoint_exprl with
| [((_,fname),_,bl,ret_type,body),_] when not is_rec ->
+ let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
let ce,imps =
- Command.interp_definition
- (Flags.boxed_definitions ()) bl None body (Some ret_type)
+ Command.interp_definition bl None body (Some ret_type)
in
Command.declare_definition
fname (Decl_kinds.Global,Decl_kinds.Definition)
ce imps (fun _ _ -> ())
| _ ->
- let fixpoint_exprl =
- List.map (fun ((name,annot,bl,types,body),ntn) ->
- ((name,annot,bl,types,Some body),ntn)) fixpoint_exprl in
- Command.do_fixpoint fixpoint_exprl (Flags.boxed_definitions())
+ Command.do_fixpoint fixpoint_exprl
let generate_correction_proof_wf f_ref tcc_lemma_ref
is_mes functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
@@ -402,8 +382,8 @@ let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas
in
match wf_arg with
| None ->
- if List.length names = 1 then 1
- else error "Recursive argument must be specified"
+ if List.length names = 1 then 1
+ else error "Recursive argument must be specified"
| Some wf_arg ->
list_index (Name wf_arg) names
in
@@ -433,7 +413,7 @@ let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas
functional_ref eq_ref rec_arg_num rec_arg_type nb_args relation
);
derive_inversion [fname]
- with e ->
+ with e when Errors.noncritical e ->
(* No proof done *)
()
in
@@ -447,7 +427,7 @@ let register_wf ?(is_mes=false) fname rec_impls wf_rel_expr wf_arg using_lemmas
using_lemmas
-let register_mes fname rec_impls wf_mes_expr wf_arg using_lemmas args ret_type body =
+let register_mes fname rec_impls wf_mes_expr wf_rel_expr_opt wf_arg using_lemmas args ret_type body =
let wf_arg_type,wf_arg =
match wf_arg with
| None ->
@@ -473,28 +453,186 @@ let register_mes fname rec_impls wf_mes_expr wf_arg using_lemmas args ret_type b
| _ -> assert false
with Not_found -> assert false
in
- let ltof =
- let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) in
- Libnames.Qualid (dummy_loc,Libnames.qualid_of_path
- (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (id_of_string "ltof")))
- in
- let fun_from_mes =
- let applied_mes =
- Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC wf_arg]) in
- Topconstr.mkLambdaC ([(dummy_loc,Name wf_arg)],Topconstr.default_binder_kind,wf_arg_type,applied_mes)
- in
- let wf_rel_from_mes =
- Topconstr.mkAppC(Topconstr.mkRefC ltof,[wf_arg_type;fun_from_mes])
- in
- register_wf ~is_mes:true fname rec_impls wf_rel_from_mes (Some wf_arg)
+ let wf_rel_from_mes,is_mes =
+ match wf_rel_expr_opt with
+ | None ->
+ let ltof =
+ let make_dir l = make_dirpath (List.map id_of_string (List.rev l)) in
+ Libnames.Qualid (dummy_loc,Libnames.qualid_of_path
+ (Libnames.make_path (make_dir ["Arith";"Wf_nat"]) (id_of_string "ltof")))
+ in
+ let fun_from_mes =
+ let applied_mes =
+ Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC wf_arg]) in
+ Topconstr.mkLambdaC ([(dummy_loc,Name wf_arg)],Topconstr.default_binder_kind,wf_arg_type,applied_mes)
+ in
+ let wf_rel_from_mes =
+ Topconstr.mkAppC(Topconstr.mkRefC ltof,[wf_arg_type;fun_from_mes])
+ in
+ wf_rel_from_mes,true
+ | Some wf_rel_expr ->
+ let wf_rel_with_mes =
+ let a = Names.id_of_string "___a" in
+ let b = Names.id_of_string "___b" in
+ Topconstr.mkLambdaC(
+ [dummy_loc,Name a;dummy_loc,Name b],
+ Topconstr.Default Lib.Explicit,
+ wf_arg_type,
+ Topconstr.mkAppC(wf_rel_expr,
+ [
+ Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC a]);
+ Topconstr.mkAppC(wf_mes_expr,[Topconstr.mkIdentC b])
+ ])
+ )
+ in
+ wf_rel_with_mes,false
+ in
+ register_wf ~is_mes:is_mes fname rec_impls wf_rel_from_mes (Some wf_arg)
using_lemmas args ret_type body
+let map_option f = function
+ | None -> None
+ | Some v -> Some (f v)
+
+let decompose_lambda_n_assum_constr_expr =
+ let rec decompose_lambda_n_assum_constr_expr acc n e =
+ if n = 0 then (List.rev acc,e)
+ else
+ match e with
+ | Topconstr.CLambdaN(_, [],e') -> decompose_lambda_n_assum_constr_expr acc n e'
+ | Topconstr.CLambdaN(lambda_loc,(nal,bk,nal_type)::bl,e') ->
+ let nal_length = List.length nal in
+ if nal_length <= n
+ then
+ decompose_lambda_n_assum_constr_expr
+ (Topconstr.LocalRawAssum(nal,bk,nal_type)::acc)
+ (n - nal_length)
+ (Topconstr.CLambdaN(lambda_loc,bl,e'))
+ else
+ let nal_keep,nal_expr = list_chop n nal in
+ (List.rev (Topconstr.LocalRawAssum(nal_keep,bk,nal_type)::acc),
+ Topconstr.CLambdaN(lambda_loc,(nal_expr,bk,nal_type)::bl,e')
+ )
+ | Topconstr.CLetIn(_, na,nav,e') ->
+ decompose_lambda_n_assum_constr_expr
+ (Topconstr.LocalRawDef(na,nav)::acc) (pred n) e'
+ | _ -> error "Not enough product or assumption"
+ in
+ decompose_lambda_n_assum_constr_expr []
+
+let decompose_prod_n_assum_constr_expr =
+ let rec decompose_prod_n_assum_constr_expr acc n e =
+ (* Pp.msgnl (str "n := " ++ int n ++ fnl ()++ *)
+ (* str "e := " ++ Ppconstr.pr_lconstr_expr e); *)
+ if n = 0 then
+ (* let _ = Pp.msgnl (str "return_type := " ++ Ppconstr.pr_lconstr_expr e) in *)
+ (List.rev acc,e)
+ else
+ match e with
+ | Topconstr.CProdN(_, [],e') -> decompose_prod_n_assum_constr_expr acc n e'
+ | Topconstr.CProdN(lambda_loc,(nal,bk,nal_type)::bl,e') ->
+ let nal_length = List.length nal in
+ if nal_length <= n
+ then
+ (* let _ = Pp.msgnl (str "first case") in *)
+ decompose_prod_n_assum_constr_expr
+ (Topconstr.LocalRawAssum(nal,bk,nal_type)::acc)
+ (n - nal_length)
+ (if bl = [] then e' else (Topconstr.CLambdaN(lambda_loc,bl,e')))
+ else
+ (* let _ = Pp.msgnl (str "second case") in *)
+ let nal_keep,nal_expr = list_chop n nal in
+ (List.rev (Topconstr.LocalRawAssum(nal_keep,bk,nal_type)::acc),
+ Topconstr.CLambdaN(lambda_loc,(nal_expr,bk,nal_type)::bl,e')
+ )
+ | Topconstr.CArrow(_,premisse,concl) ->
+ (* let _ = Pp.msgnl (str "arrow case") in *)
+ decompose_prod_n_assum_constr_expr
+ (Topconstr.LocalRawAssum([dummy_loc,Names.Anonymous],
+ Topconstr.Default Lib.Explicit,premisse)
+ ::acc)
+ (pred n)
+ concl
+ | Topconstr.CLetIn(_, na,nav,e') ->
+ decompose_prod_n_assum_constr_expr
+ (Topconstr.LocalRawDef(na,nav)::acc) (pred n) e'
+ | _ -> error "Not enough product or assumption"
+ in
+ decompose_prod_n_assum_constr_expr []
-let do_generate_principle on_error register_built interactive_proof fixpoint_exprl =
- let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+open Topconstr
+
+let id_of_name = function
+ | Name id -> id
+ | _ -> assert false
+
+ let rec rebuild_bl (aux,assoc) bl typ =
+ match bl,typ with
+ | [], _ -> (List.rev aux,replace_vars_constr_expr assoc typ,assoc)
+ | (Topconstr.LocalRawAssum(nal,bk,_))::bl',typ ->
+ rebuild_nal (aux,assoc) bk bl' nal (List.length nal) typ
+ | (Topconstr.LocalRawDef(na,_))::bl',CLetIn(_,_,nat,typ') ->
+ rebuild_bl ((Topconstr.LocalRawDef(na,replace_vars_constr_expr assoc nat)::aux),assoc)
+ bl' typ'
+ | _ -> assert false
+ and rebuild_nal (aux,assoc) bk bl' nal lnal typ =
+ match nal,typ with
+ | [], _ -> rebuild_bl (aux,assoc) bl' typ
+ | na::nal,CArrow(_,nat,typ') ->
+ rebuild_nal
+ ((LocalRawAssum([na],bk,replace_vars_constr_expr assoc nat))::aux,assoc)
+ bk bl' nal (pred lnal) typ'
+ | _,CProdN(_,[],typ) -> rebuild_nal (aux,assoc) bk bl' nal lnal typ
+ | _,CProdN(_,(nal',bk',nal't)::rest,typ') ->
+ let lnal' = List.length nal' in
+ if lnal' >= lnal
+ then
+ let old_nal',new_nal' = list_chop lnal nal' in
+ rebuild_bl ((LocalRawAssum(nal,bk,replace_vars_constr_expr assoc nal't)::aux),(List.rev_append (List.combine (List.map id_of_name (List.map snd old_nal')) (List.map id_of_name (List.map snd nal))) assoc)) bl'
+ (if new_nal' = [] && rest = []
+ then typ'
+ else if new_nal' = []
+ then CProdN(dummy_loc,rest,typ')
+ else CProdN(dummy_loc,((new_nal',bk',nal't)::rest),typ'))
+ else
+ let captured_nal,non_captured_nal = list_chop lnal' nal in
+ rebuild_nal ((LocalRawAssum(captured_nal,bk,replace_vars_constr_expr assoc nal't)::aux), (List.rev_append (List.combine (List.map id_of_name (List.map snd captured_nal)) ((List.map id_of_name (List.map snd nal)))) assoc))
+ bk bl' non_captured_nal (lnal - lnal') (CProdN(dummy_loc,rest,typ'))
+ | _ -> assert false
+
+let rebuild_bl (aux,assoc) bl typ = rebuild_bl (aux,assoc) bl typ
+
+let recompute_binder_list (fixpoint_exprl : (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) =
+ let fixl,ntns = Command.extract_fixpoint_components false fixpoint_exprl in
+ let ((_,_,typel),_) = Command.interp_fixpoint fixl ntns in
+ let constr_expr_typel =
+ with_full_print (List.map (Constrextern.extern_constr false (Global.env ()))) typel in
+ let fixpoint_exprl_with_new_bl =
+ List.map2 (fun ((lna,(rec_arg_opt,rec_order),bl,ret_typ,opt_body),notation_list) fix_typ ->
+
+ let new_bl',new_ret_type,_ = rebuild_bl ([],[]) bl fix_typ in
+ (((lna,(rec_arg_opt,rec_order),new_bl',new_ret_type,opt_body),notation_list):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
+ )
+ fixpoint_exprl constr_expr_typel
+ in
+ fixpoint_exprl_with_new_bl
+
+
+let do_generate_principle on_error register_built interactive_proof
+ (fixpoint_exprl:(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list) :unit =
+ List.iter (fun (_,l) -> if l <> [] then error "Function does not support notations for now") fixpoint_exprl;
let _is_struct =
match fixpoint_exprl with
- | [(((_,name),Some (Wf (wf_rel,wf_x,using_lemmas)),args,types,body))] ->
+ | [((_,(wf_x,Topconstr.CWfRec wf_rel),_,_,_),_) as fixpoint_expr] ->
+ let ((((_,name),_,args,types,body)),_) as fixpoint_expr =
+ match recompute_binder_list [fixpoint_expr] with
+ | [e] -> e
+ | _ -> assert false
+ in
+ let fixpoint_exprl = [fixpoint_expr] in
+ let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let using_lemmas = [] in
let pre_hook =
generate_principle
on_error
@@ -505,9 +643,18 @@ let do_generate_principle on_error register_built interactive_proof fixpoint_exp
true
in
if register_built
- then register_wf name rec_impls wf_rel wf_x using_lemmas args types body pre_hook;
+ then register_wf name rec_impls wf_rel (map_option snd wf_x) using_lemmas args types body pre_hook;
false
- | [(((_,name),Some (Mes (wf_mes,wf_x,using_lemmas)),args,types,body))] ->
+ |[((_,(wf_x,Topconstr.CMeasureRec(wf_mes,wf_rel_opt)),_,_,_),_) as fixpoint_expr] ->
+ let ((((_,name),_,args,types,body)),_) as fixpoint_expr =
+ match recompute_binder_list [fixpoint_expr] with
+ | [e] -> e
+ | _ -> assert false
+ in
+ let fixpoint_exprl = [fixpoint_expr] in
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let using_lemmas = [] in
+ let body = match body with | Some body -> body | None -> user_err_loc (dummy_loc,"Function",str "Body of Function must be given") in
let pre_hook =
generate_principle
on_error
@@ -518,56 +665,35 @@ let do_generate_principle on_error register_built interactive_proof fixpoint_exp
true
in
if register_built
- then register_mes name rec_impls wf_mes wf_x using_lemmas args types body pre_hook;
+ then register_mes name rec_impls wf_mes wf_rel_opt (map_option snd wf_x) using_lemmas args types body pre_hook;
true
| _ ->
- let fix_names =
- List.map (function ((_,name),_,_,_,_) -> name) fixpoint_exprl
- in
- let is_one_rec = is_rec fix_names in
- let old_fixpoint_exprl =
- List.map
- (function
- | (name,Some (Struct id),args,types,body),_ ->
- let annot =
- try Some (dummy_loc, id), Topconstr.CStructRec
- with Not_found ->
- raise (UserError("",str "Cannot find argument " ++
- Ppconstr.pr_id id))
- in
- (name,annot,args,types,body),([]:Vernacexpr.decl_notation list)
- | (name,None,args,types,body),recdef ->
- let names = (Topconstr.names_of_local_assums args) in
- if is_one_rec recdef && List.length names > 1 then
- user_err_loc
- (dummy_loc,"Function",
- Pp.str "the recursive argument needs to be specified in Function")
- else
- let loc, na = List.hd names in
- (name,(Some (loc, Nameops.out_name na), Topconstr.CStructRec),args,types,body),
- ([]:Vernacexpr.decl_notation list)
- | (_,Some (Wf _),_,_,_),_ | (_,Some (Mes _),_,_,_),_->
- error
- ("Cannot use mutual definition with well-founded recursion or measure")
- )
- (List.combine fixpoint_exprl recdefs)
- in
+ List.iter (function ((_na,(_,ord),_args,_body,_type),_not) ->
+ match ord with
+ | Topconstr.CMeasureRec _ | Topconstr.CWfRec _ ->
+ error
+ ("Cannot use mutual definition with well-founded recursion or measure")
+ | _ -> ()
+ )
+ fixpoint_exprl;
+ let fixpoint_exprl = recompute_binder_list fixpoint_exprl in
+ let fix_names =
+ List.map (function (((_,name),_,_,_,_),_) -> name) fixpoint_exprl
+ in
(* ok all the expressions are structural *)
- let fix_names =
- List.map (function ((_,name),_,_,_,_) -> name) fixpoint_exprl
- in
- let is_rec = List.exists (is_rec fix_names) recdefs in
- if register_built then register_struct is_rec old_fixpoint_exprl;
- generate_principle
- on_error
- false
- register_built
- fixpoint_exprl
- recdefs
- interactive_proof
- (Functional_principles_proofs.prove_princ_for_struct interactive_proof);
- if register_built then derive_inversion fix_names;
- true;
+ let recdefs,rec_impls = build_newrecursive fixpoint_exprl in
+ let is_rec = List.exists (is_rec fix_names) recdefs in
+ if register_built then register_struct is_rec fixpoint_exprl;
+ generate_principle
+ on_error
+ false
+ register_built
+ fixpoint_exprl
+ recdefs
+ interactive_proof
+ (Functional_principles_proofs.prove_princ_for_struct interactive_proof);
+ if register_built then derive_inversion fix_names;
+ true;
in
()
@@ -638,7 +764,6 @@ let rec add_args id new_args b =
| CGeneralization _ -> anomaly "add_args : CGeneralization"
| CPrim _ -> b
| CDelimiters _ -> anomaly "add_args : CDelimiters"
- | CDynamic _ -> anomaly "add_args : CDynamic"
exception Stop of Topconstr.constr_expr
@@ -701,75 +826,71 @@ let rec get_args b t : Topconstr.local_binder list *
let make_graph (f_ref:global_reference) =
- let c,c_body =
- match f_ref with
- | ConstRef c ->
- begin try c,Global.lookup_constant c
- with Not_found ->
- raise (UserError ("",str "Cannot find " ++ Printer.pr_lconstr (mkConst c)) )
- end
- | _ -> raise (UserError ("", str "Not a function reference") )
-
+ let c,c_body =
+ match f_ref with
+ | ConstRef c ->
+ begin try c,Global.lookup_constant c
+ with Not_found ->
+ raise (UserError ("",str "Cannot find " ++ Printer.pr_lconstr (mkConst c)) )
+ end
+ | _ -> raise (UserError ("", str "Not a function reference") )
in
- Dumpglob.pause ();
- (match c_body.const_body with
- | None -> error "Cannot build a graph over an axiom !"
- | Some b ->
- let env = Global.env () in
- let body = (force b) in
- let extern_body,extern_type =
- with_full_print
- (fun () ->
- (Constrextern.extern_constr false env body,
- Constrextern.extern_type false env
- (Typeops.type_of_constant_type env c_body.const_type)
- )
- )
- ()
- in
- let (nal_tas,b,t) = get_args extern_body extern_type in
- let expr_list =
- match b with
- | Topconstr.CFix(loc,l_id,fixexprl) ->
- let l =
- List.map
- (fun (id,(n,recexp),bl,t,b) ->
- let loc, rec_id = Option.get n in
- let new_args =
- List.flatten
- (List.map
- (function
- | Topconstr.LocalRawDef (na,_)-> []
- | Topconstr.LocalRawAssum (nal,_,_) ->
- List.map
- (fun (loc,n) ->
- CRef(Libnames.Ident(loc, Nameops.out_name n)))
- nal
- )
- nal_tas
- )
- in
- let b' = add_args (snd id) new_args b in
- (id, Some (Struct rec_id),nal_tas@bl,t,b')
- )
- fixexprl
- in
- l
- | _ ->
- let id = id_of_label (con_label c) in
- [((dummy_loc,id),None,nal_tas,t,b)]
- in
- do_generate_principle error_error false false expr_list;
- (* We register the infos *)
- let mp,dp,_ = repr_con c in
- List.iter
- (fun ((_,id),_,_,_,_) -> add_Function false (make_con mp dp (label_of_id id)))
- expr_list);
+ Dumpglob.pause ();
+ (match body_of_constant c_body with
+ | None -> error "Cannot build a graph over an axiom !"
+ | Some b ->
+ let env = Global.env () in
+ let body = (force b) in
+ let extern_body,extern_type =
+ with_full_print
+ (fun () ->
+ (Constrextern.extern_constr false env body,
+ Constrextern.extern_type false env
+ (Typeops.type_of_constant_type env c_body.const_type)
+ )
+ )
+ ()
+ in
+ let (nal_tas,b,t) = get_args extern_body extern_type in
+ let expr_list =
+ match b with
+ | Topconstr.CFix(loc,l_id,fixexprl) ->
+ let l =
+ List.map
+ (fun (id,(n,recexp),bl,t,b) ->
+ let loc, rec_id = Option.get n in
+ let new_args =
+ List.flatten
+ (List.map
+ (function
+ | Topconstr.LocalRawDef (na,_)-> []
+ | Topconstr.LocalRawAssum (nal,_,_) ->
+ List.map
+ (fun (loc,n) ->
+ CRef(Libnames.Ident(loc, Nameops.out_name n)))
+ nal
+ )
+ nal_tas
+ )
+ in
+ let b' = add_args (snd id) new_args b in
+ (((id, ( Some (dummy_loc,rec_id),CStructRec),nal_tas@bl,t,Some b'),[]):(Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list))
+ )
+ fixexprl
+ in
+ l
+ | _ ->
+ let id = id_of_label (con_label c) in
+ [((dummy_loc,id),(None,Topconstr.CStructRec),nal_tas,t,Some b),[]]
+ in
+ do_generate_principle error_error false false expr_list;
+ (* We register the infos *)
+ let mp,dp,_ = repr_con c in
+ List.iter
+ (fun (((_,id),_,_,_,_),_) -> add_Function false (make_con mp dp (label_of_id id)))
+ expr_list);
Dumpglob.continue ()
-
-(* let make_graph _ = assert false *)
-
let do_generate_principle = do_generate_principle warning_error true
diff --git a/plugins/funind/indfun.mli b/plugins/funind/indfun.mli
new file mode 100644
index 00000000..e65b5808
--- /dev/null
+++ b/plugins/funind/indfun.mli
@@ -0,0 +1,24 @@
+open Util
+open Names
+open Term
+open Pp
+open Indfun_common
+open Libnames
+open Glob_term
+open Declarations
+
+val do_generate_principle :
+ bool ->
+ (Vernacexpr.fixpoint_expr * Vernacexpr.decl_notation list) list ->
+ unit
+
+
+val functional_induction :
+ bool ->
+ Term.constr ->
+ (Term.constr * Term.constr Glob_term.bindings) option ->
+ Genarg.intro_pattern_expr Util.located option ->
+ Proof_type.goal Tacmach.sigma -> Proof_type.goal list Evd.sigma
+
+
+val make_graph : Libnames.global_reference -> unit
diff --git a/plugins/funind/indfun_common.ml b/plugins/funind/indfun_common.ml
index 0f048f59..827191b1 100644
--- a/plugins/funind/indfun_common.ml
+++ b/plugins/funind/indfun_common.ml
@@ -55,7 +55,6 @@ let locate_with_msg msg f x =
f x
with
| Not_found -> raise (Util.UserError("", msg))
- | e -> raise e
let filter_map filter f =
@@ -76,8 +75,8 @@ let chop_rlambda_n =
then List.rev acc,rt
else
match rt with
- | Rawterm.RLambda(_,name,k,t,b) -> chop_lambda_n ((name,t,false)::acc) (n-1) b
- | Rawterm.RLetIn(_,name,v,b) -> chop_lambda_n ((name,v,true)::acc) (n-1) b
+ | Glob_term.GLambda(_,name,k,t,b) -> chop_lambda_n ((name,t,false)::acc) (n-1) b
+ | Glob_term.GLetIn(_,name,v,b) -> chop_lambda_n ((name,v,true)::acc) (n-1) b
| _ ->
raise (Util.UserError("chop_rlambda_n",
str "chop_rlambda_n: Not enough Lambdas"))
@@ -90,7 +89,7 @@ let chop_rprod_n =
then List.rev acc,rt
else
match rt with
- | Rawterm.RProd(_,name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b
+ | Glob_term.GProd(_,name,k,t,b) -> chop_prod_n ((name,t)::acc) (n-1) b
| _ -> raise (Util.UserError("chop_rprod_n",str "chop_rprod_n: Not enough products"))
in
chop_prod_n []
@@ -120,10 +119,10 @@ let const_of_id id =
let def_of_const t =
match (Term.kind_of_term t) with
Term.Const sp ->
- (try (match (Global.lookup_constant sp) with
- {Declarations.const_body=Some c} -> Declarations.force c
- |_ -> assert false)
- with _ -> assert false)
+ (try (match Declarations.body_of_constant (Global.lookup_constant sp) with
+ | Some c -> Declarations.force c
+ | _ -> assert false)
+ with e when Errors.noncritical e -> assert false)
|_ -> assert false
let coq_constant s =
@@ -158,6 +157,7 @@ let definition_message id =
let save with_clean id const (locality,kind) hook =
let {const_entry_body = pft;
+ const_entry_secctx = _;
const_entry_type = tpo;
const_entry_opaque = opacity } = const in
let l,r = match locality with
@@ -180,48 +180,9 @@ let save with_clean id const (locality,kind) hook =
-
-let extract_pftreestate pts =
- let pfterm,subgoals = Refiner.extract_open_pftreestate pts in
- let tpfsigma = Refiner.evc_of_pftreestate pts in
- let exl = Evarutil.non_instantiated tpfsigma in
- if subgoals <> [] or exl <> [] then
- Util.errorlabstrm "extract_proof"
- (if subgoals <> [] then
- str "Attempt to save an incomplete proof"
- else
- str "Attempt to save a proof with existential variables still non-instantiated");
- let env = Global.env_of_context (Refiner.proof_of_pftreestate pts).Proof_type.goal.Evd.evar_hyps in
- env,tpfsigma,pfterm
-
-
-let nf_betaiotazeta =
- let clos_norm_flags flgs env sigma t =
- Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in
- clos_norm_flags Closure.betaiotazeta
-
-let nf_betaiota =
- let clos_norm_flags flgs env sigma t =
- Closure.norm_val (Closure.create_clos_infos flgs env) (Closure.inject (Reductionops.nf_evar sigma t)) in
- clos_norm_flags Closure.betaiota
-
-let cook_proof do_reduce =
- let pfs = Pfedit.get_pftreestate ()
-(* and ident = Pfedit.get_current_proof_name () *)
- and (ident,strength,concl,hook) = Pfedit.current_proof_statement () in
- let env,sigma,pfterm = extract_pftreestate pfs in
- let pfterm =
- if do_reduce
- then nf_betaiota env sigma pfterm
- else pfterm
- in
- (ident,
- ({ const_entry_body = pfterm;
- const_entry_type = Some concl;
- const_entry_opaque = false;
- const_entry_boxed = false},
- strength, hook))
-
+let cook_proof _ =
+ let (id,(entry,_,strength,hook)) = Pfedit.cook_proof (fun _ -> ()) in
+ (id,(entry,strength,hook))
let new_save_named opacity =
let id,(const,persistence,hook) = cook_proof true in
@@ -253,13 +214,13 @@ let with_full_print f a =
Dumpglob.continue ();
res
with
- | e ->
+ | reraise ->
Impargs.make_implicit_args old_implicit_args;
Impargs.make_strict_implicit_args old_strict_implicit_args;
Impargs.make_contextual_implicit_args old_contextual_implicit_args;
Flags.raw_print := old_rawprint;
Dumpglob.continue ();
- raise e
+ raise reraise
@@ -388,7 +349,8 @@ open Term
let pr_info f_info =
str "function_constant := " ++ Printer.pr_lconstr (mkConst f_info.function_constant)++ fnl () ++
str "function_constant_type := " ++
- (try Printer.pr_lconstr (Global.type_of_global (ConstRef f_info.function_constant)) with _ -> mt ()) ++ fnl () ++
+ (try Printer.pr_lconstr (Global.type_of_global (ConstRef f_info.function_constant))
+ with e when Errors.noncritical e -> mt ()) ++ fnl () ++
str "equation_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.equation_lemma (mt ()) ) ++ fnl () ++
str "completeness_lemma :=" ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.completeness_lemma (mt ()) ) ++ fnl () ++
str "correctness_lemma := " ++ (Option.fold_right (fun v acc -> Printer.pr_lconstr (mkConst v)) f_info.correctness_lemma (mt ()) ) ++ fnl () ++
@@ -401,7 +363,7 @@ let pr_table tb =
let l = Cmap.fold (fun k v acc -> v::acc) tb [] in
Util.prlist_with_sep fnl pr_info l
-let in_Function,out_Function =
+let in_Function : function_info -> Libobject.obj =
Libobject.declare_object
{(Libobject.default_object "FUNCTIONS_DB") with
Libobject.cache_function = cache_Function;
@@ -490,6 +452,7 @@ open Goptions
let functional_induction_rewrite_dependent_proofs_sig =
{
optsync = false;
+ optdepr = false;
optname = "Functional Induction Rewrite Dependent";
optkey = ["Functional";"Induction";"Rewrite";"Dependent"];
optread = (fun () -> !functional_induction_rewrite_dependent_proofs);
@@ -502,6 +465,7 @@ let do_rewrite_dependent () = !functional_induction_rewrite_dependent_proofs = t
let function_debug_sig =
{
optsync = false;
+ optdepr = false;
optname = "Function debug";
optkey = ["Function_debug"];
optread = (fun () -> !function_debug);
@@ -521,6 +485,7 @@ let is_strict_tcc () = !strict_tcc
let strict_tcc_sig =
{
optsync = false;
+ optdepr = false;
optname = "Raw Function Tcc";
optkey = ["Function_raw_tcc"];
optread = (fun () -> !strict_tcc);
@@ -537,22 +502,22 @@ exception ToShow of exn
let init_constant dir s =
try
Coqlib.gen_constant "Function" dir s
- with e -> raise (ToShow e)
+ with e when Errors.noncritical e -> raise (ToShow e)
let jmeq () =
try
(Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq")
- with e -> raise (ToShow e)
+ with e when Errors.noncritical e -> raise (ToShow e)
let jmeq_rec () =
try
Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq_rec"
- with e -> raise (ToShow e)
+ with e when Errors.noncritical e -> raise (ToShow e)
let jmeq_refl () =
try
Coqlib.check_required_library ["Coq";"Logic";"JMeq"];
init_constant ["Logic";"JMeq"] "JMeq_refl"
- with e -> raise (ToShow e)
+ with e when Errors.noncritical e -> raise (ToShow e)
diff --git a/plugins/funind/indfun_common.mli b/plugins/funind/indfun_common.mli
index 6f6607fc..e0076735 100644
--- a/plugins/funind/indfun_common.mli
+++ b/plugins/funind/indfun_common.mli
@@ -35,11 +35,11 @@ val list_union_eq :
val list_add_set_eq :
('a -> 'a -> bool) -> 'a -> 'a list -> 'a list
-val chop_rlambda_n : int -> Rawterm.rawconstr ->
- (name*Rawterm.rawconstr*bool) list * Rawterm.rawconstr
+val chop_rlambda_n : int -> Glob_term.glob_constr ->
+ (name*Glob_term.glob_constr*bool) list * Glob_term.glob_constr
-val chop_rprod_n : int -> Rawterm.rawconstr ->
- (name*Rawterm.rawconstr) list * Rawterm.rawconstr
+val chop_rprod_n : int -> Glob_term.glob_constr ->
+ (name*Glob_term.glob_constr) list * Glob_term.glob_constr
val def_of_const : Term.constr -> Term.constr
val eq : Term.constr Lazy.t
@@ -50,15 +50,8 @@ val jmeq_refl : unit -> Term.constr
(* [save_named] is a copy of [Command.save_named] but uses
[nf_betaiotazeta] instead of [nf_betaiotaevar_preserving_vm_cast]
-
-
-
- DON'T USE IT if you cannot ensure that there is no VMcast in the proof
-
*)
-(* val nf_betaiotazeta : Reductionops.reduction_function *)
-
val new_save_named : bool -> unit
val save : bool -> identifier -> Entries.definition_entry -> Decl_kinds.goal_kind ->
diff --git a/plugins/funind/invfun.ml b/plugins/funind/invfun.ml
index aa42f6cd..7b5dd763 100644
--- a/plugins/funind/invfun.ml
+++ b/plugins/funind/invfun.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,7 +16,6 @@ open Tacticals
open Tactics
open Indfun_common
open Tacmach
-open Termops
open Sign
open Hiddentac
@@ -24,17 +23,17 @@ open Hiddentac
let pr_binding prc =
function
- | loc, Rawterm.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ Pp.cut () ++ prc c)
- | loc, Rawterm.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ Pp.cut () ++ prc c)
+ | loc, Glob_term.NamedHyp id, c -> hov 1 (Ppconstr.pr_id id ++ str " := " ++ Pp.cut () ++ prc c)
+ | loc, Glob_term.AnonHyp n, c -> hov 1 (int n ++ str " := " ++ Pp.cut () ++ prc c)
let pr_bindings prc prlc = function
- | Rawterm.ImplicitBindings l ->
+ | Glob_term.ImplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc prc l
- | Rawterm.ExplicitBindings l ->
+ | Glob_term.ExplicitBindings l ->
brk (1,1) ++ str "with" ++ brk (1,1) ++
Util.prlist_with_sep spc (fun b -> str"(" ++ pr_binding prlc b ++ str")") l
- | Rawterm.NoBindings -> mt ()
+ | Glob_term.NoBindings -> mt ()
let pr_with_bindings prc prlc (c,bl) =
@@ -60,13 +59,17 @@ let observennl strm =
let do_observe_tac s tac g =
- let goal = begin try (Printer.pr_goal (sig_it g)) with _ -> assert false end in
+ let goal =
+ try Printer.pr_goal g
+ with e when Errors.noncritical e -> assert false
+ in
try
let v = tac g in msgnl (goal ++ fnl () ++ s ++(str " ")++(str "finished")); v
- with e ->
+ with reraise ->
+ let e' = Cerrors.process_vernac_interp_error reraise in
msgnl (str "observation "++ s++str " raised exception " ++
- Cerrors.explain_exn e ++ str " on goal " ++ goal );
- raise e;;
+ Errors.print e' ++ str " on goal " ++ goal );
+ raise reraise;;
let observe_tac s tac g =
@@ -84,7 +87,7 @@ let nf_zeta =
(* [id_to_constr id] finds the term associated to [id] in the global environment *)
let id_to_constr id =
try
- Tacinterp.constr_of_id (Global.env ()) id
+ Constrintern.global_reference id
with Not_found ->
raise (UserError ("",str "Cannot find " ++ Ppconstr.pr_id id))
@@ -248,7 +251,7 @@ let prove_fun_correct functional_induction funs_constr graphs_constr schemes lem
| [] | [_] | [_;_] -> anomaly "bad context"
| hres::res::(x,_,t)::ctxt ->
Termops.it_mkLambda_or_LetIn
- ~init:(Termops.it_mkProd_or_LetIn ~init:concl [hres;res])
+ (Termops.it_mkProd_or_LetIn concl [hres;res])
((x,None,t)::ctxt)
)
lemmas_types_infos
@@ -313,7 +316,7 @@ let prove_fun_correct functional_induction funs_constr graphs_constr schemes lem
| None -> (id::pre_args,pre_tac)
| Some b ->
(pre_args,
- tclTHEN (h_reduce (Rawterm.Unfold([Rawterm.all_occurrences_expr,EvalVarRef id])) allHyps) pre_tac
+ tclTHEN (h_reduce (Glob_term.Unfold([Glob_term.all_occurrences_expr,EvalVarRef id])) allHyps) pre_tac
)
else (pre_args,pre_tac)
@@ -395,10 +398,10 @@ let prove_fun_correct functional_induction funs_constr graphs_constr schemes lem
observe_tac "unfolding" pre_tac;
(* $zeta$ normalizing of the conclusion *)
h_reduce
- (Rawterm.Cbv
- { Rawterm.all_flags with
- Rawterm.rDelta = false ;
- Rawterm.rConst = []
+ (Glob_term.Cbv
+ { Glob_term.all_flags with
+ Glob_term.rDelta = false ;
+ Glob_term.rConst = []
}
)
onConcl;
@@ -424,7 +427,7 @@ let prove_fun_correct functional_induction funs_constr graphs_constr schemes lem
List.fold_left2
(fun (bindings,avoid) (x,_,_) p ->
let id = Namegen.next_ident_away (Nameops.out_name x) avoid in
- (dummy_loc,Rawterm.NamedHyp id,p)::bindings,id::avoid
+ (dummy_loc,Glob_term.NamedHyp id,p)::bindings,id::avoid
)
([],pf_ids_of_hyps g)
princ_infos.params
@@ -434,12 +437,12 @@ let prove_fun_correct functional_induction funs_constr graphs_constr schemes lem
List.rev (fst (List.fold_left2
(fun (bindings,avoid) (x,_,_) p ->
let id = Namegen.next_ident_away (Nameops.out_name x) avoid in
- (dummy_loc,Rawterm.NamedHyp id,(nf_zeta p))::bindings,id::avoid)
+ (dummy_loc,Glob_term.NamedHyp id,(nf_zeta p))::bindings,id::avoid)
([],avoid)
princ_infos.predicates
(lemmas)))
in
- Rawterm.ExplicitBindings (params_bindings@lemmas_bindings)
+ Glob_term.ExplicitBindings (params_bindings@lemmas_bindings)
in
tclTHENSEQ
[ observe_tac "intro args_names" (tclMAP h_intro args_names);
@@ -526,15 +529,15 @@ and intros_with_rewrite_aux : tactic =
Tauto.tauto g
| Case(_,_,v,_) ->
tclTHENSEQ[
- h_case false (v,Rawterm.NoBindings);
+ h_case false (v,Glob_term.NoBindings);
intros_with_rewrite
] g
| LetIn _ ->
tclTHENSEQ[
h_reduce
- (Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
+ (Glob_term.Cbv
+ {Glob_term.all_flags
+ with Glob_term.rDelta = false;
})
onConcl
;
@@ -547,9 +550,9 @@ and intros_with_rewrite_aux : tactic =
| LetIn _ ->
tclTHENSEQ[
h_reduce
- (Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
+ (Glob_term.Cbv
+ {Glob_term.all_flags
+ with Glob_term.rDelta = false;
})
onConcl
;
@@ -563,12 +566,12 @@ let rec reflexivity_with_destruct_cases g =
match kind_of_term (snd (destApp (pf_concl g))).(2) with
| Case(_,_,v,_) ->
tclTHENSEQ[
- h_case false (v,Rawterm.NoBindings);
+ h_case false (v,Glob_term.NoBindings);
intros;
observe_tac "reflexivity_with_destruct_cases" reflexivity_with_destruct_cases
]
| _ -> reflexivity
- with _ -> reflexivity
+ with e when Errors.noncritical e -> reflexivity
in
let eq_ind = Coqlib.build_coq_eq () in
let discr_inject =
@@ -588,15 +591,15 @@ let rec reflexivity_with_destruct_cases g =
)
in
(tclFIRST
- [ reflexivity;
- tclTHEN (tclPROGRESS discr_inject) (destruct_case ());
+ [ observe_tac "reflexivity_with_destruct_cases : reflexivity" reflexivity;
+ observe_tac "reflexivity_with_destruct_cases : destruct_case" ((destruct_case ()));
(* We reach this point ONLY if
the same value is matched (at least) two times
along binding path.
In this case, either we have a discriminable hypothesis and we are done,
either at least an injectable one and we do the injection before continuing
*)
- tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases
+ observe_tac "reflexivity_with_destruct_cases : others" (tclTHEN (tclPROGRESS discr_inject ) reflexivity_with_destruct_cases)
])
g
@@ -636,7 +639,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
*)
let lemmas =
Array.map
- (fun (_,(ctxt,concl)) -> nf_zeta (Termops.it_mkLambda_or_LetIn ~init:concl ctxt))
+ (fun (_,(ctxt,concl)) -> nf_zeta (Termops.it_mkLambda_or_LetIn concl ctxt))
lemmas_types_infos
in
(* We get the constant and the principle corresponding to this lemma *)
@@ -686,16 +689,16 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
Equality.rewriteLR (mkConst eq_lemma);
(* Don't forget to $\zeta$ normlize the term since the principles have been $\zeta$-normalized *)
h_reduce
- (Rawterm.Cbv
- {Rawterm.all_flags
- with Rawterm.rDelta = false;
+ (Glob_term.Cbv
+ {Glob_term.all_flags
+ with Glob_term.rDelta = false;
})
onConcl
;
h_generalize (List.map mkVar ids);
thin ids
]
- else unfold_in_concl [(all_occurrences,Names.EvalConstRef (destConst f))]
+ else unfold_in_concl [(Termops.all_occurrences, Names.EvalConstRef (destConst f))]
in
(* The proof of each branche itself *)
let ind_number = ref 0 in
@@ -733,7 +736,7 @@ let prove_fun_complete funcs graphs schemes lemmas_types_infos i : tactic =
(h_generalize [mkApp(applist(graph_principle,params),Array.map (fun c -> applist(c,params)) lemmas)]);
h_intro graph_principle_id;
observe_tac "" (tclTHEN_i
- (observe_tac "elim" ((elim false (mkVar hres,Rawterm.NoBindings) (Some (mkVar graph_principle_id,Rawterm.NoBindings)))))
+ (observe_tac "elim" ((elim false (mkVar hres,Glob_term.NoBindings) (Some (mkVar graph_principle_id,Glob_term.NoBindings)))))
(fun i g -> observe_tac "prove_branche" (prove_branche i) g ))
]
g
@@ -752,6 +755,7 @@ let do_save () = Lemmas.save_named false
*)
let derive_correctness make_scheme functional_induction (funs: constant list) (graphs:inductive list) =
+ let previous_state = States.freeze () in
let funs = Array.of_list funs and graphs = Array.of_list graphs in
let funs_constr = Array.map mkConst funs in
try
@@ -763,7 +767,7 @@ let derive_correctness make_scheme functional_induction (funs: constant list) (g
let (type_of_lemma_ctxt,type_of_lemma_concl) as type_info =
generate_type false const_of_f graph i
in
- let type_of_lemma = Termops.it_mkProd_or_LetIn ~init:type_of_lemma_concl type_of_lemma_ctxt in
+ let type_of_lemma = Termops.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
let type_of_lemma = nf_zeta type_of_lemma in
observe (str "type_of_lemma := " ++ Printer.pr_lconstr type_of_lemma);
type_of_lemma,type_info
@@ -784,7 +788,7 @@ let derive_correctness make_scheme functional_induction (funs: constant list) (g
(fun entry ->
(entry.Entries.const_entry_body, Option.get entry.Entries.const_entry_type )
)
- (make_scheme (array_map_to_list (fun const -> const,Rawterm.RType None) funs))
+ (make_scheme (array_map_to_list (fun const -> const,Glob_term.GType None) funs))
)
in
let proving_tac =
@@ -793,22 +797,21 @@ let derive_correctness make_scheme functional_induction (funs: constant list) (g
Array.iteri
(fun i f_as_constant ->
let f_id = id_of_label (con_label f_as_constant) in
- Lemmas.start_proof
- (*i The next call to mk_correct_id is valid since we are constructing the lemma
+ (*i The next call to mk_correct_id is valid since we are constructing the lemma
Ensures by: obvious
- i*)
- (mk_correct_id f_id)
+ i*)
+ let lem_id = mk_correct_id f_id in
+ Lemmas.start_proof lem_id
(Decl_kinds.Global,(Decl_kinds.Proof Decl_kinds.Theorem))
(fst lemmas_types_infos.(i))
(fun _ _ -> ());
- Pfedit.by (observe_tac ("prove correctness ("^(string_of_id f_id)^")") (proving_tac i));
+ Pfedit.by
+ (observe_tac ("prove correctness ("^(string_of_id f_id)^")")
+ (proving_tac i));
do_save ();
let finfo = find_Function_infos f_as_constant in
- update_Function
- {finfo with
- correctness_lemma = Some (destConst (Tacinterp.constr_of_id (Global.env ())(mk_correct_id f_id)))
- }
-
+ let lem_cst = destConst (Constrintern.global_reference lem_id) in
+ update_Function {finfo with correctness_lemma = Some lem_cst}
)
funs;
let lemmas_types_infos =
@@ -818,7 +821,7 @@ let derive_correctness make_scheme functional_induction (funs: constant list) (g
let (type_of_lemma_ctxt,type_of_lemma_concl) as type_info =
generate_type true const_of_f graph i
in
- let type_of_lemma = Termops.it_mkProd_or_LetIn ~init:type_of_lemma_concl type_of_lemma_ctxt in
+ let type_of_lemma = Termops.it_mkProd_or_LetIn type_of_lemma_concl type_of_lemma_ctxt in
let type_of_lemma = nf_zeta type_of_lemma in
observe (str "type_of_lemma := " ++ Printer.pr_lconstr type_of_lemma);
type_of_lemma,type_info
@@ -845,35 +848,28 @@ let derive_correctness make_scheme functional_induction (funs: constant list) (g
Array.iteri
(fun i f_as_constant ->
let f_id = id_of_label (con_label f_as_constant) in
- Lemmas.start_proof
- (*i The next call to mk_complete_id is valid since we are constructing the lemma
+ (*i The next call to mk_complete_id is valid since we are constructing the lemma
Ensures by: obvious
- i*)
- (mk_complete_id f_id)
+ i*)
+ let lem_id = mk_complete_id f_id in
+ Lemmas.start_proof lem_id
(Decl_kinds.Global,(Decl_kinds.Proof Decl_kinds.Theorem))
(fst lemmas_types_infos.(i))
(fun _ _ -> ());
- Pfedit.by (observe_tac ("prove completeness ("^(string_of_id f_id)^")") (proving_tac i));
+ Pfedit.by
+ (observe_tac ("prove completeness ("^(string_of_id f_id)^")")
+ (proving_tac i));
do_save ();
let finfo = find_Function_infos f_as_constant in
- update_Function
- {finfo with
- completeness_lemma = Some (destConst (Tacinterp.constr_of_id (Global.env ())(mk_complete_id f_id)))
- }
+ let lem_cst = destConst (Constrintern.global_reference lem_id) in
+ update_Function {finfo with completeness_lemma = Some lem_cst}
)
funs;
- with e ->
+ with reraise ->
(* In case of problem, we reset all the lemmas *)
- (*i The next call to mk_correct_id is valid since we are erasing the lemmas
- Ensures by: obvious
- i*)
- let first_lemma_id =
- let f_id = id_of_label (con_label funs.(0)) in
-
- mk_correct_id f_id
- in
- ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,first_lemma_id) with _ -> ());
- raise e
+ Pfedit.delete_all_proofs ();
+ States.unfreeze previous_state;
+ raise reraise
@@ -955,7 +951,7 @@ let functional_inversion kn hid fconst f_correct : tactic =
h_generalize [applist(f_correct,(Array.to_list f_args)@[res;mkVar hid])];
thin [hid];
h_intro hid;
- Inv.inv FullInversion None (Rawterm.NamedHyp hid);
+ Inv.inv FullInversion None (Glob_term.NamedHyp hid);
(fun g ->
let new_ids = List.filter (fun id -> not (Idset.mem id old_ids)) (pf_ids_of_hyps g) in
tclMAP (revert_graph kn pre_tac) (hid::new_ids) g
diff --git a/plugins/funind/merge.ml b/plugins/funind/merge.ml
index 40ee116d..bd1a1710 100644
--- a/plugins/funind/merge.ml
+++ b/plugins/funind/merge.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,6 @@
(* Merging of induction principles. *)
-(*i $Id: i*)
open Libnames
open Tactics
open Indfun_common
@@ -21,12 +20,12 @@ open Term
open Termops
open Declarations
open Environ
-open Rawterm
-open Rawtermops
+open Glob_term
+open Glob_termops
(** {1 Utilities} *)
-(** {2 Useful operations on constr and rawconstr} *)
+(** {2 Useful operations on constr and glob_constr} *)
let rec popn i c = if i<=0 then c else pop (popn (i-1) c)
@@ -61,7 +60,7 @@ let string_of_name nme = string_of_id (id_of_name nme)
(** [isVarf f x] returns [true] if term [x] is of the form [(Var f)]. *)
let isVarf f x =
match x with
- | RVar (_,x) -> Pervasives.compare x f = 0
+ | GVar (_,x) -> Pervasives.compare x f = 0
| _ -> false
(** [ident_global_exist id] returns true if identifier [id] is linked
@@ -71,7 +70,7 @@ let ident_global_exist id =
let ans = CRef (Libnames.Ident (dummy_loc,id)) in
let _ = ignore (Constrintern.intern_constr Evd.empty (Global.env()) ans) in
true
- with _ -> false
+ with e when Errors.noncritical e -> false
(** [next_ident_fresh id] returns a fresh identifier (ie not linked in
global env) with base [id]. *)
@@ -98,7 +97,7 @@ let prNamedConstr s c =
let prNamedRConstr s c =
begin
msg(str "");
- msg(str(s^" {§ ") ++ Printer.pr_rawconstr c ++ str " §} ");
+ msg(str(s^" {§ ") ++ Printer.pr_glob_constr c ++ str " §} ");
msg(str "");
end
let prNamedLConstr_aux lc = List.iter (prNamedConstr "\n") lc
@@ -130,7 +129,7 @@ let prNamedRLDecl s lc =
end
let showind (id:identifier) =
- let cstrid = Tacinterp.constr_of_id (Global.env()) id in
+ let cstrid = Constrintern.global_reference id in
let ind1,cstrlist = Inductiveops.find_inductive (Global.env()) Evd.empty cstrid in
let mib1,ib1 = Inductive.lookup_mind_specif (Global.env()) ind1 in
List.iter (fun (nm, optcstr, tp) ->
@@ -378,15 +377,15 @@ let verify_inds mib1 mib2 =
let build_raw_params prms_decl avoid =
let dummy_constr = compose_prod (List.map (fun (x,_,z) -> x,z) prms_decl) (mkRel 1) in
let _ = prNamedConstr "DUMMY" dummy_constr in
- let dummy_rawconstr = Detyping.detype false avoid [] dummy_constr in
- let _ = prNamedRConstr "RAWDUMMY" dummy_rawconstr in
- let res,_ = raw_decompose_prod dummy_rawconstr in
+ let dummy_glob_constr = Detyping.detype false avoid [] dummy_constr in
+ let _ = prNamedRConstr "RAWDUMMY" dummy_glob_constr in
+ let res,_ = glob_decompose_prod dummy_glob_constr in
let comblist = List.combine prms_decl res in
- comblist, res , (avoid @ (Idset.elements (ids_of_rawterm dummy_rawconstr)))
+ comblist, res , (avoid @ (Idset.elements (ids_of_glob_constr dummy_glob_constr)))
*)
let ids_of_rawlist avoid rawl =
- List.fold_left Idset.union avoid (List.map ids_of_rawterm rawl)
+ List.fold_left Idset.union avoid (List.map ids_of_glob_constr rawl)
@@ -464,7 +463,7 @@ let shift_linked_params mib1 mib2 (lnk1:linked_var array) (lnk2:linked_var array
([],[],[],[]) arity_ctxt in
(* let arity_ctxt2 =
build_raw_params oib2.mind_arity_ctxt
- (Idset.elements (ids_of_rawterm oib1.mind_arity_ctxt)) in*)
+ (Idset.elements (ids_of_glob_constr oib1.mind_arity_ctxt)) in*)
let recprms1,otherprms1,args1,funresprms1 = bldprms (List.rev oib1.mind_arity_ctxt) mlnk1 in
let _ = prstr "\n\n\n" in
let recprms2,otherprms2,args2,funresprms2 = bldprms (List.rev oib2.mind_arity_ctxt) mlnk2 in
@@ -512,37 +511,37 @@ exception NoMerge
let rec merge_app c1 c2 id1 id2 shift filter_shift_stable =
let lnk = Array.append shift.lnk1 shift.lnk2 in
match c1 , c2 with
- | RApp(_,f1, arr1), RApp(_,f2,arr2) when isVarf id1 f1 && isVarf id2 f2 ->
+ | GApp(_,f1, arr1), GApp(_,f2,arr2) when isVarf id1 f1 && isVarf id2 f2 ->
let _ = prstr "\nICI1!\n";Pp.flush_all() in
let args = filter_shift_stable lnk (arr1 @ arr2) in
- RApp (dummy_loc,RVar (dummy_loc,shift.ident) , args)
- | RApp(_,f1, arr1), RApp(_,f2,arr2) -> raise NoMerge
- | RLetIn(_,nme,bdy,trm) , _ ->
+ GApp (dummy_loc,GVar (dummy_loc,shift.ident) , args)
+ | GApp(_,f1, arr1), GApp(_,f2,arr2) -> raise NoMerge
+ | GLetIn(_,nme,bdy,trm) , _ ->
let _ = prstr "\nICI2!\n";Pp.flush_all() in
let newtrm = merge_app trm c2 id1 id2 shift filter_shift_stable in
- RLetIn(dummy_loc,nme,bdy,newtrm)
- | _, RLetIn(_,nme,bdy,trm) ->
+ GLetIn(dummy_loc,nme,bdy,newtrm)
+ | _, GLetIn(_,nme,bdy,trm) ->
let _ = prstr "\nICI3!\n";Pp.flush_all() in
let newtrm = merge_app c1 trm id1 id2 shift filter_shift_stable in
- RLetIn(dummy_loc,nme,bdy,newtrm)
+ GLetIn(dummy_loc,nme,bdy,newtrm)
| _ -> let _ = prstr "\nICI4!\n";Pp.flush_all() in
raise NoMerge
let rec merge_app_unsafe c1 c2 shift filter_shift_stable =
let lnk = Array.append shift.lnk1 shift.lnk2 in
match c1 , c2 with
- | RApp(_,f1, arr1), RApp(_,f2,arr2) ->
+ | GApp(_,f1, arr1), GApp(_,f2,arr2) ->
let args = filter_shift_stable lnk (arr1 @ arr2) in
- RApp (dummy_loc,RVar(dummy_loc,shift.ident) , args)
+ GApp (dummy_loc,GVar(dummy_loc,shift.ident) , args)
(* FIXME: what if the function appears in the body of the let? *)
- | RLetIn(_,nme,bdy,trm) , _ ->
+ | GLetIn(_,nme,bdy,trm) , _ ->
let _ = prstr "\nICI2 '!\n";Pp.flush_all() in
let newtrm = merge_app_unsafe trm c2 shift filter_shift_stable in
- RLetIn(dummy_loc,nme,bdy,newtrm)
- | _, RLetIn(_,nme,bdy,trm) ->
+ GLetIn(dummy_loc,nme,bdy,newtrm)
+ | _, GLetIn(_,nme,bdy,trm) ->
let _ = prstr "\nICI3 '!\n";Pp.flush_all() in
let newtrm = merge_app_unsafe c1 trm shift filter_shift_stable in
- RLetIn(dummy_loc,nme,bdy,newtrm)
+ GLetIn(dummy_loc,nme,bdy,newtrm)
| _ -> let _ = prstr "\nICI4 '!\n";Pp.flush_all() in raise NoMerge
@@ -551,24 +550,24 @@ let rec merge_app_unsafe c1 c2 shift filter_shift_stable =
calls of branch 1 with all rec calls of branch 2. *)
(* TODO: reecrire cette heuristique (jusqu'a merge_types) *)
let rec merge_rec_hyps shift accrec
- (ltyp:(Names.name * rawconstr option * rawconstr option) list)
- filter_shift_stable : (Names.name * rawconstr option * rawconstr option) list =
+ (ltyp:(Names.name * glob_constr option * glob_constr option) list)
+ filter_shift_stable : (Names.name * glob_constr option * glob_constr option) list =
let mergeonehyp t reldecl =
match reldecl with
- | (nme,x,Some (RApp(_,i,args) as ind))
+ | (nme,x,Some (GApp(_,i,args) as ind))
-> nme,x, Some (merge_app_unsafe ind t shift filter_shift_stable)
| (nme,Some _,None) -> error "letins with recursive calls not treated yet"
| (nme,None,Some _) -> assert false
| (nme,None,None) | (nme,Some _,Some _) -> assert false in
match ltyp with
| [] -> []
- | (nme,None,Some (RApp(_,f, largs) as t)) :: lt when isVarf ind2name f ->
+ | (nme,None,Some (GApp(_,f, largs) as t)) :: lt when isVarf ind2name f ->
let rechyps = List.map (mergeonehyp t) accrec in
rechyps @ merge_rec_hyps shift accrec lt filter_shift_stable
| e::lt -> e :: merge_rec_hyps shift accrec lt filter_shift_stable
-let rec build_suppl_reccall (accrec:(name * rawconstr) list) concl2 shift =
+let rec build_suppl_reccall (accrec:(name * glob_constr) list) concl2 shift =
List.map (fun (nm,tp) -> (nm,merge_app_unsafe tp concl2 shift)) accrec
@@ -578,7 +577,7 @@ let find_app (nme:identifier) ltyp =
(List.map
(fun x ->
match x with
- | _,None,Some (RApp(_,f,_)) when isVarf nme f -> raise (Found 0)
+ | _,None,Some (GApp(_,f,_)) when isVarf nme f -> raise (Found 0)
| _ -> ())
ltyp);
false
@@ -592,9 +591,9 @@ let prnt_prod_or_letin nm letbdy typ =
let rec merge_types shift accrec1
- (ltyp1:(name * rawconstr option * rawconstr option) list)
- (concl1:rawconstr) (ltyp2:(name * rawconstr option * rawconstr option) list) concl2
- : (name * rawconstr option * rawconstr option) list * rawconstr =
+ (ltyp1:(name * glob_constr option * glob_constr option) list)
+ (concl1:glob_constr) (ltyp2:(name * glob_constr option * glob_constr option) list) concl2
+ : (name * glob_constr option * glob_constr option) list * glob_constr =
let _ = prstr "MERGE_TYPES\n" in
let _ = prstr "ltyp 1 : " in
let _ = List.iter (fun (nm,lbdy,tp) -> prnt_prod_or_letin nm lbdy tp) ltyp1 in
@@ -638,7 +637,7 @@ let rec merge_types shift accrec1
rechyps , concl
| (nme,None, Some t1)as e ::lt1 ->
(match t1 with
- | RApp(_,f,carr) when isVarf ind1name f ->
+ | GApp(_,f,carr) when isVarf ind1name f ->
merge_types shift (e::accrec1) lt1 concl1 ltyp2 concl2
| _ ->
let recres, recconcl2 =
@@ -705,8 +704,8 @@ let build_link_map allargs1 allargs2 lnk =
Precond: vars sets of [typcstr1] and [typcstr2] must be disjoint.
TODO: return nothing if equalities (after linking) are contradictory. *)
-let merge_one_constructor (shift:merge_infos) (typcstr1:rawconstr)
- (typcstr2:rawconstr) : rawconstr =
+let merge_one_constructor (shift:merge_infos) (typcstr1:glob_constr)
+ (typcstr2:glob_constr) : glob_constr =
(* FIXME: les noms des parametres corerspondent en principe au
parametres du niveau mib, mais il faudrait s'en assurer *)
(* shift.nfunresprmsx last args are functional result *)
@@ -714,17 +713,17 @@ let merge_one_constructor (shift:merge_infos) (typcstr1:rawconstr)
shift.mib1.mind_nparams + shift.oib1.mind_nrealargs - shift.nfunresprms1 in
let nargs2 =
shift.mib2.mind_nparams + shift.oib2.mind_nrealargs - shift.nfunresprms2 in
- let allargs1,rest1 = raw_decompose_prod_or_letin_n nargs1 typcstr1 in
- let allargs2,rest2 = raw_decompose_prod_or_letin_n nargs2 typcstr2 in
+ let allargs1,rest1 = glob_decompose_prod_or_letin_n nargs1 typcstr1 in
+ let allargs2,rest2 = glob_decompose_prod_or_letin_n nargs2 typcstr2 in
(* Build map of linked args of [typcstr2], and apply it to [typcstr2]. *)
let linked_map = build_link_map allargs1 allargs2 shift.lnk2 in
let rest2 = change_vars linked_map rest2 in
- let hyps1,concl1 = raw_decompose_prod_or_letin rest1 in
- let hyps2,concl2' = raw_decompose_prod_or_letin rest2 in
+ let hyps1,concl1 = glob_decompose_prod_or_letin rest1 in
+ let hyps2,concl2' = glob_decompose_prod_or_letin rest2 in
let ltyp,concl2 =
merge_types shift [] (List.rev hyps1) concl1 (List.rev hyps2) concl2' in
let _ = prNamedRLDecl "ltyp result:" ltyp in
- let typ = raw_compose_prod_or_letin concl2 (List.rev ltyp) in
+ let typ = glob_compose_prod_or_letin concl2 (List.rev ltyp) in
let revargs1 =
list_filteri (fun i _ -> isArg_stable shift.lnk1.(i)) (List.rev allargs1) in
let _ = prNamedRLDecl "ltyp allargs1" allargs1 in
@@ -734,7 +733,7 @@ let merge_one_constructor (shift:merge_infos) (typcstr1:rawconstr)
let _ = prNamedRLDecl "ltyp allargs2" allargs2 in
let _ = prNamedRLDecl "ltyp revargs2" revargs2 in
let typwithprms =
- raw_compose_prod_or_letin typ (List.rev revargs2 @ List.rev revargs1) in
+ glob_compose_prod_or_letin typ (List.rev revargs2 @ List.rev revargs1) in
typwithprms
@@ -757,11 +756,11 @@ let merge_constructor_id id1 id2 shift:identifier =
(** [merge_constructors lnk shift avoid] merges the two list of
- constructor [(name*type)]. These are translated to rawterms
+ constructor [(name*type)]. These are translated to glob_constr
first, each of them having distinct var names. *)
let rec merge_constructors (shift:merge_infos) (avoid:Idset.t)
- (typcstr1:(identifier * rawconstr) list)
- (typcstr2:(identifier * rawconstr) list) : (identifier * rawconstr) list =
+ (typcstr1:(identifier * glob_constr) list)
+ (typcstr2:(identifier * glob_constr) list) : (identifier * glob_constr) list =
List.flatten
(List.map
(fun (id1,rawtyp1) ->
@@ -779,12 +778,12 @@ let rec merge_constructors (shift:merge_infos) (avoid:Idset.t)
info in [shift], avoiding identifiers in [avoid]. *)
let rec merge_inductive_body (shift:merge_infos) avoid (oib1:one_inductive_body)
(oib2:one_inductive_body) =
- (* building rawconstr type of constructors *)
+ (* building glob_constr type of constructors *)
let mkrawcor nme avoid typ =
(* first replace rel 1 by a varname *)
let substindtyp = substitterm 0 (mkRel 1) (mkVar nme) typ in
Detyping.detype false (Idset.elements avoid) [] substindtyp in
- let lcstr1: rawconstr list =
+ let lcstr1: glob_constr list =
Array.to_list (Array.map (mkrawcor ind1name avoid) oib1.mind_user_lc) in
(* add to avoid all indentifiers of lcstr1 *)
let avoid2 = Idset.union avoid (ids_of_rawlist avoid lcstr1) in
@@ -793,11 +792,11 @@ let rec merge_inductive_body (shift:merge_infos) avoid (oib1:one_inductive_body)
let avoid3 = Idset.union avoid (ids_of_rawlist avoid lcstr2) in
let params1 =
- try fst (raw_decompose_prod_n shift.nrecprms1 (List.hd lcstr1))
- with _ -> [] in
+ try fst (glob_decompose_prod_n shift.nrecprms1 (List.hd lcstr1))
+ with e when Errors.noncritical e -> [] in
let params2 =
- try fst (raw_decompose_prod_n shift.nrecprms2 (List.hd lcstr2))
- with _ -> [] in
+ try fst (glob_decompose_prod_n shift.nrecprms2 (List.hd lcstr2))
+ with e when Errors.noncritical e -> [] in
let lcstr1 = List.combine (Array.to_list oib1.mind_consnames) lcstr1 in
let lcstr2 = List.combine (Array.to_list oib2.mind_consnames) lcstr2 in
@@ -817,8 +816,8 @@ let rec merge_mutual_inductive_body
merge_inductive_body shift Idset.empty mib1.mind_packets.(0) mib2.mind_packets.(0)
-let rawterm_to_constr_expr x = (* build a constr_expr from a rawconstr *)
- Flags.with_option Flags.raw_print (Constrextern.extern_rawtype Idset.empty) x
+let glob_constr_to_constr_expr x = (* build a constr_expr from a glob_constr *)
+ Flags.with_option Flags.raw_print (Constrextern.extern_glob_type Idset.empty) x
let merge_rec_params_and_arity prms1 prms2 shift (concl:constr) =
let params = prms2 @ prms1 in
@@ -828,7 +827,7 @@ let merge_rec_params_and_arity prms1 prms2 shift (concl:constr) =
let _ = prstr "param :" in
let _ = prNamedRConstr (string_of_name nme) tp in
let _ = prstr " ; " in
- let typ = rawterm_to_constr_expr tp in
+ let typ = glob_constr_to_constr_expr tp in
LocalRawAssum ([(dummy_loc,nme)], Topconstr.default_binder_kind, typ) :: acc)
[] params in
let concl = Constrextern.extern_constr false (Global.env()) concl in
@@ -845,38 +844,38 @@ let merge_rec_params_and_arity prms1 prms2 shift (concl:constr) =
-(** [rawterm_list_to_inductive_expr ident rawlist] returns the
+(** [glob_constr_list_to_inductive_expr ident rawlist] returns the
induct_expr corresponding to the the list of constructor types
[rawlist], named ident.
FIXME: params et cstr_expr (arity) *)
-let rawterm_list_to_inductive_expr prms1 prms2 mib1 mib2 shift
- (rawlist:(identifier * rawconstr) list) =
+let glob_constr_list_to_inductive_expr prms1 prms2 mib1 mib2 shift
+ (rawlist:(identifier * glob_constr) list) =
let lident = dummy_loc, shift.ident in
let bindlist , cstr_expr = (* params , arities *)
merge_rec_params_and_arity prms1 prms2 shift mkSet in
let lcstor_expr : (bool * (lident * constr_expr)) list =
List.map (* zeta_normalize t ? *)
- (fun (id,t) -> false, ((dummy_loc,id),rawterm_to_constr_expr t))
+ (fun (id,t) -> false, ((dummy_loc,id),glob_constr_to_constr_expr t))
rawlist in
lident , bindlist , Some cstr_expr , lcstor_expr
-let mkProd_reldecl (rdecl:rel_declaration) (t2:rawconstr) =
+let mkProd_reldecl (rdecl:rel_declaration) (t2:glob_constr) =
match rdecl with
| (nme,None,t) ->
let traw = Detyping.detype false [] [] t in
- RProd (dummy_loc,nme,Explicit,traw,t2)
+ GProd (dummy_loc,nme,Explicit,traw,t2)
| (_,Some _,_) -> assert false
-let mkProd_reldecl (rdecl:rel_declaration) (t2:rawconstr) =
+let mkProd_reldecl (rdecl:rel_declaration) (t2:glob_constr) =
match rdecl with
| (nme,None,t) ->
let traw = Detyping.detype false [] [] t in
- RProd (dummy_loc,nme,Explicit,traw,t2)
+ GProd (dummy_loc,nme,Explicit,traw,t2)
| (_,Some _,_) -> assert false
@@ -902,7 +901,7 @@ let merge_inductive (ind1: inductive) (ind2: inductive)
recprms1=prms1;
recprms1=prms1;
} in *)
- let indexpr = rawterm_list_to_inductive_expr prms1 prms2 mib1 mib2 shift_prm rawlist in
+ let indexpr = glob_constr_list_to_inductive_expr prms1 prms2 mib1 mib2 shift_prm rawlist in
(* Declare inductive *)
let indl,_,_ = Command.extract_mutual_inductive_declaration_components [(indexpr,[])] in
let mie,impls = Command.interp_mutual_inductive indl [] true (* means: not coinductive *) in
@@ -1024,9 +1023,3 @@ let relprinctype_to_funprinctype relprinctype nfuns =
url = "citeseer.ist.psu.edu/bundy93rippling.html" }
*)
-(*
-*** Local Variables: ***
-*** compile-command: "make -C ../.. plugins/funind/merge.cmo" ***
-*** indent-tabs-mode: nil ***
-*** End: ***
-*)
diff --git a/plugins/funind/rawtermops.mli b/plugins/funind/rawtermops.mli
deleted file mode 100644
index 455e7c89..00000000
--- a/plugins/funind/rawtermops.mli
+++ /dev/null
@@ -1,126 +0,0 @@
-open Rawterm
-
-(* Ocaml 3.06 Map.S does not handle is_empty *)
-val idmap_is_empty : 'a Names.Idmap.t -> bool
-
-
-(* [get_pattern_id pat] returns a list of all the variable appearing in [pat] *)
-val get_pattern_id : cases_pattern -> Names.identifier list
-
-(* [pattern_to_term pat] returns a rawconstr corresponding to [pat].
- [pat] must not contain occurences of anonymous pattern
-*)
-val pattern_to_term : cases_pattern -> rawconstr
-
-(*
- Some basic functions to rebuild rawconstr
- In each of them the location is Util.dummy_loc
-*)
-val mkRRef : Libnames.global_reference -> rawconstr
-val mkRVar : Names.identifier -> rawconstr
-val mkRApp : rawconstr*(rawconstr list) -> rawconstr
-val mkRLambda : Names.name*rawconstr*rawconstr -> rawconstr
-val mkRProd : Names.name*rawconstr*rawconstr -> rawconstr
-val mkRLetIn : Names.name*rawconstr*rawconstr -> rawconstr
-val mkRCases : rawconstr option * tomatch_tuples * cases_clauses -> rawconstr
-val mkRSort : rawsort -> rawconstr
-val mkRHole : unit -> rawconstr (* we only build Evd.BinderType Anonymous holes *)
-val mkRCast : rawconstr* rawconstr -> rawconstr
-(*
- Some basic functions to decompose rawconstrs
- These are analogous to the ones constrs
-*)
-val raw_decompose_prod : rawconstr -> (Names.name*rawconstr) list * rawconstr
-val raw_decompose_prod_or_letin :
- rawconstr -> (Names.name*rawconstr option*rawconstr option) list * rawconstr
-val raw_decompose_prod_n : int -> rawconstr -> (Names.name*rawconstr) list * rawconstr
-val raw_decompose_prod_or_letin_n : int -> rawconstr ->
- (Names.name*rawconstr option*rawconstr option) list * rawconstr
-val raw_compose_prod : rawconstr -> (Names.name*rawconstr) list -> rawconstr
-val raw_compose_prod_or_letin: rawconstr ->
- (Names.name*rawconstr option*rawconstr option) list -> rawconstr
-val raw_decompose_app : rawconstr -> rawconstr*(rawconstr list)
-
-
-(* [raw_make_eq t1 t2] build the rawconstr corresponding to [t2 = t1] *)
-val raw_make_eq : ?typ:rawconstr -> rawconstr -> rawconstr -> rawconstr
-(* [raw_make_neq t1 t2] build the rawconstr corresponding to [t1 <> t2] *)
-val raw_make_neq : rawconstr -> rawconstr -> rawconstr
-(* [raw_make_or P1 P2] build the rawconstr corresponding to [P1 \/ P2] *)
-val raw_make_or : rawconstr -> rawconstr -> rawconstr
-
-(* [raw_make_or_list [P1;...;Pn]] build the rawconstr corresponding
- to [P1 \/ ( .... \/ Pn)]
-*)
-val raw_make_or_list : rawconstr list -> rawconstr
-
-
-(* alpha_conversion functions *)
-
-
-
-(* Replace the var mapped in the rawconstr/context *)
-val change_vars : Names.identifier Names.Idmap.t -> rawconstr -> rawconstr
-
-
-
-(* [alpha_pat avoid pat] rename all the variables present in [pat] s.t.
- the result does not share variables with [avoid]. This function create
- a fresh variable for each occurence of the anonymous pattern.
-
- Also returns a mapping from old variables to new ones and the concatenation of
- [avoid] with the variables appearing in the result.
-*)
- val alpha_pat :
- Names.Idmap.key list ->
- Rawterm.cases_pattern ->
- Rawterm.cases_pattern * Names.Idmap.key list *
- Names.identifier Names.Idmap.t
-
-(* [alpha_rt avoid rt] alpha convert [rt] s.t. the result repects barendregt
- conventions and does not share bound variables with avoid
-*)
-val alpha_rt : Names.identifier list -> rawconstr -> rawconstr
-
-(* same as alpha_rt but for case branches *)
-val alpha_br : Names.identifier list ->
- Util.loc * Names.identifier list * Rawterm.cases_pattern list *
- Rawterm.rawconstr ->
- Util.loc * Names.identifier list * Rawterm.cases_pattern list *
- Rawterm.rawconstr
-
-
-(* Reduction function *)
-val replace_var_by_term :
- Names.identifier ->
- Rawterm.rawconstr -> Rawterm.rawconstr -> Rawterm.rawconstr
-
-
-
-(*
- [is_free_in id rt] checks if [id] is a free variable in [rt]
-*)
-val is_free_in : Names.identifier -> rawconstr -> bool
-
-
-val are_unifiable : cases_pattern -> cases_pattern -> bool
-val eq_cases_pattern : cases_pattern -> cases_pattern -> bool
-
-
-
-(*
- ids_of_pat : cases_pattern -> Idset.t
- returns the set of variables appearing in a pattern
-*)
-val ids_of_pat : cases_pattern -> Names.Idset.t
-
-(* TODO: finish this function (Fix not treated) *)
-val ids_of_rawterm: rawconstr -> Names.Idset.t
-
-(*
- removing let_in construction in a rawterm
-*)
-val zeta_normalize : Rawterm.rawconstr -> Rawterm.rawconstr
-
-
-val expand_as : rawconstr -> rawconstr
diff --git a/plugins/funind/recdef.ml b/plugins/funind/recdef.ml
index 934bf683..9853fd73 100644
--- a/plugins/funind/recdef.ml
+++ b/plugins/funind/recdef.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,10 +8,7 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: recdef.ml 15069 2012-03-20 14:06:07Z herbelin $ *)
-
open Term
-open Termops
open Namegen
open Environ
open Declarations
@@ -36,7 +33,7 @@ open Proof_type
open Vernacinterp
open Pfedit
open Topconstr
-open Rawterm
+open Glob_term
open Pretyping
open Pretyping.Default
open Safe_typing
@@ -70,44 +67,38 @@ let pf_get_new_id id g =
let h_intros l =
tclMAP h_intro l
-let debug_queue = Queue.create ()
+let debug_queue = Stack.create ()
-let rec print_debug_queue e =
- let lmsg,goal = Queue.pop debug_queue in
- if Queue.is_empty debug_queue
- then
- msgnl (lmsg ++ (str " raised exception " ++ Cerrors.explain_exn e) ++ str " on goal " ++ goal)
- else
+let rec print_debug_queue b e =
+ if not (Stack.is_empty debug_queue)
+ then
begin
- print_debug_queue e;
- msgnl (str " from " ++ lmsg ++ str " on goal " ++ goal);
+ let lmsg,goal = Stack.pop debug_queue in
+ if b then
+ msgnl (lmsg ++ (str " raised exception " ++ Errors.print e) ++ str " on goal " ++ goal)
+ else
+ begin
+ msgnl (str " from " ++ lmsg ++ str " on goal " ++ goal);
+ end;
+ print_debug_queue false e;
end
+
let do_observe_tac s tac g =
- let goal = Printer.pr_goal (sig_it g) in
- let lmsg = (str "recdef ") ++ (str s) in
- Queue.add (lmsg,goal) debug_queue;
+ let goal = Printer.pr_goal g in
+ let lmsg = (str "recdef : ") ++ (str s) in
+ Stack.push (lmsg,goal) debug_queue;
try
let v = tac g in
- ignore(Queue.pop debug_queue);
+ ignore(Stack.pop debug_queue);
v
- with e ->
- if not (Queue.is_empty debug_queue)
+ with reraise ->
+ if not (Stack.is_empty debug_queue)
then
- print_debug_queue e;
- raise e
-
-(*let do_observe_tac s tac g =
- let goal = begin (Printer.pr_goal (sig_it g)) end in
- try let v = tac g in msgnl (goal ++ fnl () ++ (str "recdef ") ++
- (str s)++(str " ")++(str "finished")); v
- with e ->
- msgnl (str "observation "++str s++str " raised exception " ++
- Cerrors.explain_exn e ++ str " on goal " ++ goal );
- raise e;;
-*)
+ print_debug_queue true reraise;
+ raise reraise
let observe_tac s tac g =
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
@@ -146,10 +137,10 @@ let message s = if Flags.is_verbose () then msgnl(str s);;
let def_of_const t =
match (kind_of_term t) with
Const sp ->
- (try (match (Global.lookup_constant sp) with
- {const_body=Some c} -> Declarations.force c
- |_ -> assert false)
- with _ ->
+ (try (match body_of_constant (Global.lookup_constant sp) with
+ | Some c -> Declarations.force c
+ | _ -> assert false)
+ with e when Errors.noncritical e ->
anomaly ("Cannot find definition of constant "^
(string_of_id (id_of_label (con_label sp))))
)
@@ -181,11 +172,23 @@ let rank_for_arg_list h =
| x::tl -> if predicate h x then Some i else rank_aux (i+1) tl in
rank_aux 0;;
-let rec (find_call_occs : int -> constr -> constr ->
+let rec check_not_nested f t =
+ match kind_of_term t with
+ | App(g, _) when eq_constr f g ->
+ errorlabstrm "recdef" (str "Nested recursive function are not allowed with Function")
+ | Var(_) when eq_constr t f -> errorlabstrm "recdef" (str "Nested recursive function are not allowed with Function")
+ | _ -> iter_constr (check_not_nested f) t
+
+
+
+
+let rec (find_call_occs : int -> int -> constr -> constr ->
(constr list -> constr) * constr list list) =
- fun nb_lam f expr ->
+ fun nb_arg nb_lam f expr ->
match (kind_of_term expr) with
- App (g, args) when g = f ->
+ App (g, args) when eq_constr g f ->
+ if Array.length args <> nb_arg then errorlabstrm "recdef" (str "Partial application of function " ++ Printer.pr_lconstr expr ++ str " in its body is not allowed while using Function");
+ Array.iter (check_not_nested f) args;
(fun l -> List.hd l), [Array.to_list args]
| App (g, args) ->
let (largs: constr list) = Array.to_list args in
@@ -194,7 +197,7 @@ let rec (find_call_occs : int -> constr -> constr ->
| a::upper_tl ->
(match find_aux upper_tl with
(cf, ((arg1::args) as args_for_upper_tl)) ->
- (match find_call_occs nb_lam f a with
+ (match find_call_occs nb_arg nb_lam f a with
cf2, (_ :: _ as other_args) ->
let rec avoid_duplicates args =
match args with
@@ -218,7 +221,7 @@ let rec (find_call_occs : int -> constr -> constr ->
other_args'@args_for_upper_tl
| _, [] -> (fun x -> a::cf x), args_for_upper_tl)
| _, [] ->
- (match find_call_occs nb_lam f a with
+ (match find_call_occs nb_arg nb_lam f a with
cf, (arg1::args) -> (fun l -> cf l::upper_tl), (arg1::args)
| _, [] -> (fun x -> a::upper_tl), [])) in
begin
@@ -228,40 +231,42 @@ let rec (find_call_occs : int -> constr -> constr ->
(fun l -> mkApp (g, Array.of_list (cf l))), args
end
| Rel(v) -> if v > nb_lam then error "find_call_occs : Rel" else ((fun l -> expr),[])
+ | Var(_) when eq_constr expr f -> errorlabstrm "recdef" (str "Partial application of function " ++ Printer.pr_lconstr expr ++ str " in its body is not allowed while using Function")
| Var(id) -> (fun l -> expr), []
- | Meta(_) -> error "find_call_occs : Meta"
- | Evar(_) -> error "find_call_occs : Evar"
+ | Meta(_) -> error "Found a metavariable. Can not treat such a term"
+ | Evar(_) -> error "Found an evar. Can not treat such a term"
| Sort(_) -> (fun l -> expr), []
- | Cast(b,_,_) -> find_call_occs nb_lam f b
- | Prod(_,_,_) -> error "find_call_occs : Prod"
+ | Cast(b,_,_) -> find_call_occs nb_arg nb_lam f b
+ | Prod(na,t,b) ->
+ error "Found a product. Can not treat such a term"
| Lambda(na,t,b) ->
begin
- match find_call_occs (succ nb_lam) f b with
+ match find_call_occs nb_arg (succ nb_lam) f b with
| _, [] -> (* Lambda are authorized as long as they do not contain
recursives calls *)
(fun l -> expr),[]
- | _ -> error "find_call_occs : Lambda"
+ | _ -> error "Found a lambda which body contains a recursive call. Such terms are not allowed"
end
| LetIn(na,v,t,b) ->
begin
- match find_call_occs nb_lam f v, find_call_occs (succ nb_lam) f b with
+ match find_call_occs nb_arg nb_lam f v, find_call_occs nb_arg (succ nb_lam) f b with
| (_,[]),(_,[]) ->
((fun l -> expr), [])
| (_,[]),(cf,(_::_ as l)) ->
((fun l -> mkLetIn(na,v,t,cf l)),l)
| (cf,(_::_ as l)),(_,[]) ->
((fun l -> mkLetIn(na,cf l,t,b)), l)
- | _ -> error "find_call_occs : LetIn"
+ | _ -> error "Found a letin with recursive calls in both variable value and body. Such terms are not allowed."
end
| Const(_) -> (fun l -> expr), []
| Ind(_) -> (fun l -> expr), []
| Construct (_, _) -> (fun l -> expr), []
| Case(i,t,a,r) ->
- (match find_call_occs nb_lam f a with
+ (match find_call_occs nb_arg nb_lam f a with
cf, (arg1::args) -> (fun l -> mkCase(i, t, (cf l), r)),(arg1::args)
| _ -> (fun l -> expr),[])
- | Fix(_) -> error "find_call_occs : Fix"
- | CoFix(_) -> error "find_call_occs : CoFix";;
+ | Fix(_) -> error "Found a local fixpoint. Can not treat such a term"
+ | CoFix(_) -> error "Found a local cofixpoint : CoFix";;
let coq_constant s =
Coqlib.gen_constant_in_modules "RecursiveDefinition"
@@ -370,15 +375,19 @@ let rec mk_intros_and_continue thin_intros (extra_eqn:bool)
h_intros thin_intros;
tclMAP
- (fun eq -> tclTRY (Equality.general_rewrite_in true all_occurrences (* deps proofs also: *) true teq eq false))
+ (fun eq -> tclTRY (Equality.general_rewrite_in true Termops.all_occurrences true (* deps proofs also: *) true teq eq false))
(List.rev eqs);
(fun g1 ->
let ty_teq = pf_type_of g1 (mkVar teq) in
let teq_lhs,teq_rhs =
- let _,args = try destApp ty_teq with _ -> Pp.msgnl (Printer.pr_goal (sig_it g1) ++ fnl () ++ pr_id teq ++ str ":" ++ Printer.pr_lconstr ty_teq); assert false in
+ let _,args =
+ try destApp ty_teq
+ with e when Errors.noncritical e ->
+ Pp.msgnl (Printer.pr_goal g1 ++ fnl () ++ pr_id teq ++ str ":" ++ Printer.pr_lconstr ty_teq); assert false
+ in
args.(1),args.(2)
in
- cont_function (mkVar teq::eqs) (replace_term teq_lhs teq_rhs expr) g1
+ cont_function (mkVar teq::eqs) (Termops.replace_term teq_lhs teq_rhs expr) g1
)
]
@@ -431,7 +440,7 @@ let tclUSER tac is_mes l g =
clear_tac;
if is_mes
then tclTHEN
- (unfold_in_concl [(all_occurrences, evaluable_of_global_reference
+ (unfold_in_concl [(Termops.all_occurrences, evaluable_of_global_reference
(delayed_force ltof_ref))])
tac
else tac
@@ -530,8 +539,8 @@ let rec list_cond_rewrite k def pmax cond_eqs le_proofs =
Nameops.out_name k_na,Nameops.out_name def_na
in
tclTHENS
- (general_rewrite_bindings false all_occurrences
- (* dep proofs also: *) true
+ (general_rewrite_bindings false Termops.all_occurrences
+ (* dep proofs also: *) true true
(mkVar eq,
ExplicitBindings[dummy_loc, NamedHyp k_id, mkVar k;
dummy_loc, NamedHyp def_id, mkVar def]) false)
@@ -573,7 +582,7 @@ let rec introduce_all_equalities func eqs values specs bound le_proofs
observe_tac "refl equal" (apply (delayed_force refl_equal))] g
| spec1::specs ->
fun g ->
- let ids = ids_of_named_context (pf_hyps g) in
+ let ids = Termops.ids_of_named_context (pf_hyps g) in
let p = next_ident_away_in_goal p_id ids in
let ids = p::ids in
let pmax = next_ident_away_in_goal pmax_id ids in
@@ -619,7 +628,7 @@ let rec introduce_all_values concl_tac is_mes acc_inv func context_fn
(List.rev values) (List.rev specs) (delayed_force coq_O) [] [])]
| arg::args ->
(fun g ->
- let ids = ids_of_named_context (pf_hyps g) in
+ let ids = Termops.ids_of_named_context (pf_hyps g) in
let rec_res = next_ident_away_in_goal rec_res_id ids in
let ids = rec_res::ids in
let hspec = next_ident_away_in_goal hspec_id ids in
@@ -658,13 +667,13 @@ let rec introduce_all_values concl_tac is_mes acc_inv func context_fn
)
-let rec_leaf_terminate f_constr concl_tac is_mes acc_inv hrec (func:global_reference) eqs expr =
- match find_call_occs 0 f_constr expr with
+let rec_leaf_terminate nb_arg f_constr concl_tac is_mes acc_inv hrec (func:global_reference) eqs expr =
+ match find_call_occs nb_arg 0 f_constr expr with
| context_fn, args ->
observe_tac "introduce_all_values"
(introduce_all_values concl_tac is_mes acc_inv func context_fn eqs hrec args [] [])
-let proveterminate rec_arg_id is_mes acc_inv (hrec:identifier)
+let proveterminate nb_arg rec_arg_id is_mes acc_inv (hrec:identifier)
(f_constr:constr) (func:global_reference) base_leaf rec_leaf =
let rec proveterminate (eqs:constr list) (expr:constr) =
try
@@ -672,7 +681,7 @@ let proveterminate rec_arg_id is_mes acc_inv (hrec:identifier)
let v =
match (kind_of_term expr) with
Case (ci, t, a, l) ->
- (match find_call_occs 0 f_constr a with
+ (match find_call_occs nb_arg 0 f_constr a with
_,[] ->
(fun g ->
let destruct_tac, rev_to_thin_intro =
@@ -684,24 +693,29 @@ let proveterminate rec_arg_id is_mes acc_inv (hrec:identifier)
true
proveterminate
eqs
- ci.ci_cstr_nargs.(i))
+ ci.ci_cstr_ndecls.(i))
0 (Array.to_list l)) g)
| _, _::_ ->
- (match find_call_occs 0 f_constr expr with
+ (match find_call_occs nb_arg 0 f_constr expr with
_,[] -> observe_tac "base_leaf" (base_leaf func eqs expr)
| _, _:: _ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)))
| _ ->
- (match find_call_occs 0 f_constr expr with
+ (match find_call_occs nb_arg 0 f_constr expr with
_,[] ->
(try observe_tac "base_leaf" (base_leaf func eqs expr)
- with e -> (msgerrnl (str "failure in base case");raise e ))
+ with reraise ->
+ (msgerrnl (str "failure in base case");raise reraise ))
| _, _::_ ->
observe_tac "rec_leaf"
(rec_leaf is_mes acc_inv hrec func eqs expr)) in
v
- with e -> begin msgerrnl(str "failure in proveterminate"); raise e end
+ with reraise ->
+ begin
+ msgerrnl(str "failure in proveterminate");
+ raise reraise
+ end
in
proveterminate
@@ -832,7 +846,7 @@ let rec instantiate_lambda t l =
let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_arg_num : tactic =
begin
fun g ->
- let ids = ids_of_named_context (pf_hyps g) in
+ let ids = Termops.ids_of_named_context (pf_hyps g) in
let func_body = (def_of_const (constr_of_global func)) in
let (f_name, _, body1) = destLambda func_body in
let f_id =
@@ -865,6 +879,7 @@ let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_a
rec_arg_id
(fun rec_arg_id hrec acc_inv g ->
(proveterminate
+ nb_args
[rec_arg_id]
is_mes
acc_inv
@@ -872,7 +887,7 @@ let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_a
(mkVar f_id)
func
base_leaf_terminate
- (rec_leaf_terminate (mkVar f_id) concl_tac)
+ (rec_leaf_terminate nb_args (mkVar f_id) concl_tac)
[]
expr
)
@@ -883,15 +898,29 @@ let whole_start (concl_tac:tactic) nb_args is_mes func input_type relation rec_a
end
let get_current_subgoals_types () =
- let pts = get_pftreestate () in
- let _,subs = extract_open_pftreestate pts in
- List.map snd ((* List.sort (fun (x,_) (y,_) -> x -y ) *)subs )
+ let p = Proof_global.give_me_the_proof () in
+ let { Evd.it=sgs ; sigma=sigma } = Proof.V82.subgoals p in
+ List.map (Goal.V82.abstract_type sigma) sgs
let build_and_l l =
let and_constr = Coqlib.build_coq_and () in
let conj_constr = coq_conj () in
let mk_and p1 p2 =
Term.mkApp(and_constr,[|p1;p2|]) in
+ let rec is_well_founded t =
+ match kind_of_term t with
+ | Prod(_,_,t') -> is_well_founded t'
+ | App(_,_) ->
+ let (f,_) = decompose_app t in
+ eq_constr f (well_founded ())
+ | _ -> assert false
+ in
+ let compare t1 t2 =
+ let b1,b2= is_well_founded t1,is_well_founded t2 in
+ if (b1&&b2) || not (b1 || b2) then 0
+ else if b1 && not b2 then 1 else -1
+ in
+ let l = List.sort compare l in
let rec f = function
| [] -> failwith "empty list of subgoals!"
| [p] -> p,tclIDTAC,1
@@ -911,7 +940,7 @@ let is_rec_res id =
let id_name = string_of_id id in
try
String.sub id_name 0 (String.length rec_res_name) = rec_res_name
- with _ -> false
+ with e when Errors.noncritical e -> false
let clear_goals =
let rec clear_goal t =
@@ -919,7 +948,7 @@ let clear_goals =
| Prod(Name id as na,t',b) ->
let b' = clear_goal b in
if noccurn 1 b' && (is_rec_res id)
- then pop b'
+ then Termops.pop b'
else if b' == b then t
else mkProd(na,t',b')
| _ -> map_constr clear_goal t
@@ -935,6 +964,13 @@ let build_new_goal_type () =
let res = build_and_l sub_gls_types in
res
+let is_opaque_constant c =
+ let cb = Global.lookup_constant c in
+ match cb.Declarations.const_body with
+ | Declarations.OpaqueDef _ -> true
+ | Declarations.Undef _ -> true
+ | Declarations.Def _ -> false
+
let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref_ goal_name (gls_type,decompose_and_tac,nb_goal) =
(* Pp.msgnl (str "gls_type := " ++ Printer.pr_lconstr gls_type); *)
let current_proof_name = get_current_proof_name () in
@@ -942,22 +978,19 @@ let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref_ goal_
| Some s -> s
| None ->
try (add_suffix current_proof_name "_subproof")
- with _ -> anomaly "open_new_goal with an unamed theorem"
+ with e when Errors.noncritical e ->
+ anomaly "open_new_goal with an unamed theorem"
in
- let sign = Global.named_context () in
- let sign = clear_proofs sign in
+ let sign = initialize_named_context_for_proof () in
let na = next_global_ident_away name [] in
- if occur_existential gls_type then
+ if Termops.occur_existential gls_type then
Util.error "\"abstract\" cannot handle existentials";
let hook _ _ =
let opacity =
let na_ref = Libnames.Ident (dummy_loc,na) in
let na_global = Nametab.global na_ref in
match na_global with
- ConstRef c ->
- let cb = Global.lookup_constant c in
- if cb.Declarations.const_opaque then true
- else begin match cb.const_body with None -> true | _ -> false end
+ ConstRef c -> is_opaque_constant c
| _ -> anomaly "equation_lemma: not a constant"
in
let lemma = mkConst (Lib.make_con na) in
@@ -999,9 +1032,8 @@ let open_new_goal (build_proof:tactic -> tactic -> unit) using_lemmas ref_ goal_
(eapply_with_bindings (mkVar (List.nth !lid !h_num), NoBindings))
e_assumption;
Eauto.eauto_with_bases
- false
(true,5)
- [delayed_force refl_equal]
+ [Evd.empty,delayed_force refl_equal]
[Auto.Hint_db.empty empty_transparent_state false]
]
)
@@ -1102,38 +1134,31 @@ let (value_f:constr list -> global_reference -> constr) =
al
)
in
- let fun_body =
- RCases
+ let context = List.map
+ (fun (x, c) -> Name x, None, c) (List.combine rev_x_id_l (List.rev al))
+ in
+ let env = Environ.push_rel_context context (Global.env ()) in
+ let glob_body =
+ GCases
(d0,RegularStyle,None,
- [RApp(d0, RRef(d0,fterm), List.rev_map (fun x_id -> RVar(d0, x_id)) rev_x_id_l),
+ [GApp(d0, GRef(d0,fterm), List.rev_map (fun x_id -> GVar(d0, x_id)) rev_x_id_l),
(Anonymous,None)],
[d0, [v_id], [PatCstr(d0,(ind_of_ref
(delayed_force coq_sig_ref),1),
[PatVar(d0, Name v_id);
PatVar(d0, Anonymous)],
Anonymous)],
- RVar(d0,v_id)])
+ GVar(d0,v_id)])
in
- let value =
- List.fold_left2
- (fun acc x_id a ->
- RLambda
- (d0, Name x_id, Explicit, RDynamic(d0, constr_in a),
- acc
- )
- )
- fun_body
- rev_x_id_l
- (List.rev al)
- in
- understand Evd.empty (Global.env()) value;;
+ let body = understand Evd.empty env glob_body in
+ it_mkLambda_or_LetIn body context
let (declare_fun : identifier -> logical_kind -> constr -> global_reference) =
fun f_id kind value ->
let ce = {const_entry_body = value;
+ const_entry_secctx = None;
const_entry_type = None;
- const_entry_opaque = false;
- const_entry_boxed = true} in
+ const_entry_opaque = false } in
ConstRef(declare_constant f_id (DefinitionEntry ce, kind));;
let (declare_f : identifier -> logical_kind -> constr list -> global_reference -> global_reference) =
@@ -1153,7 +1178,7 @@ let start_equation (f:global_reference) (term_f:global_reference)
let x = n_x_id ids nargs in
tclTHENLIST [
h_intros x;
- unfold_in_concl [(all_occurrences, evaluable_of_global_reference f)];
+ unfold_in_concl [(Termops.all_occurrences, evaluable_of_global_reference f)];
observe_tac "simplest_case"
(simplest_case (mkApp (terminate_constr,
Array.of_list (List.map mkVar x))));
@@ -1195,7 +1220,7 @@ let rec introduce_all_values_eq cont_tac functional termine
simpl_iter (onHyp heq2);
unfold_in_hyp [((true,[1]), evaluable_of_global_reference
(global_of_constr functional))]
- (heq2, InHyp);
+ (heq2, Termops.InHyp);
tclTHENS
(fun gls ->
let t_eq = compute_renamed_type gls (mkVar heq2) in
@@ -1203,8 +1228,8 @@ let rec introduce_all_values_eq cont_tac functional termine
let _,_,t = destProd t_eq in let def_na,_,_ = destProd t in
Nameops.out_name def_na
in
- observe_tac "rewrite heq" (general_rewrite_bindings false all_occurrences
- (* dep proofs also: *) true (mkVar heq2,
+ observe_tac "rewrite heq" (general_rewrite_bindings false Termops.all_occurrences
+ true (* dep proofs also: *) true (mkVar heq2,
ExplicitBindings[dummy_loc,NamedHyp def_id,
f]) false) gls)
[tclTHENLIST
@@ -1259,7 +1284,7 @@ let rec introduce_all_values_eq cont_tac functional termine
f_S(mkVar pmax');
dummy_loc, NamedHyp def_id, f])
in
- observe_tac "general_rewrite_bindings" ( (general_rewrite_bindings false all_occurrences (* dep proofs also: *) true
+ observe_tac "general_rewrite_bindings" ( (general_rewrite_bindings false Termops.all_occurrences true (* dep proofs also: *) true
c_b false))
g
)
@@ -1294,12 +1319,12 @@ let rec_leaf_eq termine f ids functional eqs expr fn args =
functional termine f p heq1 p [] [] eqs ids args);
observe_tac "failing here" (apply (delayed_force refl_equal))]
-let rec prove_eq (termine:constr) (f:constr)(functional:global_reference)
+let rec prove_eq nb_arg (termine:constr) (f:constr)(functional:global_reference)
(eqs:constr list) (expr:constr) =
(* tclTRY *)
observe_tac "prove_eq" (match kind_of_term expr with
Case(ci,t,a,l) ->
- (match find_call_occs 0 f a with
+ (match find_call_occs nb_arg 0 f a with
_,[] ->
(fun g ->
let destruct_tac,rev_to_thin_intro = mkDestructEq [] a g in
@@ -1308,38 +1333,35 @@ let rec prove_eq (termine:constr) (f:constr)(functional:global_reference)
(list_map_i
(fun i -> mk_intros_and_continue
(List.rev rev_to_thin_intro) true
- (prove_eq termine f functional)
- eqs ci.ci_cstr_nargs.(i))
+ (prove_eq nb_arg termine f functional)
+ eqs ci.ci_cstr_ndecls.(i))
0 (Array.to_list l)) g)
| _,_::_ ->
- (match find_call_occs 0 f expr with
+ (match find_call_occs nb_arg 0 f expr with
_,[] -> observe_tac "base_leaf_eq(1)" (base_leaf_eq functional eqs f)
| fn,args ->
fun g ->
- let ids = ids_of_named_context (pf_hyps g) in
+ let ids = Termops.ids_of_named_context (pf_hyps g) in
observe_tac "rec_leaf_eq" (rec_leaf_eq termine f ids
(constr_of_global functional)
eqs expr fn args) g))
| _ ->
- (match find_call_occs 0 f expr with
+ (match find_call_occs nb_arg 0 f expr with
_,[] -> observe_tac "base_leaf_eq(2)" ( base_leaf_eq functional eqs f)
| fn,args ->
fun g ->
- let ids = ids_of_named_context (pf_hyps g) in
+ let ids = Termops.ids_of_named_context (pf_hyps g) in
observe_tac "rec_leaf_eq" (rec_leaf_eq
termine f ids (constr_of_global functional)
eqs expr fn args) g));;
-let (com_eqn : identifier ->
+let (com_eqn : int -> identifier ->
global_reference -> global_reference -> global_reference
-> constr -> unit) =
- fun eq_name functional_ref f_ref terminate_ref equation_lemma_type ->
+ fun nb_arg eq_name functional_ref f_ref terminate_ref equation_lemma_type ->
let opacity =
match terminate_ref with
- | ConstRef c ->
- let cb = Global.lookup_constant c in
- if cb.Declarations.const_opaque then true
- else begin match cb.const_body with None -> true | _ -> false end
+ | ConstRef c -> is_opaque_constant c
| _ -> anomaly "terminate_lemma: not a constant"
in
let (evmap, env) = Lemmas.get_current_context() in
@@ -1350,7 +1372,7 @@ let (com_eqn : identifier ->
by
(start_equation f_ref terminate_ref
(fun x ->
- prove_eq
+ prove_eq nb_arg
(constr_of_global terminate_ref)
f_constr
functional_ref
@@ -1381,14 +1403,15 @@ let nf_betaiotazeta = (* Reductionops.local_strong Reductionops.whd_betaiotazeta
let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num eq
generate_induction_principle using_lemmas : unit =
+ let previous_label = Lib.current_command_label () in
let function_type = interp_constr Evd.empty (Global.env()) type_of_f in
let env = push_named (function_name,None,function_type) (Global.env()) in
-(* Pp.msgnl (str "function type := " ++ Printer.pr_lconstr function_type); *)
+ (* Pp.msgnl (str "function type := " ++ Printer.pr_lconstr function_type); *)
let equation_lemma_type =
nf_betaiotazeta
(interp_gen (OfType None) Evd.empty env ~impls:rec_impls eq)
in
-(* Pp.msgnl (str "lemma type := " ++ Printer.pr_lconstr equation_lemma_type ++ fnl ()); *)
+ (* Pp.msgnl (str "lemma type := " ++ Printer.pr_lconstr equation_lemma_type ++ fnl ()); *)
let res_vars,eq' = decompose_prod equation_lemma_type in
let env_eq' = Environ.push_rel_context (List.map (fun (x,y) -> (x,None,y)) res_vars) env in
let eq' = nf_zeta env_eq' eq' in
@@ -1407,7 +1430,7 @@ let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num
let equation_id = add_suffix function_name "_equation" in
let functional_id = add_suffix function_name "_F" in
let term_id = add_suffix function_name "_terminate" in
- let functional_ref = declare_fun functional_id (IsDefinition Definition) res in
+ let functional_ref = declare_fun functional_id (IsDefinition Decl_kinds.Definition) res in
let env_with_pre_rec_args = push_rel_context(List.map (function (x,t) -> (x,None,t)) pre_rec_args) env in
let relation =
interp_constr
@@ -1421,17 +1444,17 @@ let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num
let hook _ _ =
let term_ref = Nametab.locate (qualid_of_ident term_id) in
let f_ref = declare_f function_name (IsProof Lemma) arg_types term_ref in
+ let _ = Table.extraction_inline true [Ident (dummy_loc,term_id)] in
(* message "start second proof"; *)
let stop = ref false in
begin
- try com_eqn equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type)
- with e ->
+ try com_eqn (List.length res_vars) equation_id functional_ref f_ref term_ref (subst_var function_name equation_lemma_type)
+ with e when Errors.noncritical e ->
begin
if Tacinterp.get_debug () <> Tactic_debug.DebugOff
- then pperrnl (str "Cannot create equation Lemma " ++ Cerrors.explain_exn e)
+ then pperrnl (str "Cannot create equation Lemma " ++ Errors.print e)
else anomaly "Cannot create equation Lemma"
;
-(* ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ()); *)
stop := true;
end
end;
@@ -1461,12 +1484,10 @@ let recursive_definition is_mes function_name rec_impls type_of_f r rec_arg_num
using_lemmas
(List.length res_vars)
hook
- with e ->
+ with reraise ->
begin
- ignore(try Vernacentries.vernac_reset_name (Util.dummy_loc,functional_id) with _ -> ());
-(* anomaly "Cannot create termination Lemma" *)
- raise e
+ (try ignore (Backtrack.backto previous_label)
+ with e when Errors.noncritical e -> ());
+ (* anomaly "Cannot create termination Lemma" *)
+ raise reraise
end
-
-
-
diff --git a/plugins/funind/recdef_plugin.mllib b/plugins/funind/recdef_plugin.mllib
index 31818c39..ec1f5436 100644
--- a/plugins/funind/recdef_plugin.mllib
+++ b/plugins/funind/recdef_plugin.mllib
@@ -1,7 +1,7 @@
Indfun_common
-Rawtermops
+Glob_termops
Recdef
-Rawterm_to_relation
+Glob_term_to_relation
Functional_principles_proofs
Functional_principles_types
Invfun
diff --git a/plugins/micromega/CheckerMaker.v b/plugins/micromega/CheckerMaker.v
index 8f0f86c5..fa780671 100644
--- a/plugins/micromega/CheckerMaker.v
+++ b/plugins/micromega/CheckerMaker.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,6 +12,8 @@
(* *)
(************************************************************************)
+(* FK: scheduled for deletion *)
+(*
Require Import Setoid.
Require Import Decidable.
Require Import List.
@@ -127,3 +129,4 @@ apply <- negate_correct. intro; now elim H3. exact (H1 H2).
Qed.
End CheckerMaker.
+*) \ No newline at end of file
diff --git a/plugins/micromega/Env.v b/plugins/micromega/Env.v
index 5aa30fed..caec7800 100644
--- a/plugins/micromega/Env.v
+++ b/plugins/micromega/Env.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,16 +12,9 @@
(* *)
(************************************************************************)
-Require Import ZArith.
-Require Import Coq.Arith.Max.
-Require Import List.
+Require Import BinInt List.
Set Implicit Arguments.
-
-(* I have addded a Leaf constructor to the varmap data structure (/plugins/ring/Quote.v)
- -- this is harmless and spares a lot of Empty.
- This means smaller proof-terms.
- BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
-*)
+Local Open Scope positive_scope.
Section S.
@@ -29,154 +22,78 @@ Section S.
Definition Env := positive -> D.
- Definition jump (j:positive) (e:Env) := fun x => e (Pplus x j).
+ Definition jump (j:positive) (e:Env) := fun x => e (x+j).
- Definition nth (n:positive) (e : Env ) := e n.
+ Definition nth (n:positive) (e:Env) := e n.
- Definition hd (x:D) (e: Env) := nth xH e.
+ Definition hd (e:Env) := nth 1 e.
- Definition tail (e: Env) := jump xH e.
+ Definition tail (e:Env) := jump 1 e.
- Lemma psucc : forall p, (match p with
- | xI y' => xO (Psucc y')
- | xO y' => xI y'
- | 1%positive => 2%positive
- end) = (p+1)%positive.
+ Lemma jump_add i j l x : jump (i + j) l x = jump i (jump j l) x.
Proof.
- destruct p.
- auto with zarith.
- rewrite xI_succ_xO.
- auto with zarith.
- reflexivity.
+ unfold jump. f_equal. apply Pos.add_assoc.
Qed.
- Lemma jump_Pplus : forall i j l,
- forall x, jump (i + j) l x = jump i (jump j l) x.
- Proof.
- unfold jump.
- intros.
- rewrite Pplus_assoc.
- reflexivity.
- Qed.
-
- Lemma jump_simpl : forall p l,
- forall x, jump p l x =
+ Lemma jump_simpl p l x :
+ jump p l x =
match p with
| xH => tail l x
| xO p => jump p (jump p l) x
| xI p => jump p (jump p (tail l)) x
end.
Proof.
- destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
- (* xI p = p + p + 1 *)
- rewrite xI_succ_xO.
- rewrite Pplus_diag.
- rewrite <- Pplus_one_succ_r.
- reflexivity.
- (* xO p = p + p *)
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
- Ltac jump_s :=
- repeat
- match goal with
- | |- context [jump xH ?e] => rewrite (jump_simpl xH)
- | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
- | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
- end.
-
- Lemma jump_tl : forall j l, forall x, tail (jump j l) x = jump j (tail l) x.
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
+ destruct p; unfold tail; rewrite <- ?jump_add; f_equal;
+ now rewrite Pos.add_diag.
Qed.
- Lemma jump_Psucc : forall j l,
- forall x, (jump (Psucc j) l x) = (jump 1 (jump j l) x).
+ Lemma jump_tl j l x : tail (jump j l) x = jump j (tail l) x.
Proof.
- intros.
- rewrite <- jump_Pplus.
- rewrite Pplus_one_succ_r.
- rewrite Pplus_comm.
- reflexivity.
+ unfold tail. rewrite <- !jump_add. f_equal. apply Pos.add_comm.
Qed.
- Lemma jump_Pdouble_minus_one : forall i l,
- forall x, (jump (Pdouble_minus_one i) (tail l)) x = (jump i (jump i l)) x.
+ Lemma jump_succ j l x : jump (Pos.succ j) l x = jump 1 (jump j l) x.
Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite <- Pplus_one_succ_r.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
+ rewrite <- jump_add. f_equal. symmetry. apply Pos.add_1_l.
Qed.
- Lemma jump_x0_tail : forall p l, forall x, jump (xO p) (tail l) x = jump (xI p) l x.
+ Lemma jump_pred_double i l x :
+ jump (Pos.pred_double i) (tail l) x = jump i (jump i l) x.
Proof.
- intros.
- unfold jump.
- unfold tail.
- unfold jump.
- rewrite <- Pplus_assoc.
- simpl.
- reflexivity.
+ unfold tail. rewrite <- !jump_add. f_equal.
+ now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag.
Qed.
- Lemma nth_spec : forall p l x,
+ Lemma nth_spec p l :
nth p l =
match p with
- | xH => hd x l
+ | xH => hd l
| xO p => nth p (jump p l)
| xI p => nth p (jump p (tail l))
end.
Proof.
- unfold nth.
- destruct p.
- intros.
- unfold jump, tail.
- unfold jump.
- rewrite Pplus_diag.
- rewrite xI_succ_xO.
- simpl.
- reflexivity.
- unfold jump.
- rewrite Pplus_diag.
- reflexivity.
- unfold hd.
- unfold nth.
- reflexivity.
+ unfold hd, nth, tail, jump.
+ destruct p; f_equal; now rewrite Pos.add_diag.
Qed.
-
- Lemma nth_jump : forall p l x, nth p (tail l) = hd x (jump p l).
+ Lemma nth_jump p l : nth p (tail l) = hd (jump p l).
Proof.
- unfold tail.
- unfold hd.
- unfold jump.
- unfold nth.
- intros.
- rewrite Pplus_comm.
- reflexivity.
+ unfold hd, nth, tail, jump. f_equal. apply Pos.add_comm.
Qed.
- Lemma nth_Pdouble_minus_one :
- forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
+ Lemma nth_pred_double p l :
+ nth (Pos.pred_double p) (tail l) = nth p (jump p l).
Proof.
- intros.
- unfold tail.
- unfold nth, jump.
- rewrite Pplus_diag.
- rewrite <- Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_one_succ_r.
- reflexivity.
+ unfold nth, tail, jump. f_equal.
+ now rewrite Pos.add_1_r, Pos.succ_pred_double, Pos.add_diag.
Qed.
End S.
+Ltac jump_simpl :=
+ repeat
+ match goal with
+ | |- appcontext [jump xH] => rewrite (jump_simpl xH)
+ | |- appcontext [jump (xO ?p)] => rewrite (jump_simpl (xO p))
+ | |- appcontext [jump (xI ?p)] => rewrite (jump_simpl (xI p))
+ end.
diff --git a/plugins/micromega/EnvRing.v b/plugins/micromega/EnvRing.v
index 8968a014..786c3393 100644
--- a/plugins/micromega/EnvRing.v
+++ b/plugins/micromega/EnvRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -11,15 +11,10 @@
Set Implicit Arguments.
-Require Import Setoid.
-Require Import BinList.
-Require Import Env.
-Require Import BinPos.
-Require Import BinNat.
-Require Import BinInt.
+Require Import Setoid Morphisms Env BinPos BinNat BinInt.
Require Export Ring_theory.
-Open Local Scope positive_scope.
+Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
@@ -30,7 +25,7 @@ Section MakeRingPol.
Variable req : R -> R -> Prop.
(* Ring properties *)
- Variable Rsth : Setoid_Theory R req.
+ Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
@@ -42,35 +37,55 @@ Section MakeRingPol.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
- (* Power coefficients *)
- Variable Cpow : Set.
+ (* Power coefficients *)
+ Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
-
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Infix "+" := radd. Infix "*" := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
+ Infix "==" := req.
+ Infix "^" := (pow_pos rmul).
(* C notations *)
- Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
- Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
- Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
-
- (* Usefull tactics *)
- Add Setoid R req Rsth as R_set1.
- Ltac rrefl := gen_reflexivity Rsth.
- Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
- Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
- Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
- Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Infix "+!" := cadd. Infix "*!" := cmul.
+ Infix "-! " := csub. Notation "-! x" := (copp x).
+ Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
+
+ (* Useful tactics *)
+ Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
+
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
+ Ltac add_permut_rec t :=
+ match t with
+ | ?x + ?y => add_permut_rec y || add_permut_rec x
+ | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac add_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => add_permut_rec t end).
+
+ Ltac mul_permut_rec t :=
+ match t with
+ | ?x * ?y => mul_permut_rec y || mul_permut_rec x
+ | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac mul_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => mul_permut_rec t end).
+
+
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
@@ -105,31 +120,31 @@ Section MakeRingPol.
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
- match Pcompare j j' Eq with
+ match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
- match Pcompare i i' Eq with
+ match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
- Notation " P ?== P' " := (Peq P P').
+ Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
- | Pinj j' Q => Pinj ((j + j'):positive) Q
+ | Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
- | xO j => Pinj (Pdouble_minus_one j) P
+ | xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
@@ -157,14 +172,14 @@ Section MakeRingPol.
(** Addition et subtraction *)
- Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
- Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
@@ -176,11 +191,11 @@ Section MakeRingPol.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
@@ -188,16 +203,16 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
- Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
@@ -205,41 +220,41 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
- Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
- | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
- Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
- | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
@@ -259,18 +274,18 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
- | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
- Notation "P ++ P'" := (Padd P P').
+ Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
@@ -282,22 +297,22 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
- | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
- Notation "P -- P'" := (Psub P P').
+ Infix "--" := Psub.
(** Multiplication *)
- Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
@@ -311,11 +326,11 @@ Section MakeRingPol.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
@@ -323,13 +338,12 @@ Section MakeRingPol.
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
- | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
+ | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
-(* A symmetric version of the multiplication *)
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
@@ -342,7 +356,7 @@ Section MakeRingPol.
let QQ' :=
match j with
| xH => Pmul Q Q'
- | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q'
+ | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
@@ -355,25 +369,7 @@ Section MakeRingPol.
end
end.
-(* Non symmetric *)
-(*
- Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
- match P' with
- | Pc c' => PmulC P c'
- | Pinj j' Q' => PmulI Pmul_aux Q' j' P
- | PX P' i' Q' =>
- (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
- end.
-
- Definition Pmul P P' :=
- match P with
- | Pc c => PmulC P' c
- | Pinj j Q => PmulI Pmul_aux Q j P'
- | PX P i Q =>
- (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P')
- end.
-*)
- Notation "P ** P'" := (Pmul P P').
+ Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol :=
match P with
@@ -388,26 +384,26 @@ Section MakeRingPol.
(** Monomial **)
+ (** A monomial is X1^k1...Xi^ki. Its representation
+ is a simplified version of the polynomial representation:
+
+ - [mon0] correspond to the polynom [P1].
+ - [(zmon j M)] corresponds to [(Pinj j ...)],
+ i.e. skip j variable indices.
+ - [(vmon i M)] is X^i*M with X the current variable,
+ its corresponds to (PX P1 i ...)]
+ *)
+
Inductive Mon: Set :=
- mon0: Mon
+ | mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
- Fixpoint Mphi(l:Env R) (M: Mon) {struct M} : R :=
- match M with
- mon0 => rI
- | zmon j M1 => Mphi (jump j l) M1
- | vmon i M1 =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Mphi (tail l) M1) * xi
- end.
-
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
- match j with xH => M | _ => mkZmon (Ppred j) M end.
+ match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
@@ -416,12 +412,12 @@ Section MakeRingPol.
| vmon i' m => vmon (i+i') m
end.
- Fixpoint MFactor (P: Pol) (M: Mon) {struct P}: Pol * Pol :=
+ Fixpoint MFactor (P: Pol) (M: Mon) : Pol * Pol :=
match P, M with
_, mon0 => (Pc cO, P)
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
- match (j1 ?= j2) Eq with
+ match (j1 ?= j2) with
Eq => let (R,S) := MFactor P1 M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 (zmon (j2 - j1) M1) in
@@ -435,7 +431,7 @@ Section MakeRingPol.
let (R2, S2) := MFactor Q1 M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
- match (i ?= j) Eq with
+ match (i ?= j) with
Eq => let (R1,S1) := MFactor P1 (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 (vmon (j - i) M1) in
@@ -453,7 +449,7 @@ Section MakeRingPol.
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
- Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) {struct n}: Pol :=
+ Fixpoint PNSubst1 (P1: Pol) (M1: Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 M1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 M1 P2 n1 | _ => P3 end
| _ => P1
@@ -465,14 +461,13 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}:
- Pol :=
+ Fixpoint PSubstL1 (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
- Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) {struct LM1}: option Pol :=
+ Fixpoint PSubstL (P1: Pol) (LM1: list (Mon * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
@@ -482,7 +477,7 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) {struct m}: Pol :=
+ Fixpoint PNSubstL (P1: Pol) (LM1: list (Mon * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
@@ -490,726 +485,446 @@ Section MakeRingPol.
(** Evaluation of a polynomial towards R *)
- Fixpoint Pphi(l:Env R) (P:Pol) {struct P} : R :=
+ Fixpoint Pphi(l:Env R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
- | PX P i Q =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Pphi l P) * xi + (Pphi (tail l) Q)
+ | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
+
+ (** Evaluation of a monomial towards R *)
+
+ Fixpoint Mphi(l:Env R) (M: Mon) : R :=
+ match M with
+ | mon0 => rI
+ | zmon j M1 => Mphi (jump j l) M1
+ | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
+ end.
+
+ Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
+
(** Proofs *)
- Lemma ZPminus_spec : forall x y,
- match ZPminus x y with
- | Z0 => x = y
- | Zpos k => x = (y + k)%positive
- | Zneg k => y = (x + k)%positive
+
+ Ltac destr_pos_sub :=
+ match goal with |- context [Z.pos_sub ?x ?y] =>
+ generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
+
+ Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
- induction x;destruct y.
- replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- simpl;trivial.
- replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
- replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- simpl;trivial.
+ revert P';induction P;destruct P';simpl; intros H l; try easy.
+ - now apply (morph_eq CRmorph).
+ - destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ now rewrite IHP.
+ - specialize (IHP1 P'1); specialize (IHP2 P'2).
+ destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ destruct (P2 ?== P'1); [|easy].
+ rewrite H in *.
+ now rewrite IHP1, IHP2.
Qed.
- Lemma Peq_ok : forall P P',
- (P ?== P') = true -> forall l, P@l == P'@ l.
+ Lemma Peq_spec P P' :
+ BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
- induction P;destruct P';simpl;intros;try discriminate;trivial.
- apply (morph_eq CRmorph);trivial.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
- try discriminate H.
- rewrite (IHP P' H); rewrite H1;trivial;rrefl.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
- try discriminate H.
- rewrite H1;trivial. clear H1.
- assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
- destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
- |discriminate H].
- rewrite (H1 H);rewrite (H2 H);rrefl.
+ generalize (Peq_ok P P'). destruct (P ?== P'); auto.
Qed.
- Lemma Pphi0 : forall l, P0@l == 0.
+ Lemma Pphi0 l : P0@l == 0.
Proof.
- intros;simpl;apply (morph0 CRmorph).
+ simpl;apply (morph0 CRmorph).
Qed.
-Lemma env_morph : forall p e1 e2, (forall x, e1 x = e2 x) ->
- p @ e1 = p @ e2.
+ Lemma Pphi1 l : P1@l == 1.
+ Proof.
+ simpl;apply (morph1 CRmorph).
+ Qed.
+
+Lemma env_morph p e1 e2 :
+ (forall x, e1 x = e2 x) -> p @ e1 = p @ e2.
Proof.
- induction p ; simpl.
- reflexivity.
- intros.
- apply IHp.
- intros.
- unfold jump.
- apply H.
- intros.
- rewrite (IHp1 e1 e2) ; auto.
- rewrite (IHp2 (tail e1) (tail e2)) ; auto.
- unfold hd. unfold nth. rewrite H. reflexivity.
- unfold tail. unfold jump. intros ; apply H.
+ revert e1 e2. induction p ; simpl.
+ - reflexivity.
+ - intros e1 e2 EQ. apply IHp. intros. apply EQ.
+ - intros e1 e2 EQ. f_equal; [f_equal|].
+ + now apply IHp1.
+ + f_equal. apply EQ.
+ + apply IHp2. intros; apply EQ.
Qed.
-Lemma Pjump_Pplus : forall P i j l, P @ (jump (i + j) l ) = P @ (jump j (jump i l)).
+Lemma Pjump_add P i j l :
+ P @ (jump (i + j) l) = P @ (jump j (jump i l)).
Proof.
- intros. apply env_morph. intros. rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
+ apply env_morph. intros. rewrite <- jump_add. f_equal.
+ apply Pos.add_comm.
Qed.
-Lemma Pjump_xO_tail : forall P p l,
+Lemma Pjump_xO_tail P p l :
P @ (jump (xO p) (tail l)) = P @ (jump (xI p) l).
Proof.
- intros.
- apply env_morph.
- intros.
- rewrite (@jump_simpl R (xI p)).
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply env_morph. intros. now jump_simpl.
Qed.
-Lemma Pjump_Pdouble_minus_one : forall P p l,
- P @ (jump (Pdouble_minus_one p) (tail l)) = P @ (jump (xO p) l).
+Lemma Pjump_pred_double P p l :
+ P @ (jump (Pos.pred_double p) (tail l)) = P @ (jump (xO p) l).
Proof.
- intros.
- apply env_morph.
- intros.
- rewrite jump_Pdouble_minus_one.
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply env_morph. intros.
+ rewrite jump_pred_double. now jump_simpl.
Qed.
-
-
- Lemma Pphi1 : forall l, P1@l == 1.
+ Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
- intros;simpl;apply (morph1 CRmorph).
+ destruct P;simpl;rsimpl.
+ now rewrite Pjump_add.
Qed.
- Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
+ Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
Proof.
- intros j l p;destruct p;simpl;rsimpl.
- rewrite Pjump_Pplus.
- reflexivity.
+ rewrite Pos.add_comm.
+ apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
Qed.
- Let pow_pos_Pplus :=
- pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc).
-
- Lemma mkPX_ok : forall l P i Q,
- (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l).
+ Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
- intros l P i Q;unfold mkPX.
- destruct P;try (simpl;rrefl).
- assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
- rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
- rewrite mkPinj_ok;rsimpl;simpl;rrefl.
- assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
- rewrite (H (refl_equal true));trivial.
- rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl.
+ generalize (morph_eq CRmorph c c').
+ destruct (c ?=! c'); auto.
Qed.
-
- Ltac Esimpl :=
- repeat (progress (
- match goal with
- | |- context [P0@?l] => rewrite (Pphi0 l)
- | |- context [P1@?l] => rewrite (Pphi1 l)
- | |- context [(mkPinj ?j ?P)@?l] => rewrite (mkPinj_ok j l P)
- | |- context [(mkPX ?P ?i ?Q)@?l] => rewrite (mkPX_ok l P i Q)
- | |- context [[cO]] => rewrite (morph0 CRmorph)
- | |- context [[cI]] => rewrite (morph1 CRmorph)
- | |- context [[?x +! ?y]] => rewrite ((morph_add CRmorph) x y)
- | |- context [[?x *! ?y]] => rewrite ((morph_mul CRmorph) x y)
- | |- context [[?x -! ?y]] => rewrite ((morph_sub CRmorph) x y)
- | |- context [[-! ?x]] => rewrite ((morph_opp CRmorph) x)
- end));
- rsimpl; simpl.
-
- Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
+ Lemma mkPX_ok l P i Q :
+ (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP2;rsimpl.
+ unfold mkPX. destruct P.
+ - case ceqb_spec; intros H; simpl; try reflexivity.
+ rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
+ - reflexivity.
+ - case Peq_spec; intros H; simpl; try reflexivity.
+ rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
- Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
+ Hint Rewrite
+ Pphi0
+ Pphi1
+ mkPinj_ok
+ mkPX_ok
+ (morph0 CRmorph)
+ (morph1 CRmorph)
+ (morph0 CRmorph)
+ (morph_add CRmorph)
+ (morph_mul CRmorph)
+ (morph_sub CRmorph)
+ (morph_opp CRmorph)
+ : Esimpl.
+
+ (* Quicker than autorewrite with Esimpl :-) *)
+ Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
+
+ Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- rewrite IHP;rsimpl.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
+ Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP1;rewrite IHP2;rsimpl.
- mul_push ([c]);rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - rewrite IHP;rsimpl.
+ - rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
+ Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
- intros c P l; unfold PmulC.
- assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
- rewrite (H (refl_equal true));Esimpl.
- assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- apply PmulC_aux_ok.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
+ rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut.
Qed.
- Lemma Popp_ok : forall P l, (--P)@l == - P@l.
+ Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- apply IHP.
- rewrite IHP1;rewrite IHP2;rsimpl.
+ unfold PmulC.
+ case ceqb_spec; intros H.
+ - rewrite H; Esimpl.
+ - case ceqb_spec; intros H'.
+ + rewrite H'; Esimpl.
+ + apply PmulC_aux_ok.
Qed.
- Ltac Esimpl2 :=
- Esimpl;
- repeat (progress (
- match goal with
- | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
- | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
- | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
- | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
- end)); Esimpl.
-
-
-
-
- Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
+ Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
- induction P';simpl;intros;Esimpl2.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rrefl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite Pjump_Pplus. rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite Pjump_Pplus. rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl. rsimpl.
- rewrite Pjump_xO_tail. Esimpl.
- rewrite IHP2;simpl.
- rewrite Pjump_Pdouble_minus_one.
- rsimpl.
- rewrite IHP'.
- rsimpl.
- destruct P;simpl.
- Esimpl2;add_push [c];rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl.
- rewrite Pjump_xO_tail.
- rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;simpl.
- rewrite Pjump_Pdouble_minus_one. rsimpl.
- add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;rsimpl.
- unfold tail.
- add_push (P @ (jump 1 l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1;rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros;try apply (ARadd_comm ARth).
- destruct p2; simpl; try apply (ARadd_comm ARth).
- rewrite Pjump_xO_tail.
- apply (ARadd_comm ARth).
- rewrite Pjump_Pdouble_minus_one.
- apply (ARadd_comm ARth).
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
- rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
- rewrite IHP'1;simpl;Esimpl.
- rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - apply IHP.
+ - rewrite IHP1, IHP2;rsimpl.
Qed.
- Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
+ Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
+
+ Lemma PaddX_ok P' P k l :
+ (forall P l, (P++P')@l == P@l + P'@l) ->
+ (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
- induction P';simpl;intros;Esimpl2;trivial.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rsimpl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite <- Pjump_Pplus;rewrite Pplus_comm;rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl; try rewrite Pjump_xO_tail ; rsimpl.
- rewrite IHP2;simpl.
- rewrite Pjump_Pdouble_minus_one;rsimpl.
- unfold tail ; rsimpl.
- rewrite IHP';rsimpl.
- destruct P;simpl.
- repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial.
- rewrite Pjump_xO_tail.
- add_push (P @ ((jump (xI p0) l)));rrefl.
- rewrite IHP'2;simpl;rewrite Pjump_Pdouble_minus_one;rsimpl.
- add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl.
- unfold tail.
- rewrite IHP'2;rsimpl;add_push (P @ (jump 1 l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1; rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros.
- rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial.
- destruct p2;simpl; rewrite Popp_ok;rsimpl.
- rewrite Pjump_xO_tail.
- apply (ARadd_comm ARth);trivial.
- rewrite Pjump_Pdouble_minus_one.
- apply (ARadd_comm ARth);trivial.
- apply (ARadd_comm ARth);trivial.
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
- rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
- rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - add_permut.
+ - destruct p; simpl;
+ rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
-(* Proof for the symmetric version *)
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : Env R), (Pmul P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : Env R),
- (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pjump_Pplus;simpl;rrefl.
- rewrite H1.
- rewrite Pjump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;rsimpl.
- rewrite Pjump_xO_tail.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite Pjump_Pdouble_minus_one.
- rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * now rewrite IHP'.
+ * rewrite IHP';Esimpl. now rewrite Pjump_add.
+ * rewrite IHP. now rewrite Pjump_add.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
+ * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl. add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rewrite Pjump_xO_tail. rsimpl. add_permut.
+ * rewrite Pjump_pred_double. rsimpl. add_permut.
+ * rsimpl. unfold tail. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PaddX_ok by trivial; rsimpl.
+ rewrite IHP'2, pow_pos_add; rsimpl. add_permut.
Qed.
-(*
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : list R),
- (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma PsubX_ok P' P k l :
+ (forall P l, (P--P')@l == P@l - P'@l) ->
+ (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pplus_comm.
- rewrite jump_Pplus;simpl;rrefl.
- rewrite H1;rewrite Pplus_comm.
- rewrite jump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - rewrite Popp_ok;rsimpl; add_permut.
+ - destruct p; simpl;
+ rewrite Popp_ok;rsimpl;
+ rewrite ?Pjump_xO_tail, ?Pjump_pred_double; add_permut.
+ - destr_pos_sub; intros ->; Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
- Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
+ Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
- induction P';simpl;intros.
- Esimpl2;trivial.
- apply PmulI_ok;trivial.
- rewrite Padd_ok;Esimpl2.
- rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * rewrite IHP';rsimpl.
+ * rewrite IHP';Esimpl. now rewrite Pjump_add.
+ * rewrite IHP. now rewrite Pjump_add.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl. rewrite Pjump_xO_tail. Esimpl.
+ * rewrite IHP2;simpl. rewrite Pjump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl; add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rewrite Pjump_xO_tail. rsimpl. add_permut.
+ * rewrite Pjump_pred_double. rsimpl. add_permut.
+ * rsimpl. unfold tail. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PsubX_ok by trivial;rsimpl.
+ rewrite IHP'2, pow_pos_add;rsimpl. add_permut.
Qed.
-*)
-(* Proof for the symmetric version *)
- Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma PmulI_ok P' :
+ (forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
+ forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
- intros P P';generalize P;clear P;induction P';simpl;intros.
- apply PmulC_ok. apply PmulI_ok;trivial.
- destruct P.
- rewrite (ARmul_comm ARth);Esimpl2;Esimpl2.
- Esimpl2. rewrite IHP'1;Esimpl2.
- assert (match p0 with
- | xI j => Pinj (xO j) P ** P'2
- | xO j => Pinj (Pdouble_minus_one j) P ** P'2
- | 1 => P ** P'2
- end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)).
- destruct p0;rewrite IHP'2;Esimpl.
- rewrite Pjump_xO_tail. reflexivity.
- rewrite Pjump_Pdouble_minus_one;Esimpl.
- rewrite H;Esimpl.
- rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2.
- repeat (rewrite IHP'1 || rewrite IHP'2);simpl.
- rewrite PmulI_ok;trivial.
- unfold tail.
- mul_push (P'1@l). simpl. mul_push (P'2 @ (jump 1 l)). Esimpl.
+ intros IHP'.
+ induction P;simpl;intros.
+ - Esimpl; mul_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + now rewrite IHP'.
+ + now rewrite IHP', Pjump_add.
+ + now rewrite IHP, Pjump_add.
+ - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+ + rewrite Pjump_xO_tail. f_equiv. mul_permut.
+ + rewrite Pjump_pred_double. f_equiv. mul_permut.
+ + rewrite IHP'. f_equiv. mul_permut.
Qed.
-(*
-Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
- destruct P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- rewrite (PmulI_ok P (Pmul_aux_ok P)).
- apply (ARmul_comm ARth).
- rewrite Padd_ok; Esimpl2.
- rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
- rewrite Pmul_aux_ok;mul_push (P' @ l).
- rewrite (ARmul_comm ARth (P' @ l));rrefl.
+ revert P l;induction P';simpl;intros.
+ - apply PmulC_ok.
+ - apply PmulI_ok;trivial.
+ - destruct P.
+ + rewrite (ARmul_comm ARth). Esimpl.
+ + Esimpl. rewrite IHP'1;Esimpl. f_equiv.
+ destruct p0;rewrite IHP'2;Esimpl.
+ * now rewrite Pjump_xO_tail.
+ * rewrite Pjump_pred_double; Esimpl.
+ + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok,
+ !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl.
+ unfold tail.
+ add_permut; f_equiv; mul_permut.
Qed.
-*)
- Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
+ Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
- induction P;simpl;intros;Esimpl2.
- apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2.
- rewrite IHP1;rewrite IHP2.
- mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l).
- rrefl.
+ revert l;induction P;simpl;intros;Esimpl.
+ - apply IHP.
+ - rewrite Padd_ok, Pmul_ok;Esimpl.
+ rewrite IHP1, IHP2.
+ mul_push ((hd l)^p). now mul_push (P2@l).
Qed.
- Lemma Mphi_morph : forall P env env', (forall x, env x = env' x ) ->
- Mphi env P = Mphi env' P.
+ Lemma Mphi_morph M e1 e2 :
+ (forall x, e1 x = e2 x) -> M @@ e1 = M @@ e2.
Proof.
- induction P ; simpl.
- reflexivity.
- intros.
- apply IHP.
- intros.
- unfold jump.
- apply H.
- (**)
- intros.
- replace (Mphi (tail env) P) with (Mphi (tail env') P).
- unfold hd. unfold nth.
- rewrite H.
- reflexivity.
- apply IHP.
- unfold tail,jump.
- intros. symmetry. apply H.
+ revert e1 e2; induction M; simpl; intros e1 e2 EQ; trivial.
+ - apply IHM. intros; apply EQ.
+ - f_equal.
+ * apply IHM. intros; apply EQ.
+ * f_equal. apply EQ.
Qed.
-Lemma Mjump_xO_tail : forall M p l,
- Mphi (jump (xO p) (tail l)) M = Mphi (jump (xI p) l) M.
+Lemma Mjump_xO_tail M p l :
+ M @@ (jump (xO p) (tail l)) = M @@ (jump (xI p) l).
Proof.
- intros.
- apply Mphi_morph.
- intros.
- rewrite (@jump_simpl R (xI p)).
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply Mphi_morph. intros. now jump_simpl.
Qed.
-Lemma Mjump_Pdouble_minus_one : forall M p l,
- Mphi (jump (Pdouble_minus_one p) (tail l)) M = Mphi (jump (xO p) l) M.
+Lemma Mjump_pred_double M p l :
+ M @@ (jump (Pos.pred_double p) (tail l)) = M @@ (jump (xO p) l).
Proof.
- intros.
- apply Mphi_morph.
- intros.
- rewrite jump_Pdouble_minus_one.
- rewrite (@jump_simpl R (xO p)).
- reflexivity.
+ apply Mphi_morph. intros.
+ rewrite jump_pred_double. now jump_simpl.
Qed.
-Lemma Mjump_Pplus : forall M i j l, Mphi (jump (i + j) l ) M = Mphi (jump j (jump i l)) M.
+Lemma Mjump_add M i j l :
+ M @@ (jump (i + j) l) = M @@ (jump j (jump i l)).
Proof.
- intros. apply Mphi_morph. intros. rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
+ apply Mphi_morph. intros. now rewrite <- jump_add, Pos.add_comm.
Qed.
-
-
- Lemma mkZmon_ok: forall M j l,
- Mphi l (mkZmon j M) == Mphi l (zmon j M).
- intros M j l; case M; simpl; intros; rsimpl.
+ Lemma mkZmon_ok M j l :
+ (mkZmon j M) @@ l == (zmon j M) @@ l.
+ Proof.
+ destruct M; simpl; rsimpl.
Qed.
- Lemma zmon_pred_ok : forall M j l,
- Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M).
+ Lemma zmon_pred_ok M j l :
+ (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
- destruct j; simpl;intros l; rsimpl.
- rewrite mkZmon_ok;rsimpl.
- simpl.
- rewrite Mjump_xO_tail.
- reflexivity.
- rewrite mkZmon_ok;simpl.
- rewrite Mjump_Pdouble_minus_one; rsimpl.
+ destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
+ - now rewrite Mjump_xO_tail.
+ - rewrite Mjump_pred_double; rsimpl.
Qed.
- Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i.
+ Lemma mkVmon_ok M i l :
+ (mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
- rewrite zmon_pred_ok;simpl;rsimpl.
- rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl.
+ - rewrite zmon_pred_ok;simpl;rsimpl.
+ - rewrite pow_pos_add;rsimpl.
Qed.
+ Ltac destr_mfactor R S := match goal with
+ | H : context [MFactor ?P _] |- context [MFactor ?P ?M] =>
+ specialize (H M); destruct MFactor as (R,S)
+ end.
- Lemma Mphi_ok: forall P M l,
- let (Q,R) := MFactor P M in
- P@l == Q@l + (Mphi l M) * (R@l).
+ Lemma Mphi_ok P M l :
+ let (Q,R) := MFactor P M in
+ P@l == Q@l + M@@l * R@l.
Proof.
- intros P; elim P; simpl; auto; clear P.
- intros c M l; case M; simpl; auto; try intro p; try intro m;
- try rewrite (morph0 CRmorph); rsimpl.
-
- intros i P Hrec M l; case M; simpl; clear M.
- rewrite (morph0 CRmorph); rsimpl.
- intros j M.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
- generalize (Hrec M (jump j l)); case (MFactor P M);
- simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- generalize (Hrec (zmon (j -i) M) (jump i l));
- case (MFactor P (zmon (j -i) M)); simpl.
- intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)).
- rewrite Mjump_Pplus; auto.
- rewrite (morph0 CRmorph); rsimpl.
- intros P2 m; rewrite (morph0 CRmorph); rsimpl.
-
- intros P2 Hrec1 i Q2 Hrec2 M l; case M; simpl; auto.
- rewrite (morph0 CRmorph); rsimpl.
- intros j M1.
- generalize (Hrec1 (zmon j M1) l);
- case (MFactor P2 (zmon j M1)).
- intros R1 S1 H1.
- generalize (Hrec2 (zmon_pred j M1) (tail l));
- case (MFactor Q2 (zmon_pred j M1)); simpl.
- intros R2 S2 H2; rewrite H1; rewrite H2.
- repeat rewrite mkPX_ok; simpl.
- rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- rewrite zmon_pred_ok;rsimpl.
- intros j M1.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
- generalize (Hrec1 (mkZmon xH M1) l); case (MFactor P2 (mkZmon xH M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite mkZmon_ok.
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- generalize (Hrec1 (vmon (j - i) M1) l);
- case (MFactor P2 (vmon (j - i) M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl.
- generalize (Hrec1 (mkZmon 1 M1) l);
- case (MFactor P2 (mkZmon 1 M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite mkZmon_ok.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- rewrite mkPX_ok; simpl; rsimpl.
- rewrite (morph0 CRmorph); rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite (ARmul_comm ARth (Q3@l)); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ He); rsimpl.
+ revert M l; induction P; destruct M; intros l; simpl; auto; Esimpl.
+ - case Pos.compare_spec; intros He; simpl.
+ * destr_mfactor R1 S1. now rewrite IHP, He, !mkPinj_ok.
+ * destr_mfactor R1 S1. rewrite IHP; simpl.
+ now rewrite !mkPinj_ok, <- Mjump_add, Pos.add_comm, Pos.sub_add.
+ * Esimpl.
+ - destr_mfactor R1 S1. destr_mfactor R2 S2.
+ rewrite IHP1, IHP2, !mkPX_ok, zmon_pred_ok; simpl; rsimpl.
+ add_permut.
+ - case Pos.compare_spec; intros He; simpl; destr_mfactor R1 S1;
+ rewrite ?He, IHP1, mkPX_ok, ?mkZmon_ok; simpl; rsimpl;
+ unfold tail; add_permut; mul_permut.
+ * rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
+ * rewrite mkPX_ok. simpl. Esimpl. mul_permut.
+ rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
-(* Proof for the symmetric version *)
-
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
+ Lemma POneSubst_ok P1 M1 P2 P3 l :
+ POneSubst P1 M1 P2 = Some P3 -> M1@@l == P2@l ->
+ P1@l == P3@l.
Proof.
- intros P2 M1 P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- (* new version *)
- rewrite Padd_ok; rewrite PmulC_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- assert (P4 = Q1 ++ P3 ** PX i P5 P6).
- injection H2; intros; subst;trivial.
- rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl.
-Qed.
-(*
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
-Proof.
- intros P2 M1 P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- injection H2; intros; subst; rsimpl.
- rewrite Padd_ok.
- rewrite Pmul_ok; rsimpl.
+ unfold POneSubst.
+ assert (H := Mphi_ok P1). destr_mfactor R1 S1. rewrite H; clear H.
+ intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1).
+ - rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
+ - revert EQ. destruct S1; try now injection 1.
+ case ceqb_spec; now inversion 2.
Qed.
-*)
- Lemma PNSubst1_ok: forall n P1 M1 P2 l,
- Mphi l M1 == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
+
+ Lemma PNSubst1_ok n P1 M1 P2 l :
+ M1@@l == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
Proof.
- intros n; elim n; simpl; auto.
- intros P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl.
- intros n1 Hrec P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl.
+ revert P1. induction n; simpl; intros P1;
+ generalize (POneSubst_ok P1 M1 P2); destruct POneSubst;
+ intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
- Lemma PNSubst_ok: forall n P1 M1 P2 l P3,
- PNSubst P1 M1 P2 n = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
+ Lemma PNSubst_ok n P1 M1 P2 l P3 :
+ PNSubst P1 M1 P2 n = Some P3 -> M1@@l == P2@l -> P1@l == P3@l.
Proof.
- intros n P2 M1 P3 l P4; unfold PNSubst.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; discriminate].
- intros P5 H1; case n; try (intros; discriminate).
- intros n1 H2; injection H2; intros; subst.
- rewrite <- PNSubst1_ok; auto.
+ unfold PNSubst.
+ assert (H := POneSubst_ok P1 M1 P2); destruct POneSubst; try discriminate.
+ destruct n; inversion_clear 1.
+ intros. rewrite <- PNSubst1_ok; auto.
Qed.
- Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) {struct LM1} : Prop :=
- match LM1 with
- cons (M1,P2) LM2 => (Mphi l M1 == P2@l) /\ (MPcond LM2 l)
- | _ => True
- end.
+ Fixpoint MPcond (LM1: list (Mon * Pol)) (l: Env R) : Prop :=
+ match LM1 with
+ | cons (M1,P2) LM2 => (M1@@l == P2@l) /\ MPcond LM2 l
+ | _ => True
+ end.
- Lemma PSubstL1_ok: forall n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
+ Lemma PSubstL1_ok n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; rsimpl.
- intros (M2,P2) LM2 Hrec P3 l [H H1].
- rewrite <- Hrec; auto.
- apply PNSubst1_ok; auto.
+ revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
+ - reflexivity.
+ - rewrite <- IH by intuition. now apply PNSubst1_ok.
Qed.
- Lemma PSubstL_ok: forall n LM1 P1 P2 l,
- PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
+ Lemma PSubstL_ok n LM1 P1 P2 l :
+ PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; discriminate.
- intros (M2,P2) LM2 Hrec P3 P4 l.
- generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n).
- intros P5 H0 H1 [H2 H3]; injection H1; intros; subst.
- rewrite <- PSubstL1_ok; auto.
- intros l1 H [H1 H2]; auto.
+ revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros.
+ - discriminate.
+ - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst.
+ * injection H; intros <-. rewrite <- PSubstL1_ok; intuition.
+ * now apply IH.
Qed.
- Lemma PNSubstL_ok: forall m n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
+ Lemma PNSubstL_ok m n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
- intros m; elim m; simpl; auto.
- intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- intros m1 Hrec n LM1 P2 l H.
- generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- rewrite <- Hrec; auto.
+ revert LM1 P1. induction m; simpl; intros;
+ assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL;
+ auto; try reflexivity.
+ rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
@@ -1228,7 +943,7 @@ Proof.
(** evaluation of polynomial expressions towards R *)
- Fixpoint PEeval (l:Env R) (pe:PExpr) {struct pe} : R :=
+ Fixpoint PEeval (l:Env R) (pe:PExpr) : R :=
match pe with
| PEc c => phi c
| PEX j => nth j l
@@ -1241,60 +956,23 @@ Proof.
(** Correctness proofs *)
- Lemma mkX_ok : forall p l, nth p l == (mk_X p) @ l.
+ Lemma mkX_ok p l : nth p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
rewrite nth_spec ; auto.
unfold hd.
- rewrite <- nth_Pdouble_minus_one.
- rewrite (nth_jump (Pdouble_minus_one p) l 1).
- reflexivity.
+ now rewrite <- nth_pred_double, nth_jump.
Qed.
- Ltac Esimpl3 :=
- repeat match goal with
- | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
- | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
- end;Esimpl2;try rrefl;try apply (ARadd_comm ARth).
-
-(* Power using the chinise algorithm *)
-(*Section POWER.
- Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol :=
- match p with
- | xH => P
- | xO p => subst_l (Psquare (Ppow_pos P p))
- | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p)))
- end.
-
- Definition Ppow_N P n :=
- match n with
- | N0 => P1
- | Npos p => Ppow_pos P p
- end.
-
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l.
- Proof.
- intros l subst_l_ok P.
- induction p;simpl;intros;try rrefl;try rewrite subst_l_ok.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- Qed.
-
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed.
-
- End POWER. *)
+ Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
+ Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
- | xH => subst_l (Pmul res P)
+ | xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
- | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P)
+ | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
@@ -1303,17 +981,23 @@ Section POWER.
| Npos p => Ppow_pos P1 P p
end.
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
+ Lemma Ppow_pos_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
- intros l subst_l_ok res P p. generalize res;clear res.
- induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp.
- rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl.
+ intros subst_l_ok res P p. revert res.
+ induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp;
+ mul_permut.
Qed.
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok. trivial. Esimpl. auto. Qed.
+ Lemma Ppow_N_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
+ Proof.
+ destruct n;simpl.
+ - reflexivity.
+ - rewrite Ppow_pos_ok by trivial. Esimpl.
+ Qed.
End POWER.
@@ -1342,62 +1026,57 @@ Section POWER.
Definition norm_subst pe := subst_l (norm_aux pe).
- (*
- Fixpoint norm_subst (pe:PExpr) : Pol :=
+ (** Internally, [norm_aux] is expanded in a large number of cases.
+ To speed-up proofs, we use an alternative definition. *)
+
+ Definition get_PEopp pe :=
match pe with
- | PEc c => Pc c
- | PEX j => subst_l (mk_X j)
- | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1)
- | PEadd pe1 (PEopp pe2) =>
- Psub (norm_subst pe1) (norm_subst pe2)
- | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2)
- | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2)
- | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2)
- | PEopp pe1 => Popp (norm_subst pe1)
- | PEpow pe1 n => Ppow_subst (norm_subst pe1) n
+ | PEopp pe' => Some pe'
+ | _ => None
end.
- Lemma norm_subst_spec :
- forall l pe, MPcond lmp l ->
- PEeval l pe == (norm_subst pe)@l.
+ Lemma norm_aux_PEadd pe1 pe2 :
+ norm_aux (PEadd pe1 pe2) =
+ match get_PEopp pe1, get_PEopp pe2 with
+ | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
+ | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
+ | None, None => (norm_aux pe1) ++ (norm_aux pe2)
+ end.
Proof.
- intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l).
- unfold subst_l;intros.
- rewrite <- PNSubstL_ok;trivial. rrefl.
- assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l).
- intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl.
- induction pe;simpl;Esimpl3.
- rewrite subst_l_ok;apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe;rrefl.
- unfold Ppow_subst. rewrite Ppow_N_ok. trivial.
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ simpl (norm_aux (PEadd _ _)).
+ destruct pe1; [ | | | | | reflexivity | ];
+ destruct pe2; simpl get_PEopp; reflexivity.
Qed.
-*)
- Lemma norm_aux_spec :
- forall l pe, (*MPcond lmp l ->*)
- PEeval l pe == (norm_aux pe)@l.
+
+ Lemma norm_aux_PEopp pe :
+ match get_PEopp pe with
+ | Some pe' => norm_aux pe = -- (norm_aux pe')
+ | None => True
+ end.
Proof.
- intros.
- induction pe;simpl;Esimpl3.
- apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl.
- rewrite IHpe;rrefl.
- rewrite Ppow_N_ok by reflexivity.
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ now destruct pe.
Qed.
+ Lemma norm_aux_spec l pe :
+ PEeval l pe == (norm_aux pe)@l.
+ Proof.
+ intros.
+ induction pe.
+ - reflexivity.
+ - apply mkX_ok.
+ - simpl PEeval. rewrite IHpe1, IHpe2.
+ assert (H1 := norm_aux_PEopp pe1).
+ assert (H2 := norm_aux_PEopp pe2).
+ rewrite norm_aux_PEadd.
+ do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
+ - simpl. rewrite IHpe1, IHpe2. Esimpl.
+ - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok.
+ - simpl. rewrite IHpe. Esimpl.
+ - simpl. rewrite Ppow_N_ok by reflexivity.
+ rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl.
+ induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
+ Qed.
End NORM_SUBST_REC.
-
End MakeRingPol.
-
diff --git a/plugins/micromega/MExtraction.v b/plugins/micromega/MExtraction.v
index 5afe7e37..64181cde 100644
--- a/plugins/micromega/MExtraction.v
+++ b/plugins/micromega/MExtraction.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -23,7 +23,7 @@ Require Import NArith.
Require Import QArith.
Extract Inductive prod => "( * )" [ "(,)" ].
-Extract Inductive List.list => list [ "[]" "(::)" ].
+Extract Inductive list => list [ "[]" "(::)" ].
Extract Inductive bool => bool [ true false ].
Extract Inductive sumbool => bool [ true false ].
Extract Inductive option => option [ Some None ].
@@ -38,10 +38,23 @@ Extract Inductive sumor => option [ Some None ].
Let's rather use the ocaml && *)
Extract Inlined Constant andb => "(&&)".
+Require Import Reals.
+
+Extract Constant R => "int".
+Extract Constant R0 => "0".
+Extract Constant R1 => "1".
+Extract Constant Rplus => "( + )".
+Extract Constant Rmult => "( * )".
+Extract Constant Ropp => "fun x -> - x".
+Extract Constant Rinv => "fun x -> 1 / x".
+
Extraction "micromega.ml"
List.map simpl_cone (*map_cone indexes*)
denorm Qpower
- n_of_Z Nnat.N_of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find.
+ n_of_Z N.of_nat ZTautoChecker ZWeakChecker QTautoChecker RTautoChecker find.
+
+
+
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/OrderedRing.v b/plugins/micromega/OrderedRing.v
index e4f91fb6..b260feab 100644
--- a/plugins/micromega/OrderedRing.v
+++ b/plugins/micromega/OrderedRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/Psatz.v b/plugins/micromega/Psatz.v
index fde0f29a..bcf84c6b 100644
--- a/plugins/micromega/Psatz.v
+++ b/plugins/micromega/Psatz.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,7 +18,7 @@ Require Import RMicromega.
Require Import QArith.
Require Export Ring_normalize.
Require Import ZArith.
-Require Import Raxioms.
+Require Import Rdefinitions.
Require Export RingMicromega.
Require Import VarMap.
Require Tauto.
@@ -66,6 +66,7 @@ Ltac psatzl dom :=
change (Tauto.eval_f (Qeval_formula (@find Q 0%Q __varmap)) __ff) ;
apply (QTautoChecker_sound __ff __wit); vm_compute ; reflexivity)
| R =>
+ unfold Rdiv in * ;
psatzl_R ;
(* If csdp is not installed, the previous step might not produce any
progress: the rest of the tactical will then fail. Hence the 'try'. *)
@@ -75,12 +76,25 @@ Ltac psatzl dom :=
| _ => fail "Unsupported domain"
end in tac.
+
+Ltac lra :=
+ first [ psatzl R | psatzl Q ].
+
Ltac lia :=
- xlia ;
+ zify ; unfold Z.succ in * ;
+ (*cbv delta - [Z.add Z.sub Z.opp Z.mul Z.pow Z.gt Z.ge Z.le Z.lt iff not] ;*) xlia ;
intros __wit __varmap __ff ;
change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
+Ltac nia :=
+ zify ; unfold Z.succ in * ;
+ xnlia ;
+ intros __wit __varmap __ff ;
+ change (Tauto.eval_f (Zeval_formula (@find Z Z0 __varmap)) __ff) ;
+ apply (ZTautoChecker_sound __ff __wit); vm_compute ; reflexivity.
+
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/QMicromega.v b/plugins/micromega/QMicromega.v
index 5ff6a1a7..792e2c3c 100644
--- a/plugins/micromega/QMicromega.v
+++ b/plugins/micromega/QMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -60,7 +60,7 @@ Proof.
Qed.
-(*Definition Zeval_expr := eval_pexpr 0 Zplus Zmult Zminus Zopp (fun x => x) (fun x => Z_of_N x) (Zpower).*)
+(*Definition Zeval_expr := eval_pexpr 0 Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => Z.of_N x) (Z.pow).*)
Require Import EnvRing.
Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q :=
@@ -71,7 +71,7 @@ Fixpoint Qeval_expr (env: PolEnv Q) (e: PExpr Q) : Q :=
| PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2)
| PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2)
| PEopp pe1 => - (Qeval_expr env pe1)
- | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n)
+ | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n)
end.
Lemma Qeval_expr_simpl : forall env e,
@@ -83,7 +83,7 @@ Lemma Qeval_expr_simpl : forall env e,
| PEsub pe1 pe2 => (Qeval_expr env pe1) - (Qeval_expr env pe2)
| PEmul pe1 pe2 => (Qeval_expr env pe1) * (Qeval_expr env pe2)
| PEopp pe1 => - (Qeval_expr env pe1)
- | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z_of_N n)
+ | PEpow pe1 n => Qpower (Qeval_expr env pe1) (Z.of_N n)
end.
Proof.
destruct e ; reflexivity.
@@ -91,7 +91,7 @@ Qed.
Definition Qeval_expr' := eval_pexpr Qplus Qmult Qminus Qopp (fun x => x) (fun x => x) (pow_N 1 Qmult).
-Lemma QNpower : forall r n, r ^ Z_of_N n = pow_N 1 Qmult r n.
+Lemma QNpower : forall r n, r ^ Z.of_N n = pow_N 1 Qmult r n.
Proof.
destruct n ; reflexivity.
Qed.
@@ -173,8 +173,15 @@ Require Import Tauto.
Definition Qnormalise := @cnf_normalise Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.
Definition Qnegate := @cnf_negate Q 0 1 Qplus Qmult Qminus Qopp Qeq_bool.
+Definition qunsat := check_inconsistent 0 Qeq_bool Qle_bool.
+
+Definition qdeduce := nformula_plus_nformula 0 Qplus Qeq_bool.
+
+
+
Definition QTautoChecker (f : BFormula (Formula Q)) (w: list QWitness) : bool :=
@tauto_checker (Formula Q) (NFormula Q)
+ qunsat qdeduce
Qnormalise
Qnegate QWitness QWeakChecker f w.
@@ -186,6 +193,11 @@ Proof.
unfold QTautoChecker.
apply (tauto_checker_sound Qeval_formula Qeval_nformula).
apply Qeval_nformula_dec.
+ intros until env.
+ unfold eval_nformula. unfold RingMicromega.eval_nformula.
+ destruct t.
+ apply (check_inconsistent_sound Qsor QSORaddon) ; auto.
+ unfold qdeduce. apply (nformula_plus_nformula_correct Qsor QSORaddon).
intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_normalise_correct Qsor QSORaddon).
intros. rewrite Qeval_formula_compat. unfold Qeval_formula'. now apply (cnf_negate_correct Qsor QSORaddon).
intros t w0.
diff --git a/plugins/micromega/RMicromega.v b/plugins/micromega/RMicromega.v
index 305d553c..d6f67485 100644
--- a/plugins/micromega/RMicromega.v
+++ b/plugins/micromega/RMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,6 +16,10 @@ Require Import OrderedRing.
Require Import RingMicromega.
Require Import Refl.
Require Import Raxioms RIneq Rpow_def DiscrR.
+Require Import QArith.
+Require Import Qfield.
+
+
Require Setoid.
(*Declare ML Module "micromega_plugin".*)
@@ -60,32 +64,405 @@ Proof.
apply (Rmult_lt_compat_r) ; auto.
Qed.
-Require ZMicromega.
-(* R with coeffs in Z *)
+Definition IQR := fun x : Q => (IZR (Qnum x) * / IZR (' Qden x))%R.
+
+
+Lemma Rinv_elim : forall x y z,
+ y <> 0 -> (z * y = x <-> x * / y = z).
+Proof.
+ intros.
+ split ; intros.
+ subst.
+ rewrite Rmult_assoc.
+ rewrite Rinv_r; auto.
+ ring.
+ subst.
+ rewrite Rmult_assoc.
+ rewrite (Rmult_comm (/ y)).
+ rewrite Rinv_r ; auto.
+ ring.
+Qed.
+
+Ltac INR_nat_of_P :=
+ match goal with
+ | H : context[INR (Pos.to_nat ?X)] |- _ =>
+ revert H ;
+ let HH := fresh in
+ assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
+ | |- context[INR (Pos.to_nat ?X)] =>
+ let HH := fresh in
+ assert (HH := pos_INR_nat_of_P X) ; revert HH ; generalize (INR (Pos.to_nat X))
+ end.
+
+Ltac add_eq expr val := set (temp := expr) ;
+ generalize (eq_refl temp) ;
+ unfold temp at 1 ; generalize temp ; intro val ; clear temp.
+
+Ltac Rinv_elim :=
+ match goal with
+ | |- context[?x * / ?y] =>
+ let z := fresh "v" in
+ add_eq (x * / y) z ;
+ let H := fresh in intro H ; rewrite <- Rinv_elim in H
+ end.
+
+Lemma Rlt_neq : forall r , 0 < r -> r <> 0.
+Proof.
+ red. intros.
+ subst.
+ apply (Rlt_irrefl 0 H).
+Qed.
+
+
+Lemma Rinv_1 : forall x, x * / 1 = x.
+Proof.
+ intro.
+ Rinv_elim.
+ subst ; ring.
+ apply R1_neq_R0.
+Qed.
+
+Lemma Qeq_true : forall x y,
+ Qeq_bool x y = true ->
+ IQR x = IQR y.
+Proof.
+ unfold IQR.
+ simpl.
+ intros.
+ apply Qeq_bool_eq in H.
+ unfold Qeq in H.
+ assert (IZR (Qnum x * ' Qden y) = IZR (Qnum y * ' Qden x))%Z.
+ rewrite H. reflexivity.
+ repeat rewrite mult_IZR in H0.
+ simpl in H0.
+ revert H0.
+ repeat INR_nat_of_P.
+ intros.
+ apply Rinv_elim in H2 ; [| apply Rlt_neq ; auto].
+ rewrite <- H2.
+ field.
+ split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma Qeq_false : forall x y, Qeq_bool x y = false -> IQR x <> IQR y.
+Proof.
+ intros.
+ apply Qeq_bool_neq in H.
+ intro. apply H. clear H.
+ unfold Qeq,IQR in *.
+ simpl in *.
+ revert H0.
+ repeat Rinv_elim.
+ intros.
+ subst.
+ assert (IZR (Qnum x * ' Qden y)%Z = IZR (Qnum y * ' Qden x)%Z).
+ repeat rewrite mult_IZR.
+ simpl.
+ rewrite <- H0. rewrite <- H.
+ ring.
+ apply eq_IZR ; auto.
+ INR_nat_of_P; intros; apply Rlt_neq ; auto.
+ INR_nat_of_P; intros ; apply Rlt_neq ; auto.
+Qed.
+
+
+
+Lemma Qle_true : forall x y : Q, Qle_bool x y = true -> IQR x <= IQR y.
+Proof.
+ intros.
+ apply Qle_bool_imp_le in H.
+ unfold Qle in H.
+ unfold IQR.
+ simpl in *.
+ apply IZR_le in H.
+ repeat rewrite mult_IZR in H.
+ simpl in H.
+ repeat INR_nat_of_P; intros.
+ assert (Hr := Rlt_neq r H).
+ assert (Hr0 := Rlt_neq r0 H0).
+ replace (IZR (Qnum x) * / r) with ((IZR (Qnum x) * r0) * (/r * /r0)).
+ replace (IZR (Qnum y) * / r0) with ((IZR (Qnum y) * r) * (/r * /r0)).
+ apply Rmult_le_compat_r ; auto.
+ apply Rmult_le_pos.
+ unfold Rle. left. apply Rinv_0_lt_compat ; auto.
+ unfold Rle. left. apply Rinv_0_lt_compat ; auto.
+ field ; intuition.
+ field ; intuition.
+Qed.
+
+
+
+Lemma IQR_0 : IQR 0 = 0.
+Proof.
+ compute. apply Rinv_1.
+Qed.
+
+Lemma IQR_1 : IQR 1 = 1.
+Proof.
+ compute. apply Rinv_1.
+Qed.
+
+Lemma IQR_plus : forall x y, IQR (x + y) = IQR x + IQR y.
+Proof.
+ intros.
+ unfold IQR.
+ simpl in *.
+ rewrite plus_IZR in *.
+ rewrite mult_IZR in *.
+ simpl.
+ rewrite Pos2Nat.inj_mul.
+ rewrite mult_INR.
+ rewrite mult_IZR.
+ simpl.
+ repeat INR_nat_of_P.
+ intros. field.
+ split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma IQR_opp : forall x, IQR (- x) = - IQR x.
+Proof.
+ intros.
+ unfold IQR.
+ simpl.
+ rewrite opp_IZR.
+ ring.
+Qed.
+
+Lemma IQR_minus : forall x y, IQR (x - y) = IQR x - IQR y.
+Proof.
+ intros.
+ unfold Qminus.
+ rewrite IQR_plus.
+ rewrite IQR_opp.
+ ring.
+Qed.
+
+
+Lemma IQR_mult : forall x y, IQR (x * y) = IQR x * IQR y.
+Proof.
+ unfold IQR ; intros.
+ simpl.
+ repeat rewrite mult_IZR.
+ simpl.
+ rewrite Pos2Nat.inj_mul.
+ rewrite mult_INR.
+ repeat INR_nat_of_P.
+ intros. field ; split ; apply Rlt_neq ; auto.
+Qed.
+
+Lemma IQR_inv_lt : forall x, (0 < x)%Q ->
+ IQR (/ x) = / IQR x.
+Proof.
+ unfold IQR ; simpl.
+ intros.
+ unfold Qlt in H.
+ revert H.
+ simpl.
+ intros.
+ unfold Qinv.
+ destruct x ; simpl in *.
+ destruct Qnum ; simpl.
+ exfalso. auto with zarith.
+ clear H.
+ repeat INR_nat_of_P.
+ intros.
+ assert (HH := Rlt_neq _ H).
+ assert (HH0 := Rlt_neq _ H0).
+ rewrite Rinv_mult_distr ; auto.
+ rewrite Rinv_involutive ; auto.
+ ring.
+ apply Rinv_0_lt_compat in H0.
+ apply Rlt_neq ; auto.
+ simpl in H.
+ exfalso.
+ rewrite Pos.mul_comm in H.
+ compute in H.
+ discriminate.
+Qed.
+
+Lemma Qinv_opp : forall x, (- (/ x) = / ( -x))%Q.
+Proof.
+ destruct x ; destruct Qnum ; reflexivity.
+Qed.
+
+Lemma Qopp_involutive_strong : forall x, (- - x = x)%Q.
+Proof.
+ intros.
+ destruct x.
+ unfold Qopp.
+ simpl.
+ rewrite Z.opp_involutive.
+ reflexivity.
+Qed.
+
+Lemma Ropp_0 : forall r , - r = 0 -> r = 0.
+Proof.
+ intros.
+ rewrite <- (Ropp_involutive r).
+ apply Ropp_eq_0_compat ; auto.
+Qed.
+
+Lemma IQR_x_0 : forall x, IQR x = 0 -> x == 0%Q.
+Proof.
+ destruct x ; simpl.
+ unfold IQR.
+ simpl.
+ INR_nat_of_P.
+ intros.
+ apply Rmult_integral in H0.
+ destruct H0.
+ apply eq_IZR_R0 in H0.
+ subst.
+ reflexivity.
+ exfalso.
+ apply Rinv_0_lt_compat in H.
+ rewrite <- H0 in H.
+ apply Rlt_irrefl in H. auto.
+Qed.
+
+
+Lemma IQR_inv_gt : forall x, (0 > x)%Q ->
+ IQR (/ x) = / IQR x.
+Proof.
+ intros.
+ rewrite <- (Qopp_involutive_strong x).
+ rewrite <- Qinv_opp.
+ rewrite IQR_opp.
+ rewrite IQR_inv_lt.
+ repeat rewrite IQR_opp.
+ rewrite Ropp_inv_permute.
+ auto.
+ intro.
+ apply Ropp_0 in H0.
+ apply IQR_x_0 in H0.
+ rewrite H0 in H.
+ compute in H. discriminate.
+ unfold Qlt in *.
+ destruct x ; simpl in *.
+ auto with zarith.
+Qed.
+
+Lemma IQR_inv : forall x, ~ x == 0 ->
+ IQR (/ x) = / IQR x.
+Proof.
+ intros.
+ assert ( 0 > x \/ 0 < x)%Q.
+ destruct x ; unfold Qlt, Qeq in * ; simpl in *.
+ rewrite Z.mul_1_r in *.
+ destruct Qnum ; simpl in * ; intuition auto.
+ right. reflexivity.
+ left ; reflexivity.
+ destruct H0.
+ apply IQR_inv_gt ; auto.
+ apply IQR_inv_lt ; auto.
+Qed.
-Lemma RZSORaddon :
- SORaddon R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle (* ring elements *)
- 0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
- Zeq_bool Zle_bool
- IZR Nnat.nat_of_N pow.
+Lemma IQR_inv_ext : forall x,
+ IQR (/ x) = (if Qeq_bool x 0 then 0 else / IQR x).
+Proof.
+ intros.
+ case_eq (Qeq_bool x 0).
+ intros.
+ apply Qeq_bool_eq in H.
+ destruct x ; simpl.
+ unfold Qeq in H.
+ simpl in H.
+ replace Qnum with 0%Z.
+ compute. rewrite Rinv_1.
+ reflexivity.
+ rewrite <- H. ring.
+ intros.
+ apply IQR_inv.
+ intro.
+ rewrite <- Qeq_bool_iff in H0.
+ congruence.
+Qed.
+
+
+Notation to_nat := N.to_nat.
+
+Lemma QSORaddon :
+ @SORaddon R
+ R0 R1 Rplus Rmult Rminus Ropp (@eq R) Rle (* ring elements *)
+ Q 0%Q 1%Q Qplus Qmult Qminus Qopp (* coefficients *)
+ Qeq_bool Qle_bool
+ IQR nat to_nat pow.
Proof.
constructor.
constructor ; intros ; try reflexivity.
- apply plus_IZR.
- symmetry. apply Z_R_minus.
- apply mult_IZR.
- apply Ropp_Ropp_IZR.
- apply IZR_eq.
- apply Zeq_bool_eq ; auto.
+ apply IQR_0.
+ apply IQR_1.
+ apply IQR_plus.
+ apply IQR_minus.
+ apply IQR_mult.
+ apply IQR_opp.
+ apply Qeq_true ; auto.
apply R_power_theory.
- intros x y.
- intro.
- apply IZR_neq.
- apply Zeq_bool_neq ; auto.
- intros. apply IZR_le. apply Zle_bool_imp_le. auto.
+ apply Qeq_false.
+ apply Qle_true.
Qed.
+(* Syntactic ring coefficients.
+ For computing, we use Q. *)
+Inductive Rcst :=
+| C0
+| C1
+| CQ (r : Q)
+| CZ (r : Z)
+| CPlus (r1 r2 : Rcst)
+| CMinus (r1 r2 : Rcst)
+| CMult (r1 r2 : Rcst)
+| CInv (r : Rcst)
+| COpp (r : Rcst).
+
+
+Fixpoint Q_of_Rcst (r : Rcst) : Q :=
+ match r with
+ | C0 => 0 # 1
+ | C1 => 1 # 1
+ | CZ z => z # 1
+ | CQ q => q
+ | CPlus r1 r2 => Qplus (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CMinus r1 r2 => Qminus (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CMult r1 r2 => Qmult (Q_of_Rcst r1) (Q_of_Rcst r2)
+ | CInv r => Qinv (Q_of_Rcst r)
+ | COpp r => Qopp (Q_of_Rcst r)
+ end.
+
+
+Fixpoint R_of_Rcst (r : Rcst) : R :=
+ match r with
+ | C0 => R0
+ | C1 => R1
+ | CZ z => IZR z
+ | CQ q => IQR q
+ | CPlus r1 r2 => (R_of_Rcst r1) + (R_of_Rcst r2)
+ | CMinus r1 r2 => (R_of_Rcst r1) - (R_of_Rcst r2)
+ | CMult r1 r2 => (R_of_Rcst r1) * (R_of_Rcst r2)
+ | CInv r =>
+ if Qeq_bool (Q_of_Rcst r) (0 # 1)
+ then R0
+ else Rinv (R_of_Rcst r)
+ | COpp r => - (R_of_Rcst r)
+ end.
+
+Lemma Q_of_RcstR : forall c, IQR (Q_of_Rcst c) = R_of_Rcst c.
+Proof.
+ induction c ; simpl ; try (rewrite <- IHc1 ; rewrite <- IHc2).
+ apply IQR_0.
+ apply IQR_1.
+ reflexivity.
+ unfold IQR. simpl. rewrite Rinv_1. reflexivity.
+ apply IQR_plus.
+ apply IQR_minus.
+ apply IQR_mult.
+ rewrite <- IHc.
+ apply IQR_inv_ext.
+ rewrite <- IHc.
+ apply IQR_opp.
+ Qed.
+
Require Import EnvRing.
Definition INZ (n:N) : R :=
@@ -94,7 +471,7 @@ Definition INZ (n:N) : R :=
| Npos p => IZR (Zpos p)
end.
-Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp IZR Nnat.nat_of_N pow.
+Definition Reval_expr := eval_pexpr Rplus Rmult Rminus Ropp R_of_Rcst N.to_nat pow.
Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
@@ -108,11 +485,15 @@ Definition Reval_op2 (o:Op2) : R -> R -> Prop :=
end.
-Definition Reval_formula (e: PolEnv R) (ff : Formula Z) :=
+Definition Reval_formula (e: PolEnv R) (ff : Formula Rcst) :=
let (lhs,o,rhs) := ff in Reval_op2 o (Reval_expr e lhs) (Reval_expr e rhs).
+
Definition Reval_formula' :=
- eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IZR Nnat.nat_of_N pow.
+ eval_sformula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt N.to_nat pow R_of_Rcst.
+
+Definition QReval_formula :=
+ eval_formula Rplus Rmult Rminus Ropp (@eq R) Rle Rlt IQR N.to_nat pow .
Lemma Reval_formula_compat : forall env f, Reval_formula env f <-> Reval_formula' env f.
Proof.
@@ -126,57 +507,74 @@ Proof.
apply Rle_ge.
Qed.
-Definition Reval_nformula :=
- eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IZR.
+Definition Qeval_nformula :=
+ eval_nformula 0 Rplus Rmult (@eq R) Rle Rlt IQR.
-Lemma Reval_nformula_dec : forall env d, (Reval_nformula env d) \/ ~ (Reval_nformula env d).
+Lemma Reval_nformula_dec : forall env d, (Qeval_nformula env d) \/ ~ (Qeval_nformula env d).
Proof.
- exact (fun env d =>eval_nformula_dec Rsor IZR env d).
+ exact (fun env d =>eval_nformula_dec Rsor IQR env d).
Qed.
-Definition RWitness := Psatz Z.
+Definition RWitness := Psatz Q.
-Definition RWeakChecker := check_normalised_formulas 0%Z 1%Z Zplus Zmult Zeq_bool Zle_bool.
+Definition RWeakChecker := check_normalised_formulas 0%Q 1%Q Qplus Qmult Qeq_bool Qle_bool.
Require Import List.
-Lemma RWeakChecker_sound : forall (l : list (NFormula Z)) (cm : RWitness),
+Lemma RWeakChecker_sound : forall (l : list (NFormula Q)) (cm : RWitness),
RWeakChecker l cm = true ->
- forall env, make_impl (Reval_nformula env) l False.
+ forall env, make_impl (Qeval_nformula env) l False.
Proof.
intros l cm H.
intro.
- unfold Reval_nformula.
- apply (checker_nf_sound Rsor RZSORaddon l cm).
+ unfold Qeval_nformula.
+ apply (checker_nf_sound Rsor QSORaddon l cm).
unfold RWeakChecker in H.
exact H.
Qed.
Require Import Tauto.
-Definition Rnormalise := @cnf_normalise Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
-Definition Rnegate := @cnf_negate Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
+Definition Rnormalise := @cnf_normalise Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
+Definition Rnegate := @cnf_negate Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq_bool.
+
+Definition runsat := check_inconsistent 0%Q Qeq_bool Qle_bool.
-Definition RTautoChecker (f : BFormula (Formula Z)) (w: list RWitness) : bool :=
- @tauto_checker (Formula Z) (NFormula Z)
+Definition rdeduce := nformula_plus_nformula 0%Q Qplus Qeq_bool.
+
+Definition RTautoChecker (f : BFormula (Formula Rcst)) (w: list RWitness) : bool :=
+ @tauto_checker (Formula Q) (NFormula Q)
+ runsat rdeduce
Rnormalise Rnegate
- RWitness RWeakChecker f w.
+ RWitness RWeakChecker (map_bformula (map_Formula Q_of_Rcst) f) w.
Lemma RTautoChecker_sound : forall f w, RTautoChecker f w = true -> forall env, eval_f (Reval_formula env) f.
Proof.
intros f w.
unfold RTautoChecker.
- apply (tauto_checker_sound Reval_formula Reval_nformula).
+ intros TC env.
+ apply (tauto_checker_sound QReval_formula Qeval_nformula) with (env := env) in TC.
+ rewrite eval_f_map in TC.
+ rewrite eval_f_morph with (ev':= Reval_formula env) in TC ; auto.
+ intro.
+ unfold QReval_formula.
+ rewrite <- eval_formulaSC with (phiS := R_of_Rcst).
+ rewrite Reval_formula_compat.
+ tauto.
+ intro. rewrite Q_of_RcstR. reflexivity.
apply Reval_nformula_dec.
- intros. rewrite Reval_formula_compat.
- unfold Reval_formula'. now apply (cnf_normalise_correct Rsor RZSORaddon).
- intros. rewrite Reval_formula_compat. unfold Reval_formula. now apply (cnf_negate_correct Rsor RZSORaddon).
+ destruct t.
+ apply (check_inconsistent_sound Rsor QSORaddon) ; auto.
+ unfold rdeduce. apply (nformula_plus_nformula_correct Rsor QSORaddon).
+ now apply (cnf_normalise_correct Rsor QSORaddon).
+ intros. now apply (cnf_negate_correct Rsor QSORaddon).
intros t w0.
apply RWeakChecker_sound.
Qed.
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/Refl.v b/plugins/micromega/Refl.v
index 53413b4a..43bfb4d7 100644
--- a/plugins/micromega/Refl.v
+++ b/plugins/micromega/Refl.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/RingMicromega.v b/plugins/micromega/RingMicromega.v
index b10cf784..fccacc74 100644
--- a/plugins/micromega/RingMicromega.v
+++ b/plugins/micromega/RingMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -142,7 +142,7 @@ Qed.
Definition PolC := Pol C. (* polynomials in generalized Horner form, defined in Ring_polynom or EnvRing *)
Definition PolEnv := Env R. (* For interpreting PolC *)
Definition eval_pol (env : PolEnv) (p:PolC) : R :=
- Pphi 0 rplus rtimes phi env p.
+ Pphi rplus rtimes phi env p.
Inductive Op1 : Set := (* relations with 0 *)
| Equal (* == 0 *)
@@ -308,7 +308,7 @@ Definition map_option (A B:Type) (f : A -> option B) (o : option A) : option B :
| Some x => f x
end.
-Implicit Arguments map_option [A B].
+Arguments map_option [A B] f o.
Definition map_option2 (A B C : Type) (f : A -> B -> option C)
(o: option A) (o': option B) : option C :=
@@ -318,9 +318,9 @@ Definition map_option2 (A B C : Type) (f : A -> B -> option C)
| Some x , Some x' => f x x'
end.
-Implicit Arguments map_option2 [A B C].
+Arguments map_option2 [A B C] f o o'.
-Definition Rops_wd := mk_reqe rplus rtimes ropp req
+Definition Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd).
@@ -355,6 +355,7 @@ Fixpoint eval_Psatz (l : list NFormula) (e : Psatz) {struct e} : option NFormula
| PsatzZ => Some (Pc cO, Equal) (* Just to make life easier *)
end.
+
Lemma pexpr_times_nformula_correct : forall (env: PolEnv) (e: PolC) (f f' : NFormula),
eval_nformula env f -> pexpr_times_nformula e f = Some f' ->
eval_nformula env f'.
@@ -468,17 +469,11 @@ Fixpoint ge_bool (n m : nat) : bool :=
end
end.
-Lemma ge_bool_cases : forall n m, (if ge_bool n m then n >= m else n < m)%nat.
+Lemma ge_bool_cases : forall n m,
+ (if ge_bool n m then n >= m else n < m)%nat.
Proof.
- induction n ; simpl.
- destruct m ; simpl.
- constructor.
- omega.
- destruct m.
- constructor.
- omega.
- generalize (IHn m).
- destruct (ge_bool n m) ; omega.
+ induction n; destruct m ; simpl; auto with arith.
+ specialize (IHn m). destruct (ge_bool); auto with arith.
Qed.
@@ -490,6 +485,99 @@ Fixpoint xhyps_of_psatz (base:nat) (acc : list nat) (prf : Psatz) : list nat :=
| PsatzIn n => if ge_bool n base then (n::acc) else acc
end.
+Fixpoint nhyps_of_psatz (prf : Psatz) : list nat :=
+ match prf with
+ | PsatzC _ | PsatzZ | PsatzSquare _ => nil
+ | PsatzMulC _ prf => nhyps_of_psatz prf
+ | PsatzAdd e1 e2 | PsatzMulE e1 e2 => nhyps_of_psatz e1 ++ nhyps_of_psatz e2
+ | PsatzIn n => n :: nil
+ end.
+
+
+Fixpoint extract_hyps (l: list NFormula) (ln : list nat) : list NFormula :=
+ match ln with
+ | nil => nil
+ | n::ln => nth n l (Pc cO, Equal) :: extract_hyps l ln
+ end.
+
+Lemma extract_hyps_app : forall l ln1 ln2,
+ extract_hyps l (ln1 ++ ln2) = (extract_hyps l ln1) ++ (extract_hyps l ln2).
+Proof.
+ induction ln1.
+ reflexivity.
+ simpl.
+ intros.
+ rewrite IHln1. reflexivity.
+Qed.
+
+Ltac inv H := inversion H ; try subst ; clear H.
+
+Lemma nhyps_of_psatz_correct : forall (env : PolEnv) (e:Psatz) (l : list NFormula) (f: NFormula),
+ eval_Psatz l e = Some f ->
+ ((forall f', In f' (extract_hyps l (nhyps_of_psatz e)) -> eval_nformula env f') -> eval_nformula env f).
+Proof.
+ induction e ; intros.
+ (*PsatzIn*)
+ simpl in *.
+ apply H0. intuition congruence.
+ (* PsatzSquare *)
+ simpl in *.
+ inv H.
+ simpl.
+ unfold eval_pol.
+ rewrite (Psquare_ok sor.(SORsetoid) Rops_wd
+ (Rth_ARth (SORsetoid sor) Rops_wd sor.(SORrt)) addon.(SORrm));
+ now apply (Rtimes_square_nonneg sor).
+ (* PsatzMulC *)
+ simpl in *.
+ case_eq (eval_Psatz l e).
+ intros. rewrite H1 in H. simpl in H.
+ apply pexpr_times_nformula_correct with (2:= H).
+ apply IHe with (1:= H1); auto.
+ intros. rewrite H1 in H. simpl in H ; discriminate.
+ (* PsatzMulE *)
+ simpl in *.
+ revert H.
+ case_eq (eval_Psatz l e1).
+ case_eq (eval_Psatz l e2) ; simpl ; intros.
+ apply nformula_times_nformula_correct with (3:= H2).
+ apply IHe1 with (1:= H1) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ apply IHe2 with (1:= H) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ discriminate. simpl. discriminate.
+ (* PsatzAdd *)
+ simpl in *.
+ revert H.
+ case_eq (eval_Psatz l e1).
+ case_eq (eval_Psatz l e2) ; simpl ; intros.
+ apply nformula_plus_nformula_correct with (3:= H2).
+ apply IHe1 with (1:= H1) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ apply IHe2 with (1:= H) ; auto.
+ intros. apply H0. rewrite extract_hyps_app.
+ apply in_or_app. tauto.
+ discriminate. simpl. discriminate.
+ (* PsatzC *)
+ simpl in H.
+ case_eq (cO [<] c).
+ intros. rewrite H1 in H. inv H.
+ unfold eval_nformula. simpl.
+ rewrite <- addon.(SORrm).(morph0). now apply cltb_sound.
+ intros. rewrite H1 in H. discriminate.
+ (* PsatzZ *)
+ simpl in *. inv H.
+ unfold eval_nformula. simpl.
+ apply addon.(SORrm).(morph0).
+Qed.
+
+
+
+
+
(* roughly speaking, normalise_pexpr_correct is a proof of
forall env p, eval_pexpr env p == eval_pol env (normalise_pexpr p) *)
@@ -499,7 +587,7 @@ Definition paddC := PaddC cplus.
Definition psubC := PsubC cminus.
Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env P - [c] :=
- let Rops_wd := mk_reqe rplus rtimes ropp req
+ let Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
@@ -507,7 +595,7 @@ Definition PsubC_ok : forall c P env, eval_pol env (psubC P c) == eval_pol env
addon.(SORrm).
Definition PaddC_ok : forall c P env, eval_pol env (paddC P c) == eval_pol env P + [c] :=
- let Rops_wd := mk_reqe rplus rtimes ropp req
+ let Rops_wd := mk_reqe (*rplus rtimes ropp req*)
sor.(SORplus_wd)
sor.(SORtimes_wd)
sor.(SORopp_wd) in
@@ -546,6 +634,7 @@ apply cleb_sound in H1. now apply -> (Rle_ngt sor).
apply cltb_sound in H1. now apply -> (Rlt_nge sor).
Qed.
+
Definition check_normalised_formulas : list NFormula -> Psatz -> bool :=
fun l cm =>
match eval_Psatz l cm with
@@ -592,16 +681,17 @@ end.
Definition eval_pexpr (l : PolEnv) (pe : PExpr C) : R := PEeval rplus rtimes rminus ropp phi pow_phi rpow l pe.
-Record Formula : Type := {
- Flhs : PExpr C;
+Record Formula (T:Type) : Type := {
+ Flhs : PExpr T;
Fop : Op2;
- Frhs : PExpr C
+ Frhs : PExpr T
}.
-Definition eval_formula (env : PolEnv) (f : Formula) : Prop :=
+Definition eval_formula (env : PolEnv) (f : Formula C) : Prop :=
let (lhs, op, rhs) := f in
(eval_op2 op) (eval_pexpr env lhs) (eval_pexpr env rhs).
+
(* We normalize Formulas by moving terms to one side *)
Definition norm := norm_aux cO cI cplus ctimes cminus copp ceqb.
@@ -610,7 +700,7 @@ Definition psub := Psub cO cplus cminus copp ceqb.
Definition padd := Padd cO cplus ceqb.
-Definition normalise (f : Formula) : NFormula :=
+Definition normalise (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -623,7 +713,7 @@ let (lhs, op, rhs) := f in
| OpLt => (psub rhs lhs, Strict)
end.
-Definition negate (f : Formula) : NFormula :=
+Definition negate (f : Formula C) : NFormula :=
let (lhs, op, rhs) := f in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -659,7 +749,7 @@ Qed.
Theorem normalise_sound :
- forall (env : PolEnv) (f : Formula),
+ forall (env : PolEnv) (f : Formula C),
eval_formula env f -> eval_nformula env (normalise f).
Proof.
intros env f H; destruct f as [lhs op rhs]; simpl in *.
@@ -673,7 +763,7 @@ now apply -> (Rlt_lt_minus sor).
Qed.
Theorem negate_correct :
- forall (env : PolEnv) (f : Formula),
+ forall (env : PolEnv) (f : Formula C),
eval_formula env f <-> ~ (eval_nformula env (negate f)).
Proof.
intros env f; destruct f as [lhs op rhs]; simpl.
@@ -687,9 +777,9 @@ rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
rewrite <- (Rle_le_minus sor). now rewrite <- (Rlt_nge sor).
Qed.
-(** Another normalistion - this is used for cnf conversion **)
+(** Another normalisation - this is used for cnf conversion **)
-Definition xnormalise (t:Formula) : list (NFormula) :=
+Definition xnormalise (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -705,16 +795,16 @@ Definition xnormalise (t:Formula) : list (NFormula) :=
Require Import Tauto.
-Definition cnf_normalise (t:Formula) : cnf (NFormula) :=
+Definition cnf_normalise (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnormalise t).
Add Ring SORRing : sor.(SORrt).
-Lemma cnf_normalise_correct : forall env t, eval_cnf (eval_nformula env) (cnf_normalise t) -> eval_formula env t.
+Lemma cnf_normalise_correct : forall env t, eval_cnf eval_nformula env (cnf_normalise t) -> eval_formula env t.
Proof.
unfold cnf_normalise, xnormalise ; simpl ; intros env t.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
@@ -730,7 +820,7 @@ Proof.
rewrite (Rlt_nge sor). rewrite (Rle_le_minus sor). auto.
Qed.
-Definition xnegate (t:Formula) : list (NFormula) :=
+Definition xnegate (t:Formula C) : list (NFormula) :=
let (lhs,o,rhs) := t in
let lhs := norm lhs in
let rhs := norm rhs in
@@ -743,13 +833,13 @@ Definition xnegate (t:Formula) : list (NFormula) :=
| OpLe => (psub rhs lhs,NonStrict) :: nil
end.
-Definition cnf_negate (t:Formula) : cnf (NFormula) :=
+Definition cnf_negate (t:Formula C) : cnf (NFormula) :=
List.map (fun x => x::nil) (xnegate t).
-Lemma cnf_negate_correct : forall env t, eval_cnf (eval_nformula env) (cnf_negate t) -> ~ eval_formula env t.
+Lemma cnf_negate_correct : forall env t, eval_cnf eval_nformula env (cnf_negate t) -> ~ eval_formula env t.
Proof.
unfold cnf_negate, xnegate ; simpl ; intros env t.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o ; simpl;
repeat rewrite eval_pol_sub ; repeat rewrite <- eval_pol_norm in * ;
generalize (eval_pexpr env lhs);
@@ -786,13 +876,14 @@ Qed.
Fixpoint xdenorm (jmp : positive) (p: Pol C) : PExpr C :=
match p with
| Pc c => PEc c
- | Pinj j p => xdenorm (Pplus j jmp ) p
+ | Pinj j p => xdenorm (Pos.add j jmp ) p
| PX p j q => PEadd
(PEmul (xdenorm jmp p) (PEpow (PEX _ jmp) (Npos j)))
- (xdenorm (Psucc jmp) q)
+ (xdenorm (Pos.succ jmp) q)
end.
-Lemma xdenorm_correct : forall p i env, eval_pol (jump i env) p == eval_pexpr env (xdenorm (Psucc i) p).
+Lemma xdenorm_correct : forall p i env,
+ eval_pol (jump i env) p == eval_pexpr env (xdenorm (Pos.succ i) p).
Proof.
unfold eval_pol.
induction p.
@@ -800,22 +891,21 @@ Proof.
(* Pinj *)
simpl.
intros.
- rewrite Pplus_succ_permute_r.
+ rewrite Pos.add_succ_r.
rewrite <- IHp.
symmetry.
- rewrite Pplus_comm.
- rewrite Pjump_Pplus. reflexivity.
+ rewrite Pos.add_comm.
+ rewrite Pjump_add. reflexivity.
(* PX *)
simpl.
intros.
- rewrite <- IHp1.
- rewrite <- IHp2.
+ rewrite <- IHp1, <- IHp2.
unfold Env.tail , Env.hd.
- rewrite <- Pjump_Pplus.
- rewrite <- Pplus_one_succ_r.
+ rewrite <- Pjump_add.
+ rewrite Pos.add_1_r.
unfold Env.nth.
unfold jump at 2.
- rewrite Pplus_one_succ_l.
+ rewrite <- Pos.add_1_l.
rewrite addon.(SORpower).(rpow_pow_N).
unfold pow_N. ring.
Qed.
@@ -828,19 +918,76 @@ Proof.
induction p.
reflexivity.
simpl.
- rewrite <- Pplus_one_succ_r.
+ rewrite Pos.add_1_r.
apply xdenorm_correct.
simpl.
intros.
rewrite IHp1.
unfold Env.tail.
rewrite xdenorm_correct.
- change (Psucc xH) with 2%positive.
+ change (Pos.succ xH) with 2%positive.
rewrite addon.(SORpower).(rpow_pow_N).
simpl. reflexivity.
Qed.
+(** Sometimes it is convenient to make a distinction between "syntactic" coefficients and "real"
+coefficients that are used to actually compute *)
+
+
+
+Variable S : Type.
+
+Variable C_of_S : S -> C.
+
+Variable phiS : S -> R.
+
+Variable phi_C_of_S : forall c, phiS c = phi (C_of_S c).
+
+Fixpoint map_PExpr (e : PExpr S) : PExpr C :=
+ match e with
+ | PEc c => PEc (C_of_S c)
+ | PEX p => PEX _ p
+ | PEadd e1 e2 => PEadd (map_PExpr e1) (map_PExpr e2)
+ | PEsub e1 e2 => PEsub (map_PExpr e1) (map_PExpr e2)
+ | PEmul e1 e2 => PEmul (map_PExpr e1) (map_PExpr e2)
+ | PEopp e => PEopp (map_PExpr e)
+ | PEpow e n => PEpow (map_PExpr e) n
+ end.
+
+Definition map_Formula (f : Formula S) : Formula C :=
+ let (l,o,r) := f in
+ Build_Formula (map_PExpr l) o (map_PExpr r).
+
+
+Definition eval_sexpr (env : PolEnv) (e : PExpr S) : R :=
+ PEeval rplus rtimes rminus ropp phiS pow_phi rpow env e.
+
+Definition eval_sformula (env : PolEnv) (f : Formula S) : Prop :=
+ let (lhs, op, rhs) := f in
+ (eval_op2 op) (eval_sexpr env lhs) (eval_sexpr env rhs).
+
+Lemma eval_pexprSC : forall env s, eval_sexpr env s = eval_pexpr env (map_PExpr s).
+Proof.
+ unfold eval_pexpr, eval_sexpr.
+ induction s ; simpl ; try (rewrite IHs1 ; rewrite IHs2) ; try reflexivity.
+ apply phi_C_of_S.
+ rewrite IHs. reflexivity.
+ rewrite IHs. reflexivity.
+Qed.
+
+(** equality migth be (too) strong *)
+Lemma eval_formulaSC : forall env f, eval_sformula env f = eval_formula env (map_Formula f).
+Proof.
+ destruct f.
+ simpl.
+ repeat rewrite eval_pexprSC.
+ reflexivity.
+Qed.
+
+
+
+
(** Some syntactic simplifications of expressions *)
@@ -881,4 +1028,4 @@ End Micromega.
(* Local Variables: *)
(* coding: utf-8 *)
-(* End: *) \ No newline at end of file
+(* End: *)
diff --git a/plugins/micromega/Tauto.v b/plugins/micromega/Tauto.v
index 0706611c..440070a1 100644
--- a/plugins/micromega/Tauto.v
+++ b/plugins/micromega/Tauto.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
(* *)
(************************************************************************)
@@ -41,6 +41,37 @@ Set Implicit Arguments.
| I f1 f2 => (eval_f ev f1) -> (eval_f ev f2)
end.
+ Lemma eval_f_morph : forall A (ev ev' : A -> Prop) (f : BFormula A),
+ (forall a, ev a <-> ev' a) -> (eval_f ev f <-> eval_f ev' f).
+ Proof.
+ induction f ; simpl ; try tauto.
+ intros.
+ assert (H' := H a).
+ auto.
+ Qed.
+
+
+
+ Fixpoint map_bformula (T U : Type) (fct : T -> U) (f : BFormula T) : BFormula U :=
+ match f with
+ | TT => TT _
+ | FF => FF _
+ | X p => X _ p
+ | A a => A (fct a)
+ | Cj f1 f2 => Cj (map_bformula fct f1) (map_bformula fct f2)
+ | D f1 f2 => D (map_bformula fct f1) (map_bformula fct f2)
+ | N f => N (map_bformula fct f)
+ | I f1 f2 => I (map_bformula fct f1) (map_bformula fct f2)
+ end.
+
+ Lemma eval_f_map : forall T U (fct: T-> U) env f ,
+ eval_f env (map_bformula fct f) = eval_f (fun x => env (fct x)) f.
+ Proof.
+ induction f ; simpl ; try (rewrite IHf1 ; rewrite IHf2) ; auto.
+ rewrite <- IHf. auto.
+ Qed.
+
+
Lemma map_simpl : forall A B f l, @map A B f l = match l with
| nil => nil
@@ -52,6 +83,7 @@ Set Implicit Arguments.
+
Section S.
Variable Env : Type.
@@ -64,6 +96,15 @@ Set Implicit Arguments.
Variable no_middle_eval' : forall env d, (eval' env d) \/ ~ (eval' env d).
+ Variable unsat : Term' -> bool.
+
+ Variable unsat_prop : forall t, unsat t = true ->
+ forall env, eval' env t -> False.
+
+ Variable deduce : Term' -> Term' -> option Term'.
+
+ Variable deduce_prop : forall env t t' u,
+ eval' env t -> eval' env t' -> deduce t t' = Some u -> eval' env u.
Definition clause := list Term'.
Definition cnf := list clause.
@@ -76,8 +117,48 @@ Set Implicit Arguments.
Definition ff : cnf := cons (@nil Term') nil.
+ Fixpoint add_term (t: Term') (cl : clause) : option clause :=
+ match cl with
+ | nil =>
+ match deduce t t with
+ | None => Some (t ::nil)
+ | Some u => if unsat u then None else Some (t::nil)
+ end
+ | t'::cl =>
+ match deduce t t' with
+ | None =>
+ match add_term t cl with
+ | None => None
+ | Some cl' => Some (t' :: cl')
+ end
+ | Some u =>
+ if unsat u then None else
+ match add_term t cl with
+ | None => None
+ | Some cl' => Some (t' :: cl')
+ end
+ end
+ end.
+
+ Fixpoint or_clause (cl1 cl2 : clause) : option clause :=
+ match cl1 with
+ | nil => Some cl2
+ | t::cl => match add_term t cl2 with
+ | None => None
+ | Some cl' => or_clause cl cl'
+ end
+ end.
+
+(* Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
+ List.map (fun x => (t++x)) f. *)
+
Definition or_clause_cnf (t:clause) (f:cnf) : cnf :=
- List.map (fun x => (t++x)) f.
+ List.fold_right (fun e acc =>
+ match or_clause t e with
+ | None => acc
+ | Some cl => cl :: acc
+ end) nil f.
+
Fixpoint or_cnf (f : cnf) (f' : cnf) {struct f}: cnf :=
match f with
@@ -102,46 +183,154 @@ Set Implicit Arguments.
| I e1 e2 => (if pol then or_cnf else and_cnf) (xcnf (negb pol) e1) (xcnf pol e2)
end.
- Definition eval_cnf (env : Term' -> Prop) (f:cnf) := make_conj (fun cl => ~ make_conj env cl) f.
+ Definition eval_clause (env : Env) (cl : clause) := ~ make_conj (eval' env) cl.
+
+ Definition eval_cnf (env : Env) (f:cnf) := make_conj (eval_clause env) f.
+
+
+ Lemma eval_cnf_app : forall env x y, eval_cnf env (x++y) -> eval_cnf env x /\ eval_cnf env y.
+ Proof.
+ unfold eval_cnf.
+ intros.
+ rewrite make_conj_app in H ; auto.
+ Qed.
+
+
+ Definition eval_opt_clause (env : Env) (cl: option clause) :=
+ match cl with
+ | None => True
+ | Some cl => eval_clause env cl
+ end.
- Lemma eval_cnf_app : forall env x y, eval_cnf (eval' env) (x++y) -> eval_cnf (eval' env) x /\ eval_cnf (eval' env) y.
+ Lemma add_term_correct : forall env t cl , eval_opt_clause env (add_term t cl) -> eval_clause env (t::cl).
+ Proof.
+ induction cl.
+ (* BC *)
+ simpl.
+ case_eq (deduce t t) ; auto.
+ intros until 0.
+ case_eq (unsat t0) ; auto.
+ unfold eval_clause.
+ rewrite make_conj_cons.
+ intros. intro.
+ apply unsat_prop with (1:= H) (env := env).
+ apply deduce_prop with (3:= H0) ; tauto.
+ (* IC *)
+ simpl.
+ case_eq (deduce t a).
+ intro u.
+ case_eq (unsat u).
+ simpl. intros.
+ unfold eval_clause.
+ intro.
+ apply unsat_prop with (1:= H) (env:= env).
+ repeat rewrite make_conj_cons in H2.
+ apply deduce_prop with (3:= H0); tauto.
+ intro.
+ case_eq (add_term t cl) ; intros.
+ simpl in H2.
+ rewrite H0 in IHcl.
+ simpl in IHcl.
+ unfold eval_clause in *.
+ intros.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ rewrite H0 in IHcl ; simpl in *.
+ unfold eval_clause in *.
+ intros.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ case_eq (add_term t cl) ; intros.
+ simpl in H1.
+ unfold eval_clause in *.
+ repeat rewrite make_conj_cons in *.
+ rewrite H in IHcl.
+ simpl in IHcl.
+ tauto.
+ simpl in *.
+ rewrite H in IHcl.
+ simpl in IHcl.
+ unfold eval_clause in *.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ Qed.
+
+
+ Lemma or_clause_correct : forall cl cl' env, eval_opt_clause env (or_clause cl cl') -> eval_clause env cl \/ eval_clause env cl'.
Proof.
- unfold eval_cnf.
+ induction cl.
+ simpl. tauto.
+ intros until 0.
+ simpl.
+ assert (HH := add_term_correct env a cl').
+ case_eq (add_term a cl').
+ simpl in *.
+ intros.
+ apply IHcl in H0.
+ rewrite H in HH.
+ simpl in HH.
+ unfold eval_clause in *.
+ destruct H0.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ apply HH in H0.
+ apply not_make_conj_cons in H0 ; auto.
+ repeat rewrite make_conj_cons in *.
+ tauto.
+ simpl.
intros.
- rewrite make_conj_app in H ; auto.
+ rewrite H in HH.
+ simpl in HH.
+ unfold eval_clause in *.
+ assert (HH' := HH Coq.Init.Logic.I).
+ apply not_make_conj_cons in HH'; auto.
+ repeat rewrite make_conj_cons in *.
+ tauto.
Qed.
+
-
- Lemma or_clause_correct : forall env t f, eval_cnf (eval' env) (or_clause_cnf t f) -> (~ make_conj (eval' env) t) \/ (eval_cnf (eval' env) f).
+ Lemma or_clause_cnf_correct : forall env t f, eval_cnf env (or_clause_cnf t f) -> (eval_clause env t) \/ (eval_cnf env f).
Proof.
unfold eval_cnf.
unfold or_clause_cnf.
+ intros until t.
+ set (F := (fun (e : clause) (acc : list clause) =>
+ match or_clause t e with
+ | Some cl => cl :: acc
+ | None => acc
+ end)).
induction f.
- simpl.
- intros ; right;auto.
+ auto.
(**)
- rewrite map_simpl.
+ simpl.
intros.
- rewrite make_conj_cons in H.
- destruct H as [HH1 HH2].
- generalize (IHf HH2) ; clear IHf ; intro.
- destruct H.
- left ; auto.
- rewrite make_conj_cons.
- destruct (not_make_conj_app _ _ _ (no_middle_eval' env) HH1).
- tauto.
+ destruct f.
+ simpl in H.
+ simpl in IHf.
+ unfold F in H.
+ revert H.
+ intros.
+ apply or_clause_correct.
+ destruct (or_clause t a) ; simpl in * ; auto.
+ unfold F in H at 1.
+ revert H.
+ assert (HH := or_clause_correct t a env).
+ destruct (or_clause t a); simpl in HH ;
+ rewrite make_conj_cons in * ; intuition.
+ rewrite make_conj_cons in *.
tauto.
Qed.
- Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval' env) a) -> eval_cnf (eval' env) f -> eval_cnf (eval' env) (a::f).
+
+ Lemma eval_cnf_cons : forall env a f, (~ make_conj (eval' env) a) -> eval_cnf env f -> eval_cnf env (a::f).
Proof.
intros.
unfold eval_cnf in *.
rewrite make_conj_cons ; eauto.
Qed.
- Lemma or_cnf_correct : forall env f f', eval_cnf (eval' env) (or_cnf f f') -> (eval_cnf (eval' env) f) \/ (eval_cnf (eval' env) f').
+ Lemma or_cnf_correct : forall env f f', eval_cnf env (or_cnf f f') -> (eval_cnf env f) \/ (eval_cnf env f').
Proof.
induction f.
unfold eval_cnf.
@@ -153,19 +342,19 @@ Set Implicit Arguments.
destruct (eval_cnf_app _ _ _ H).
clear H.
destruct (IHf _ H0).
- destruct (or_clause_correct _ _ _ H1).
+ destruct (or_clause_cnf_correct _ _ _ H1).
left.
apply eval_cnf_cons ; auto.
right ; auto.
right ; auto.
Qed.
- Variable normalise_correct : forall env t, eval_cnf (eval' env) (normalise t) -> eval env t.
+ Variable normalise_correct : forall env t, eval_cnf env (normalise t) -> eval env t.
- Variable negate_correct : forall env t, eval_cnf (eval' env) (negate t) -> ~ eval env t.
+ Variable negate_correct : forall env t, eval_cnf env (negate t) -> ~ eval env t.
- Lemma xcnf_correct : forall f pol env, eval_cnf (eval' env) (xcnf pol f) -> eval_f (eval env) (if pol then f else N f).
+ Lemma xcnf_correct : forall f pol env, eval_cnf env (xcnf pol f) -> eval_f (eval env) (if pol then f else N f).
Proof.
induction f.
(* TT *)
@@ -175,15 +364,19 @@ Set Implicit Arguments.
(* FF *)
unfold eval_cnf.
destruct pol; simpl ; auto.
+ unfold eval_clause ; simpl.
+ tauto.
(* P *)
simpl.
destruct pol ; intros ;simpl.
unfold eval_cnf in H.
(* Here I have to drop the proposition *)
simpl in H.
+ unfold eval_clause in H ; simpl in H.
tauto.
(* Here, I could store P in the clause *)
unfold eval_cnf in H;simpl in H.
+ unfold eval_clause in H ; simpl in H.
tauto.
(* A *)
simpl.
@@ -282,7 +475,7 @@ Set Implicit Arguments.
end
end.
- Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf (eval' env) t.
+ Lemma cnf_checker_sound : forall t w, cnf_checker t w = true -> forall env, eval_cnf env t.
Proof.
unfold eval_cnf.
induction t.
@@ -319,7 +512,6 @@ Set Implicit Arguments.
-
End S.
(* Local Variables: *)
diff --git a/plugins/micromega/VarMap.v b/plugins/micromega/VarMap.v
index 7d25524a..9ff8044e 100644
--- a/plugins/micromega/VarMap.v
+++ b/plugins/micromega/VarMap.v
@@ -1,7 +1,7 @@
(* -*- coding: utf-8 -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,11 +18,12 @@ Require Import Coq.Arith.Max.
Require Import List.
Set Implicit Arguments.
-(* I have addded a Leaf constructor to the varmap data structure (/plugins/ring/Quote.v)
- -- this is harmless and spares a lot of Empty.
- This means smaller proof-terms.
- BTW, by dropping the polymorphism, I get small (yet noticeable) speed-up.
-*)
+(*
+ * This adds a Leaf constructor to the varmap data structure (plugins/quote/Quote.v)
+ * --- it is harmless and spares a lot of Empty.
+ * It also means smaller proof-terms.
+ * As a side note, by dropping the polymorphism, one gets small, yet noticeable, speed-up.
+ *)
Section MakeVarMap.
Variable A : Type.
@@ -33,7 +34,7 @@ Section MakeVarMap.
| Leaf : A -> t
| Node : t -> A -> t -> t .
- Fixpoint find (vm : t ) (p:positive) {struct vm} : A :=
+ Fixpoint find (vm : t) (p:positive) {struct vm} : A :=
match vm with
| Empty => default
| Leaf i => i
@@ -44,216 +45,6 @@ Section MakeVarMap.
end
end.
- (* an off_map (a map with offset) offers the same functionalites as /plugins/setoid_ring/BinList.v - it is used in EnvRing.v *)
-(*
- Definition off_map := (option positive *t )%type.
-
-
-
- Definition jump (j:positive) (l:off_map ) :=
- let (o,m) := l in
- match o with
- | None => (Some j,m)
- | Some j0 => (Some (j+j0)%positive,m)
- end.
-
- Definition nth (n:positive) (l: off_map ) :=
- let (o,m) := l in
- let idx := match o with
- | None => n
- | Some i => i + n
- end%positive in
- find idx m.
-
-
- Definition hd (l:off_map) := nth xH l.
-
-
- Definition tail (l:off_map ) := jump xH l.
-
-
- Lemma psucc : forall p, (match p with
- | xI y' => xO (Psucc y')
- | xO y' => xI y'
- | 1%positive => 2%positive
- end) = (p+1)%positive.
- Proof.
- destruct p.
- auto with zarith.
- rewrite xI_succ_xO.
- auto with zarith.
- reflexivity.
- Qed.
-
- Lemma jump_Pplus : forall i j l,
- (jump (i + j) l) = (jump i (jump j l)).
- Proof.
- unfold jump.
- destruct l.
- destruct o.
- rewrite Pplus_assoc.
- reflexivity.
- reflexivity.
- Qed.
-
- Lemma jump_simpl : forall p l,
- jump p l =
- match p with
- | xH => tail l
- | xO p => jump p (jump p l)
- | xI p => jump p (jump p (tail l))
- end.
- Proof.
- destruct p ; unfold tail ; intros ; repeat rewrite <- jump_Pplus.
- (* xI p = p + p + 1 *)
- rewrite xI_succ_xO.
- rewrite Pplus_diag.
- rewrite <- Pplus_one_succ_r.
- reflexivity.
- (* xO p = p + p *)
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
- Ltac jump_s :=
- repeat
- match goal with
- | |- context [jump xH ?e] => rewrite (jump_simpl xH)
- | |- context [jump (xO ?p) ?e] => rewrite (jump_simpl (xO p))
- | |- context [jump (xI ?p) ?e] => rewrite (jump_simpl (xI p))
- end.
-
- Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l).
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Psucc : forall j l,
- (jump (Psucc j) l) = (jump 1 (jump j l)).
- Proof.
- intros.
- rewrite <- jump_Pplus.
- rewrite Pplus_one_succ_r.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma jump_Pdouble_minus_one : forall i l,
- (jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)).
- Proof.
- unfold tail.
- intros.
- repeat rewrite <- jump_Pplus.
- rewrite <- Pplus_one_succ_r.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
- Qed.
-
- Lemma jump_x0_tail : forall p l, jump (xO p) (tail l) = jump (xI p) l.
- Proof.
- intros.
- jump_s.
- repeat rewrite <- jump_Pplus.
- reflexivity.
- Qed.
-
-
- Lemma nth_spec : forall p l,
- nth p l =
- match p with
- | xH => hd l
- | xO p => nth p (jump p l)
- | xI p => nth p (jump p (tail l))
- end.
- Proof.
- unfold nth.
- destruct l.
- destruct o.
- simpl.
- rewrite psucc.
- destruct p.
- replace (p0 + xI p)%positive with ((p + (p0 + 1) + p))%positive.
- reflexivity.
- rewrite xI_succ_xO.
- rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag.
- rewrite Pplus_comm.
- symmetry.
- rewrite (Pplus_comm p0).
- rewrite <- Pplus_assoc.
- rewrite (Pplus_comm 1)%positive.
- rewrite <- Pplus_assoc.
- reflexivity.
- (**)
- replace ((p0 + xO p))%positive with (p + p0 + p)%positive.
- reflexivity.
- rewrite <- Pplus_diag.
- rewrite <- Pplus_assoc.
- rewrite Pplus_comm.
- rewrite Pplus_assoc.
- reflexivity.
- reflexivity.
- simpl.
- destruct p.
- rewrite xI_succ_xO.
- rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag.
- symmetry.
- rewrite Pplus_comm.
- rewrite Pplus_assoc.
- reflexivity.
- rewrite Pplus_diag.
- reflexivity.
- reflexivity.
- Qed.
-
-
- Lemma nth_jump : forall p l, nth p (tail l) = hd (jump p l).
- Proof.
- destruct l.
- unfold tail.
- unfold hd.
- unfold jump.
- unfold nth.
- destruct o.
- symmetry.
- rewrite Pplus_comm.
- rewrite <- Pplus_assoc.
- rewrite (Pplus_comm p0).
- reflexivity.
- rewrite Pplus_comm.
- reflexivity.
- Qed.
-
- Lemma nth_Pdouble_minus_one :
- forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
- Proof.
- destruct l.
- unfold tail.
- unfold nth, jump.
- destruct o.
- rewrite ((Pplus_comm p)).
- rewrite <- (Pplus_assoc p0).
- rewrite Pplus_diag.
- rewrite <- Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_one_succ_r.
- rewrite (Pplus_comm (Pdouble_minus_one p)).
- rewrite Pplus_assoc.
- rewrite (Pplus_comm p0).
- reflexivity.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO.
- rewrite Pplus_diag.
- reflexivity.
- Qed.
-
-*)
End MakeVarMap.
diff --git a/plugins/micromega/ZCoeff.v b/plugins/micromega/ZCoeff.v
index cf2bca49..e30295e6 100644
--- a/plugins/micromega/ZCoeff.v
+++ b/plugins/micromega/ZCoeff.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -109,7 +109,7 @@ Qed.
Lemma Zring_morph :
ring_morph 0 1 rplus rtimes rminus ropp req
- 0%Z 1%Z Zplus Zmult Zminus Zopp
+ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp
Zeq_bool gen_order_phi_Z.
Proof.
exact (gen_phiZ_morph sor.(SORsetoid) ring_ops_wd sor.(SORrt)).
@@ -122,7 +122,7 @@ try apply (Rplus_pos_pos sor); try apply (Rtimes_pos_pos sor); try apply (Rplus_
try apply (Rlt_0_1 sor); assumption.
Qed.
-Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Psucc x) == 1 + phi_pos1 x.
+Lemma phi_pos1_succ : forall x : positive, phi_pos1 (Pos.succ x) == 1 + phi_pos1 x.
Proof.
exact (ARgen_phiPOS_Psucc sor.(SORsetoid) ring_ops_wd
(Rth_ARth sor.(SORsetoid) ring_ops_wd sor.(SORrt))).
@@ -130,7 +130,7 @@ Qed.
Lemma clt_pos_morph : forall x y : positive, (x < y)%positive -> phi_pos1 x < phi_pos1 y.
Proof.
-intros x y H. pattern y; apply Plt_ind with x.
+intros x y H. pattern y; apply Pos.lt_ind with x.
rewrite phi_pos1_succ; apply (Rlt_succ_r sor).
clear y H; intros y _ H. rewrite phi_pos1_succ. now apply (Rlt_lt_succ sor).
assumption.
@@ -138,7 +138,7 @@ Qed.
Lemma clt_morph : forall x y : Z, (x < y)%Z -> [x] < [y].
Proof.
-unfold Zlt; intros x y H;
+intros x y H.
do 2 rewrite (same_genZ sor.(SORsetoid) ring_ops_wd sor.(SORrt));
destruct x; destruct y; simpl in *; try discriminate.
apply phi_pos1_pos.
@@ -146,13 +146,13 @@ now apply clt_pos_morph.
apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
apply (Rlt_trans sor) with 0. apply <- (Ropp_neg_pos sor); apply phi_pos1_pos.
apply phi_pos1_pos.
-rewrite Pcompare_antisym in H; simpl in H. apply -> (Ropp_lt_mono sor).
-now apply clt_pos_morph.
+apply -> (Ropp_lt_mono sor); apply clt_pos_morph.
+red. now rewrite Pos.compare_antisym.
Qed.
-Lemma Zcleb_morph : forall x y : Z, Zle_bool x y = true -> [x] <= [y].
+Lemma Zcleb_morph : forall x y : Z, Z.leb x y = true -> [x] <= [y].
Proof.
-unfold Zle_bool; intros x y H.
+unfold Z.leb; intros x y H.
case_eq (x ?= y)%Z; intro H1; rewrite H1 in H.
le_equal. apply Zring_morph.(morph_eq). unfold Zeq_bool; now rewrite H1.
le_less. now apply clt_morph.
@@ -162,9 +162,9 @@ Qed.
Lemma Zcneqb_morph : forall x y : Z, Zeq_bool x y = false -> [x] ~= [y].
Proof.
intros x y H. unfold Zeq_bool in H.
-case_eq (Zcompare x y); intro H1; rewrite H1 in *; (discriminate || clear H).
+case_eq (Z.compare x y); intro H1; rewrite H1 in *; (discriminate || clear H).
apply (Rlt_neq sor). now apply clt_morph.
-fold (x > y)%Z in H1. rewrite Zgt_iff_lt in H1.
+fold (x > y)%Z in H1. rewrite Z.gt_lt_iff in H1.
apply (Rneq_symm sor). apply (Rlt_neq sor). now apply clt_morph.
Qed.
diff --git a/plugins/micromega/ZMicromega.v b/plugins/micromega/ZMicromega.v
index d6245681..bdc4671d 100644
--- a/plugins/micromega/ZMicromega.v
+++ b/plugins/micromega/ZMicromega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,7 +8,7 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
+(* Frédéric Besson (Irisa/Inria) 2006-2011 *)
(* *)
(************************************************************************)
@@ -34,20 +34,20 @@ Require Import EnvRing.
Open Scope Z_scope.
-Lemma Zsor : SOR 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt.
+Lemma Zsor : SOR 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt.
Proof.
constructor ; intros ; subst ; try (intuition (auto with zarith)).
apply Zsth.
apply Zth.
- destruct (Ztrichotomy n m) ; intuition (auto with zarith).
- apply Zmult_lt_0_compat ; auto.
+ destruct (Z.lt_trichotomy n m) ; intuition.
+ apply Z.mul_pos_pos ; auto.
Qed.
Lemma ZSORaddon :
- SORaddon 0 1 Zplus Zmult Zminus Zopp (@eq Z) Zle (* ring elements *)
- 0%Z 1%Z Zplus Zmult Zminus Zopp (* coefficients *)
- Zeq_bool Zle_bool
- (fun x => x) (fun x => x) (pow_N 1 Zmult).
+ SORaddon 0 1 Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le (* ring elements *)
+ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (* coefficients *)
+ Zeq_bool Z.leb
+ (fun x => x) (fun x => x) (pow_N 1 Z.mul).
Proof.
constructor.
constructor ; intros ; try reflexivity.
@@ -65,20 +65,20 @@ Fixpoint Zeval_expr (env : PolEnv Z) (e: PExpr Z) : Z :=
| PEX x => env x
| PEadd e1 e2 => Zeval_expr env e1 + Zeval_expr env e2
| PEmul e1 e2 => Zeval_expr env e1 * Zeval_expr env e2
- | PEpow e1 n => Zpower (Zeval_expr env e1) (Z_of_N n)
+ | PEpow e1 n => Z.pow (Zeval_expr env e1) (Z.of_N n)
| PEsub e1 e2 => (Zeval_expr env e1) - (Zeval_expr env e2)
- | PEopp e => Zopp (Zeval_expr env e)
+ | PEopp e => Z.opp (Zeval_expr env e)
end.
-Definition eval_expr := eval_pexpr Zplus Zmult Zminus Zopp (fun x => x) (fun x => x) (pow_N 1 Zmult).
+Definition eval_expr := eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x => x) (fun x => x) (pow_N 1 Z.mul).
-Lemma ZNpower : forall r n, r ^ Z_of_N n = pow_N 1 Zmult r n.
+Lemma ZNpower : forall r n, r ^ Z.of_N n = pow_N 1 Z.mul r n.
Proof.
destruct n.
reflexivity.
simpl.
- unfold Zpower_pos.
- replace (pow_pos Zmult r p) with (1 * (pow_pos Zmult r p)) by ring.
+ unfold Z.pow_pos.
+ replace (pow_pos Z.mul r p) with (1 * (pow_pos Z.mul r p)) by ring.
generalize 1.
induction p; simpl ; intros ; repeat rewrite IHp ; ring.
Qed.
@@ -94,10 +94,10 @@ Definition Zeval_op2 (o : Op2) : Z -> Z -> Prop :=
match o with
| OpEq => @eq Z
| OpNEq => fun x y => ~ x = y
-| OpLe => Zle
-| OpGe => Zge
-| OpLt => Zlt
-| OpGt => Zgt
+| OpLe => Z.le
+| OpGe => Z.ge
+| OpLt => Z.lt
+| OpGt => Z.gt
end.
Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):=
@@ -105,23 +105,23 @@ Definition Zeval_formula (env : PolEnv Z) (f : Formula Z):=
(Zeval_op2 op) (Zeval_expr env lhs) (Zeval_expr env rhs).
Definition Zeval_formula' :=
- eval_formula Zplus Zmult Zminus Zopp (@eq Z) Zle Zlt (fun x => x) (fun x => x) (pow_N 1 Zmult).
+ eval_formula Z.add Z.mul Z.sub Z.opp (@eq Z) Z.le Z.lt (fun x => x) (fun x => x) (pow_N 1 Z.mul).
Lemma Zeval_formula_compat : forall env f, Zeval_formula env f <-> Zeval_formula' env f.
Proof.
destruct f ; simpl.
rewrite Zeval_expr_compat. rewrite Zeval_expr_compat.
unfold eval_expr.
- generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : N => x) (pow_N 1 Zmult) env Flhs).
- generalize ((eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : N => x) (pow_N 1 Zmult) env Frhs)).
+ generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env Flhs).
+ generalize ((eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env Frhs)).
destruct Fop ; simpl; intros ; intuition (auto with zarith).
Qed.
Definition eval_nformula :=
- eval_nformula 0 Zplus Zmult (@eq Z) Zle Zlt (fun x => x) .
+ eval_nformula 0 Z.add Z.mul (@eq Z) Z.le Z.lt (fun x => x) .
Definition Zeval_op1 (o : Op1) : Z -> Prop :=
match o with
@@ -140,7 +140,7 @@ Qed.
Definition ZWitness := Psatz Z.
-Definition ZWeakChecker := check_normalised_formulas 0 1 Zplus Zmult Zeq_bool Zle_bool.
+Definition ZWeakChecker := check_normalised_formulas 0 1 Z.add Z.mul Zeq_bool Z.leb.
Lemma ZWeakChecker_sound : forall (l : list (NFormula Z)) (cm : ZWitness),
ZWeakChecker l cm = true ->
@@ -154,13 +154,13 @@ Proof.
exact H.
Qed.
-Definition psub := psub Z0 Zplus Zminus Zopp Zeq_bool.
+Definition psub := psub Z0 Z.add Z.sub Z.opp Zeq_bool.
-Definition padd := padd Z0 Zplus Zeq_bool.
+Definition padd := padd Z0 Z.add Zeq_bool.
-Definition norm := norm 0 1 Zplus Zmult Zminus Zopp Zeq_bool.
+Definition norm := norm 0 1 Z.add Z.mul Z.sub Z.opp Zeq_bool.
-Definition eval_pol := eval_pol 0 Zplus Zmult (fun x => x).
+Definition eval_pol := eval_pol Z.add Z.mul (fun x => x).
Lemma eval_pol_sub : forall env lhs rhs, eval_pol env (psub lhs rhs) = eval_pol env lhs - eval_pol env rhs.
Proof.
@@ -194,27 +194,27 @@ Definition xnormalise (t:Formula Z) : list (NFormula Z) :=
| OpLe => (psub lhs (padd rhs (Pc 1)),NonStrict) :: nil
end.
-Require Import Tauto.
+Require Import Tauto BinNums.
Definition normalise (t:Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnormalise t).
-Lemma normalise_correct : forall env t, eval_cnf (eval_nformula env) (normalise t) <-> Zeval_formula env t.
+Lemma normalise_correct : forall env t, eval_cnf eval_nformula env (normalise t) <-> Zeval_formula env t.
Proof.
Opaque padd.
unfold normalise, xnormalise ; simpl; intros env t.
rewrite Zeval_formula_compat.
- unfold eval_cnf.
+ unfold eval_cnf, eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
- generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
- generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env lhs);
+ generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
@@ -235,31 +235,34 @@ Definition xnegate (t:RingMicromega.Formula Z) : list (NFormula Z) :=
Definition negate (t:RingMicromega.Formula Z) : cnf (NFormula Z) :=
List.map (fun x => x::nil) (xnegate t).
-Lemma negate_correct : forall env t, eval_cnf (eval_nformula env) (negate t) <-> ~ Zeval_formula env t.
+Lemma negate_correct : forall env t, eval_cnf eval_nformula env (negate t) <-> ~ Zeval_formula env t.
Proof.
Proof.
Opaque padd.
intros env t.
rewrite Zeval_formula_compat.
unfold negate, xnegate ; simpl.
- unfold eval_cnf.
+ unfold eval_cnf,eval_clause.
destruct t as [lhs o rhs]; case_eq o; simpl;
repeat rewrite eval_pol_sub;
repeat rewrite eval_pol_add;
repeat rewrite <- eval_pol_norm ; simpl in *;
unfold eval_expr;
- generalize ( eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env lhs);
- generalize (eval_pexpr Zplus Zmult Zminus Zopp (fun x : Z => x)
- (fun x : BinNat.N => x) (pow_N 1 Zmult) env rhs) ; intros z1 z2 ; intros ; subst;
+ generalize ( eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env lhs);
+ generalize (eval_pexpr Z.add Z.mul Z.sub Z.opp (fun x : Z => x)
+ (fun x : N => x) (pow_N 1 Z.mul) env rhs) ; intros z1 z2 ; intros ; subst;
intuition (auto with zarith).
Transparent padd.
Qed.
+Definition Zunsat := check_inconsistent 0 Zeq_bool Z.leb.
+
+Definition Zdeduce := nformula_plus_nformula 0 Z.add Zeq_bool.
Definition ZweakTautoChecker (w: list ZWitness) (f : BFormula (Formula Z)) : bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZWitness ZWeakChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZWitness ZWeakChecker f w.
(* To get a complete checker, the proof format has to be enriched *)
@@ -267,36 +270,47 @@ Require Import Zdiv.
Open Scope Z_scope.
Definition ceiling (a b:Z) : Z :=
- let (q,r) := Zdiv_eucl a b in
+ let (q,r) := Z.div_eucl a b in
match r with
| Z0 => q
| _ => q + 1
end.
-Lemma narrow_interval_lower_bound : forall a b x, a > 0 -> a * x >= b -> x >= ceiling b a.
+
+Require Import Znumtheory.
+
+Lemma Zdivide_ceiling : forall a b, (b | a) -> ceiling a b = Z.div a b.
Proof.
unfold ceiling.
intros.
- generalize (Z_div_mod b a H).
- destruct (Zdiv_eucl b a).
+ apply Zdivide_mod in H.
+ case_eq (Z.div_eucl a b).
intros.
- destruct H1.
- destruct H2.
- subst.
- destruct (Ztrichotomy z0 0) as [ HH1 | [HH2 | HH3]]; destruct z0 ; try auto with zarith ; try discriminate.
- assert (HH :x >= z \/ x < z) by (destruct (Ztrichotomy x z) ; auto with zarith).
- destruct HH ;auto.
- generalize (Zmult_lt_compat_l _ _ _ H3 H1).
- auto with zarith.
- clear H2.
- assert (HH :x >= z +1 \/ x <= z) by (destruct (Ztrichotomy x z) ; intuition (auto with zarith)).
- destruct HH ;auto.
- assert (0 < a) by auto with zarith.
- generalize (Zmult_lt_0_le_compat_r _ _ _ H2 H1).
- intros.
- rewrite Zmult_comm in H4.
- rewrite (Zmult_comm z) in H4.
- auto with zarith.
+ change z with (fst (z,z0)).
+ rewrite <- H0.
+ change (fst (Z.div_eucl a b)) with (Z.div a b).
+ change z0 with (snd (z,z0)).
+ rewrite <- H0.
+ change (snd (Z.div_eucl a b)) with (Z.modulo a b).
+ rewrite H.
+ reflexivity.
+Qed.
+
+Lemma narrow_interval_lower_bound a b x :
+ a > 0 -> a * x >= b -> x >= ceiling b a.
+Proof.
+ rewrite !Z.ge_le_iff.
+ unfold ceiling.
+ intros Ha H.
+ generalize (Z_div_mod b a Ha).
+ destruct (Z.div_eucl b a) as (q,r). intros (->,(H1,H2)).
+ destruct r as [|r|r].
+ - rewrite Z.add_0_r in H.
+ apply Z.mul_le_mono_pos_l in H; auto with zarith.
+ - assert (0 < Z.pos r) by easy.
+ rewrite Z.add_1_r, Z.le_succ_l.
+ apply Z.mul_lt_mono_pos_l with a; auto with zarith.
+ - now elim H1.
Qed.
(** NB: narrow_interval_upper_bound is Zdiv.Zdiv_le_lower_bound *)
@@ -307,40 +321,13 @@ Inductive ZArithProof : Type :=
| DoneProof
| RatProof : ZWitness -> ZArithProof -> ZArithProof
| CutProof : ZWitness -> ZArithProof -> ZArithProof
-| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof.
-
-(* n/d <= x -> d*x - n >= 0 *)
-(*
-Definition makeLb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in (PEsub (PEmul (PEc (Zpos d)) v) (PEc n),NonStrict).
-
-(* x <= n/d -> d * x <= d *)
-Definition makeUb (v:PExpr Z) (q:Q) : NFormula Z :=
- let (n,d) := q in
- (PEsub (PEc n) (PEmul (PEc (Zpos d)) v), NonStrict).
+| EnumProof : ZWitness -> ZWitness -> list ZArithProof -> ZArithProof
+(*| SplitProof : PolC Z -> ZArithProof -> ZArithProof -> ZArithProof*).
-Definition qceiling (q:Q) : Z :=
- let (n,d) := q in ceiling n (Zpos d).
-Definition qfloor (q:Q) : Z :=
- let (n,d) := q in Zdiv n (Zpos d).
-Definition makeLbCut (v:PExprC Z) (q:Q) : NFormula Z :=
- (PEsub v (PEc (qceiling q)), NonStrict).
-
-Definition neg_nformula (f : NFormula Z) :=
- let (e,o) := f in
- (PEopp (PEadd e (PEc 1%Z)), o).
+(* n/d <= x -> d*x - n >= 0 *)
-Lemma neg_nformula_sound : forall env f, snd f = NonStrict ->( ~ (Zeval_nformula env (neg_nformula f)) <-> Zeval_nformula env f).
-Proof.
- unfold neg_nformula.
- destruct f.
- simpl.
- intros ; subst ; simpl in *.
- split; auto with zarith.
-Qed.
-*)
(* In order to compute the 'cut', we need to express a polynomial P as a * Q + b.
- b is the constant
@@ -364,7 +351,7 @@ Proof.
destruct x ; simpl ; intuition congruence.
Qed.
-Definition ZgcdM (x y : Z) := Zmax (Zgcd x y) 1.
+Definition ZgcdM (x y : Z) := Z.max (Z.gcd x y) 1.
Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) :=
@@ -382,7 +369,7 @@ Fixpoint Zgcd_pol (p : PolC Z) : (Z * Z) :=
Fixpoint Zdiv_pol (p:PolC Z) (x:Z) : PolC Z :=
match p with
- | Pc c => Pc (Zdiv c x)
+ | Pc c => Pc (Z.div c x)
| Pinj j p => Pinj j (Zdiv_pol p x)
| PX p j q => PX (Zdiv_pol p x) j (Zdiv_pol q x)
end.
@@ -425,10 +412,10 @@ Proof.
intros.
simpl.
unfold ZgcdM.
- generalize (Zgcd_is_pos z1 z2).
- generalize (Zmax_spec (Zgcd z1 z2) 1).
- generalize (Zgcd_is_pos (Zmax (Zgcd z1 z2) 1) z).
- generalize (Zmax_spec (Zgcd (Zmax (Zgcd z1 z2) 1) z) 1).
+ generalize (Z.gcd_nonneg z1 z2).
+ generalize (Zmax_spec (Z.gcd z1 z2) 1).
+ generalize (Z.gcd_nonneg (Z.max (Z.gcd z1 z2) 1) z).
+ generalize (Zmax_spec (Z.gcd (Z.max (Z.gcd z1 z2) 1) z) 1).
auto with zarith.
Qed.
@@ -437,7 +424,7 @@ Proof.
intros.
induction H.
constructor.
- apply Zdivide_trans with (1:= H0) ; assumption.
+ apply Z.divide_trans with (1:= H0) ; assumption.
constructor. auto.
constructor ; auto.
Qed.
@@ -448,20 +435,20 @@ Proof.
exists c. ring.
Qed.
-Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Zgcd a b | c).
+Lemma Zgcd_minus : forall a b c, (a | c - b ) -> (Z.gcd a b | c).
Proof.
intros a b c (q,Hq).
destruct (Zgcd_is_gcd a b) as [(a',Ha) (b',Hb) _].
- set (g:=Zgcd a b) in *; clearbody g.
+ set (g:=Z.gcd a b) in *; clearbody g.
exists (q * a' + b').
- symmetry in Hq. rewrite <- Zeq_plus_swap in Hq.
+ symmetry in Hq. rewrite <- Z.add_move_r in Hq.
rewrite <- Hq, Hb, Ha. ring.
Qed.
Lemma Zdivide_pol_sub : forall p a b,
- 0 < Zgcd a b ->
- Zdivide_pol a (PsubC Zminus p b) ->
- Zdivide_pol (Zgcd a b) p.
+ 0 < Z.gcd a b ->
+ Zdivide_pol a (PsubC Z.sub p b) ->
+ Zdivide_pol (Z.gcd a b) p.
Proof.
induction p.
simpl.
@@ -481,7 +468,7 @@ Proof.
Qed.
Lemma Zdivide_pol_sub_0 : forall p a,
- Zdivide_pol a (PsubC Zminus p 0) ->
+ Zdivide_pol a (PsubC Z.sub p 0) ->
Zdivide_pol a p.
Proof.
induction p.
@@ -500,7 +487,7 @@ Qed.
Lemma Zgcd_pol_div : forall p g c,
- Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Zminus p c).
+ Zgcd_pol p = (g, c) -> Zdivide_pol g (PsubC Z.sub p c).
Proof.
induction p ; simpl.
(* Pc *)
@@ -515,12 +502,12 @@ Proof.
case_eq (Zgcd_pol p1) ; case_eq (Zgcd_pol p3) ; intros.
inv H1.
unfold ZgcdM at 1.
- destruct (Zmax_spec (Zgcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
+ destruct (Zmax_spec (Z.gcd (ZgcdM z1 z2) z) 1) as [HH1 | HH1];
destruct HH1 as [HH1 HH1'] ; rewrite HH1'.
constructor.
apply Zdivide_pol_Zdivide with (x:= ZgcdM z1 z2).
unfold ZgcdM.
- destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
+ destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
destruct HH2.
rewrite H2.
apply Zdivide_pol_sub ; auto.
@@ -528,9 +515,9 @@ Proof.
destruct HH2. rewrite H2.
apply Zdivide_pol_one.
unfold ZgcdM in HH1. unfold ZgcdM.
- destruct (Zmax_spec (Zgcd z1 z2) 1) as [HH2 | HH2].
+ destruct (Zmax_spec (Z.gcd z1 z2) 1) as [HH2 | HH2].
destruct HH2. rewrite H2 in *.
- destruct (Zgcd_is_gcd (Zgcd z1 z2) z); auto.
+ destruct (Zgcd_is_gcd (Z.gcd z1 z2) z); auto.
destruct HH2. rewrite H2.
destruct (Zgcd_is_gcd 1 z); auto.
apply Zdivide_pol_Zdivide with (x:= z).
@@ -543,7 +530,7 @@ Qed.
-Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) + c.
+Lemma Zgcd_pol_correct_lt : forall p env g c, Zgcd_pol p = (g,c) -> 0 < g -> eval_pol env p = g * (eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) + c.
Proof.
intros.
rewrite <- Zdiv_pol_correct ; auto.
@@ -557,8 +544,8 @@ Qed.
Definition makeCuttingPlane (p : PolC Z) : PolC Z * Z :=
let (g,c) := Zgcd_pol p in
- if Zgt_bool g Z0
- then (Zdiv_pol (PsubC Zminus p c) g , Zopp (ceiling (Zopp c) g))
+ if Z.gtb g Z0
+ then (Zdiv_pol (PsubC Z.sub p c) g , Z.opp (ceiling (Z.opp c) g))
else (p,Z0).
@@ -566,11 +553,13 @@ Definition genCuttingPlane (f : NFormula Z) : option (PolC Z * Z * Op1) :=
let (e,op) := f in
match op with
| Equal => let (g,c) := Zgcd_pol e in
- if andb (Zgt_bool g Z0) (andb (Zgt_bool c Z0) (negb (Zeq_bool (Zgcd g c) g)))
+ if andb (Z.gtb g Z0) (andb (negb (Zeq_bool c Z0)) (negb (Zeq_bool (Z.gcd g c) g)))
then None (* inconsistent *)
- else Some (e, Z0,op) (* It could still be inconsistent -- but not a cut *)
+ else (* Could be optimised Zgcd_pol is recomputed *)
+ let (p,c) := makeCuttingPlane e in
+ Some (p,c,Equal)
| NonEqual => Some (e,Z0,op)
- | Strict => let (p,c) := makeCuttingPlane (PsubC Zminus e 1) in
+ | Strict => let (p,c) := makeCuttingPlane (PsubC Z.sub e 1) in
Some (p,c,NonStrict)
| NonStrict => let (p,c) := makeCuttingPlane e in
Some (p,c,NonStrict)
@@ -596,16 +585,16 @@ Proof.
Qed.
-
-
-
Definition eval_Psatz : list (NFormula Z) -> ZWitness -> option (NFormula Z) :=
- eval_Psatz 0 1 Zplus Zmult Zeq_bool Zle_bool.
-
-
-Definition check_inconsistent := check_inconsistent 0 Zeq_bool Zle_bool.
+ eval_Psatz 0 1 Z.add Z.mul Zeq_bool Z.leb.
+Definition valid_cut_sign (op:Op1) :=
+ match op with
+ | Equal => true
+ | NonStrict => true
+ | _ => false
+ end.
Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :=
match pf with
@@ -614,7 +603,7 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
match eval_Psatz l w with
| None => false
| Some f =>
- if check_inconsistent f then true
+ if Zunsat f then true
else ZChecker (f::l) pf
end
| CutProof w pf =>
@@ -627,29 +616,24 @@ Fixpoint ZChecker (l:list (NFormula Z)) (pf : ZArithProof) {struct pf} : bool :
end
end
| EnumProof w1 w2 pf =>
- match eval_Psatz l w1 , eval_Psatz l w2 with
- | Some f1 , Some f2 =>
- match genCuttingPlane f1 , genCuttingPlane f2 with
- |Some (e1,z1,op1) , Some (e2,z2,op2) =>
- match op1 , op2 with
- | NonStrict , NonStrict =>
- if is_pol_Z0 (padd e1 e2)
- then
- (fix label (pfs:list ZArithProof) :=
- fun lb ub =>
- match pfs with
- | nil => if Zgt_bool lb ub then true else false
- | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Zplus lb 1%Z) ub)
- end)
- pf (Zopp z1) z2
- else false
- | _ , _ => false
- end
- | _ , _ => false
- end
- | _ , _ => false
- end
- end.
+ match eval_Psatz l w1 , eval_Psatz l w2 with
+ | Some f1 , Some f2 =>
+ match genCuttingPlane f1 , genCuttingPlane f2 with
+ |Some (e1,z1,op1) , Some (e2,z2,op2) =>
+ if (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd e1 e2))
+ then
+ (fix label (pfs:list ZArithProof) :=
+ fun lb ub =>
+ match pfs with
+ | nil => if Z.gtb lb ub then true else false
+ | pf::rsr => andb (ZChecker ((psub e1 (Pc lb), Equal) :: l) pf) (label rsr (Z.add lb 1%Z) ub)
+ end) pf (Z.opp z1) z2
+ else false
+ | _ , _ => true
+ end
+ | _ , _ => false
+ end
+end.
@@ -702,7 +686,7 @@ Proof.
apply make_conj_in ; auto.
Qed.
-Lemma makeCuttingPlane_sound : forall env e e' c,
+Lemma makeCuttingPlane_ns_sound : forall env e e' c,
eval_nformula env (e, NonStrict) ->
makeCuttingPlane e = (e',c) ->
eval_nformula env (nformula_of_cutting_plane (e', c, NonStrict)).
@@ -717,19 +701,18 @@ Proof.
unfold makeCuttingPlane in H0.
revert H0.
case_eq (Zgcd_pol e) ; intros g c0.
- generalize (Zgt_cases g 0) ; destruct (Zgt_bool g 0).
+ generalize (Zgt_cases g 0) ; destruct (Z.gtb g 0).
intros.
inv H2.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in *.
+ change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in *.
apply Zgcd_pol_correct_lt with (env:=env) in H1.
- generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Zminus e c0) g)) H0).
+ generalize (narrow_interval_lower_bound g (- c0) (eval_pol env (Zdiv_pol (PsubC Z.sub e c0) g)) H0).
auto with zarith.
auto with zarith.
(* g <= 0 *)
intros. inv H2. auto with zarith.
Qed.
-
Lemma cutting_plane_sound : forall env f p,
eval_nformula env f ->
genCuttingPlane f = Some p ->
@@ -741,13 +724,50 @@ Proof.
(* Equal *)
destruct p as [[e' z] op].
case_eq (Zgcd_pol e) ; intros g c.
- destruct (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))) ; [discriminate|].
- intros. inv H1. unfold nformula_of_cutting_plane.
- unfold eval_nformula in *.
- unfold RingMicromega.eval_nformula in *.
- unfold eval_op1 in *.
- rewrite (RingMicromega.eval_pol_add Zsor ZSORaddon).
- simpl. rewrite H0. reflexivity.
+ case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))) ; [discriminate|].
+ case_eq (makeCuttingPlane e).
+ intros.
+ inv H3.
+ unfold makeCuttingPlane in H.
+ rewrite H1 in H.
+ revert H.
+ change (eval_pol env e = 0) in H2.
+ case_eq (Z.gtb g 0).
+ intros.
+ rewrite <- Zgt_is_gt_bool in H.
+ rewrite Zgcd_pol_correct_lt with (1:= H1) in H2; auto with zarith.
+ unfold nformula_of_cutting_plane.
+ change (eval_pol env (padd e' (Pc z)) = 0).
+ inv H3.
+ rewrite eval_pol_add.
+ set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub e c) g)) in *; clearbody x.
+ simpl.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite Zgt_is_gt_bool in H ; congruence.
+ rewrite andb_false_iff in H0.
+ destruct H0.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ subst. simpl.
+ rewrite Z.add_0_r, Z.mul_eq_0 in H2.
+ intuition auto with zarith.
+ rewrite negb_false_iff in H0.
+ apply Zeq_bool_eq in H0.
+ assert (HH := Zgcd_is_gcd g c).
+ rewrite H0 in HH.
+ inv HH.
+ apply Zdivide_opp_r in H4.
+ rewrite Zdivide_ceiling ; auto.
+ apply Z.sub_move_0_r.
+ apply Z.div_unique_exact ; auto with zarith.
+ intros.
+ unfold nformula_of_cutting_plane.
+ inv H3.
+ change (eval_pol env (padd e' (Pc 0)) = 0).
+ rewrite eval_pol_add.
+ simpl.
+ auto with zarith.
(* NonEqual *)
intros.
inv H0.
@@ -759,10 +779,10 @@ Proof.
simpl. auto with zarith.
(* Strict *)
destruct p as [[e' z] op].
- case_eq (makeCuttingPlane (PsubC Zminus e 1)).
+ case_eq (makeCuttingPlane (PsubC Z.sub e 1)).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
simpl in *.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
auto with zarith.
@@ -771,7 +791,7 @@ Proof.
case_eq (makeCuttingPlane e).
intros.
inv H1.
- apply makeCuttingPlane_sound with (env:=env) (2:= H).
+ apply makeCuttingPlane_ns_sound with (env:=env) (2:= H).
assumption.
Qed.
@@ -783,25 +803,26 @@ Proof.
destruct f.
destruct o.
case_eq (Zgcd_pol p) ; intros g c.
- case_eq (Zgt_bool g 0 && (Zgt_bool c 0 && negb (Zeq_bool (Zgcd g c) g))).
+ case_eq (Z.gtb g 0 && (negb (Zeq_bool c 0) && negb (Zeq_bool (Z.gcd g c) g))).
intros.
flatten_bool.
rewrite negb_true_iff in H5.
apply Zeq_bool_neq in H5.
- contradict H5.
rewrite <- Zgt_is_gt_bool in H3.
- rewrite <- Zgt_is_gt_bool in H.
- apply Zis_gcd_gcd; auto with zarith.
- constructor; auto with zarith.
+ rewrite negb_true_iff in H.
+ apply Zeq_bool_neq in H.
change (eval_pol env p = 0) in H2.
rewrite Zgcd_pol_correct_lt with (1:= H0) in H2; auto with zarith.
- set (x:=eval_pol env (Zdiv_pol (PsubC Zminus p c) g)) in *; clearbody x.
+ set (x:=eval_pol env (Zdiv_pol (PsubC Z.sub p c) g)) in *; clearbody x.
+ contradict H5.
+ apply Zis_gcd_gcd; auto with zarith.
+ constructor; auto with zarith.
exists (-x).
- rewrite <- Zopp_mult_distr_l, Zmult_comm; auto with zarith.
+ rewrite Z.mul_opp_l, Z.mul_comm; auto with zarith.
(**)
+ destruct (makeCuttingPlane p); discriminate.
discriminate.
- discriminate.
- destruct (makeCuttingPlane (PsubC Zminus p 1)) ; discriminate.
+ destruct (makeCuttingPlane (PsubC Z.sub p 1)) ; discriminate.
destruct (makeCuttingPlane p) ; discriminate.
Qed.
@@ -816,11 +837,11 @@ Proof.
simpl.
intro l. case_eq (eval_Psatz l w) ; [| discriminate].
intros f Hf.
- case_eq (check_inconsistent f).
+ case_eq (Zunsat f).
intros.
apply (checker_nf_sound Zsor ZSORaddon l w).
unfold check_normalised_formulas. unfold eval_Psatz in Hf. rewrite Hf.
- unfold check_inconsistent in H0. assumption.
+ unfold Zunsat in H0. assumption.
intros.
assert (make_impl (eval_nformula env) (f::l) False).
apply H with (2:= H1).
@@ -868,60 +889,59 @@ Proof.
case_eq (eval_Psatz l w1) ; [ | discriminate].
case_eq (eval_Psatz l w2) ; [ | discriminate].
intros f1 Hf1 f2 Hf2.
- case_eq (genCuttingPlane f2) ; [ | discriminate].
+ case_eq (genCuttingPlane f2).
destruct p as [ [p1 z1] op1].
- case_eq (genCuttingPlane f1) ; [ | discriminate].
+ case_eq (genCuttingPlane f1).
destruct p as [ [p2 z2] op2].
- case_eq op1 ; case_eq op2 ; try discriminate.
- case_eq (is_pol_Z0 (padd p1 p2)) ; try discriminate.
- intros.
+ case_eq (valid_cut_sign op1 && valid_cut_sign op2 && is_pol_Z0 (padd p1 p2)).
+ intros Hcond.
+ flatten_bool.
+ rename H1 into HZ0.
+ rename H2 into Hop1.
+ rename H3 into Hop2.
+ intros HCutL HCutR Hfix env.
(* get the bounds of the enum *)
rewrite <- make_conj_impl.
intro.
assert (-z1 <= eval_pol env p1 <= z2).
split.
apply eval_Psatz_sound with (env:=env) in Hf2 ; auto.
- apply cutting_plane_sound with (1:= Hf2) in H4.
- unfold nformula_of_cutting_plane in H4.
- unfold eval_nformula in H4.
- unfold RingMicromega.eval_nformula in H4.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H4.
- unfold eval_op1 in H4.
- rewrite eval_pol_add in H4. simpl in H4.
- auto with zarith.
+ apply cutting_plane_sound with (1:= Hf2) in HCutR.
+ unfold nformula_of_cutting_plane in HCutR.
+ unfold eval_nformula in HCutR.
+ unfold RingMicromega.eval_nformula in HCutR.
+ change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutR.
+ unfold eval_op1 in HCutR.
+ destruct op1 ; simpl in Hop1 ; try discriminate;
+ rewrite eval_pol_add in HCutR; simpl in HCutR; auto with zarith.
(**)
- apply is_pol_Z0_eval_pol with (env := env) in H0.
- rewrite eval_pol_add in H0.
+ apply is_pol_Z0_eval_pol with (env := env) in HZ0.
+ rewrite eval_pol_add in HZ0.
replace (eval_pol env p1) with (- eval_pol env p2) by omega.
apply eval_Psatz_sound with (env:=env) in Hf1 ; auto.
- apply cutting_plane_sound with (1:= Hf1) in H3.
- unfold nformula_of_cutting_plane in H3.
- unfold eval_nformula in H3.
- unfold RingMicromega.eval_nformula in H3.
- change (RingMicromega.eval_pol 0 Zplus Zmult (fun x : Z => x)) with eval_pol in H3.
- unfold eval_op1 in H3.
- rewrite eval_pol_add in H3. simpl in H3.
- omega.
- revert H5.
- set (FF := (fix label (pfs : list ZArithProof) (lb ub : Z) {struct pfs} : bool :=
- match pfs with
- | nil => if Z_gt_dec lb ub then true else false
- | pf :: rsr =>
- (ZChecker ((PsubC Zminus p1 lb, Equal) :: l) pf &&
- label rsr (lb + 1)%Z ub)%bool
- end)).
+ apply cutting_plane_sound with (1:= Hf1) in HCutL.
+ unfold nformula_of_cutting_plane in HCutL.
+ unfold eval_nformula in HCutL.
+ unfold RingMicromega.eval_nformula in HCutL.
+ change (RingMicromega.eval_pol Z.add Z.mul (fun x : Z => x)) with eval_pol in HCutL.
+ unfold eval_op1 in HCutL.
+ rewrite eval_pol_add in HCutL. simpl in HCutL.
+ destruct op2 ; simpl in Hop2 ; try discriminate ; omega.
+ revert Hfix.
+ match goal with
+ | |- context[?F pf (-z1) z2 = true] => set (FF := F)
+ end.
intros.
assert (HH :forall x, -z1 <= x <= z2 -> exists pr,
(In pr pf /\
- ZChecker ((PsubC Zminus p1 x,Equal) :: l) pr = true)%Z).
- clear H.
- clear H0 H1 H2 H3 H4 H7.
- revert H5.
+ ZChecker ((PsubC Z.sub p1 x,Equal) :: l) pr = true)%Z).
+ clear HZ0 Hop1 Hop2 HCutL HCutR H0 H1.
+ revert Hfix.
generalize (-z1). clear z1. intro z1.
revert z1 z2.
induction pf;simpl ;intros.
generalize (Zgt_cases z1 z2).
- destruct (Zgt_bool z1 z2).
+ destruct (Z.gtb z1 z2).
intros.
apply False_ind ; omega.
discriminate.
@@ -931,16 +951,22 @@ Proof.
subst.
exists a ; auto.
assert (z1 + 1 <= x <= z2)%Z by omega.
- destruct (IHpf _ _ H1 _ H3).
+ elim IHpf with (2:=H2) (3:= H4).
destruct H4.
- exists x0 ; split;auto.
+ intros.
+ exists x0 ; split;tauto.
+ intros until 1.
+ apply H ; auto.
+ unfold ltof in *.
+ simpl in *.
+ zify. omega.
(*/asser *)
- destruct (HH _ H7) as [pr [Hin Hcheker]].
- assert (make_impl (eval_nformula env) ((PsubC Zminus p1 (eval_pol env p1),Equal) :: l) False).
+ destruct (HH _ H1) as [pr [Hin Hcheker]].
+ assert (make_impl (eval_nformula env) ((PsubC Z.sub p1 (eval_pol env p1),Equal) :: l) False).
apply (H pr);auto.
apply in_bdepth ; auto.
- rewrite <- make_conj_impl in H8.
- apply H8.
+ rewrite <- make_conj_impl in H2.
+ apply H2.
rewrite make_conj_cons.
split ;auto.
unfold eval_nformula.
@@ -948,10 +974,23 @@ Proof.
simpl.
rewrite (RingMicromega.PsubC_ok Zsor ZSORaddon).
unfold eval_pol. ring.
+ discriminate.
+ (* No cutting plane *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf1) in H3.
+ apply genCuttingPlaneNone with (2:= H3) ; auto.
+ (* No Cutting plane (bis) *)
+ intros.
+ rewrite <- make_conj_impl.
+ intros.
+ apply eval_Psatz_sound with (2:= Hf2) in H2.
+ apply genCuttingPlaneNone with (2:= H2) ; auto.
Qed.
Definition ZTautoChecker (f : BFormula (Formula Z)) (w: list ZArithProof): bool :=
- @tauto_checker (Formula Z) (NFormula Z) normalise negate ZArithProof ZChecker f w.
+ @tauto_checker (Formula Z) (NFormula Z) Zunsat Zdeduce normalise negate ZArithProof ZChecker f w.
Lemma ZTautoChecker_sound : forall f w, ZTautoChecker f w = true -> forall env, eval_f (Zeval_formula env) f.
Proof.
@@ -959,6 +998,11 @@ Proof.
unfold ZTautoChecker.
apply (tauto_checker_sound Zeval_formula eval_nformula).
apply Zeval_nformula_dec.
+ intros until env.
+ unfold eval_nformula. unfold RingMicromega.eval_nformula.
+ destruct t.
+ apply (check_inconsistent_sound Zsor ZSORaddon) ; auto.
+ unfold Zdeduce. apply (nformula_plus_nformula_correct Zsor ZSORaddon).
intros env t.
rewrite normalise_correct ; auto.
intros env t.
@@ -1009,12 +1053,7 @@ Definition eval := eval_formula.
Definition prod_pos_nat := prod positive nat.
-Definition n_of_Z (z:Z) : BinNat.N :=
- match z with
- | Z0 => N0
- | Zpos p => Npos p
- | Zneg p => N0
- end.
+Notation n_of_Z := Z.to_N (only parsing).
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/certificate.ml b/plugins/micromega/certificate.ml
index bcab73ec..a5b0da9c 100644
--- a/plugins/micromega/certificate.ml
+++ b/plugins/micromega/certificate.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,153 +15,18 @@
(* We take as input a list of polynomials [p1...pn] and return an unfeasibility
certificate polynomial. *)
-(*open Micromega.Polynomial*)
+type var = int
+
+
+
open Big_int
open Num
-open Sos_lib
+open Polynomial
module Mc = Micromega
module Ml2C = Mutils.CamlToCoq
module C2Ml = Mutils.CoqToCaml
-let (<+>) = add_num
-let (<->) = minus_num
-let (<*>) = mult_num
-
-type var = Mc.positive
-
-module Monomial :
-sig
- type t
- val const : t
- val var : var -> t
- val find : var -> t -> int
- val mult : var -> t -> t
- val prod : t -> t -> t
- val compare : t -> t -> int
- val pp : out_channel -> t -> unit
- val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
-end
- =
-struct
- (* A monomial is represented by a multiset of variables *)
- module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
- open Map
-
- type t = int Map.t
-
- (* The monomial that corresponds to a constant *)
- let const = Map.empty
-
- (* The monomial 'x' *)
- let var x = Map.add x 1 Map.empty
-
- (* Get the degre of a variable in a monomial *)
- let find x m = try find x m with Not_found -> 0
-
- (* Multiply a monomial by a variable *)
- let mult x m = add x ( (find x m) + 1) m
-
- (* Product of monomials *)
- let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
-
- (* Total ordering of monomials *)
- let compare m1 m2 = Map.compare Pervasives.compare m1 m2
-
- let pp o m = Map.iter (fun k v ->
- if v = 1 then Printf.fprintf o "x%i." (C2Ml.index k)
- else Printf.fprintf o "x%i^%i." (C2Ml.index k) v) m
-
- let fold = fold
-
-end
-
-
-module Poly :
- (* A polynomial is a map of monomials *)
- (*
- This is probably a naive implementation
- (expected to be fast enough - Coq is probably the bottleneck)
- *The new ring contribution is using a sparse Horner representation.
- *)
-sig
- type t
- val get : Monomial.t -> t -> num
- val variable : var -> t
- val add : Monomial.t -> num -> t -> t
- val constant : num -> t
- val mult : Monomial.t -> num -> t -> t
- val product : t -> t -> t
- val addition : t -> t -> t
- val uminus : t -> t
- val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
- val pp : out_channel -> t -> unit
- val compare : t -> t -> int
- val is_null : t -> bool
-end =
-struct
- (*normalisation bug : 0*x ... *)
- module P = Map.Make(Monomial)
- open P
-
- type t = num P.t
-
- let pp o p = P.iter (fun k v ->
- if compare_num v (Int 0) <> 0
- then
- if Monomial.compare Monomial.const k = 0
- then Printf.fprintf o "%s " (string_of_num v)
- else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
-
- (* Get the coefficient of monomial mn *)
- let get : Monomial.t -> t -> num =
- fun mn p -> try find mn p with Not_found -> (Int 0)
-
-
- (* The polynomial 1.x *)
- let variable : var -> t =
- fun x -> add (Monomial.var x) (Int 1) empty
-
- (*The constant polynomial *)
- let constant : num -> t =
- fun c -> add (Monomial.const) c empty
-
- (* The addition of a monomial *)
-
- let add : Monomial.t -> num -> t -> t =
- fun mn v p ->
- let vl = (get mn p) <+> v in
- add mn vl p
-
-
- (** Design choice: empty is not a polynomial
- I do not remember why ....
- **)
-
- (* The product by a monomial *)
- let mult : Monomial.t -> num -> t -> t =
- fun mn v p ->
- fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
-
-
- let addition : t -> t -> t =
- fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
-
-
- let product : t -> t -> t =
- fun p1 p2 ->
- fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
-
-
- let uminus : t -> t =
- fun p -> map (fun v -> minus_num v) p
-
- let fold = P.fold
-
- let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
-
- let compare = compare compare_num
-end
open Mutils
type 'a number_spec = {
@@ -178,10 +43,10 @@ let z_spec = {
number_to_num = (fun x -> Big_int (C2Ml.z_big_int x));
zero = Mc.Z0;
unit = Mc.Zpos Mc.XH;
- mult = Mc.zmult;
+ mult = Mc.Z.mul;
eqb = Mc.zeq_bool
}
-
+
let q_spec = {
bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH});
@@ -195,56 +60,58 @@ let q_spec = {
let r_spec = z_spec
-
-
let dev_form n_spec p =
- let rec dev_form p =
+ let rec dev_form p =
match p with
| Mc.PEc z -> Poly.constant (n_spec.number_to_num z)
- | Mc.PEX v -> Poly.variable v
- | Mc.PEmul(p1,p2) ->
+ | Mc.PEX v -> Poly.variable (C2Ml.positive v)
+ | Mc.PEmul(p1,p2) ->
let p1 = dev_form p1 in
let p2 = dev_form p2 in
- Poly.product p1 p2
+ Poly.product p1 p2
| Mc.PEadd(p1,p2) -> Poly.addition (dev_form p1) (dev_form p2)
| Mc.PEopp p -> Poly.uminus (dev_form p)
| Mc.PEsub(p1,p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2))
- | Mc.PEpow(p,n) ->
+ | Mc.PEpow(p,n) ->
let p = dev_form p in
let n = C2Ml.n n in
- let rec pow n =
- if n = 0
+ let rec pow n =
+ if n = 0
then Poly.constant (n_spec.number_to_num n_spec.unit)
else Poly.product p (pow (n-1)) in
pow n in
dev_form p
-let monomial_to_polynomial mn =
- Monomial.fold
- (fun v i acc ->
- let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
- if acc = Mc.PEc (Mc.Zpos Mc.XH)
- then mn
- else Mc.PEmul(mn,acc))
- mn
- (Mc.PEc (Mc.Zpos Mc.XH))
+let monomial_to_polynomial mn =
+ Monomial.fold
+ (fun v i acc ->
+ let v = Ml2C.positive v in
+ let mn = if i = 1 then Mc.PEX v else Mc.PEpow (Mc.PEX v ,Ml2C.n i) in
+ if acc = Mc.PEc (Mc.Zpos Mc.XH)
+ then mn
+ else Mc.PEmul(mn,acc))
+ mn
+ (Mc.PEc (Mc.Zpos Mc.XH))
+
-let list_to_polynomial vars l =
+
+let list_to_polynomial vars l =
assert (List.for_all (fun x -> ceiling_num x =/ x) l);
let var x = monomial_to_polynomial (List.nth vars x) in
+
let rec xtopoly p i = function
| [] -> p
- | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
+ | c::l -> if c =/ (Int 0) then xtopoly p (i+1) l
else let c = Mc.PEc (Ml2C.bigint (numerator c)) in
- let mn =
+ let mn =
if c = Mc.PEc (Mc.Zpos Mc.XH)
then var i
else Mc.PEmul (c,var i) in
let p' = if p = Mc.PEc Mc.Z0 then mn else
Mc.PEadd (mn, p) in
xtopoly p' (i+1) l in
-
+
xtopoly (Mc.PEc Mc.Z0) 0 l
let rec fixpoint f x =
@@ -252,61 +119,54 @@ let rec fixpoint f x =
if y' = x then y'
else fixpoint f y'
-
-
-
-
-
-
-
-let rec_simpl_cone n_spec e =
- let simpl_cone =
+let rec_simpl_cone n_spec e =
+ let simpl_cone =
Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in
let rec rec_simpl_cone = function
- | Mc.PsatzMulE(t1, t2) ->
+ | Mc.PsatzMulE(t1, t2) ->
simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2))
- | Mc.PsatzAdd(t1,t2) ->
+ | Mc.PsatzAdd(t1,t2) ->
simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2))
| x -> simpl_cone x in
rec_simpl_cone e
-
-
+
+
let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c
-
-type cone_prod =
- Const of cone
- | Ideal of cone *cone
- | Mult of cone * cone
+
+type cone_prod =
+ Const of cone
+ | Ideal of cone *cone
+ | Mult of cone * cone
| Other of cone
and cone = Mc.zWitness
let factorise_linear_cone c =
-
- let rec cone_list c l =
+
+ let rec cone_list c l =
match c with
| Mc.PsatzAdd (x,r) -> cone_list r (x::l)
| _ -> c :: l in
-
+
let factorise c1 c2 =
match c1 , c2 with
- | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
+ | Mc.PsatzMulC(x,y) , Mc.PsatzMulC(x',y') ->
if x = x' then Some (Mc.PsatzMulC(x, Mc.PsatzAdd(y,y'))) else None
- | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
+ | Mc.PsatzMulE(x,y) , Mc.PsatzMulE(x',y') ->
if x = x' then Some (Mc.PsatzMulE(x, Mc.PsatzAdd(y,y'))) else None
| _ -> None in
-
+
let rec rebuild_cone l pending =
match l with
| [] -> (match pending with
| None -> Mc.PsatzZ
| Some p -> p
)
- | e::l ->
+ | e::l ->
(match pending with
- | None -> rebuild_cone l (Some e)
+ | None -> rebuild_cone l (Some e)
| Some p -> (match factorise p e with
| None -> Mc.PsatzAdd(p, rebuild_cone l (Some e))
| Some f -> rebuild_cone l (Some f) )
@@ -316,15 +176,15 @@ let factorise_linear_cone c =
-(* The binding with Fourier might be a bit obsolete
+(* The binding with Fourier might be a bit obsolete
-- how does it handle equalities ? *)
(* Certificates are elements of the cone such that P = 0 *)
(* To begin with, we search for certificates of the form:
- a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
+ a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0
where pi >= 0 qi > 0
- ai >= 0
+ ai >= 0
bi >= 0
Sum bi + c >= 1
This is a linear problem: each monomial is considered as a variable.
@@ -334,216 +194,210 @@ let factorise_linear_cone c =
*)
open Mfourier
- (*module Fourier = Fourier(Vector.VList)(SysSet(Vector.VList))*)
- (*module Fourier = Fourier(Vector.VSparse)(SysSetAlt(Vector.VSparse))*)
-(*module Fourier = Mfourier.Fourier(Vector.VSparse)(*(SysSetAlt(Vector.VMap))*)*)
-
-(*module Vect = Fourier.Vect*)
-(*open Fourier.Cstr*)
(* fold_left followed by a rev ! *)
-let constrain_monomial mn l =
+let constrain_monomial mn l =
let coeffs = List.fold_left (fun acc p -> (Poly.get mn p)::acc) [] l in
if mn = Monomial.const
- then
- { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ then
+ { coeffs = Vect.from_list ((Big_int unit_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
else
- { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
- op = Eq ;
+ { coeffs = Vect.from_list ((Big_int zero_big_int):: (List.rev coeffs)) ;
+ op = Eq ;
cst = Big_int zero_big_int }
-
-let positivity l =
- let rec xpositivity i l =
+
+let positivity l =
+ let rec xpositivity i l =
match l with
| [] -> []
| (_,Mc.Equal)::l -> xpositivity (i+1) l
- | (_,_)::l ->
- {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
- op = Ge ;
+ | (_,_)::l ->
+ {coeffs = Vect.update (i+1) (fun _ -> Int 1) Vect.null ;
+ op = Ge ;
cst = Int 0 } :: (xpositivity (i+1) l)
in
xpositivity 0 l
let string_of_op = function
- | Mc.Strict -> "> 0"
- | Mc.NonStrict -> ">= 0"
+ | Mc.Strict -> "> 0"
+ | Mc.NonStrict -> ">= 0"
| Mc.Equal -> "= 0"
| Mc.NonEqual -> "<> 0"
-(* If the certificate includes at least one strict inequality,
+(* If the certificate includes at least one strict inequality,
the obtained polynomial can also be 0 *)
let build_linear_system l =
- (* Gather the monomials: HINT add up of the polynomials *)
+ (* Gather the monomials: HINT add up of the polynomials ==> This does not work anymore *)
let l' = List.map fst l in
- let monomials =
- List.fold_left (fun acc p -> Poly.addition p acc) (Poly.constant (Int 0)) l'
+
+ let module MonSet = Set.Make(Monomial) in
+
+ let monomials =
+ List.fold_left (fun acc p ->
+ Poly.fold (fun m _ acc -> MonSet.add m acc) p acc)
+ (MonSet.singleton Monomial.const) l'
in (* For each monomial, compute a constraint *)
- let s0 =
- Poly.fold (fun mn _ res -> (constrain_monomial mn l')::res) monomials [] in
+ let s0 =
+ MonSet.fold (fun mn res -> (constrain_monomial mn l')::res) monomials [] in
(* I need at least something strictly positive *)
let strict = {
coeffs = Vect.from_list ((Big_int unit_big_int)::
- (List.map (fun (x,y) ->
- match y with Mc.Strict ->
- Big_int unit_big_int
+ (List.map (fun (x,y) ->
+ match y with Mc.Strict ->
+ Big_int unit_big_int
| _ -> Big_int zero_big_int) l));
op = Ge ; cst = Big_int unit_big_int } in
(* Add the positivity constraint *)
- {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
- op = Ge ;
+ {coeffs = Vect.from_list ([Big_int unit_big_int]) ;
+ op = Ge ;
cst = Big_int zero_big_int}::(strict::(positivity l)@s0)
let big_int_to_z = Ml2C.bigint
-
-(* For Q, this is a pity that the certificate has been scaled
+
+(* For Q, this is a pity that the certificate has been scaled
-- at a lower layer, certificates are using nums... *)
-let make_certificate n_spec (cert,li) =
+let make_certificate n_spec (cert,li) =
let bint_to_cst = n_spec.bigint_to_number in
match cert with
| [] -> failwith "empty_certificate"
- | e::cert' ->
- let cst = match compare_big_int e zero_big_int with
+ | e::cert' ->
+(* let cst = match compare_big_int e zero_big_int with
| 0 -> Mc.PsatzZ
- | 1 -> Mc.PsatzC (bint_to_cst e)
- | _ -> failwith "positivity error"
- in
+ | 1 -> Mc.PsatzC (bint_to_cst e)
+ | _ -> failwith "positivity error"
+ in *)
let rec scalar_product cert l =
match cert with
| [] -> Mc.PsatzZ
- | c::cert -> match l with
- | [] -> failwith "make_certificate(1)"
- | i::l ->
- let r = scalar_product cert l in
- match compare_big_int c zero_big_int with
- | -1 -> Mc.PsatzAdd (
- Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r)
- | 0 -> r
- | _ -> Mc.PsatzAdd (
- Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
- r) in
-
- ((factorise_linear_cone
- (simplify_cone n_spec (Mc.PsatzAdd (cst, scalar_product cert' li)))))
+ | c::cert ->
+ match l with
+ | [] -> failwith "make_certificate(1)"
+ | i::l ->
+ let r = scalar_product cert l in
+ match compare_big_int c zero_big_int with
+ | -1 -> Mc.PsatzAdd (
+ Mc.PsatzMulC (Mc.Pc ( bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r)
+ | 0 -> r
+ | _ -> Mc.PsatzAdd (
+ Mc.PsatzMulE (Mc.PsatzC (bint_to_cst c), Mc.PsatzIn (Ml2C.nat i)),
+ r) in
+ (factorise_linear_cone
+ (simplify_cone n_spec (scalar_product cert' li)))
exception Found of Monomial.t
exception Strict
-let primal l =
+let primal l =
let vr = ref 0 in
let module Mmn = Map.Make(Monomial) in
let vect_of_poly map p =
- Poly.fold (fun mn vl (map,vect) ->
- if mn = Monomial.const
+ Poly.fold (fun mn vl (map,vect) ->
+ if mn = Monomial.const
then (map,vect)
- else
+ else
let (mn,m) = try (Mmn.find mn map,map) with Not_found -> let res = (!vr, Mmn.add mn !vr map) in incr vr ; res in
(m,if sign_num vl = 0 then vect else (mn,vl)::vect)) p (map,[]) in
-
+
let op_op = function Mc.NonStrict -> Ge |Mc.Equal -> Eq | _ -> raise Strict in
let cmp x y = Pervasives.compare (fst x) (fst y) in
snd (List.fold_right (fun (p,op) (map,l) ->
- let (mp,vect) = vect_of_poly map p in
+ let (mp,vect) = vect_of_poly map p in
let cstr = {coeffs = List.sort cmp vect; op = op_op op ; cst = minus_num (Poly.get Monomial.const p)} in
(mp,cstr::l)) l (Mmn.empty,[]))
-let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
+let dual_raw_certificate (l: (Poly.t * Mc.op1) list) =
(* List.iter (fun (p,op) -> Printf.fprintf stdout "%a %s 0\n" Poly.pp p (string_of_op op) ) l ; *)
-
-
+
let sys = build_linear_system l in
- try
+ try
match Fourier.find_point sys with
| Inr _ -> None
- | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
+ | Inl cert -> Some (rats_to_ints (Vect.to_list cert))
(* should not use rats_to_ints *)
- with x ->
- if debug
- then (Printf.printf "raw certificate %s" (Printexc.to_string x);
+ with x when Errors.noncritical x ->
+ if debug
+ then (Printf.printf "raw certificate %s" (Printexc.to_string x);
flush stdout) ;
None
-let raw_certificate l =
- try
+let raw_certificate l =
+ try
let p = primal l in
match Fourier.find_point p with
- | Inr prf ->
- if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
let cert = List.map (fun (x,n) -> x+1,n) (fst (List.hd (Proof.mk_proof p prf))) in
- if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
Some (rats_to_ints (Vect.to_list cert))
| Inl _ -> None
- with Strict ->
+ with Strict ->
(* Fourier elimination should handle > *)
- dual_raw_certificate l
+ dual_raw_certificate l
-let simple_linear_prover (*to_constant*) l =
+let simple_linear_prover l =
let (lc,li) = List.split l in
match raw_certificate lc with
| None -> None (* No certificate *)
- | Some cert -> (* make_certificate to_constant*)Some (cert,li)
+ | Some cert -> Some (cert,li)
+
-let linear_prover n_spec l =
- let li = List.combine l (interval 0 (List.length l -1)) in
- let (l1,l') = List.partition
- (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
- let l' = List.map
- (fun ((x,y),i) -> match y with
- Mc.NonEqual -> failwith "cannot happen"
- | y -> ((dev_form n_spec x, y),i)) l' in
- simple_linear_prover (*n_spec*) l'
+let linear_prover n_spec l =
+ let build_system n_spec l =
+ let li = List.combine l (interval 0 (List.length l -1)) in
+ let (l1,l') = List.partition
+ (fun (x,_) -> if snd x = Mc.NonEqual then true else false) li in
+ List.map
+ (fun ((x,y),i) -> match y with
+ Mc.NonEqual -> failwith "cannot happen"
+ | y -> ((dev_form n_spec x, y),i)) l' in
+ let l' = build_system n_spec l in
+ simple_linear_prover (*n_spec*) l'
let linear_prover n_spec l =
- try linear_prover n_spec l with
- x -> (print_string (Printexc.to_string x); None)
+ try linear_prover n_spec l
+ with x when x <> Sys.Break ->
+ (print_string (Printexc.to_string x); None)
-let linear_prover_with_cert spec l =
+let linear_prover_with_cert spec l =
match linear_prover spec l with
| None -> None
| Some cert -> Some (make_certificate spec cert)
-(* zprover.... *)
-
-(* I need to gather the set of variables --->
- Then go for fold
- Once I have an interval, I need a certificate : 2 other fourier elims.
- (I could probably get the certificate directly
- as it is done in the fourier contrib.)
-*)
let make_linear_system l =
let l' = List.map fst l in
- let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
+ let monomials = List.fold_left (fun acc p -> Poly.addition p acc)
(Poly.constant (Int 0)) l' in
- let monomials = Poly.fold
+ let monomials = Poly.fold
(fun mn _ l -> if mn = Monomial.const then l else mn::l) monomials [] in
- (List.map (fun (c,op) ->
- {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
- op = op ;
+ (List.map (fun (c,op) ->
+ {coeffs = Vect.from_list (List.map (fun mn -> (Poly.get mn c)) monomials) ;
+ op = op ;
cst = minus_num ( (Poly.get Monomial.const c))}) l
,monomials)
@@ -552,130 +406,66 @@ let pplus x y = Mc.PEadd(x,y)
let pmult x y = Mc.PEmul(x,y)
let pconst x = Mc.PEc x
let popp x = Mc.PEopp x
-
+
let debug = false
-
+
(* keep track of enumerated vectors *)
-let rec mem p x l =
+let rec mem p x l =
match l with [] -> false | e::l -> if p x e then true else mem p x l
-let rec remove_assoc p x l =
+let rec remove_assoc p x l =
match l with [] -> [] | e::l -> if p x (fst e) then
- remove_assoc p x l else e::(remove_assoc p x l)
+ remove_assoc p x l else e::(remove_assoc p x l)
let eq x y = Vect.compare x y = 0
let remove e l = List.fold_left (fun l x -> if eq x e then l else x::l) [] l
-(* The prover is (probably) incomplete --
+(* The prover is (probably) incomplete --
only searching for naive cutting planes *)
-let candidates sys =
- let ll = List.fold_right (
- fun (e,k) r ->
- match k with
- | Mc.NonStrict -> (dev_form z_spec e , Ge)::r
- | Mc.Equal -> (dev_form z_spec e , Eq)::r
- (* we already know the bound -- don't compute it again *)
- | _ -> failwith "Cannot happen candidates") sys [] in
-
- let (sys,var_mn) = make_linear_system ll in
- let vars = mapi (fun _ i -> Vect.set i (Int 1) Vect.null) var_mn in
- (List.fold_left (fun l cstr ->
- let gcd = Big_int (Vect.gcd cstr.coeffs) in
- if gcd =/ (Int 1) && cstr.op = Eq
- then l
- else (Vect.mul (Int 1 // gcd) cstr.coeffs)::l) [] sys) @ vars
-
-
-
-
-let rec xzlinear_prover planes sys =
- match linear_prover z_spec sys with
- | Some prf -> Some (Mc.RatProof (make_certificate z_spec prf,Mc.DoneProof))
- | None -> (* find the candidate with the smallest range *)
- (* Grrr - linear_prover is also calling 'make_linear_system' *)
- let ll = List.fold_right (fun (e,k) r -> match k with
- Mc.NonEqual -> r
- | k -> (dev_form z_spec e ,
- match k with
- Mc.NonStrict -> Ge
- | Mc.Equal -> Eq
- | Mc.Strict | Mc.NonEqual -> failwith "Cannot happen") :: r) sys [] in
- let (ll,var) = make_linear_system ll in
- let candidates = List.fold_left (fun acc vect ->
- match Fourier.optimise vect ll with
- | None -> acc
- | Some i ->
-(* Printf.printf "%s in %s\n" (Vect.string vect) (string_of_intrvl i) ; *)
- flush stdout ;
- (vect,i) ::acc) [] planes in
-
- let smallest_interval =
- match List.fold_left (fun (x1,i1) (x2,i2) ->
- if Itv.smaller_itv i1 i2
- then (x1,i1) else (x2,i2)) (Vect.null,(None,None)) candidates
- with
- | (x,(Some i, Some j)) -> Some(i,x,j)
- | x -> None (* This might be a cutting plane *)
- in
- match smallest_interval with
- | Some (lb,e,ub) ->
- let (lbn,lbd) =
- (Ml2C.bigint (sub_big_int (numerator lb) unit_big_int),
- Ml2C.bigint (denominator lb)) in
- let (ubn,ubd) =
- (Ml2C.bigint (add_big_int unit_big_int (numerator ub)) ,
- Ml2C.bigint (denominator ub)) in
- let expr = list_to_polynomial var (Vect.to_list e) in
- (match
- (*x <= ub -> x > ub *)
- linear_prover z_spec
- ((pplus (pmult (pconst ubd) expr) (popp (pconst ubn)),
- Mc.NonStrict) :: sys),
- (* lb <= x -> lb > x *)
- linear_prover z_spec
- ((pplus (popp (pmult (pconst lbd) expr)) (pconst lbn),
- Mc.NonStrict)::sys)
- with
- | Some cub , Some clb ->
- (match zlinear_enum (remove e planes) expr
- (ceiling_num lb) (floor_num ub) sys
- with
- | None -> None
- | Some prf ->
- let bound_proof (c,l) = make_certificate z_spec (List.tl c , List.tl (List.map (fun x -> x -1) l)) in
-
- Some (Mc.EnumProof((*Ml2C.q lb,expr,Ml2C.q ub,*) bound_proof clb, bound_proof cub,prf)))
- | _ -> None
- )
- | _ -> None
-and zlinear_enum planes expr clb cub l =
- if clb >/ cub
- then Some []
- else
- let pexpr = pplus (popp (pconst (Ml2C.bigint (numerator clb)))) expr in
- let sys' = (pexpr, Mc.Equal)::l in
- (*let enum = *)
- match xzlinear_prover planes sys' with
- | None -> if debug then print_string "zlp?"; None
- | Some prf -> if debug then print_string "zlp!";
- match zlinear_enum planes expr (clb +/ (Int 1)) cub l with
- | None -> None
- | Some prfl -> Some (prf :: prfl)
+let develop_constraint z_spec (e,k) =
+ match k with
+ | Mc.NonStrict -> (dev_form z_spec e , Ge)
+ | Mc.Equal -> (dev_form z_spec e , Eq)
+ | _ -> assert false
+
+
+let op_of_op_compat = function
+ | Ge -> Mc.NonStrict
+ | Eq -> Mc.Equal
+
+
+let integer_vector coeffs =
+ let vars , coeffs = List.split coeffs in
+ List.combine vars (List.map (fun x -> Big_int x) (rats_to_ints coeffs))
+
+let integer_cstr {coeffs = coeffs ; op = op ; cst = cst } =
+ let vars , coeffs = List.split coeffs in
+ match rats_to_ints (cst::coeffs) with
+ | cst :: coeffs ->
+ {
+ coeffs = List.combine vars (List.map (fun x -> Big_int x) coeffs) ;
+ op = op ; cst = Big_int cst}
+ | _ -> assert false
+
+
+let pexpr_of_cstr_compat var cstr =
+ let {coeffs = coeffs ; op = op ; cst = cst } = integer_cstr cstr in
+ try
+ let expr = list_to_polynomial var (Vect.to_list coeffs) in
+ let d = Ml2C.bigint (denominator cst) in
+ let n = Ml2C.bigint (numerator cst) in
+ (pplus (pmult (pconst d) expr) (popp (pconst n)), op_of_op_compat op)
+ with Failure _ -> failwith "pexpr_of_cstr_compat"
+
+
-let zlinear_prover sys =
- let candidates = candidates sys in
- (* Printf.printf "candidates %d" (List.length candidates) ; *)
- (*let t0 = Sys.time () in*)
- let res = xzlinear_prover candidates sys in
- (*Printf.printf "Time prover : %f" (Sys.time () -. t0) ;*) res
open Sos_types
-open Mutils
-let rec scale_term t =
+let rec scale_term t =
match t with
| Zero -> unit_big_int , Zero
| Const n -> (denominator n) , Const (Big_int (numerator n))
@@ -708,7 +498,7 @@ let get_index_of_ith_match f i l =
match l with
| [] -> failwith "bad index"
| e::l -> if f e
- then
+ then
(if j = i then res else get (j+1) (res+1) l )
else get j (res+1) l in
get 0 0 l
@@ -722,19 +512,19 @@ let rec scale_certificate pos = match pos with
| Rational_eq n -> (denominator n) , Rational_eq (Big_int (numerator n))
| Rational_le n -> (denominator n) , Rational_le (Big_int (numerator n))
| Rational_lt n -> (denominator n) , Rational_lt (Big_int (numerator n))
- | Square t -> let s,t' = scale_term t in
+ | Square t -> let s,t' = scale_term t in
mult_big_int s s , Square t'
| Eqmul (t, y) -> let s1,y1 = scale_term t and s2,y2 = scale_certificate y in
mult_big_int s1 s2 , Eqmul (y1,y2)
- | Sum (y, z) -> let s1,y1 = scale_certificate y
+ | Sum (y, z) -> let s1,y1 = scale_certificate y
and s2,y2 = scale_certificate z in
let g = gcd_big_int s1 s2 in
let s1' = div_big_int s1 g in
let s2' = div_big_int s2 g in
- mult_big_int g (mult_big_int s1' s2'),
+ mult_big_int g (mult_big_int s1' s2'),
Sum (Product(Rational_le (Big_int s2'), y1),
Product (Rational_le (Big_int s1'), y2))
- | Product (y, z) ->
+ | Product (y, z) ->
let s1,y1 = scale_certificate y and s2,y2 = scale_certificate z in
mult_big_int s1 s2 , Product (y1,y2)
@@ -743,7 +533,7 @@ open Micromega
let rec term_to_q_expr = function
| Const n -> PEc (Ml2C.q n)
| Zero -> PEc ( Ml2C.q (Int 0))
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_q_expr p1, term_to_q_expr p2)
| Add(p1,p2) -> PEadd(term_to_q_expr p1, term_to_q_expr p2)
@@ -755,20 +545,20 @@ open Micromega
let term_to_q_pol e = Mc.norm_aux (Ml2C.q (Int 0)) (Ml2C.q (Int 1)) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e)
- let rec product l =
+ let rec product l =
match l with
| [] -> Mc.PsatzZ
| [i] -> Mc.PsatzIn (Ml2C.nat i)
| i ::l -> Mc.PsatzMulE(Mc.PsatzIn (Ml2C.nat i), product l)
-let q_cert_of_pos pos =
+let q_cert_of_pos pos =
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.q n)
| Square t -> Mc.PsatzSquare (term_to_q_pol t)
@@ -781,7 +571,7 @@ let q_cert_of_pos pos =
let rec term_to_z_expr = function
| Const n -> PEc (Ml2C.bigint (big_int_of_num n))
| Zero -> PEc ( Z0)
- | Var s -> PEX (Ml2C.index
+ | Var s -> PEX (Ml2C.index
(int_of_string (String.sub s 1 (String.length s - 1))))
| Mul(p1,p2) -> PEmul(term_to_z_expr p1, term_to_z_expr p2)
| Add(p1,p2) -> PEadd(term_to_z_expr p1, term_to_z_expr p2)
@@ -790,24 +580,649 @@ let q_cert_of_pos pos =
| Sub(t1,t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2)
| _ -> failwith "term_to_z_expr: not implemented"
- let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.zplus Mc.zmult Mc.zminus Mc.zopp Mc.zeq_bool (term_to_z_expr e)
+ let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add Mc.Z.mul Mc.Z.sub Mc.Z.opp Mc.zeq_bool (term_to_z_expr e)
-let z_cert_of_pos pos =
+let z_cert_of_pos pos =
let s,pos = (scale_certificate pos) in
let rec _cert_of_pos = function
Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_le i -> Mc.PsatzIn (Ml2C.nat i)
| Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i)
| Monoid l -> product l
- | Rational_eq n | Rational_le n | Rational_lt n ->
+ | Rational_eq n | Rational_le n | Rational_lt n ->
if compare_num n (Int 0) = 0 then Mc.PsatzZ else
Mc.PsatzC (Ml2C.bigint (big_int_of_num n))
| Square t -> Mc.PsatzSquare (term_to_z_pol t)
- | Eqmul (t, y) -> Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
+ | Eqmul (t, y) ->
+ let is_unit =
+ match t with
+ | Const n -> n =/ Int 1
+ | _ -> false in
+ if is_unit
+ then _cert_of_pos y
+ else Mc.PsatzMulC(term_to_z_pol t, _cert_of_pos y)
| Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z)
| Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in
simplify_cone z_spec (_cert_of_pos pos)
+(** All constraints (initial or derived) have an index and have a justification i.e., proof.
+ Given a constraint, all the coefficients are always integers.
+*)
+open Mutils
+open Mfourier
+open Num
+open Big_int
+open Polynomial
+
+(*module Mc = Micromega*)
+(*module Ml2C = Mutils.CamlToCoq
+module C2Ml = Mutils.CoqToCaml
+*)
+let debug = false
+
+
+
+module Env =
+struct
+
+ type t = int list
+
+ let id_of_hyp hyp l =
+ let rec xid_of_hyp i l =
+ match l with
+ | [] -> failwith "id_of_hyp"
+ | hyp'::l -> if hyp = hyp' then i else xid_of_hyp (i+1) l in
+ xid_of_hyp 0 l
+
+end
+
+
+let coq_poly_of_linpol (p,c) =
+
+ let pol_of_mon m =
+ Monomial.fold (fun x v p -> Mc.PEmul(Mc.PEpow(Mc.PEX(Ml2C.positive x),Ml2C.n v),p)) m (Mc.PEc (Mc.Zpos Mc.XH)) in
+
+ List.fold_left (fun acc (x,v) ->
+ let mn = LinPoly.MonT.retrieve x in
+ Mc.PEadd(Mc.PEmul(Mc.PEc (Ml2C.bigint (numerator v)), pol_of_mon mn),acc)) (Mc.PEc (Ml2C.bigint (numerator c))) p
+
+
+
+
+let rec cmpl_prf_rule env = function
+ | Hyp i | Def i -> Mc.PsatzIn (Ml2C.nat (Env.id_of_hyp i env))
+ | Cst i -> Mc.PsatzC (Ml2C.bigint i)
+ | Zero -> Mc.PsatzZ
+ | MulPrf(p1,p2) -> Mc.PsatzMulE(cmpl_prf_rule env p1, cmpl_prf_rule env p2)
+ | AddPrf(p1,p2) -> Mc.PsatzAdd(cmpl_prf_rule env p1 , cmpl_prf_rule env p2)
+ | MulC(lp,p) -> let lp = Mc.norm0 (coq_poly_of_linpol lp) in
+ Mc.PsatzMulC(lp,cmpl_prf_rule env p)
+ | Square lp -> Mc.PsatzSquare (Mc.norm0 (coq_poly_of_linpol lp))
+ | _ -> failwith "Cuts should already be compiled"
+
+
+let rec cmpl_proof env = function
+ | Done -> Mc.DoneProof
+ | Step(i,p,prf) ->
+ begin
+ match p with
+ | CutPrf p' ->
+ Mc.CutProof(cmpl_prf_rule env p', cmpl_proof (i::env) prf)
+ | _ -> Mc.RatProof(cmpl_prf_rule env p,cmpl_proof (i::env) prf)
+ end
+ | Enum(i,p1,_,p2,l) ->
+ Mc.EnumProof(cmpl_prf_rule env p1,cmpl_prf_rule env p2,List.map (cmpl_proof (i::env)) l)
+
+
+let compile_proof env prf =
+ let id = 1 + proof_max_id prf in
+ let _,prf = normalise_proof id prf in
+ if debug then Printf.fprintf stdout "compiled proof %a\n" output_proof prf;
+ cmpl_proof env prf
+
+type prf_sys = (cstr_compat * prf_rule) list
+
+
+let xlinear_prover sys =
+ match Fourier.find_point sys with
+ | Inr prf ->
+ if debug then Printf.printf "AProof : %a\n" pp_proof prf ;
+ let cert = (*List.map (fun (x,n) -> x+1,n)*) (fst (List.hd (Proof.mk_proof sys prf))) in
+ if debug then Printf.printf "CProof : %a" Vect.pp_vect cert ;
+ Some (rats_to_ints (Vect.to_list cert))
+ | Inl _ -> None
+
+
+let output_num o n = output_string o (string_of_num n)
+let output_bigint o n = output_string o (string_of_big_int n)
+
+let proof_of_farkas prf cert =
+(* Printf.printf "\nproof_of_farkas %a , %a \n" (pp_list output_prf_rule) prf (pp_list output_bigint) cert ; *)
+ let rec mk_farkas acc prf cert =
+ match prf, cert with
+ | _ , [] -> acc
+ | [] , _ -> failwith "proof_of_farkas : not enough hyps"
+ | p::prf,c::cert ->
+ mk_farkas (add_proof (mul_proof c p) acc) prf cert in
+ let res = mk_farkas Zero prf cert in
+ (*Printf.printf "==> %a" output_prf_rule res ; *)
+ res
+
+
+let linear_prover sys =
+ let (sysi,prfi) = List.split sys in
+ match xlinear_prover sysi with
+ | None -> None
+ | Some cert -> Some (proof_of_farkas prfi cert)
+
+let linear_prover =
+ if debug
+ then
+ fun sys ->
+ Printf.printf "<linear_prover"; flush stdout ;
+ let res = linear_prover sys in
+ Printf.printf ">"; flush stdout ;
+ res
+ else linear_prover
+
+
+
+
+(** A single constraint can be unsat for the following reasons:
+ - 0 >= c for c a negative constant
+ - 0 = c for c a non-zero constant
+ - e = c when the coeffs of e are all integers and c is rational
+*)
+
+type checksat =
+ | Tauto (* Tautology *)
+ | Unsat of prf_rule (* Unsatisfiable *)
+ | Cut of cstr_compat * prf_rule (* Cutting plane *)
+ | Normalise of cstr_compat * prf_rule (* coefficients are relatively prime *)
+
+
+(** [check_sat]
+ - detects constraints that are not satisfiable;
+ - normalises constraints and generate cuts.
+*)
+
+let check_sat (cstr,prf) =
+ let {coeffs=coeffs ; op=op ; cst=cst} = cstr in
+ match coeffs with
+ | [] ->
+ if eval_op op (Int 0) cst then Tauto else Unsat prf
+ | _ ->
+ let gcdi = (gcd_list (List.map snd coeffs)) in
+ let gcd = Big_int gcdi in
+ if eq_num gcd (Int 1)
+ then Normalise(cstr,prf)
+ else
+ if sign_num (mod_num cst gcd) = 0
+ then (* We can really normalise *)
+ begin
+ assert (sign_num gcd >=1 ) ;
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = cst // gcd
+ } in
+ Normalise(cstr,Gcd(gcdi,prf))
+ (* Normalise(cstr,CutPrf prf)*)
+ end
+ else
+ match op with
+ | Eq -> Unsat (CutPrf prf)
+ | Ge ->
+ let cstr = {
+ coeffs = List.map (fun (x,v) -> (x, v // gcd)) coeffs;
+ op = op ; cst = ceiling_num (cst // gcd)
+ } in Cut(cstr,CutPrf prf)
+
+
+(** Proof generating pivoting over variable v *)
+let pivot v (c1,p1) (c2,p2) =
+ let {coeffs = v1 ; op = op1 ; cst = n1} = c1
+ and {coeffs = v2 ; op = op2 ; cst = n2} = c2 in
+
+
+
+ (* Could factorise gcd... *)
+ let xpivot cv1 cv2 =
+ (
+ {coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2) ;
+ op = Proof.add_op op1 op2 ;
+ cst = n1 */ cv1 +/ n2 */ cv2 },
+
+ AddPrf(mul_proof (numerator cv1) p1,mul_proof (numerator cv2) p2)) in
+
+ match Vect.get v v1 , Vect.get v v2 with
+ | None , _ | _ , None -> None
+ | Some a , Some b ->
+ if (sign_num a) * (sign_num b) = -1
+ then
+ let cv1 = abs_num b
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else
+ if op1 = Eq
+ then
+ let cv1 = minus_num (b */ (Int (sign_num a)))
+ and cv2 = abs_num a in
+ Some (xpivot cv1 cv2)
+ else if op2 = Eq
+ then
+ let cv1 = abs_num b
+ and cv2 = minus_num (a */ (Int (sign_num b))) in
+ Some (xpivot cv1 cv2)
+ else None (* op2 could be Eq ... this might happen *)
+
+exception FoundProof of prf_rule
+
+let rec simpl_sys sys =
+ List.fold_left (fun acc (c,p) ->
+ match check_sat (c,p) with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc) [] sys
+
+
+(** [ext_gcd a b] is the extended Euclid algorithm.
+ [ext_gcd a b = (x,y,g)] iff [ax+by=g]
+ Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
+*)
+let rec ext_gcd a b =
+ if sign_big_int b = 0
+ then (unit_big_int,zero_big_int)
+ else
+ let (q,r) = quomod_big_int a b in
+ let (s,t) = ext_gcd b r in
+ (t, sub_big_int s (mult_big_int q t))
+
+
+let pp_ext_gcd a b =
+ let a' = big_int_of_int a in
+ let b' = big_int_of_int b in
+
+ let (x,y) = ext_gcd a' b' in
+ Printf.fprintf stdout "%s * %s + %s * %s = %s\n"
+ (string_of_big_int x) (string_of_big_int a')
+ (string_of_big_int y) (string_of_big_int b')
+ (string_of_big_int (add_big_int (mult_big_int x a') (mult_big_int y b')))
+
+exception Result of (int * (proof * cstr_compat))
+
+let split_equations psys =
+ List.partition (fun (c,p) -> c.op = Eq)
+
+
+let extract_coprime (c1,p1) (c2,p2) =
+ let rec exist2 vect1 vect2 =
+ match vect1 , vect2 with
+ | _ , [] | [], _ -> None
+ | (v1,n1)::vect1' , (v2, n2) :: vect2' ->
+ if v1 = v2
+ then
+ if compare_big_int (gcd_big_int (numerator n1) (numerator n2)) unit_big_int = 0
+ then Some (v1,n1,n2)
+ else
+ exist2 vect1' vect2'
+ else
+ if v1 < v2
+ then exist2 vect1' vect2
+ else exist2 vect1 vect2' in
+
+ if c1.op = Eq && c2.op = Eq
+ then exist2 c1.coeffs c2.coeffs
+ else None
+
+let extract2 pred l =
+ let rec xextract2 rl l =
+ match l with
+ | [] -> (None,rl) (* Did not find *)
+ | e::l ->
+ match extract (pred e) l with
+ | None,_ -> xextract2 (e::rl) l
+ | Some (r,e'),l' -> Some (r,e,e'), List.rev_append rl l' in
+
+ xextract2 [] l
+
+
+let extract_coprime_equation psys =
+ extract2 extract_coprime psys
+
+
+let apply_and_normalise f psys =
+ List.fold_left (fun acc pc' ->
+ match f pc' with
+ | None -> pc'::acc
+ | Some pc' ->
+ match check_sat pc' with
+ | Tauto -> acc
+ | Unsat prf -> raise (FoundProof prf)
+ | Cut(c,p) -> (c,p)::acc
+ | Normalise (c,p) -> (c,p)::acc
+ ) [] psys
+
+
+
+
+let pivot_sys v pc psys = apply_and_normalise (pivot v pc) psys
+
+
+let reduce_coprime psys =
+ let oeq,sys = extract_coprime_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some((v,n1,n2),(c1,p1),(c2,p2) ) ->
+ let (l1,l2) = ext_gcd (numerator n1) (numerator n2) in
+ let l1' = Big_int l1 and l2' = Big_int l2 in
+ let cstr =
+ {coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs);
+ op = Eq ;
+ cst = (l1' */ c1.cst) +/ (l2' */ c2.cst)
+ } in
+ let prf = add_proof (mul_proof (numerator l1') p1) (mul_proof (numerator l2') p2) in
+
+ Some (pivot_sys v (cstr,prf) ((c1,p1)::sys))
+
+(** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *)
+let reduce_unary psys =
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.find (fun (_,n) -> n =/ (Int 1) || n=/ (Int (-1))) cstr.coeffs))
+ with Not_found -> None
+ else None in
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(pivot_sys v pc sys)
+
+let reduce_non_lin_unary psys =
+
+ let is_unary_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ let x = fst (List.find (fun (x,n) -> (n =/ (Int 1) || n=/ (Int (-1))) && Monomial.is_var (LinPoly.MonT.retrieve x) ) cstr.coeffs) in
+ let x' = LinPoly.MonT.retrieve x in
+ if List.for_all (fun (y,_) -> y = x || snd (Monomial.div (LinPoly.MonT.retrieve y) x') = 0) cstr.coeffs
+ then Some x
+ else None
+ with Not_found -> None
+ else None in
+
+
+ let (oeq,sys) = extract is_unary_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ Some(apply_and_normalise (LinPoly.pivot_eq v pc) sys)
+
+let reduce_var_change psys =
+
+ let rec rel_prime vect =
+ match vect with
+ | [] -> None
+ | (x,v)::vect ->
+ let v = numerator v in
+ try
+ let (x',v') = List.find (fun (_,v') ->
+ let v' = numerator v' in
+ eq_big_int (gcd_big_int v v') unit_big_int) vect in
+ Some ((x,v),(x',numerator v'))
+ with Not_found -> rel_prime vect in
+
+ let rel_prime (cstr,prf) = if cstr.op = Eq then rel_prime cstr.coeffs else None in
+
+ let (oeq,sys) = extract rel_prime psys in
+
+ match oeq with
+ | None -> None
+ | Some(((x,v),(x',v')),(c,p)) ->
+ let (l1,l2) = ext_gcd v v' in
+ let l1,l2 = Big_int l1 , Big_int l2 in
+
+ let get v vect =
+ match Vect.get v vect with
+ | None -> Int 0
+ | Some n -> n in
+
+ let pivot_eq (c',p') =
+ let {coeffs = coeffs ; op = op ; cst = cst} = c' in
+ let vx = get x coeffs in
+ let vx' = get x' coeffs in
+ let m = minus_num (vx */ l1 +/ vx' */ l2) in
+ Some ({coeffs =
+ Vect.add (Vect.mul m c.coeffs) coeffs ; op = op ; cst = m */ c.cst +/ cst} ,
+ AddPrf(MulC(([], m),p),p')) in
+
+ Some (apply_and_normalise pivot_eq sys)
+
+
+
+
+ let reduce_pivot psys =
+ let is_equation (cstr,prf) =
+ if cstr.op = Eq
+ then
+ try
+ Some (fst (List.hd cstr.coeffs))
+ with Not_found -> None
+ else None in
+ let (oeq,sys) = extract is_equation psys in
+ match oeq with
+ | None -> None (* Nothing to do *)
+ | Some(v,pc) ->
+ if debug then
+ Printf.printf "Bad news : loss of completeness %a=%s" Vect.pp_vect (fst pc).coeffs (string_of_num (fst pc).cst);
+ Some(pivot_sys v pc sys)
+
+
+
+
+
+ let iterate_until_stable f x =
+ let rec iter x =
+ match f x with
+ | None -> x
+ | Some x' -> iter x' in
+ iter x
+
+ let rec app_funs l x =
+ match l with
+ | [] -> None
+ | f::fl ->
+ match f x with
+ | None -> app_funs fl x
+ | Some x' -> Some x'
+
+ let reduction_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_unary ; reduce_coprime ;
+ reduce_var_change (*; reduce_pivot*)]) psys
+
+ let reduction_non_lin_equations psys =
+ iterate_until_stable (app_funs
+ [reduce_non_lin_unary (*; reduce_coprime ;
+ reduce_var_change ; reduce_pivot *)]) psys
+
+
+
+
+ (** [get_bound sys] returns upon success an interval (lb,e,ub) with proofs *)
+ let get_bound sys =
+ let is_small (v,i) =
+ match Itv.range i with
+ | None -> false
+ | Some i -> i <=/ (Int 1) in
+
+ let select_best (x1,i1) (x2,i2) =
+ if Itv.smaller_itv i1 i2
+ then (x1,i1) else (x2,i2) in
+
+ (* For lia, there are no equations => these precautions are not needed *)
+ (* For nlia, there are equations => do not enumerate over equations! *)
+ let all_planes sys =
+ let (eq,ineq) = List.partition (fun c -> c.op = Eq) sys in
+ match eq with
+ | [] -> List.rev_map (fun c -> c.coeffs) ineq
+ | _ ->
+ List.fold_left (fun acc c ->
+ if List.exists (fun c' -> Vect.equal c.coeffs c'.coeffs) eq
+ then acc else c.coeffs ::acc) [] ineq in
+
+ let smallest_interval =
+ List.fold_left
+ (fun acc vect ->
+ if is_small acc
+ then acc
+ else
+ match Fourier.optimise vect sys with
+ | None -> acc
+ | Some i ->
+ if debug then Printf.printf "Found a new bound %a" Vect.pp_vect vect ;
+ select_best (vect,i) acc) (Vect.null, (None,None)) (all_planes sys) in
+ let smallest_interval =
+ match smallest_interval
+ with
+ | (x,(Some i, Some j)) -> Some(i,x,j)
+ | x -> None (* This should not be possible *)
+ in
+ match smallest_interval with
+ | Some (lb,e,ub) ->
+ let (lbn,lbd) = (sub_big_int (numerator lb) unit_big_int, denominator lb) in
+ let (ubn,ubd) = (add_big_int unit_big_int (numerator ub) , denominator ub) in
+ (match
+ (* x <= ub -> x > ub *)
+ xlinear_prover ({coeffs = Vect.mul (Big_int ubd) e ; op = Ge ; cst = Big_int ubn} :: sys),
+ (* lb <= x -> lb > x *)
+ xlinear_prover
+ ({coeffs = Vect.mul (minus_num (Big_int lbd)) e ; op = Ge ; cst = minus_num (Big_int lbn)} :: sys)
+ with
+ | Some cub , Some clb -> Some(List.tl clb,(lb,e,ub), List.tl cub)
+ | _ -> failwith "Interval without proof"
+ )
+ | None -> None
+
+
+ let check_sys sys =
+ List.for_all (fun (c,p) -> List.for_all (fun (_,n) -> sign_num n <> 0) c.coeffs) sys
+
+
+ let xlia reduction_equations sys =
+
+ let rec enum_proof (id:int) (sys:prf_sys) : proof option =
+ if debug then (Printf.printf "enum_proof\n" ; flush stdout) ;
+ assert (check_sys sys) ;
+
+ let nsys,prf = List.split sys in
+ match get_bound nsys with
+ | None -> None (* Is the systeme really unbounded ? *)
+ | Some(prf1,(lb,e,ub),prf2) ->
+ if debug then Printf.printf "Found interval: %a in [%s;%s] -> " Vect.pp_vect e (string_of_num lb) (string_of_num ub) ;
+ (match start_enum id e (ceiling_num lb) (floor_num ub) sys
+ with
+ | Some prfl ->
+ Some(Enum(id,proof_of_farkas prf prf1,e, proof_of_farkas prf prf2,prfl))
+ | None -> None
+ )
+
+ and start_enum id e clb cub sys =
+ if clb >/ cub
+ then Some []
+ else
+ let eq = {coeffs = e ; op = Eq ; cst = clb} in
+ match aux_lia (id+1) ((eq, Def id) :: sys) with
+ | None -> None
+ | Some prf ->
+ match start_enum id e (clb +/ (Int 1)) cub sys with
+ | None -> None
+ | Some l -> Some (prf::l)
+
+ and aux_lia (id:int) (sys:prf_sys) : proof option =
+ assert (check_sys sys) ;
+ if debug then Printf.printf "xlia: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ try
+ let sys = reduction_equations sys in
+ if debug then
+ Printf.printf "after reduction: %a \n" (pp_list (fun o (c,_) -> output_cstr o c)) sys ;
+ match linear_prover sys with
+ | Some prf -> Some (Step(id,prf,Done))
+ | None -> enum_proof id sys
+ with FoundProof prf ->
+ (* [reduction_equations] can find a proof *)
+ Some(Step(id,prf,Done)) in
+
+ (* let sys' = List.map (fun (p,o) -> Mc.norm0 p , o) sys in*)
+ let id = List.length sys in
+ let orpf =
+ try
+ let sys = simpl_sys sys in
+ aux_lia id sys
+ with FoundProof pr -> Some(Step(id,pr,Done)) in
+ match orpf with
+ | None -> None
+ | Some prf ->
+ (*Printf.printf "direct proof %a\n" output_proof prf ; *)
+ let env = mapi (fun _ i -> i) sys in
+ let prf = compile_proof env prf in
+ (*try
+ if Mc.zChecker sys' prf then Some prf else
+ raise Certificate.BadCertificate
+ with Failure s -> (Printf.printf "%s" s ; Some prf)
+ *) Some prf
+
+
+ let cstr_compat_of_poly (p,o) =
+ let (v,c) = LinPoly.linpol_of_pol p in
+ {coeffs = v ; op = o ; cst = minus_num c }
+
+
+ let lia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let (sys:cstr_compat list) = List.map cstr_compat_of_poly sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+ xlia reduction_equations sys
+
+
+ let nlia sys =
+ LinPoly.MonT.clear ();
+ let sys = List.map (develop_constraint z_spec) sys in
+ let sys = mapi (fun c i -> (c,Hyp i)) sys in
+
+ let is_linear = List.for_all (fun ((p,_),_) -> Poly.is_linear p) sys in
+
+ let module MonMap = Map.Make(Monomial) in
+
+ let collect_square =
+ List.fold_left (fun acc ((p,_),_) -> Poly.fold
+ (fun m _ acc ->
+ match Monomial.sqrt m with
+ | None -> acc
+ | Some s -> MonMap.add s m acc) p acc) MonMap.empty sys in
+ let sys = MonMap.fold (fun s m acc ->
+ let s = LinPoly.linpol_of_pol (Poly.add s (Int 1) (Poly.constant (Int 0))) in
+ let m = Poly.add m (Int 1) (Poly.constant (Int 0)) in
+ ((m, Ge), (Square s))::acc) collect_square sys in
+
+(* List.iter (fun ((p,_),_) -> Printf.printf "square %a\n" Poly.pp p) gen_square*)
+
+ let sys =
+ if is_linear then sys
+ else sys @ (all_sym_pairs (fun ((c,o),p) ((c',o'),p') ->
+ ((Poly.product c c',opMult o o'), MulPrf(p,p'))) sys) in
+
+ let sys = List.map (fun (c,p) -> cstr_compat_of_poly c,p) sys in
+ assert (check_sys sys) ;
+ xlia (if is_linear then reduction_equations else reduction_non_lin_equations) sys
+
+
+
(* Local Variables: *)
(* coding: utf-8 *)
(* End: *)
diff --git a/plugins/micromega/coq_micromega.ml b/plugins/micromega/coq_micromega.ml
index 4eb26afd..ff08aeb3 100644
--- a/plugins/micromega/coq_micromega.ml
+++ b/plugins/micromega/coq_micromega.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -12,7 +12,7 @@
(* *)
(* - Modules ISet, M, Mc, Env, Cache, CacheZ *)
(* *)
-(* Frédéric Besson (Irisa/Inria) 2006-2009 *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
(* *)
(************************************************************************)
@@ -55,7 +55,7 @@ type 'cst atom = 'cst Micromega.formula
* Micromega's encoding of formulas.
* By order of appearance: boolean constants, variables, atoms, conjunctions,
* disjunctions, negation, implication.
- *)
+*)
type 'cst formula =
| TT
@@ -86,6 +86,18 @@ let rec pp_formula o f =
| None -> "") pp_formula f2
| N(f) -> Printf.fprintf o "N(%a)" pp_formula f
+
+let rec map_atoms fct f =
+ match f with
+ | TT -> TT
+ | FF -> FF
+ | X x -> X x
+ | A (at,tg,cstr) -> A(fct at,tg,cstr)
+ | C (f1,f2) -> C(map_atoms fct f1, map_atoms fct f2)
+ | D (f1,f2) -> D(map_atoms fct f1, map_atoms fct f2)
+ | N f -> N(map_atoms fct f)
+ | I(f1,o,f2) -> I(map_atoms fct f1, o , map_atoms fct f2)
+
(**
* Collect the identifiers of a (string of) implications. Implication labels
* are inherited from Coq/CoC's higher order dependent type constructor (Pi).
@@ -125,7 +137,9 @@ let ff : 'cst cnf = [ [] ]
* and the freeform formulas ('cst formula) that is retrieved from Coq.
*)
-type 'cst mc_cnf = ('cst Micromega.nFormula) list list
+module Mc = Micromega
+
+type 'cst mc_cnf = ('cst Mc.nFormula) list list
(**
* From a freeform formula, build a cnf.
@@ -134,7 +148,12 @@ type 'cst mc_cnf = ('cst Micromega.nFormula) list list
* and RingMicromega.v).
*)
-let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf) (f:'cst formula) =
+type 'a tagged_option = T of tag list | S of 'a
+
+let cnf
+ (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf)
+ (unsat : 'cst Mc.nFormula -> bool) (deduce : 'cst Mc.nFormula -> 'cst Mc.nFormula -> 'cst Mc.nFormula option) (f:'cst formula) =
+
let negate a t =
List.map (fun cl -> List.map (fun x -> (x,t)) cl) (negate a) in
@@ -143,26 +162,79 @@ let cnf (negate: 'cst atom -> 'cst mc_cnf) (normalise:'cst atom -> 'cst mc_cnf)
let and_cnf x y = x @ y in
- let or_clause_cnf t f = List.map (fun x -> t@x) f in
+let rec add_term t0 = function
+ | [] ->
+ (match deduce (fst t0) (fst t0) with
+ | Some u -> if unsat u then T [snd t0] else S (t0::[])
+ | None -> S (t0::[]))
+ | t'::cl0 ->
+ (match deduce (fst t0) (fst t') with
+ | Some u ->
+ if unsat u
+ then T [snd t0 ; snd t']
+ else (match add_term t0 cl0 with
+ | S cl' -> S (t'::cl')
+ | T l -> T l)
+ | None ->
+ (match add_term t0 cl0 with
+ | S cl' -> S (t'::cl')
+ | T l -> T l)) in
+
+
+ let rec or_clause cl1 cl2 =
+ match cl1 with
+ | [] -> S cl2
+ | t0::cl ->
+ (match add_term t0 cl2 with
+ | S cl' -> or_clause cl cl'
+ | T l -> T l) in
+
+
+
+ let or_clause_cnf t f =
+ List.fold_right (fun e (acc,tg) ->
+ match or_clause t e with
+ | S cl -> (cl :: acc,tg)
+ | T l -> (acc,tg@l)) f ([],[]) in
+
let rec or_cnf f f' =
match f with
- | [] -> tt
- | e :: rst -> (or_cnf rst f') @ (or_clause_cnf e f') in
+ | [] -> tt,[]
+ | e :: rst ->
+ let (rst_f',t) = or_cnf rst f' in
+ let (e_f', t') = or_clause_cnf e f' in
+ (rst_f' @ e_f', t @ t') in
+
let rec xcnf (polarity : bool) f =
match f with
- | TT -> if polarity then tt else ff
- | FF -> if polarity then ff else tt
- | X p -> if polarity then ff else ff
- | A(x,t,_) -> if polarity then normalise x t else negate x t
+ | TT -> if polarity then (tt,[]) else (ff,[])
+ | FF -> if polarity then (ff,[]) else (tt,[])
+ | X p -> if polarity then (ff,[]) else (ff,[])
+ | A(x,t,_) -> ((if polarity then normalise x t else negate x t),[])
| N(e) -> xcnf (not polarity) e
- | C(e1,e2) ->
- (if polarity then and_cnf else or_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ | C(e1,e2) ->
+ let e1,t1 = xcnf polarity e1 in
+ let e2,t2 = xcnf polarity e2 in
+ if polarity
+ then and_cnf e1 e2, t1 @ t2
+ else let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
| D(e1,e2) ->
- (if polarity then or_cnf else and_cnf) (xcnf polarity e1) (xcnf polarity e2)
+ let e1,t1 = xcnf polarity e1 in
+ let e2,t2 = xcnf polarity e2 in
+ if polarity
+ then let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
+ else and_cnf e1 e2, t1 @ t2
| I(e1,_,e2) ->
- (if polarity then or_cnf else and_cnf) (xcnf (not polarity) e1) (xcnf polarity e2) in
+ let e1 , t1 = (xcnf (not polarity) e1) in
+ let e2 , t2 = (xcnf polarity e2) in
+ if polarity
+ then let f',t' = or_cnf e1 e2 in
+ (f', t1 @ t2 @ t')
+ else and_cnf e1 e2, t1 @ t2 in
xcnf true f
@@ -212,6 +284,7 @@ struct
["RingMicromega"];
["EnvRing"];
["Coq"; "micromega"; "ZMicromega"];
+ ["Coq"; "micromega"; "RMicromega"];
["Coq" ; "micromega" ; "Tauto"];
["Coq" ; "micromega" ; "RingMicromega"];
["Coq" ; "micromega" ; "EnvRing"];
@@ -220,6 +293,15 @@ struct
["Coq";"Reals" ; "Rpow_def"];
["LRing_normalise"]]
+ let bin_module = [["Coq";"Numbers";"BinNums"]]
+
+ let r_modules =
+ [["Coq";"Reals" ; "Rdefinitions"];
+ ["Coq";"Reals" ; "Rpow_def"] ;
+]
+
+ let z_modules = [["Coq";"ZArith";"BinInt"]]
+
(**
* Initialization : a large amount of Caml symbols are derived from
* ZMicromega.v
@@ -227,6 +309,9 @@ struct
let init_constant = gen_constant_in_modules "ZMicromega" init_modules
let constant = gen_constant_in_modules "ZMicromega" coq_modules
+ let bin_constant = gen_constant_in_modules "ZMicromega" bin_module
+ let r_constant = gen_constant_in_modules "ZMicromega" r_modules
+ let z_constant = gen_constant_in_modules "ZMicromega" z_modules
(* let constant = gen_constant_in_modules "Omicron" coq_modules *)
let coq_and = lazy (init_constant "and")
@@ -244,34 +329,42 @@ struct
let coq_S = lazy (init_constant "S")
let coq_nat = lazy (init_constant "nat")
- let coq_NO = lazy
- (gen_constant_in_modules "N" [ ["Coq";"NArith";"BinNat" ]] "N0")
- let coq_Npos = lazy
- (gen_constant_in_modules "N" [ ["Coq";"NArith"; "BinNat"]] "Npos")
- (* let coq_n = lazy (constant "N")*)
+ let coq_N0 = lazy (bin_constant "N0")
+ let coq_Npos = lazy (bin_constant "Npos")
- let coq_pair = lazy (constant "pair")
- let coq_None = lazy (constant "None")
- let coq_option = lazy (constant "option")
- let coq_positive = lazy (constant "positive")
- let coq_xH = lazy (constant "xH")
- let coq_xO = lazy (constant "xO")
- let coq_xI = lazy (constant "xI")
+ let coq_pair = lazy (init_constant "pair")
+ let coq_None = lazy (init_constant "None")
+ let coq_option = lazy (init_constant "option")
- let coq_N0 = lazy (constant "N0")
- let coq_N0 = lazy (constant "Npos")
+ let coq_positive = lazy (bin_constant "positive")
+ let coq_xH = lazy (bin_constant "xH")
+ let coq_xO = lazy (bin_constant "xO")
+ let coq_xI = lazy (bin_constant "xI")
+
+ let coq_Z = lazy (bin_constant "Z")
+ let coq_ZERO = lazy (bin_constant "Z0")
+ let coq_POS = lazy (bin_constant "Zpos")
+ let coq_NEG = lazy (bin_constant "Zneg")
- let coq_Z = lazy (constant "Z")
let coq_Q = lazy (constant "Q")
let coq_R = lazy (constant "R")
- let coq_ZERO = lazy (constant "Z0")
- let coq_POS = lazy (constant "Zpos")
- let coq_NEG = lazy (constant "Zneg")
-
let coq_Build_Witness = lazy (constant "Build_Witness")
let coq_Qmake = lazy (constant "Qmake")
+
+ let coq_Rcst = lazy (constant "Rcst")
+ let coq_C0 = lazy (constant "C0")
+ let coq_C1 = lazy (constant "C1")
+ let coq_CQ = lazy (constant "CQ")
+ let coq_CZ = lazy (constant "CZ")
+ let coq_CPlus = lazy (constant "CPlus")
+ let coq_CMinus = lazy (constant "CMinus")
+ let coq_CMult = lazy (constant "CMult")
+ let coq_CInv = lazy (constant "CInv")
+ let coq_COpp = lazy (constant "COpp")
+
+
let coq_R0 = lazy (constant "R0")
let coq_R1 = lazy (constant "R1")
@@ -281,17 +374,17 @@ struct
let coq_cutProof = lazy (constant "CutProof")
let coq_enumProof = lazy (constant "EnumProof")
- let coq_Zgt = lazy (constant "Zgt")
- let coq_Zge = lazy (constant "Zge")
- let coq_Zle = lazy (constant "Zle")
- let coq_Zlt = lazy (constant "Zlt")
+ let coq_Zgt = lazy (z_constant "Z.gt")
+ let coq_Zge = lazy (z_constant "Z.ge")
+ let coq_Zle = lazy (z_constant "Z.le")
+ let coq_Zlt = lazy (z_constant "Z.lt")
let coq_Eq = lazy (init_constant "eq")
- let coq_Zplus = lazy (constant "Zplus")
- let coq_Zminus = lazy (constant "Zminus")
- let coq_Zopp = lazy (constant "Zopp")
- let coq_Zmult = lazy (constant "Zmult")
- let coq_Zpower = lazy (constant "Zpower")
+ let coq_Zplus = lazy (z_constant "Z.add")
+ let coq_Zminus = lazy (z_constant "Z.sub")
+ let coq_Zopp = lazy (z_constant "Z.opp")
+ let coq_Zmult = lazy (z_constant "Z.mul")
+ let coq_Zpower = lazy (z_constant "Z.pow")
let coq_Qgt = lazy (constant "Qgt")
let coq_Qge = lazy (constant "Qge")
@@ -305,16 +398,20 @@ struct
let coq_Qmult = lazy (constant "Qmult")
let coq_Qpower = lazy (constant "Qpower")
- let coq_Rgt = lazy (constant "Rgt")
- let coq_Rge = lazy (constant "Rge")
- let coq_Rle = lazy (constant "Rle")
- let coq_Rlt = lazy (constant "Rlt")
-
- let coq_Rplus = lazy (constant "Rplus")
- let coq_Rminus = lazy (constant "Rminus")
- let coq_Ropp = lazy (constant "Ropp")
- let coq_Rmult = lazy (constant "Rmult")
- let coq_Rpower = lazy (constant "pow")
+ let coq_Rgt = lazy (r_constant "Rgt")
+ let coq_Rge = lazy (r_constant "Rge")
+ let coq_Rle = lazy (r_constant "Rle")
+ let coq_Rlt = lazy (r_constant "Rlt")
+
+ let coq_Rplus = lazy (r_constant "Rplus")
+ let coq_Rminus = lazy (r_constant "Rminus")
+ let coq_Ropp = lazy (r_constant "Ropp")
+ let coq_Rmult = lazy (r_constant "Rmult")
+ let coq_Rdiv = lazy (r_constant "Rdiv")
+ let coq_Rinv = lazy (r_constant "Rinv")
+ let coq_Rpower = lazy (r_constant "pow")
+ let coq_IQR = lazy (constant "IQR")
+ let coq_IZR = lazy (constant "IZR")
let coq_PEX = lazy (constant "PEX" )
let coq_PEc = lazy (constant"PEc")
@@ -444,8 +541,6 @@ struct
(* Access the Micromega module *)
- module Mc = Micromega
-
(* parse/dump/print from numbers up to expressions and formulas *)
let rec parse_nat term =
@@ -491,11 +586,6 @@ struct
let pp_index o x = Printf.fprintf o "%i" (CoqToCaml.index x)
- let rec dump_n x =
- match x with
- | Mc.N0 -> Lazy.force coq_NO
- | Mc.Npos p -> Term.mkApp(Lazy.force coq_Npos,[| dump_positive p |])
-
let rec pp_n o x = output_string o (string_of_int (CoqToCaml.n x))
let dump_pair t1 t2 dump_t1 dump_t2 (x,y) =
@@ -515,7 +605,7 @@ struct
| Mc.Zpos p -> Term.mkApp(Lazy.force coq_POS,[| dump_positive p|])
| Mc.Zneg p -> Term.mkApp(Lazy.force coq_NEG,[| dump_positive p|])
- let pp_z o x = Printf.fprintf o "%i" (CoqToCaml.z x)
+ let pp_z o x = Printf.fprintf o "%s" (Big_int.string_of_big_int (CoqToCaml.z_big_int x))
let dump_num bd1 =
Term.mkApp(Lazy.force coq_Qmake,
@@ -533,6 +623,48 @@ struct
else raise ParseError
| _ -> raise ParseError
+
+ let rec pp_Rcst o cst =
+ match cst with
+ | Mc.C0 -> output_string o "C0"
+ | Mc.C1 -> output_string o "C1"
+ | Mc.CQ q -> output_string o "CQ _"
+ | Mc.CZ z -> pp_z o z
+ | Mc.CPlus(x,y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y
+ | Mc.CMinus(x,y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y
+ | Mc.CMult(x,y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y
+ | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t
+ | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t
+
+
+ let rec dump_Rcst cst =
+ match cst with
+ | Mc.C0 -> Lazy.force coq_C0
+ | Mc.C1 -> Lazy.force coq_C1
+ | Mc.CQ q -> Term.mkApp(Lazy.force coq_CQ, [| dump_q q |])
+ | Mc.CZ z -> Term.mkApp(Lazy.force coq_CZ, [| dump_z z |])
+ | Mc.CPlus(x,y) -> Term.mkApp(Lazy.force coq_CPlus, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CMinus(x,y) -> Term.mkApp(Lazy.force coq_CMinus, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CMult(x,y) -> Term.mkApp(Lazy.force coq_CMult, [| dump_Rcst x ; dump_Rcst y |])
+ | Mc.CInv t -> Term.mkApp(Lazy.force coq_CInv, [| dump_Rcst t |])
+ | Mc.COpp t -> Term.mkApp(Lazy.force coq_COpp, [| dump_Rcst t |])
+
+ let rec parse_Rcst term =
+ let (i,c) = get_left_construct term in
+ match i with
+ | 1 -> Mc.C0
+ | 2 -> Mc.C1
+ | 3 -> Mc.CQ (parse_q c.(0))
+ | 4 -> Mc.CPlus(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 5 -> Mc.CMinus(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 6 -> Mc.CMult(parse_Rcst c.(0), parse_Rcst c.(1))
+ | 7 -> Mc.CInv(parse_Rcst c.(0))
+ | 8 -> Mc.COpp(parse_Rcst c.(0))
+ | _ -> raise ParseError
+
+
+
+
let rec parse_list parse_elt term =
let (i,c) = get_left_construct term in
match i with
@@ -766,14 +898,21 @@ struct
let parse_expr parse_constant parse_exp ops_spec env term =
if debug
then (Pp.pp (Pp.str "parse_expr: ");
- Pp.pp_flush ();Pp.pp (Printer.prterm term); Pp.pp_flush ());
+ Pp.pp (Printer.prterm term);
+ Pp.pp (Pp.str "\n");
+ Pp.pp_flush ());
+(*
let constant_or_variable env term =
try
( Mc.PEc (parse_constant term) , env)
with ParseError ->
let (env,n) = Env.compute_rank_add env term in
(Mc.PEX n , env) in
+*)
+ let parse_variable env term =
+ let (env,n) = Env.compute_rank_add env term in
+ (Mc.PEX n , env) in
let rec parse_expr env term =
let combine env op (t1,t2) =
@@ -781,32 +920,35 @@ struct
let (expr2,env) = parse_expr env t2 in
(op expr1 expr2,env) in
- match kind_of_term term with
- | App(t,args) ->
- (
- match kind_of_term t with
- | Const c ->
- ( match assoc_ops t ops_spec with
- | Binop f -> combine env f (args.(0),args.(1))
- | Opp -> let (expr,env) = parse_expr env args.(0) in
- (Mc.PEopp expr, env)
- | Power ->
- begin
- try
- let (expr,env) = parse_expr env args.(0) in
- let power = (parse_exp expr args.(1)) in
- (power , env)
- with _ -> (* if the exponent is a variable *)
- let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
- end
- | Ukn s ->
- if debug
- then (Printf.printf "unknown op: %s\n" s; flush stdout;);
- let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ try (Mc.PEc (parse_constant term) , env)
+ with ParseError ->
+ match kind_of_term term with
+ | App(t,args) ->
+ (
+ match kind_of_term t with
+ | Const c ->
+ ( match assoc_ops t ops_spec with
+ | Binop f -> combine env f (args.(0),args.(1))
+ | Opp -> let (expr,env) = parse_expr env args.(0) in
+ (Mc.PEopp expr, env)
+ | Power ->
+ begin
+ try
+ let (expr,env) = parse_expr env args.(0) in
+ let power = (parse_exp expr args.(1)) in
+ (power , env)
+ with e when e <> Sys.Break ->
+ (* if the exponent is a variable *)
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
+ end
+ | Ukn s ->
+ if debug
+ then (Printf.printf "unknown op: %s\n" s; flush stdout;);
+ let (env,n) = Env.compute_rank_add env term in (Mc.PEX n, env)
)
- | _ -> constant_or_variable env term
- )
- | _ -> constant_or_variable env term in
+ | _ -> parse_variable env term
+ )
+ | _ -> parse_variable env term in
parse_expr env term
let zop_spec =
@@ -836,27 +978,63 @@ struct
let zconstant = parse_z
let qconstant = parse_q
- let rconstant term =
- if debug
- then (Pp.pp_flush ();
- Pp.pp (Pp.str "rconstant: ");
- Pp.pp (Printer.prterm term); Pp.pp_flush ());
+
+ let rconst_assoc =
+ [
+ coq_Rplus , (fun x y -> Mc.CPlus(x,y)) ;
+ coq_Rminus , (fun x y -> Mc.CMinus(x,y)) ;
+ coq_Rmult , (fun x y -> Mc.CMult(x,y)) ;
+ coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;
+ ]
+
+ let rec rconstant term =
match Term.kind_of_term term with
| Const x ->
if term = Lazy.force coq_R0
- then Mc.Z0
+ then Mc.C0
else if term = Lazy.force coq_R1
- then Mc.Zpos Mc.XH
+ then Mc.C1
else raise ParseError
+ | App(op,args) ->
+ begin
+ try
+ (* the evaluation order is important in the following *)
+ let f = assoc_const op rconst_assoc in
+ let a = rconstant args.(0) in
+ let b = rconstant args.(1) in
+ f a b
+ with
+ ParseError ->
+ match op with
+ | op when op = Lazy.force coq_Rinv -> Mc.CInv(rconstant args.(0))
+ | op when op = Lazy.force coq_IQR -> Mc.CQ (parse_q args.(0))
+(* | op when op = Lazy.force coq_IZR -> Mc.CZ (parse_z args.(0))*)
+ | _ -> raise ParseError
+ end
+
| _ -> raise ParseError
+
+ let rconstant term =
+ if debug
+ then (Pp.pp_flush ();
+ Pp.pp (Pp.str "rconstant: ");
+ Pp.pp (Printer.prterm term);
+ Pp.pp (Pp.str "\n");
+ Pp.pp_flush ());
+ let res = rconstant term in
+ if debug then
+ (Printf.printf "rconstant -> %a\n" pp_Rcst res ; flush stdout) ;
+ res
+
+
let parse_zexpr = parse_expr
zconstant
(fun expr x ->
let exp = (parse_z x) in
match exp with
| Mc.Zneg _ -> Mc.PEc Mc.Z0
- | _ -> Mc.PEpow(expr, Mc.n_of_Z exp))
+ | _ -> Mc.PEpow(expr, Mc.Z.to_N exp))
zop_spec
let parse_qexpr = parse_expr
@@ -870,14 +1048,14 @@ struct
| Mc.PEc q -> Mc.PEc (Mc.qpower q exp)
| _ -> print_string "parse_qexpr parse error" ; flush stdout ; raise ParseError
end
- | _ -> let exp = Mc.n_of_Z exp in
+ | _ -> let exp = Mc.Z.to_N exp in
Mc.PEpow(expr,exp))
qop_spec
let parse_rexpr = parse_expr
rconstant
(fun expr x ->
- let exp = Mc.n_of_nat (parse_nat x) in
+ let exp = Mc.N.of_nat (parse_nat x) in
Mc.PEpow(expr,exp))
rop_spec
@@ -886,6 +1064,7 @@ struct
then (Pp.pp_flush ();
Pp.pp (Pp.str "parse_arith: ");
Pp.pp (Printer.prterm cstr);
+ Pp.pp (Pp.str "\n");
Pp.pp_flush ());
match kind_of_term cstr with
| App(op,args) ->
@@ -932,26 +1111,30 @@ struct
* This is the big generic function for formula parsers.
*)
- let parse_formula parse_atom env term =
+ let parse_formula parse_atom env tg term =
- let parse_atom env tg t = try let (at,env) = parse_atom env t in
- (A(at,tg,t), env,Tag.next tg) with _ -> (X(t),env,tg) in
+ let parse_atom env tg t =
+ try
+ let (at,env) = parse_atom env t in
+ (A(at,tg,t), env,Tag.next tg)
+ with e when e <> Sys.Break -> (X(t),env,tg)
+ in
let rec xparse_formula env tg term =
match kind_of_term term with
| App(l,rst) ->
(match rst with
- | [|a;b|] when l = Lazy.force coq_and ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_and) ->
let f,env,tg = xparse_formula env tg a in
let g,env, tg = xparse_formula env tg b in
mkformula_binary mkC term f g,env,tg
- | [|a;b|] when l = Lazy.force coq_or ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_or) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkD term f g,env,tg
- | [|a|] when l = Lazy.force coq_not ->
+ | [|a|] when eq_constr l (Lazy.force coq_not) ->
let (f,env,tg) = xparse_formula env tg a in (N(f), env,tg)
- | [|a;b|] when l = Lazy.force coq_iff ->
+ | [|a;b|] when eq_constr l (Lazy.force coq_iff) ->
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkIff term f g,env,tg
@@ -960,10 +1143,10 @@ struct
let f,env,tg = xparse_formula env tg a in
let g,env,tg = xparse_formula env tg b in
mkformula_binary mkI term f g,env,tg
- | _ when term = Lazy.force coq_True -> (TT,env,tg)
- | _ when term = Lazy.force coq_False -> (FF,env,tg)
+ | _ when eq_constr term (Lazy.force coq_True) -> (TT,env,tg)
+ | _ when eq_constr term (Lazy.force coq_False) -> (FF,env,tg)
| _ -> X(term),env,tg in
- xparse_formula env term
+ xparse_formula env tg ((*Reductionops.whd_zeta*) term)
let dump_formula typ dump_atom f =
let rec xdump f =
@@ -1011,7 +1194,8 @@ let same_proof sg cl1 cl2 =
let rec xsame_proof sg =
match sg with
| [] -> true
- | n::sg -> (try List.nth cl1 n = List.nth cl2 n with _ -> false)
+ | n::sg ->
+ (try List.nth cl1 n = List.nth cl2 n with e when e <> Sys.Break -> false)
&& (xsame_proof sg ) in
xsame_proof sg
@@ -1024,9 +1208,9 @@ let tags_of_clause tgs wit clause =
| _ -> tgs in
xtags tgs wit
-let tags_of_cnf wits cnf =
+(*let tags_of_cnf wits cnf =
List.fold_left2 (fun acc w cl -> tags_of_clause acc w cl)
- Names.Idset.empty wits cnf
+ Names.Idset.empty wits cnf *)
let find_witness prover polys1 = try_any prover polys1
@@ -1075,7 +1259,7 @@ let btree_of_array typ a =
let btree_of_array typ a =
try
btree_of_array typ a
- with x ->
+ with x when x <> Sys.Break ->
failwith (Printf.sprintf "btree of array : %s" (Printexc.to_string x))
let dump_varmap typ env =
@@ -1103,6 +1287,27 @@ let rec dump_proof_term = function
[| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ;
dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |])
+
+let rec size_of_psatz = function
+ | Micromega.PsatzIn _ -> 1
+ | Micromega.PsatzSquare _ -> 1
+ | Micromega.PsatzMulC(_,p) -> 1 + (size_of_psatz p)
+ | Micromega.PsatzMulE(p1,p2) | Micromega.PsatzAdd(p1,p2) -> size_of_psatz p1 + size_of_psatz p2
+ | Micromega.PsatzC _ -> 1
+ | Micromega.PsatzZ -> 1
+
+let rec size_of_pf = function
+ | Micromega.DoneProof -> 1
+ | Micromega.RatProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
+ | Micromega.CutProof(p,a) -> (size_of_pf a) + (size_of_psatz p)
+ | Micromega.EnumProof(p1,p2,l) -> (size_of_psatz p1) + (size_of_psatz p2) + (List.fold_left (fun acc p -> size_of_pf p + acc) 0 l)
+
+let dump_proof_term t =
+ if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t) ;
+ dump_proof_term t
+
+
+
let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden
@@ -1123,7 +1328,7 @@ let rec parse_hyps parse_arith env tg hyps =
try
let (c,env,tg) = parse_formula parse_arith env tg t in
((i,c)::lhyps, env,tg)
- with _ -> (lhyps,env,tg)
+ with e when e <> Sys.Break -> (lhyps,env,tg)
(*(if debug then Printf.printf "parse_arith : %s\n" x);*)
@@ -1139,13 +1344,12 @@ let parse_goal parse_arith env hyps term =
(**
* The datastructures that aggregate theory-dependent proof values.
*)
-
-type ('d, 'prf) domain_spec = {
- typ : Term.constr; (* Z, Q , R *)
- coeff : Term.constr ; (* Z, Q *)
- dump_coeff : 'd -> Term.constr ;
- proof_typ : Term.constr ;
- dump_proof : 'prf -> Term.constr
+type ('synt_c, 'prf) domain_spec = {
+ typ : Term.constr; (* is the type of the interpretation domain - Z, Q, R*)
+ coeff : Term.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *)
+ dump_coeff : 'synt_c -> Term.constr ;
+ proof_typ : Term.constr ;
+ dump_proof : 'prf -> Term.constr
}
let zz_domain_spec = lazy {
@@ -1164,12 +1368,12 @@ let qq_domain_spec = lazy {
dump_proof = dump_psatz coq_Q dump_q
}
-let rz_domain_spec = lazy {
+let rcst_domain_spec = lazy {
typ = Lazy.force coq_R;
- coeff = Lazy.force coq_Z;
- dump_coeff = dump_z;
- proof_typ = Lazy.force coq_ZWitness ;
- dump_proof = dump_psatz coq_Z dump_z
+ coeff = Lazy.force coq_Rcst;
+ dump_coeff = dump_Rcst;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_psatz coq_Q dump_q
}
(**
@@ -1260,15 +1464,15 @@ let compact_proofs (cnf_ff: 'cst cnf) res (cnf_ff': 'cst cnf) =
let remap i =
let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in
List.assoc formula new_cl in
- if debug then
+(* if debug then
begin
Printf.printf "\ncompact_proof : %a %a %a"
(pp_ml_list prover.pp_f) (List.map fst old_cl)
prover.pp_prf prf
(pp_ml_list prover.pp_f) (List.map fst new_cl) ;
flush stdout
- end ;
- let res = try prover.compact prf remap with x ->
+ end ; *)
+ let res = try prover.compact prf remap with x when x <> Sys.Break ->
if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x) ;
(* This should not happen -- this is the recovery plan... *)
match prover.prover (List.map fst new_cl) with
@@ -1327,6 +1531,20 @@ let abstract_formula hyps f =
| TT -> TT
in xabs f
+
+(* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *)
+let rec abstract_wrt_formula f1 f2 =
+ match f1 , f2 with
+ | X c , _ -> X c
+ | A _ , A _ -> f2
+ | C(a,b) , C(a',b') -> C(abstract_wrt_formula a a', abstract_wrt_formula b b')
+ | D(a,b) , D(a',b') -> D(abstract_wrt_formula a a', abstract_wrt_formula b b')
+ | I(a,_,b) , I(a',x,b') -> I(abstract_wrt_formula a a',x, abstract_wrt_formula b b')
+ | FF , FF -> FF
+ | TT , TT -> TT
+ | N x , N y -> N(abstract_wrt_formula x y)
+ | _ -> failwith "abstract_wrt_formula"
+
(**
* This exception is raised by really_call_csdpcert if Coq's configure didn't
* find a CSDP executable.
@@ -1339,20 +1557,22 @@ exception CsdpNotFound
* prune unused fomulas, and finally modify the proof state.
*)
-let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
- let spec = Lazy.force spec in
-
- (* Express the goal as one big implication *)
- let (ff,ids) =
+let formula_hyps_concl hyps concl =
List.fold_right
(fun (id,f) (cc,ids) ->
match f with
X _ -> (cc,ids)
| _ -> (I(f,Some id,cc), id::ids))
- polys1 (polys2,[]) in
+ hyps (concl,[])
+
+
+let micromega_tauto negate normalise unsat deduce spec prover env polys1 polys2 gl =
+
+ (* Express the goal as one big implication *)
+ let (ff,ids) = formula_hyps_concl polys1 polys2 in
(* Convert the aplpication into a (mc_)cnf (a list of lists of formulas) *)
- let cnf_ff = cnf negate normalise ff in
+ let cnf_ff,cnf_ff_tags = cnf negate normalise unsat deduce ff in
if debug then
begin
@@ -1365,19 +1585,19 @@ let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
end;
match witness_list_tags prover cnf_ff with
- | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | None -> None
| Some res -> (*Printf.printf "\nList %i" (List.length `res); *)
let hyps = List.fold_left (fun s (cl,(prf,p)) ->
let tags = ISet.fold (fun i s -> let t = snd (List.nth cl i) in
if debug then (Printf.fprintf stdout "T : %i -> %a" i Tag.pp t) ;
(*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (p.hyps prf) TagSet.empty in
- TagSet.union s tags) TagSet.empty (List.combine cnf_ff res) in
+ TagSet.union s tags) (List.fold_left (fun s i -> TagSet.add i s) TagSet.empty cnf_ff_tags) (List.combine cnf_ff res) in
if debug then (Printf.printf "TForm : %a\n" pp_formula ff ; flush stdout;
Printf.printf "Hyps : %a\n" (fun o s -> TagSet.fold (fun i _ -> Printf.fprintf o "%a " Tag.pp i) s ()) hyps) ;
let ff' = abstract_formula hyps ff in
- let cnf_ff' = cnf negate normalise ff' in
+ let cnf_ff',_ = cnf negate normalise unsat deduce ff' in
if debug then
begin
@@ -1400,41 +1620,124 @@ let micromega_tauto negate normalise spec prover env polys1 polys2 gl =
end ; *)
let res' = compact_proofs cnf_ff res cnf_ff' in
- let (ff',res',ids) = (ff',res',List.map Term.mkVar (ids_of_formula ff')) in
+ let (ff',res',ids) = (ff',res', ids_of_formula ff') in
let res' = dump_list (spec.proof_typ) spec.dump_proof res' in
- (Tacticals.tclTHENSEQ
- [
- Tactics.generalize ids ;
- micromega_order_change spec res'
- (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff'
- ]) gl
+ Some (ids,ff',res')
+
+
(**
* Parse the proof environment, and call micromega_tauto
*)
let micromega_gen
- parse_arith
+ parse_arith
(negate:'cst atom -> 'cst mc_cnf)
(normalise:'cst atom -> 'cst mc_cnf)
+ unsat deduce
spec prover gl =
let concl = Tacmach.pf_concl gl in
let hyps = Tacmach.pf_hyps_types gl in
try
let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
let env = Env.elements env in
- micromega_tauto negate normalise spec prover env hyps concl gl
+ let spec = Lazy.force spec in
+
+ match micromega_tauto negate normalise unsat deduce spec prover env hyps concl gl with
+ | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | Some (ids,ff',res') ->
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize (List.map Term.mkVar ids) ;
+ micromega_order_change spec res'
+ (Term.mkApp(Lazy.force coq_list, [|spec.proof_typ|])) env ff'
+ ]) gl
with
- | Failure x -> flush stdout ; Pp.pp_flush () ;
- Tacticals.tclFAIL 0 (Pp.str x) gl
+(* | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl *)
| ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
| CsdpNotFound -> flush stdout ; Pp.pp_flush () ;
Tacticals.tclFAIL 0 (Pp.str
(" Skipping what remains of this tactic: the complexity of the goal requires "
^ "the use of a specialized external tool called csdp. \n\n"
- ^ "Unfortunately this instance of Coq isn't aware of the presence of any \"csdp\" executable. \n\n"
- ^ "This executable should be in PATH")) gl
+ ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
+ ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl
+
+
+
+let micromega_order_changer cert env ff gl =
+ let coeff = Lazy.force coq_Rcst in
+ let dump_coeff = dump_Rcst in
+ let typ = Lazy.force coq_R in
+ let cert_typ = (Term.mkApp(Lazy.force coq_list, [|Lazy.force coq_QWitness |])) in
+
+ let formula_typ = (Term.mkApp (Lazy.force coq_Cstr,[| coeff|])) in
+ let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in
+ let vm = dump_varmap (typ) env in
+ Tactics.change_in_concl None
+ (set
+ [
+ ("__ff", ff, Term.mkApp(Lazy.force coq_Formula, [|formula_typ |]));
+ ("__varmap", vm, Term.mkApp
+ (Coqlib.gen_constant_in_modules "VarMap"
+ [["Coq" ; "micromega" ; "VarMap"] ; ["VarMap"]] "t", [|typ|]));
+ ("__wit", cert, cert_typ)
+ ]
+ (Tacmach.pf_concl gl)
+ )
+ gl
+
+
+let micromega_genr prover gl =
+ let parse_arith = parse_rarith in
+ let negate = Mc.rnegate in
+ let normalise = Mc.rnormalise in
+ let unsat = Mc.runsat in
+ let deduce = Mc.rdeduce in
+ let spec = lazy {
+ typ = Lazy.force coq_R;
+ coeff = Lazy.force coq_Rcst;
+ dump_coeff = dump_q;
+ proof_typ = Lazy.force coq_QWitness ;
+ dump_proof = dump_psatz coq_Q dump_q
+ } in
+
+ let concl = Tacmach.pf_concl gl in
+ let hyps = Tacmach.pf_hyps_types gl in
+ try
+ let (hyps,concl,env) = parse_goal parse_arith Env.empty hyps concl in
+ let env = Env.elements env in
+ let spec = Lazy.force spec in
+
+ let hyps' = List.map (fun (n,f) -> (n, map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) f)) hyps in
+ let concl' = map_atoms (Micromega.map_Formula Micromega.q_of_Rcst) concl in
+
+ match micromega_tauto negate normalise unsat deduce spec prover env hyps' concl' gl with
+ | None -> Tacticals.tclFAIL 0 (Pp.str " Cannot find witness") gl
+ | Some (ids,ff',res') ->
+ let (ff,ids') = formula_hyps_concl
+ (List.filter (fun (n,_) -> List.mem n ids) hyps) concl in
+
+ (Tacticals.tclTHENSEQ
+ [
+ Tactics.generalize (List.map Term.mkVar ids) ;
+ micromega_order_changer res' env (abstract_wrt_formula ff' ff)
+ ]) gl
+ with
+(* | Failure x -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str x) gl *)
+ | ParseError -> Tacticals.tclFAIL 0 (Pp.str "Bad logical fragment") gl
+ | CsdpNotFound -> flush stdout ; Pp.pp_flush () ;
+ Tacticals.tclFAIL 0 (Pp.str
+ (" Skipping what remains of this tactic: the complexity of the goal requires "
+ ^ "the use of a specialized external tool called csdp. \n\n"
+ ^ "Unfortunately Coq isn't aware of the presence of any \"csdp\" executable in the path. \n\n"
+ ^ "Csdp packages are provided by some OS distributions; binaries and source code can be downloaded from https://projects.coin-or.org/Csdp")) gl
+
+
+
+
let lift_ratproof prover l =
match prover l with
@@ -1462,13 +1765,13 @@ let csdp_cache = "csdp.cache"
(**
* Build the command to call csdpcert, and launch it. This in turn will call
* the sos driver to the csdp executable.
- * Throw CsdpNotFound if a Coq isn't aware of any csdp executable.
+ * Throw CsdpNotFound if Coq isn't aware of any csdp executable.
*)
let require_csdp =
- match System.search_exe_in_path "csdp" with
- | Some _ -> lazy ()
- | _ -> lazy (raise CsdpNotFound)
+ if System.is_in_system_path "csdp"
+ then lazy ()
+ else lazy (raise CsdpNotFound)
let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option =
fun provername poly ->
@@ -1607,15 +1910,17 @@ let linear_prover_Q = {
pp_f = fun o x -> pp_pol pp_q o (fst x)
}
+
let linear_prover_R = {
name = "linear prover";
- prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.z_spec) ;
+ prover = lift_pexpr_prover (Certificate.linear_prover_with_cert Certificate.q_spec) ;
hyps = hyps_of_cone ;
compact = compact_cone ;
- pp_prf = pp_psatz pp_z ;
- pp_f = fun o x -> pp_pol pp_z o (fst x)
+ pp_prf = pp_psatz pp_q ;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
}
+
let non_linear_prover_Q str o = {
name = "real nonlinear prover";
prover = call_csdpcert_q (str, o);
@@ -1627,11 +1932,11 @@ let non_linear_prover_Q str o = {
let non_linear_prover_R str o = {
name = "real nonlinear prover";
- prover = call_csdpcert_z (str, o);
+ prover = call_csdpcert_q (str, o);
hyps = hyps_of_cone;
compact = compact_cone;
- pp_prf = pp_psatz pp_z;
- pp_f = fun o x -> pp_pol pp_z o (fst x)
+ pp_prf = pp_psatz pp_q;
+ pp_f = fun o x -> pp_pol pp_q o (fst x)
}
let non_linear_prover_Z str o = {
@@ -1649,7 +1954,13 @@ module CacheZ = PHashtable(struct
let hash = Hashtbl.hash
end)
-let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)
+let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.lia)
+let memo_nlia = CacheZ.memo "nlia.cache" (lift_pexpr_prover Certificate.nlia)
+
+(*let memo_zlinear_prover = (lift_pexpr_prover Lia.lia)*)
+(*let memo_zlinear_prover = CacheZ.memo "lia.cache" (lift_pexpr_prover Certificate.zlinear_prover)*)
+
+
let linear_Z = {
name = "lia";
@@ -1660,50 +1971,81 @@ let linear_Z = {
pp_f = fun o x -> pp_pol pp_z o (fst x)
}
+let nlinear_Z = {
+ name = "nlia";
+ prover = memo_nlia ;
+ hyps = hyps_of_pt;
+ compact = compact_pt;
+ pp_prf = pp_proof_term;
+ pp_f = fun o x -> pp_pol pp_z o (fst x)
+}
+
+
+
+let tauto_lia ff =
+ let prover = linear_Z in
+ let cnf_ff,_ = cnf Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce ff in
+ match witness_list_tags [prover] cnf_ff with
+ | None -> None
+ | Some l -> Some (List.map fst l)
+
+
(**
* Functions instantiating micromega_gen with the appropriate theories and
* solvers
*)
let psatzl_Z gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
[ linear_prover_Z ] gl
let psatzl_Q gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ linear_prover_Q ] gl
let psatz_Q i gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ non_linear_prover_Q "real_nonlinear_prover" (Some i) ] gl
+
let psatzl_R gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ linear_prover_R ] gl
+ micromega_genr [ linear_prover_R ] gl
+
let psatz_R i gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl
+ micromega_genr [ non_linear_prover_R "real_nonlinear_prover" (Some i) ] gl
+
let psatz_Z i gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ non_linear_prover_Z "real_nonlinear_prover" (Some i) ] gl
let sos_Z gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
[ non_linear_prover_Z "pure_sos" None ] gl
let sos_Q gl =
- micromega_gen parse_qarith Mc.qnegate Mc.qnormalise qq_domain_spec
+ micromega_gen parse_qarith Mc.qnegate Mc.qnormalise Mc.qunsat Mc.qdeduce qq_domain_spec
[ non_linear_prover_Q "pure_sos" None ] gl
+
let sos_R gl =
- micromega_gen parse_rarith Mc.rnegate Mc.rnormalise rz_domain_spec
- [ non_linear_prover_R "pure_sos" None ] gl
+ micromega_genr [ non_linear_prover_R "pure_sos" None ] gl
+
let xlia gl =
- micromega_gen parse_zarith Mc.negate Mc.normalise zz_domain_spec
- [ linear_Z ] gl
+ try
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ linear_Z ] gl
+ with reraise -> (*Printexc.print_backtrace stdout ;*) raise reraise
+
+let xnlia gl =
+ try
+ micromega_gen parse_zarith Mc.negate Mc.normalise Mc.zunsat Mc.zdeduce zz_domain_spec
+ [ nlinear_Z ] gl
+ with reraise -> (*Printexc.print_backtrace stdout ;*) raise reraise
+
+
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/csdpcert.ml b/plugins/micromega/csdpcert.ml
index 3b47007c..0f26575c 100644
--- a/plugins/micromega/csdpcert.ml
+++ b/plugins/micromega/csdpcert.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -28,7 +28,7 @@ type csdp_certificate = S of Sos_types.positivstellensatz option | F of string
type provername = string * int option
-let debug = true
+let debug = false
let flags = [Open_append;Open_binary;Open_creat]
let chan = open_out_gen flags 0o666 "trace"
@@ -150,7 +150,7 @@ let real_nonlinear_prover d l =
S (Some proof)
with
| Sos_lib.TooDeep -> S None
- | x -> F (Printexc.to_string x)
+ | x when x <> Sys.Break -> F (Printexc.to_string x)
(* This is somewhat buggy, over Z, strict inequality vanish... *)
let pure_sos l =
@@ -174,7 +174,7 @@ let pure_sos l =
S (Some proof)
with
(* | Sos.CsdpNotFound -> F "Sos.CsdpNotFound" *)
- | x -> (* May be that could be refined *) S None
+ | x when x <> Sys.Break -> (* May be that could be refined *) S None
@@ -203,7 +203,7 @@ let main () =
Marshal.to_channel chan (cert:csdp_certificate) [] ;
flush chan ;
exit 0
- with x -> (Printf.fprintf chan "error %s" (Printexc.to_string x) ; exit 1)
+ with any -> (Printf.fprintf chan "error %s" (Printexc.to_string any) ; exit 1)
;;
diff --git a/plugins/micromega/g_micromega.ml4 b/plugins/micromega/g_micromega.ml4
index 9b6842bd..0d888f85 100644
--- a/plugins/micromega/g_micromega.ml4
+++ b/plugins/micromega/g_micromega.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,18 +8,18 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
+(* * Mappings from Coq tactics to Caml function calls *)
+(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_micromega.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Quote
open Ring
open Mutils
-open Rawterm
+open Glob_term
open Util
let out_arg = function
@@ -35,6 +35,11 @@ TACTIC EXTEND ZOmicron
[ "xlia" ] -> [ Coq_micromega.xlia]
END
+TACTIC EXTEND Nlia
+[ "xnlia" ] -> [ Coq_micromega.xnlia]
+END
+
+
TACTIC EXTEND Sos_Z
| [ "sos_Z" ] -> [ Coq_micromega.sos_Z]
@@ -57,8 +62,6 @@ TACTIC EXTEND QOmicron
[ "psatzl_Q" ] -> [ Coq_micromega.psatzl_Q]
END
-
-
TACTIC EXTEND ROmicron
[ "psatzl_R" ] -> [ Coq_micromega.psatzl_R]
END
@@ -68,7 +71,6 @@ TACTIC EXTEND RMicromega
| [ "psatz_R" ] -> [ Coq_micromega.psatz_R (-1) ]
END
-
TACTIC EXTEND QMicromega
| [ "psatz_Q" int_or_var(i) ] -> [ Coq_micromega.psatz_Q (out_arg i) ]
| [ "psatz_Q" ] -> [ Coq_micromega.psatz_Q (-1) ]
diff --git a/plugins/micromega/mfourier.ml b/plugins/micromega/mfourier.ml
index 6250e324..6effa4c4 100644
--- a/plugins/micromega/mfourier.ml
+++ b/plugins/micromega/mfourier.ml
@@ -1,5 +1,8 @@
open Num
module Utils = Mutils
+open Polynomial
+open Vect
+
let map_option = Utils.map_option
let from_option = Utils.from_option
@@ -7,132 +10,6 @@ let from_option = Utils.from_option
let debug = false
type ('a,'b) lr = Inl of 'a | Inr of 'b
-
-module Vect =
- struct
- (** [t] is the type of vectors.
- A vector [(x1,v1) ; ... ; (xn,vn)] is such that:
- - variables indexes are ordered (x1 < ... < xn
- - values are all non-zero
- *)
- type var = int
- type t = (var * num) list
-
-(** [equal v1 v2 = true] if the vectors are syntactically equal.
- ([num] is not handled by [Pervasives.equal] *)
-
- let rec equal v1 v2 =
- match v1 , v2 with
- | [] , [] -> true
- | [] , _ -> false
- | _::_ , [] -> false
- | (i1,n1)::v1 , (i2,n2)::v2 ->
- (i1 = i2) && n1 =/ n2 && equal v1 v2
-
- let hash v =
- let rec hash i = function
- | [] -> i
- | (vr,vl)::l -> hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in
- Hashtbl.hash (hash 0 v )
-
-
- let null = []
-
- let pp_vect o vect =
- List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect
-
- let from_list (l: num list) =
- let rec xfrom_list i l =
- match l with
- | [] -> []
- | e::l ->
- if e <>/ Int 0
- then (i,e)::(xfrom_list (i+1) l)
- else xfrom_list (i+1) l in
-
- xfrom_list 0 l
-
- let zero_num = Int 0
- let unit_num = Int 1
-
-
- let to_list m =
- let rec xto_list i l =
- match l with
- | [] -> []
- | (x,v)::l' ->
- if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in
- xto_list 0 m
-
-
- let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst
-
- let rec update i f t =
- match t with
- | [] -> cons i (f zero_num) []
- | (k,v)::l ->
- match Pervasives.compare i k with
- | 0 -> cons k (f v) l
- | -1 -> cons i (f zero_num) t
- | 1 -> (k,v) ::(update i f l)
- | _ -> failwith "compare_num"
-
- let rec set i n t =
- match t with
- | [] -> cons i n []
- | (k,v)::l ->
- match Pervasives.compare i k with
- | 0 -> cons k n l
- | -1 -> cons i n t
- | 1 -> (k,v) :: (set i n l)
- | _ -> failwith "compare_num"
-
- let gcd m =
- let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in
- if Big_int.compare_big_int res Big_int.zero_big_int = 0
- then Big_int.unit_big_int else res
-
- let rec mul z t =
- match z with
- | Int 0 -> []
- | Int 1 -> t
- | _ -> List.map (fun (i,n) -> (i, mult_num z n)) t
-
- let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
- [
- (fun () -> Pervasives.compare (fst x) (fst y));
- (fun () -> compare_num (snd x) (snd y))])
-
- (** [tail v vect] returns
- - [None] if [v] is not a variable of the vector [vect]
- - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect]
- and [rst] is the remaining of the vector
- We exploit that vectors are ordered lists
- *)
- let rec tail (v:var) (vect:t) =
- match vect with
- | [] -> None
- | (v',vl)::vect' ->
- match Pervasives.compare v' v with
- | 0 -> Some (vl,vect) (* Ok, found *)
- | -1 -> tail v vect' (* Might be in the tail *)
- | _ -> None (* Hopeless *)
-
- let get v vect =
- match tail v vect with
- | None -> None
- | Some(vl,_) -> Some vl
-
-
- let rec fresh v =
- match v with
- | [] -> 1
- | [v,_] -> v + 1
- | _::v -> fresh v
-
- end
-open Vect
-
(** Implementation of intervals *)
module Itv =
struct
@@ -203,11 +80,11 @@ let in_bound bnd v =
| Some a , None -> a <=/ v
| Some a , Some b -> a <=/ v && v <=/ b
+
end
open Itv
type vector = Vect.t
-type cstr = { coeffs : vector ; bound : interval }
(** 'cstr' is the type of constraints.
{coeffs = v ; bound = (l,r) } models the constraints l <= v <= r
**)
@@ -275,10 +152,6 @@ let pp_bound o = function
let pp_itv o (l,r) = Printf.fprintf o "(%a,%a)" pp_bound l pp_bound r
-let rec pp_list f o l =
- match l with
- | [] -> ()
- | e::l -> f o e ; output_string o ";" ; pp_list f o l
let pp_iset o s =
output_string o "{" ;
@@ -366,12 +239,7 @@ let normalise_cstr vect cinfo =
then{cinfo with bound = (map_option divn l , map_option divn r) }
else {cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (map_option divn r , map_option divn l)})
-(** For compatibility, there an external representation of constraints *)
-
-type cstr_compat = {coeffs : vector ; op : op ; cst : num}
-and op = |Eq | Ge
-
-let string_of_op = function Eq -> "=" | Ge -> ">="
+(** For compatibility, there is an external representation of constraints *)
let eval_op = function
@@ -653,7 +521,7 @@ let solve_sys black_v choose_eq choose_variable sys sys_l =
let vars = choose_variable sys in
try
let (v,est) = (List.find (fun (v,_) -> v <> black_v) vars) in
- if debug then (Printf.printf "\nV : %i esimate %f\n" v est ; flush stdout) ;
+ if debug then (Printf.printf "\nV : %i estimate %f\n" v est ; flush stdout) ;
let sys' = project v sys in
solve_sys sys' ((v,sys)::sys_l)
with Not_found -> (* we are done *) Inl (sys,sys_l) in
@@ -666,7 +534,7 @@ let solve black_v choose_eq choose_variable cstrs =
try
let sys = load_system cstrs in
-(* Printf.printf "solve :\n %a" pp_system sys.sys ; *)
+ if debug then Printf.printf "solve :\n %a" pp_system sys.sys ;
solve_sys black_v choose_eq choose_variable sys []
with SystemContradiction prf -> Inr prf
@@ -752,20 +620,33 @@ struct
else if i < v then unroll_until v rl else (false,l)
+ let rec choose_simple_equation eqs =
+ match eqs with
+ | [] -> None
+ | (vect,a,prf,ln)::eqs ->
+ match vect with
+ | [i,_] -> Some (i,vect,a,prf,ln)
+ | _ -> choose_simple_equation eqs
+
+
+
let choose_primal_equation eqs sys_l =
+ (* Counts the number of equations refering to variable [v] --
+ It looks like nb_cst is dead...
+ *)
let is_primal_equation_var v =
- List.fold_left (fun (nb_eq,nb_cst) (vect,info) ->
+ List.fold_left (fun nb_eq (vect,info) ->
if fst (unroll_until v vect)
- then if itv_point info.bound then (nb_eq + 1,nb_cst) else (nb_eq,nb_cst)
- else (nb_eq,nb_cst)) (0,0) sys_l in
+ then if itv_point info.bound then nb_eq + 1 else nb_eq
+ else nb_eq) 0 sys_l in
let rec find_var vect =
match vect with
| [] -> None
| (i,_)::vect ->
- let (nb_eq,nb_cst) = is_primal_equation_var i in
- if nb_eq = 2 && nb_cst = 0
+ let nb_eq = is_primal_equation_var i in
+ if nb_eq = 2
then Some i else find_var vect in
let rec find_eq_var eqs =
@@ -776,10 +657,9 @@ struct
| None -> find_eq_var l
| Some r -> Some (r,vect,a,prf,ln)
in
-
-
- find_eq_var eqs
-
+ match choose_simple_equation eqs with
+ | None -> find_eq_var eqs
+ | Some res -> Some res
@@ -848,7 +728,8 @@ struct
try
Some (bound_of_variable IMap.empty fresh s.sys)
with
- x -> Printf.printf "optimise Exception : %s" (Printexc.to_string x) ; None
+ x when x <> Sys.Break ->
+ Printf.printf "optimise Exception : %s" (Printexc.to_string x) ; None
let find_point cstrs =
@@ -913,7 +794,8 @@ struct
| None , _ | _ , None -> None
| Some a , Some b ->
if (sign_num a) * (sign_num b) = -1
- then Some (add (p1,abs_num a) (p2,abs_num b) ,
+ then
+ Some (add (p1,abs_num a) (p2,abs_num b) ,
{coeffs = add (v1,abs_num a) (v2,abs_num b) ;
op = add_op op1 op2 ;
cst = n1 // (abs_num a) +/ n2 // (abs_num b) })
diff --git a/plugins/micromega/micromega.ml b/plugins/micromega/micromega.ml
index c350ed0f..564126d2 100644
--- a/plugins/micromega/micromega.ml
+++ b/plugins/micromega/micromega.ml
@@ -1,447 +1,2786 @@
+type __ = Obj.t
+let __ = let rec f _ = Obj.repr f in Obj.repr f
+
(** val negb : bool -> bool **)
let negb = function
- | true -> false
- | false -> true
+| true -> false
+| false -> true
type nat =
- | O
- | S of nat
+| O
+| S of nat
+
+(** val fst : ('a1 * 'a2) -> 'a1 **)
+
+let fst = function
+| x,y -> x
+
+(** val snd : ('a1 * 'a2) -> 'a2 **)
+
+let snd = function
+| x,y -> y
+
+(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+
+let rec app l m =
+ match l with
+ | [] -> m
+ | a::l1 -> a::(app l1 m)
type comparison =
- | Eq
- | Lt
- | Gt
+| Eq
+| Lt
+| Gt
(** val compOpp : comparison -> comparison **)
let compOpp = function
- | Eq -> Eq
- | Lt -> Gt
- | Gt -> Lt
+| Eq -> Eq
+| Lt -> Gt
+| Gt -> Lt
-(** val plus : nat -> nat -> nat **)
+type compareSpecT =
+| CompEqT
+| CompLtT
+| CompGtT
-let rec plus n0 m =
- match n0 with
- | O -> m
- | S p -> S (plus p m)
+(** val compareSpec2Type : comparison -> compareSpecT **)
-(** val app : 'a1 list -> 'a1 list -> 'a1 list **)
+let compareSpec2Type = function
+| Eq -> CompEqT
+| Lt -> CompLtT
+| Gt -> CompGtT
-let rec app l m =
- match l with
- | [] -> m
- | a :: l1 -> a :: (app l1 m)
+type 'a compSpecT = compareSpecT
-(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
+(** val compSpec2Type : 'a1 -> 'a1 -> comparison -> 'a1 compSpecT **)
-let rec nth n0 l default =
+let compSpec2Type x y c =
+ compareSpec2Type c
+
+type 'a sig0 =
+ 'a
+ (* singleton inductive, whose constructor was exist *)
+
+(** val plus : nat -> nat -> nat **)
+
+let rec plus n0 m =
match n0 with
- | O -> (match l with
- | [] -> default
- | x :: l' -> x)
- | S m -> (match l with
- | [] -> default
- | x :: t0 -> nth m t0 default)
+ | O -> m
+ | S p -> S (plus p m)
-(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
+(** val nat_iter : nat -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
-let rec map f = function
- | [] -> []
- | a :: t0 -> (f a) :: (map f t0)
+let rec nat_iter n0 f x =
+ match n0 with
+ | O -> x
+ | S n' -> f (nat_iter n' f x)
type positive =
- | XI of positive
- | XO of positive
- | XH
+| XI of positive
+| XO of positive
+| XH
-(** val psucc : positive -> positive **)
+type n =
+| N0
+| Npos of positive
-let rec psucc = function
- | XI p -> XO (psucc p)
+type z =
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module type TotalOrder' =
+ sig
+ type t
+ end
+
+module MakeOrderTac =
+ functor (O:TotalOrder') ->
+ struct
+
+ end
+
+module MaxLogicalProperties =
+ functor (O:TotalOrder') ->
+ functor (M:sig
+ val max : O.t -> O.t -> O.t
+ end) ->
+ struct
+ module T = MakeOrderTac(O)
+ end
+
+module Pos =
+ struct
+ type t = positive
+
+ (** val succ : positive -> positive **)
+
+ let rec succ = function
+ | XI p -> XO (succ p)
| XO p -> XI p
| XH -> XO XH
-
-(** val pplus : positive -> positive -> positive **)
-
-let rec pplus x y =
- match x with
+
+ (** val add : positive -> positive -> positive **)
+
+ let rec add x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> XO (pplus_carry p q0)
- | XO q0 -> XI (pplus p q0)
- | XH -> XO (psucc p))
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
| XO p ->
- (match y with
- | XI q0 -> XI (pplus p q0)
- | XO q0 -> XO (pplus p q0)
- | XH -> XI p)
+ (match y with
+ | XI q0 -> XI (add p q0)
+ | XO q0 -> XO (add p q0)
+ | XH -> XI p)
| XH ->
- (match y with
- | XI q0 -> XO (psucc q0)
- | XO q0 -> XI q0
- | XH -> XO XH)
-
-(** val pplus_carry : positive -> positive -> positive **)
-
-and pplus_carry x y =
- match x with
+ (match y with
+ | XI q0 -> XO (succ q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+ (** val add_carry : positive -> positive -> positive **)
+
+ and add_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> XI (pplus_carry p q0)
- | XO q0 -> XO (pplus_carry p q0)
- | XH -> XI (psucc p))
+ (match y with
+ | XI q0 -> XI (add_carry p q0)
+ | XO q0 -> XO (add_carry p q0)
+ | XH -> XI (succ p))
| XO p ->
- (match y with
- | XI q0 -> XO (pplus_carry p q0)
- | XO q0 -> XI (pplus p q0)
- | XH -> XO (psucc p))
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
| XH ->
- (match y with
- | XI q0 -> XI (psucc q0)
- | XO q0 -> XO (psucc q0)
- | XH -> XI XH)
-
-(** val p_of_succ_nat : nat -> positive **)
-
-let rec p_of_succ_nat = function
- | O -> XH
- | S x -> psucc (p_of_succ_nat x)
-
-(** val pdouble_minus_one : positive -> positive **)
-
-let rec pdouble_minus_one = function
+ (match y with
+ | XI q0 -> XI (succ q0)
+ | XO q0 -> XO (succ q0)
+ | XH -> XI XH)
+
+ (** val pred_double : positive -> positive **)
+
+ let rec pred_double = function
| XI p -> XI (XO p)
- | XO p -> XI (pdouble_minus_one p)
+ | XO p -> XI (pred_double p)
| XH -> XH
-
-type positive_mask =
+
+ (** val pred : positive -> positive **)
+
+ let pred = function
+ | XI p -> XO p
+ | XO p -> pred_double p
+ | XH -> XH
+
+ (** val pred_N : positive -> n **)
+
+ let pred_N = function
+ | XI p -> Npos (XO p)
+ | XO p -> Npos (pred_double p)
+ | XH -> N0
+
+ type mask =
| IsNul
| IsPos of positive
| IsNeg
-
-(** val pdouble_plus_one_mask : positive_mask -> positive_mask **)
-
-let pdouble_plus_one_mask = function
+
+ (** val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rect f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rec f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val succ_double_mask : mask -> mask **)
+
+ let succ_double_mask = function
| IsNul -> IsPos XH
| IsPos p -> IsPos (XI p)
| IsNeg -> IsNeg
-
-(** val pdouble_mask : positive_mask -> positive_mask **)
-
-let pdouble_mask = function
- | IsNul -> IsNul
+
+ (** val double_mask : mask -> mask **)
+
+ let double_mask = function
| IsPos p -> IsPos (XO p)
- | IsNeg -> IsNeg
-
-(** val pdouble_minus_two : positive -> positive_mask **)
-
-let pdouble_minus_two = function
+ | x0 -> x0
+
+ (** val double_pred_mask : positive -> mask **)
+
+ let double_pred_mask = function
| XI p -> IsPos (XO (XO p))
- | XO p -> IsPos (XO (pdouble_minus_one p))
+ | XO p -> IsPos (XO (pred_double p))
| XH -> IsNul
-
-(** val pminus_mask : positive -> positive -> positive_mask **)
-
-let rec pminus_mask x y =
- match x with
+
+ (** val pred_mask : mask -> mask **)
+
+ let pred_mask = function
+ | IsPos q0 ->
+ (match q0 with
+ | XH -> IsNul
+ | _ -> IsPos (pred q0))
+ | _ -> IsNeg
+
+ (** val sub_mask : positive -> positive -> mask **)
+
+ let rec sub_mask x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pdouble_mask (pminus_mask p q0)
- | XO q0 -> pdouble_plus_one_mask (pminus_mask p q0)
- | XH -> IsPos (XO p))
+ (match y with
+ | XI q0 -> double_mask (sub_mask p q0)
+ | XO q0 -> succ_double_mask (sub_mask p q0)
+ | XH -> IsPos (XO p))
| XO p ->
- (match y with
- | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_mask (pminus_mask p q0)
- | XH -> IsPos (pdouble_minus_one p))
- | XH -> (match y with
- | XH -> IsNul
- | _ -> IsNeg)
-
-(** val pminus_mask_carry : positive -> positive -> positive_mask **)
-
-and pminus_mask_carry x y =
- match x with
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XH ->
+ (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+ (** val sub_mask_carry : positive -> positive -> mask **)
+
+ and sub_mask_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_mask (pminus_mask p q0)
- | XH -> IsPos (pdouble_minus_one p))
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
| XO p ->
- (match y with
- | XI q0 -> pdouble_mask (pminus_mask_carry p q0)
- | XO q0 -> pdouble_plus_one_mask (pminus_mask_carry p q0)
- | XH -> pdouble_minus_two p)
+ (match y with
+ | XI q0 -> double_mask (sub_mask_carry p q0)
+ | XO q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XH -> double_pred_mask p)
| XH -> IsNeg
-
-(** val pminus : positive -> positive -> positive **)
-
-let pminus x y =
- match pminus_mask x y with
+
+ (** val sub : positive -> positive -> positive **)
+
+ let sub x y =
+ match sub_mask x y with
| IsPos z0 -> z0
| _ -> XH
-
-(** val pmult : positive -> positive -> positive **)
-
-let rec pmult x y =
- match x with
- | XI p -> pplus y (XO (pmult p y))
- | XO p -> XO (pmult p y)
+
+ (** val mul : positive -> positive -> positive **)
+
+ let rec mul x y =
+ match x with
+ | XI p -> add y (XO (mul p y))
+ | XO p -> XO (mul p y)
| XH -> y
-
-(** val pcompare : positive -> positive -> comparison -> comparison **)
-
-let rec pcompare x y r =
- match x with
+
+ (** val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let rec iter n0 f x =
+ match n0 with
+ | XI n' -> f (iter n' f (iter n' f x))
+ | XO n' -> iter n' f (iter n' f x)
+ | XH -> f x
+
+ (** val pow : positive -> positive -> positive **)
+
+ let pow x y =
+ iter y (mul x) XH
+
+ (** val div2 : positive -> positive **)
+
+ let div2 = function
+ | XI p2 -> p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val div2_up : positive -> positive **)
+
+ let div2_up = function
+ | XI p2 -> succ p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val size_nat : positive -> nat **)
+
+ let rec size_nat = function
+ | XI p2 -> S (size_nat p2)
+ | XO p2 -> S (size_nat p2)
+ | XH -> S O
+
+ (** val size : positive -> positive **)
+
+ let rec size = function
+ | XI p2 -> succ (size p2)
+ | XO p2 -> succ (size p2)
+ | XH -> XH
+
+ (** val compare_cont : positive -> positive -> comparison -> comparison **)
+
+ let rec compare_cont x y r =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 r
+ | XO q0 -> compare_cont p q0 Gt
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 Lt
+ | XO q0 -> compare_cont p q0 r
+ | XH -> Gt)
+ | XH ->
+ (match y with
+ | XH -> r
+ | _ -> Lt)
+
+ (** val compare : positive -> positive -> comparison **)
+
+ let compare x y =
+ compare_cont x y Eq
+
+ (** val min : positive -> positive -> positive **)
+
+ let min p p' =
+ match compare p p' with
+ | Gt -> p'
+ | _ -> p
+
+ (** val max : positive -> positive -> positive **)
+
+ let max p p' =
+ match compare p p' with
+ | Gt -> p
+ | _ -> p'
+
+ (** val eqb : positive -> positive -> bool **)
+
+ let rec eqb p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> eqb p2 q1
+ | _ -> false)
+ | XO p2 ->
+ (match q0 with
+ | XO q1 -> eqb p2 q1
+ | _ -> false)
+ | XH ->
+ (match q0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val leb : positive -> positive -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : positive -> positive -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask)
+ -> positive * mask **)
+
+ let sqrtrem_step f g = function
+ | s,y ->
+ (match y with
+ | IsPos r ->
+ let s' = XI (XO s) in
+ let r' = g (f r) in
+ if leb s' r' then (XI s),(sub_mask r' s') else (XO s),(IsPos r')
+ | _ -> (XO s),(sub_mask (g (f XH)) (XO (XO XH))))
+
+ (** val sqrtrem : positive -> positive * mask **)
+
+ let rec sqrtrem = function
+ | XI p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XI x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XI x) (sqrtrem p3)
+ | XH -> XH,(IsPos (XO XH)))
+ | XO p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XO x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XO x) (sqrtrem p3)
+ | XH -> XH,(IsPos XH))
+ | XH -> XH,IsNul
+
+ (** val sqrt : positive -> positive **)
+
+ let sqrt p =
+ fst (sqrtrem p)
+
+ (** val gcdn : nat -> positive -> positive -> positive **)
+
+ let rec gcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a
+ | Lt -> gcdn n1 (sub b' a') a
+ | Gt -> gcdn n1 (sub a' b') b)
+ | XO b0 -> gcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI p -> gcdn n1 a0 b
+ | XO b0 -> XO (gcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+ (** val gcd : positive -> positive -> positive **)
+
+ let gcd a b =
+ gcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val ggcdn :
+ nat -> positive -> positive -> positive * (positive * positive) **)
+
+ let rec ggcdn n0 a b =
+ match n0 with
+ | O -> XH,(a,b)
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a,(XH,XH)
+ | Lt ->
+ let g,p = ggcdn n1 (sub b' a') a in
+ let ba,aa = p in g,(aa,(add aa (XO ba)))
+ | Gt ->
+ let g,p = ggcdn n1 (sub a' b') b in
+ let ab,bb = p in g,((add bb (XO ab)),bb))
+ | XO b0 ->
+ let g,p = ggcdn n1 a b0 in let aa,bb = p in g,(aa,(XO bb))
+ | XH -> XH,(a,XH))
+ | XO a0 ->
+ (match b with
+ | XI p ->
+ let g,p2 = ggcdn n1 a0 b in let aa,bb = p2 in g,((XO aa),bb)
+ | XO b0 -> let g,p = ggcdn n1 a0 b0 in (XO g),p
+ | XH -> XH,(a,XH))
+ | XH -> XH,(XH,b))
+
+ (** val ggcd : positive -> positive -> positive * (positive * positive) **)
+
+ let ggcd a b =
+ ggcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val coq_Nsucc_double : n -> n **)
+
+ let coq_Nsucc_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val coq_Ndouble : n -> n **)
+
+ let coq_Ndouble = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val coq_lor : positive -> positive -> positive **)
+
+ let rec coq_lor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XI (coq_lor p2 q1)
+ | XH -> p)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XO (coq_lor p2 q1)
+ | XH -> XI p2)
+ | XH ->
+ (match q0 with
+ | XO q1 -> XI q1
+ | _ -> q0)
+
+ (** val coq_land : positive -> positive -> n **)
+
+ let rec coq_land p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> Npos XH)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> N0)
+ | XH ->
+ (match q0 with
+ | XO q1 -> N0
+ | _ -> Npos XH)
+
+ (** val ldiff : positive -> positive -> n **)
+
+ let rec ldiff p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Nsucc_double (ldiff p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Ndouble (ldiff p2 q1)
+ | XH -> Npos p)
+ | XH ->
+ (match q0 with
+ | XO q1 -> Npos XH
+ | _ -> N0)
+
+ (** val coq_lxor : positive -> positive -> n **)
+
+ let rec coq_lxor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XO q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XO q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XH -> Npos (XI p2))
+ | XH ->
+ (match q0 with
+ | XI q1 -> Npos (XO q1)
+ | XO q1 -> Npos (XI q1)
+ | XH -> N0)
+
+ (** val shiftl_nat : positive -> nat -> positive **)
+
+ let shiftl_nat p n0 =
+ nat_iter n0 (fun x -> XO x) p
+
+ (** val shiftr_nat : positive -> nat -> positive **)
+
+ let shiftr_nat p n0 =
+ nat_iter n0 div2 p
+
+ (** val shiftl : positive -> n -> positive **)
+
+ let shiftl p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 (fun x -> XO x) p
+
+ (** val shiftr : positive -> n -> positive **)
+
+ let shiftr p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 div2 p
+
+ (** val testbit_nat : positive -> nat -> bool **)
+
+ let rec testbit_nat p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | O -> true
+ | S n' -> testbit_nat p2 n')
+ | XO p2 ->
+ (match n0 with
+ | O -> false
+ | S n' -> testbit_nat p2 n')
+ | XH ->
+ (match n0 with
+ | O -> true
+ | S n1 -> false)
+
+ (** val testbit : positive -> n -> bool **)
+
+ let rec testbit p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | N0 -> true
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XO p2 ->
+ (match n0 with
+ | N0 -> false
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XH ->
+ (match n0 with
+ | N0 -> true
+ | Npos p2 -> false)
+
+ (** val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1 **)
+
+ let rec iter_op op p a =
+ match p with
+ | XI p2 -> op a (iter_op op p2 (op a a))
+ | XO p2 -> iter_op op p2 (op a a)
+ | XH -> a
+
+ (** val to_nat : positive -> nat **)
+
+ let to_nat x =
+ iter_op plus x (S O)
+
+ (** val of_nat : nat -> positive **)
+
+ let rec of_nat = function
+ | O -> XH
+ | S x ->
+ (match x with
+ | O -> XH
+ | S n1 -> succ (of_nat x))
+
+ (** val of_succ_nat : nat -> positive **)
+
+ let rec of_succ_nat = function
+ | O -> XH
+ | S x -> succ (of_succ_nat x)
+ end
+
+module Coq_Pos =
+ struct
+ module Coq__1 = struct
+ type t = positive
+ end
+ type t = Coq__1.t
+
+ (** val succ : positive -> positive **)
+
+ let rec succ = function
+ | XI p -> XO (succ p)
+ | XO p -> XI p
+ | XH -> XO XH
+
+ (** val add : positive -> positive -> positive **)
+
+ let rec add x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XI (add p q0)
+ | XO q0 -> XO (add p q0)
+ | XH -> XI p)
+ | XH ->
+ (match y with
+ | XI q0 -> XO (succ q0)
+ | XO q0 -> XI q0
+ | XH -> XO XH)
+
+ (** val add_carry : positive -> positive -> positive **)
+
+ and add_carry x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> XI (add_carry p q0)
+ | XO q0 -> XO (add_carry p q0)
+ | XH -> XI (succ p))
+ | XO p ->
+ (match y with
+ | XI q0 -> XO (add_carry p q0)
+ | XO q0 -> XI (add p q0)
+ | XH -> XO (succ p))
+ | XH ->
+ (match y with
+ | XI q0 -> XI (succ q0)
+ | XO q0 -> XO (succ q0)
+ | XH -> XI XH)
+
+ (** val pred_double : positive -> positive **)
+
+ let rec pred_double = function
+ | XI p -> XI (XO p)
+ | XO p -> XI (pred_double p)
+ | XH -> XH
+
+ (** val pred : positive -> positive **)
+
+ let pred = function
+ | XI p -> XO p
+ | XO p -> pred_double p
+ | XH -> XH
+
+ (** val pred_N : positive -> n **)
+
+ let pred_N = function
+ | XI p -> Npos (XO p)
+ | XO p -> Npos (pred_double p)
+ | XH -> N0
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ (** val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rect f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1 **)
+
+ let mask_rec f f0 f1 = function
+ | IsNul -> f
+ | IsPos x -> f0 x
+ | IsNeg -> f1
+
+ (** val succ_double_mask : mask -> mask **)
+
+ let succ_double_mask = function
+ | IsNul -> IsPos XH
+ | IsPos p -> IsPos (XI p)
+ | IsNeg -> IsNeg
+
+ (** val double_mask : mask -> mask **)
+
+ let double_mask = function
+ | IsPos p -> IsPos (XO p)
+ | x0 -> x0
+
+ (** val double_pred_mask : positive -> mask **)
+
+ let double_pred_mask = function
+ | XI p -> IsPos (XO (XO p))
+ | XO p -> IsPos (XO (pred_double p))
+ | XH -> IsNul
+
+ (** val pred_mask : mask -> mask **)
+
+ let pred_mask = function
+ | IsPos q0 ->
+ (match q0 with
+ | XH -> IsNul
+ | _ -> IsPos (pred q0))
+ | _ -> IsNeg
+
+ (** val sub_mask : positive -> positive -> mask **)
+
+ let rec sub_mask x y =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> double_mask (sub_mask p q0)
+ | XO q0 -> succ_double_mask (sub_mask p q0)
+ | XH -> IsPos (XO p))
+ | XO p ->
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
+ | XH ->
+ (match y with
+ | XH -> IsNul
+ | _ -> IsNeg)
+
+ (** val sub_mask_carry : positive -> positive -> mask **)
+
+ and sub_mask_carry x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> pcompare p q0 r
- | XO q0 -> pcompare p q0 Gt
- | XH -> Gt)
+ (match y with
+ | XI q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XO q0 -> double_mask (sub_mask p q0)
+ | XH -> IsPos (pred_double p))
| XO p ->
- (match y with
- | XI q0 -> pcompare p q0 Lt
- | XO q0 -> pcompare p q0 r
- | XH -> Gt)
- | XH -> (match y with
- | XH -> r
- | _ -> Lt)
-
-(** val psize : positive -> nat **)
-
-let rec psize = function
- | XI p2 -> S (psize p2)
- | XO p2 -> S (psize p2)
+ (match y with
+ | XI q0 -> double_mask (sub_mask_carry p q0)
+ | XO q0 -> succ_double_mask (sub_mask_carry p q0)
+ | XH -> double_pred_mask p)
+ | XH -> IsNeg
+
+ (** val sub : positive -> positive -> positive **)
+
+ let sub x y =
+ match sub_mask x y with
+ | IsPos z0 -> z0
+ | _ -> XH
+
+ (** val mul : positive -> positive -> positive **)
+
+ let rec mul x y =
+ match x with
+ | XI p -> add y (XO (mul p y))
+ | XO p -> XO (mul p y)
+ | XH -> y
+
+ (** val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let rec iter n0 f x =
+ match n0 with
+ | XI n' -> f (iter n' f (iter n' f x))
+ | XO n' -> iter n' f (iter n' f x)
+ | XH -> f x
+
+ (** val pow : positive -> positive -> positive **)
+
+ let pow x y =
+ iter y (mul x) XH
+
+ (** val div2 : positive -> positive **)
+
+ let div2 = function
+ | XI p2 -> p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val div2_up : positive -> positive **)
+
+ let div2_up = function
+ | XI p2 -> succ p2
+ | XO p2 -> p2
+ | XH -> XH
+
+ (** val size_nat : positive -> nat **)
+
+ let rec size_nat = function
+ | XI p2 -> S (size_nat p2)
+ | XO p2 -> S (size_nat p2)
| XH -> S O
-
-type n =
- | N0
- | Npos of positive
+
+ (** val size : positive -> positive **)
+
+ let rec size = function
+ | XI p2 -> succ (size p2)
+ | XO p2 -> succ (size p2)
+ | XH -> XH
+
+ (** val compare_cont : positive -> positive -> comparison -> comparison **)
+
+ let rec compare_cont x y r =
+ match x with
+ | XI p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 r
+ | XO q0 -> compare_cont p q0 Gt
+ | XH -> Gt)
+ | XO p ->
+ (match y with
+ | XI q0 -> compare_cont p q0 Lt
+ | XO q0 -> compare_cont p q0 r
+ | XH -> Gt)
+ | XH ->
+ (match y with
+ | XH -> r
+ | _ -> Lt)
+
+ (** val compare : positive -> positive -> comparison **)
+
+ let compare x y =
+ compare_cont x y Eq
+
+ (** val min : positive -> positive -> positive **)
+
+ let min p p' =
+ match compare p p' with
+ | Gt -> p'
+ | _ -> p
+
+ (** val max : positive -> positive -> positive **)
+
+ let max p p' =
+ match compare p p' with
+ | Gt -> p
+ | _ -> p'
+
+ (** val eqb : positive -> positive -> bool **)
+
+ let rec eqb p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> eqb p2 q1
+ | _ -> false)
+ | XO p2 ->
+ (match q0 with
+ | XO q1 -> eqb p2 q1
+ | _ -> false)
+ | XH ->
+ (match q0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val leb : positive -> positive -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : positive -> positive -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask)
+ -> positive * mask **)
+
+ let sqrtrem_step f g = function
+ | s,y ->
+ (match y with
+ | IsPos r ->
+ let s' = XI (XO s) in
+ let r' = g (f r) in
+ if leb s' r' then (XI s),(sub_mask r' s') else (XO s),(IsPos r')
+ | _ -> (XO s),(sub_mask (g (f XH)) (XO (XO XH))))
+
+ (** val sqrtrem : positive -> positive * mask **)
+
+ let rec sqrtrem = function
+ | XI p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XI x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XI x) (sqrtrem p3)
+ | XH -> XH,(IsPos (XO XH)))
+ | XO p2 ->
+ (match p2 with
+ | XI p3 -> sqrtrem_step (fun x -> XI x) (fun x -> XO x) (sqrtrem p3)
+ | XO p3 -> sqrtrem_step (fun x -> XO x) (fun x -> XO x) (sqrtrem p3)
+ | XH -> XH,(IsPos XH))
+ | XH -> XH,IsNul
+
+ (** val sqrt : positive -> positive **)
+
+ let sqrt p =
+ fst (sqrtrem p)
+
+ (** val gcdn : nat -> positive -> positive -> positive **)
+
+ let rec gcdn n0 a b =
+ match n0 with
+ | O -> XH
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a
+ | Lt -> gcdn n1 (sub b' a') a
+ | Gt -> gcdn n1 (sub a' b') b)
+ | XO b0 -> gcdn n1 a b0
+ | XH -> XH)
+ | XO a0 ->
+ (match b with
+ | XI p -> gcdn n1 a0 b
+ | XO b0 -> XO (gcdn n1 a0 b0)
+ | XH -> XH)
+ | XH -> XH)
+
+ (** val gcd : positive -> positive -> positive **)
+
+ let gcd a b =
+ gcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val ggcdn :
+ nat -> positive -> positive -> positive * (positive * positive) **)
+
+ let rec ggcdn n0 a b =
+ match n0 with
+ | O -> XH,(a,b)
+ | S n1 ->
+ (match a with
+ | XI a' ->
+ (match b with
+ | XI b' ->
+ (match compare a' b' with
+ | Eq -> a,(XH,XH)
+ | Lt ->
+ let g,p = ggcdn n1 (sub b' a') a in
+ let ba,aa = p in g,(aa,(add aa (XO ba)))
+ | Gt ->
+ let g,p = ggcdn n1 (sub a' b') b in
+ let ab,bb = p in g,((add bb (XO ab)),bb))
+ | XO b0 ->
+ let g,p = ggcdn n1 a b0 in let aa,bb = p in g,(aa,(XO bb))
+ | XH -> XH,(a,XH))
+ | XO a0 ->
+ (match b with
+ | XI p ->
+ let g,p2 = ggcdn n1 a0 b in let aa,bb = p2 in g,((XO aa),bb)
+ | XO b0 -> let g,p = ggcdn n1 a0 b0 in (XO g),p
+ | XH -> XH,(a,XH))
+ | XH -> XH,(XH,b))
+
+ (** val ggcd : positive -> positive -> positive * (positive * positive) **)
+
+ let ggcd a b =
+ ggcdn (plus (size_nat a) (size_nat b)) a b
+
+ (** val coq_Nsucc_double : n -> n **)
+
+ let coq_Nsucc_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val coq_Ndouble : n -> n **)
+
+ let coq_Ndouble = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val coq_lor : positive -> positive -> positive **)
+
+ let rec coq_lor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XI (coq_lor p2 q1)
+ | XH -> p)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> XI (coq_lor p2 q1)
+ | XO q1 -> XO (coq_lor p2 q1)
+ | XH -> XI p2)
+ | XH ->
+ (match q0 with
+ | XO q1 -> XI q1
+ | _ -> q0)
+
+ (** val coq_land : positive -> positive -> n **)
+
+ let rec coq_land p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> Npos XH)
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_land p2 q1)
+ | XO q1 -> coq_Ndouble (coq_land p2 q1)
+ | XH -> N0)
+ | XH ->
+ (match q0 with
+ | XO q1 -> N0
+ | _ -> Npos XH)
+
+ (** val ldiff : positive -> positive -> n **)
+
+ let rec ldiff p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Nsucc_double (ldiff p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (ldiff p2 q1)
+ | XO q1 -> coq_Ndouble (ldiff p2 q1)
+ | XH -> Npos p)
+ | XH ->
+ (match q0 with
+ | XO q1 -> Npos XH
+ | _ -> N0)
+
+ (** val coq_lxor : positive -> positive -> n **)
+
+ let rec coq_lxor p q0 =
+ match p with
+ | XI p2 ->
+ (match q0 with
+ | XI q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XO q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XH -> Npos (XO p2))
+ | XO p2 ->
+ (match q0 with
+ | XI q1 -> coq_Nsucc_double (coq_lxor p2 q1)
+ | XO q1 -> coq_Ndouble (coq_lxor p2 q1)
+ | XH -> Npos (XI p2))
+ | XH ->
+ (match q0 with
+ | XI q1 -> Npos (XO q1)
+ | XO q1 -> Npos (XI q1)
+ | XH -> N0)
+
+ (** val shiftl_nat : positive -> nat -> positive **)
+
+ let shiftl_nat p n0 =
+ nat_iter n0 (fun x -> XO x) p
+
+ (** val shiftr_nat : positive -> nat -> positive **)
+
+ let shiftr_nat p n0 =
+ nat_iter n0 div2 p
+
+ (** val shiftl : positive -> n -> positive **)
+
+ let shiftl p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 (fun x -> XO x) p
+
+ (** val shiftr : positive -> n -> positive **)
+
+ let shiftr p = function
+ | N0 -> p
+ | Npos n1 -> iter n1 div2 p
+
+ (** val testbit_nat : positive -> nat -> bool **)
+
+ let rec testbit_nat p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | O -> true
+ | S n' -> testbit_nat p2 n')
+ | XO p2 ->
+ (match n0 with
+ | O -> false
+ | S n' -> testbit_nat p2 n')
+ | XH ->
+ (match n0 with
+ | O -> true
+ | S n1 -> false)
+
+ (** val testbit : positive -> n -> bool **)
+
+ let rec testbit p n0 =
+ match p with
+ | XI p2 ->
+ (match n0 with
+ | N0 -> true
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XO p2 ->
+ (match n0 with
+ | N0 -> false
+ | Npos n1 -> testbit p2 (pred_N n1))
+ | XH ->
+ (match n0 with
+ | N0 -> true
+ | Npos p2 -> false)
+
+ (** val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1 **)
+
+ let rec iter_op op p a =
+ match p with
+ | XI p2 -> op a (iter_op op p2 (op a a))
+ | XO p2 -> iter_op op p2 (op a a)
+ | XH -> a
+
+ (** val to_nat : positive -> nat **)
+
+ let to_nat x =
+ iter_op plus x (S O)
+
+ (** val of_nat : nat -> positive **)
+
+ let rec of_nat = function
+ | O -> XH
+ | S x ->
+ (match x with
+ | O -> XH
+ | S n1 -> succ (of_nat x))
+
+ (** val of_succ_nat : nat -> positive **)
+
+ let rec of_succ_nat = function
+ | O -> XH
+ | S x -> succ (of_succ_nat x)
+
+ (** val eq_dec : positive -> positive -> bool **)
+
+ let rec eq_dec p y0 =
+ match p with
+ | XI p2 ->
+ (match y0 with
+ | XI p3 -> eq_dec p2 p3
+ | _ -> false)
+ | XO p2 ->
+ (match y0 with
+ | XO p3 -> eq_dec p2 p3
+ | _ -> false)
+ | XH ->
+ (match y0 with
+ | XH -> true
+ | _ -> false)
+
+ (** val peano_rect : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1 **)
+
+ let rec peano_rect a f p =
+ let f2 = peano_rect (f XH a) (fun p2 x -> f (succ (XO p2)) (f (XO p2) x))
+ in
+ (match p with
+ | XI q0 -> f (XO q0) (f2 q0)
+ | XO q0 -> f2 q0
+ | XH -> a)
+
+ (** val peano_rec : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1 **)
+
+ let peano_rec =
+ peano_rect
+
+ type coq_PeanoView =
+ | PeanoOne
+ | PeanoSucc of positive * coq_PeanoView
+
+ (** val coq_PeanoView_rect :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_rect f f0 p = function
+ | PeanoOne -> f
+ | PeanoSucc (p3, p4) -> f0 p3 p4 (coq_PeanoView_rect f f0 p3 p4)
+
+ (** val coq_PeanoView_rec :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_rec f f0 p = function
+ | PeanoOne -> f
+ | PeanoSucc (p3, p4) -> f0 p3 p4 (coq_PeanoView_rec f f0 p3 p4)
+
+ (** val peanoView_xO : positive -> coq_PeanoView -> coq_PeanoView **)
+
+ let rec peanoView_xO p = function
+ | PeanoOne -> PeanoSucc (XH, PeanoOne)
+ | PeanoSucc (p2, q1) ->
+ PeanoSucc ((succ (XO p2)), (PeanoSucc ((XO p2), (peanoView_xO p2 q1))))
+
+ (** val peanoView_xI : positive -> coq_PeanoView -> coq_PeanoView **)
+
+ let rec peanoView_xI p = function
+ | PeanoOne -> PeanoSucc ((succ XH), (PeanoSucc (XH, PeanoOne)))
+ | PeanoSucc (p2, q1) ->
+ PeanoSucc ((succ (XI p2)), (PeanoSucc ((XI p2), (peanoView_xI p2 q1))))
+
+ (** val peanoView : positive -> coq_PeanoView **)
+
+ let rec peanoView = function
+ | XI p2 -> peanoView_xI p2 (peanoView p2)
+ | XO p2 -> peanoView_xO p2 (peanoView p2)
+ | XH -> PeanoOne
+
+ (** val coq_PeanoView_iter :
+ 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> coq_PeanoView -> 'a1 **)
+
+ let rec coq_PeanoView_iter a f p = function
+ | PeanoOne -> a
+ | PeanoSucc (p2, q1) -> f p2 (coq_PeanoView_iter a f p2 q1)
+
+ (** val switch_Eq : comparison -> comparison -> comparison **)
+
+ let switch_Eq c = function
+ | Eq -> c
+ | x -> x
+
+ (** val mask2cmp : mask -> comparison **)
+
+ let mask2cmp = function
+ | IsNul -> Eq
+ | IsPos p2 -> Gt
+ | IsNeg -> Lt
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = Coq__1.t
+ end
+
+ module MRev =
+ struct
+ (** val max : t -> t -> t **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : t -> t -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : t -> t -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : t -> t -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : t -> t -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : t -> t -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : t -> t -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
+
+module N =
+ struct
+ type t = n
+
+ (** val zero : n **)
+
+ let zero =
+ N0
+
+ (** val one : n **)
+
+ let one =
+ Npos XH
+
+ (** val two : n **)
+
+ let two =
+ Npos (XO XH)
+
+ (** val succ_double : n -> n **)
+
+ let succ_double = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (XI p)
+
+ (** val double : n -> n **)
+
+ let double = function
+ | N0 -> N0
+ | Npos p -> Npos (XO p)
+
+ (** val succ : n -> n **)
+
+ let succ = function
+ | N0 -> Npos XH
+ | Npos p -> Npos (Coq_Pos.succ p)
+
+ (** val pred : n -> n **)
+
+ let pred = function
+ | N0 -> N0
+ | Npos p -> Coq_Pos.pred_N p
+
+ (** val succ_pos : n -> positive **)
+
+ let succ_pos = function
+ | N0 -> XH
+ | Npos p -> Coq_Pos.succ p
+
+ (** val add : n -> n -> n **)
+
+ let add n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Npos (Coq_Pos.add p q0))
+
+ (** val sub : n -> n -> n **)
+
+ let sub n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos n' ->
+ (match m with
+ | N0 -> n0
+ | Npos m' ->
+ (match Coq_Pos.sub_mask n' m' with
+ | Coq_Pos.IsPos p -> Npos p
+ | _ -> N0))
+
+ (** val mul : n -> n -> n **)
+
+ let mul n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> N0
+ | Npos q0 -> Npos (Coq_Pos.mul p q0))
+
+ (** val compare : n -> n -> comparison **)
+
+ let compare n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> Eq
+ | Npos m' -> Lt)
+ | Npos n' ->
+ (match m with
+ | N0 -> Gt
+ | Npos m' -> Coq_Pos.compare n' m')
+
+ (** val eqb : n -> n -> bool **)
+
+ let rec eqb n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> true
+ | Npos p -> false)
+ | Npos p ->
+ (match m with
+ | N0 -> false
+ | Npos q0 -> Coq_Pos.eqb p q0)
+
+ (** val leb : n -> n -> bool **)
+
+ let leb x y =
+ match compare x y with
+ | Gt -> false
+ | _ -> true
+
+ (** val ltb : n -> n -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
+ | _ -> false
+
+ (** val min : n -> n -> n **)
+
+ let min n0 n' =
+ match compare n0 n' with
+ | Gt -> n'
+ | _ -> n0
+
+ (** val max : n -> n -> n **)
+
+ let max n0 n' =
+ match compare n0 n' with
+ | Gt -> n0
+ | _ -> n'
+
+ (** val div2 : n -> n **)
+
+ let div2 = function
+ | N0 -> N0
+ | Npos p2 ->
+ (match p2 with
+ | XI p -> Npos p
+ | XO p -> Npos p
+ | XH -> N0)
+
+ (** val even : n -> bool **)
+
+ let even = function
+ | N0 -> true
+ | Npos p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+
+ (** val odd : n -> bool **)
+
+ let odd n0 =
+ negb (even n0)
+
+ (** val pow : n -> n -> n **)
+
+ let pow n0 = function
+ | N0 -> Npos XH
+ | Npos p2 ->
+ (match n0 with
+ | N0 -> N0
+ | Npos q0 -> Npos (Coq_Pos.pow q0 p2))
+
+ (** val log2 : n -> n **)
+
+ let log2 = function
+ | N0 -> N0
+ | Npos p2 ->
+ (match p2 with
+ | XI p -> Npos (Coq_Pos.size p)
+ | XO p -> Npos (Coq_Pos.size p)
+ | XH -> N0)
+
+ (** val size : n -> n **)
+
+ let size = function
+ | N0 -> N0
+ | Npos p -> Npos (Coq_Pos.size p)
+
+ (** val size_nat : n -> nat **)
+
+ let size_nat = function
+ | N0 -> O
+ | Npos p -> Coq_Pos.size_nat p
+
+ (** val pos_div_eucl : positive -> n -> n * n **)
+
+ let rec pos_div_eucl a b =
+ match a with
+ | XI a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = succ_double r in
+ if leb b r' then (succ_double q0),(sub r' b) else (double q0),r'
+ | XO a' ->
+ let q0,r = pos_div_eucl a' b in
+ let r' = double r in
+ if leb b r' then (succ_double q0),(sub r' b) else (double q0),r'
+ | XH ->
+ (match b with
+ | N0 -> N0,(Npos XH)
+ | Npos p ->
+ (match p with
+ | XH -> (Npos XH),N0
+ | _ -> N0,(Npos XH)))
+
+ (** val div_eucl : n -> n -> n * n **)
+
+ let div_eucl a b =
+ match a with
+ | N0 -> N0,N0
+ | Npos na ->
+ (match b with
+ | N0 -> N0,a
+ | Npos p -> pos_div_eucl na b)
+
+ (** val div : n -> n -> n **)
+
+ let div a b =
+ fst (div_eucl a b)
+
+ (** val modulo : n -> n -> n **)
+
+ let modulo a b =
+ snd (div_eucl a b)
+
+ (** val gcd : n -> n -> n **)
+
+ let gcd a b =
+ match a with
+ | N0 -> b
+ | Npos p ->
+ (match b with
+ | N0 -> a
+ | Npos q0 -> Npos (Coq_Pos.gcd p q0))
+
+ (** val ggcd : n -> n -> n * (n * n) **)
+
+ let ggcd a b =
+ match a with
+ | N0 -> b,(N0,(Npos XH))
+ | Npos p ->
+ (match b with
+ | N0 -> a,((Npos XH),N0)
+ | Npos q0 ->
+ let g,p2 = Coq_Pos.ggcd p q0 in
+ let aa,bb = p2 in (Npos g),((Npos aa),(Npos bb)))
+
+ (** val sqrtrem : n -> n * n **)
+
+ let sqrtrem = function
+ | N0 -> N0,N0
+ | Npos p ->
+ let s,m = Coq_Pos.sqrtrem p in
+ (match m with
+ | Coq_Pos.IsPos r -> (Npos s),(Npos r)
+ | _ -> (Npos s),N0)
+
+ (** val sqrt : n -> n **)
+
+ let sqrt = function
+ | N0 -> N0
+ | Npos p -> Npos (Coq_Pos.sqrt p)
+
+ (** val coq_lor : n -> n -> n **)
+
+ let coq_lor n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Npos (Coq_Pos.coq_lor p q0))
+
+ (** val coq_land : n -> n -> n **)
+
+ let coq_land n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> N0
+ | Npos q0 -> Coq_Pos.coq_land p q0)
+
+ (** val ldiff : n -> n -> n **)
+
+ let rec ldiff n0 m =
+ match n0 with
+ | N0 -> N0
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Coq_Pos.ldiff p q0)
+
+ (** val coq_lxor : n -> n -> n **)
+
+ let coq_lxor n0 m =
+ match n0 with
+ | N0 -> m
+ | Npos p ->
+ (match m with
+ | N0 -> n0
+ | Npos q0 -> Coq_Pos.coq_lxor p q0)
+
+ (** val shiftl_nat : n -> nat -> n **)
+
+ let shiftl_nat a n0 =
+ nat_iter n0 double a
+
+ (** val shiftr_nat : n -> nat -> n **)
+
+ let shiftr_nat a n0 =
+ nat_iter n0 div2 a
+
+ (** val shiftl : n -> n -> n **)
+
+ let shiftl a n0 =
+ match a with
+ | N0 -> N0
+ | Npos a0 -> Npos (Coq_Pos.shiftl a0 n0)
+
+ (** val shiftr : n -> n -> n **)
+
+ let shiftr a = function
+ | N0 -> a
+ | Npos p -> Coq_Pos.iter p div2 a
+
+ (** val testbit_nat : n -> nat -> bool **)
+
+ let testbit_nat = function
+ | N0 -> (fun x -> false)
+ | Npos p -> Coq_Pos.testbit_nat p
+
+ (** val testbit : n -> n -> bool **)
+
+ let testbit a n0 =
+ match a with
+ | N0 -> false
+ | Npos p -> Coq_Pos.testbit p n0
+
+ (** val to_nat : n -> nat **)
+
+ let to_nat = function
+ | N0 -> O
+ | Npos p -> Coq_Pos.to_nat p
+
+ (** val of_nat : nat -> n **)
+
+ let of_nat = function
+ | O -> N0
+ | S n' -> Npos (Coq_Pos.of_succ_nat n')
+
+ (** val iter : n -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let iter n0 f x =
+ match n0 with
+ | N0 -> x
+ | Npos p -> Coq_Pos.iter p f x
+
+ (** val eq_dec : n -> n -> bool **)
+
+ let eq_dec n0 m =
+ match n0 with
+ | N0 ->
+ (match m with
+ | N0 -> true
+ | Npos p -> false)
+ | Npos x ->
+ (match m with
+ | N0 -> false
+ | Npos p2 -> Coq_Pos.eq_dec x p2)
+
+ (** val discr : n -> positive option **)
+
+ let discr = function
+ | N0 -> None
+ | Npos p -> Some p
+
+ (** val binary_rect :
+ 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let binary_rect f0 f2 fS2 n0 =
+ let f2' = fun p -> f2 (Npos p) in
+ let fS2' = fun p -> fS2 (Npos p) in
+ (match n0 with
+ | N0 -> f0
+ | Npos p ->
+ let rec f = function
+ | XI p3 -> fS2' p3 (f p3)
+ | XO p3 -> f2' p3 (f p3)
+ | XH -> fS2 N0 f0
+ in f p)
+
+ (** val binary_rec :
+ 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let binary_rec =
+ binary_rect
+
+ (** val peano_rect : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let peano_rect f0 f n0 =
+ let f' = fun p -> f (Npos p) in
+ (match n0 with
+ | N0 -> f0
+ | Npos p -> Coq_Pos.peano_rect (f N0 f0) f' p)
+
+ (** val peano_rec : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let peano_rec =
+ peano_rect
+
+ module BootStrap =
+ struct
+
+ end
+
+ (** val recursion : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1 **)
+
+ let recursion x =
+ peano_rect x
+
+ module OrderElts =
+ struct
+ type t = n
+ end
+
+ module OrderTac = MakeOrderTac(OrderElts)
+
+ module NZPowP =
+ struct
+
+ end
+
+ module NZSqrtP =
+ struct
+
+ end
+
+ (** val sqrt_up : n -> n **)
+
+ let sqrt_up a =
+ match compare N0 a with
+ | Lt -> succ (sqrt (pred a))
+ | _ -> N0
+
+ (** val log2_up : n -> n **)
+
+ let log2_up a =
+ match compare (Npos XH) a with
+ | Lt -> succ (log2 (pred a))
+ | _ -> N0
+
+ module NZDivP =
+ struct
+
+ end
+
+ (** val lcm : n -> n -> n **)
+
+ let lcm a b =
+ mul a (div b (gcd a b))
+
+ (** val b2n : bool -> n **)
+
+ let b2n = function
+ | true -> Npos XH
+ | false -> N0
+
+ (** val setbit : n -> n -> n **)
+
+ let setbit a n0 =
+ coq_lor a (shiftl (Npos XH) n0)
+
+ (** val clearbit : n -> n -> n **)
+
+ let clearbit a n0 =
+ ldiff a (shiftl (Npos XH) n0)
+
+ (** val ones : n -> n **)
+
+ let ones n0 =
+ pred (shiftl (Npos XH) n0)
+
+ (** val lnot : n -> n -> n **)
+
+ let lnot a n0 =
+ coq_lxor a (ones n0)
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = n
+ end
+
+ module MRev =
+ struct
+ (** val max : n -> n -> n **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : n -> n -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : n -> n -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : n -> n -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : n -> n -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : n -> n -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : n -> n -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
(** val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1 **)
let rec pow_pos rmul x = function
- | XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
- | XO i0 -> let p = pow_pos rmul x i0 in rmul p p
- | XH -> x
+| XI i0 -> let p = pow_pos rmul x i0 in rmul x (rmul p p)
+| XO i0 -> let p = pow_pos rmul x i0 in rmul p p
+| XH -> x
-type z =
- | Z0
- | Zpos of positive
- | Zneg of positive
-
-(** val zdouble_plus_one : z -> z **)
-
-let zdouble_plus_one = function
- | Z0 -> Zpos XH
- | Zpos p -> Zpos (XI p)
- | Zneg p -> Zneg (pdouble_minus_one p)
-
-(** val zdouble_minus_one : z -> z **)
+(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)
-let zdouble_minus_one = function
- | Z0 -> Zneg XH
- | Zpos p -> Zpos (pdouble_minus_one p)
- | Zneg p -> Zneg (XI p)
+let rec nth n0 l default =
+ match n0 with
+ | O ->
+ (match l with
+ | [] -> default
+ | x::l' -> x)
+ | S m ->
+ (match l with
+ | [] -> default
+ | x::t1 -> nth m t1 default)
-(** val zdouble : z -> z **)
+(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)
-let zdouble = function
+let rec map f = function
+| [] -> []
+| a::t1 -> (f a)::(map f t1)
+
+(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **)
+
+let rec fold_right f a0 = function
+| [] -> a0
+| b::t1 -> f b (fold_right f a0 t1)
+
+module Z =
+ struct
+ type t = z
+
+ (** val zero : z **)
+
+ let zero =
+ Z0
+
+ (** val one : z **)
+
+ let one =
+ Zpos XH
+
+ (** val two : z **)
+
+ let two =
+ Zpos (XO XH)
+
+ (** val double : z -> z **)
+
+ let double = function
| Z0 -> Z0
| Zpos p -> Zpos (XO p)
| Zneg p -> Zneg (XO p)
-
-(** val zPminus : positive -> positive -> z **)
-
-let rec zPminus x y =
- match x with
+
+ (** val succ_double : z -> z **)
+
+ let succ_double = function
+ | Z0 -> Zpos XH
+ | Zpos p -> Zpos (XI p)
+ | Zneg p -> Zneg (Coq_Pos.pred_double p)
+
+ (** val pred_double : z -> z **)
+
+ let pred_double = function
+ | Z0 -> Zneg XH
+ | Zpos p -> Zpos (Coq_Pos.pred_double p)
+ | Zneg p -> Zneg (XI p)
+
+ (** val pos_sub : positive -> positive -> z **)
+
+ let rec pos_sub x y =
+ match x with
| XI p ->
- (match y with
- | XI q0 -> zdouble (zPminus p q0)
- | XO q0 -> zdouble_plus_one (zPminus p q0)
- | XH -> Zpos (XO p))
+ (match y with
+ | XI q0 -> double (pos_sub p q0)
+ | XO q0 -> succ_double (pos_sub p q0)
+ | XH -> Zpos (XO p))
| XO p ->
- (match y with
- | XI q0 -> zdouble_minus_one (zPminus p q0)
- | XO q0 -> zdouble (zPminus p q0)
- | XH -> Zpos (pdouble_minus_one p))
+ (match y with
+ | XI q0 -> pred_double (pos_sub p q0)
+ | XO q0 -> double (pos_sub p q0)
+ | XH -> Zpos (Coq_Pos.pred_double p))
| XH ->
- (match y with
- | XI q0 -> Zneg (XO q0)
- | XO q0 -> Zneg (pdouble_minus_one q0)
- | XH -> Z0)
-
-(** val zplus : z -> z -> z **)
-
-let zplus x y =
- match x with
+ (match y with
+ | XI q0 -> Zneg (XO q0)
+ | XO q0 -> Zneg (Coq_Pos.pred_double q0)
+ | XH -> Z0)
+
+ (** val add : z -> z -> z **)
+
+ let add x y =
+ match x with
| Z0 -> y
| Zpos x' ->
- (match y with
- | Z0 -> Zpos x'
- | Zpos y' -> Zpos (pplus x' y')
- | Zneg y' ->
- (match pcompare x' y' Eq with
- | Eq -> Z0
- | Lt -> Zneg (pminus y' x')
- | Gt -> Zpos (pminus x' y')))
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> Zpos (Coq_Pos.add x' y')
+ | Zneg y' -> pos_sub x' y')
| Zneg x' ->
- (match y with
- | Z0 -> Zneg x'
- | Zpos y' ->
- (match pcompare x' y' Eq with
- | Eq -> Z0
- | Lt -> Zpos (pminus y' x')
- | Gt -> Zneg (pminus x' y'))
- | Zneg y' -> Zneg (pplus x' y'))
-
-(** val zopp : z -> z **)
-
-let zopp = function
+ (match y with
+ | Z0 -> x
+ | Zpos y' -> pos_sub y' x'
+ | Zneg y' -> Zneg (Coq_Pos.add x' y'))
+
+ (** val opp : z -> z **)
+
+ let opp = function
| Z0 -> Z0
| Zpos x0 -> Zneg x0
| Zneg x0 -> Zpos x0
-
-(** val zminus : z -> z -> z **)
-
-let zminus m n0 =
- zplus m (zopp n0)
-
-(** val zmult : z -> z -> z **)
-
-let zmult x y =
- match x with
+
+ (** val succ : z -> z **)
+
+ let succ x =
+ add x (Zpos XH)
+
+ (** val pred : z -> z **)
+
+ let pred x =
+ add x (Zneg XH)
+
+ (** val sub : z -> z -> z **)
+
+ let sub m n0 =
+ add m (opp n0)
+
+ (** val mul : z -> z -> z **)
+
+ let mul x y =
+ match x with
| Z0 -> Z0
| Zpos x' ->
- (match y with
- | Z0 -> Z0
- | Zpos y' -> Zpos (pmult x' y')
- | Zneg y' -> Zneg (pmult x' y'))
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zpos (Coq_Pos.mul x' y')
+ | Zneg y' -> Zneg (Coq_Pos.mul x' y'))
| Zneg x' ->
- (match y with
- | Z0 -> Z0
- | Zpos y' -> Zneg (pmult x' y')
- | Zneg y' -> Zpos (pmult x' y'))
-
-(** val zcompare : z -> z -> comparison **)
-
-let zcompare x y =
- match x with
- | Z0 -> (match y with
- | Z0 -> Eq
- | Zpos y' -> Lt
- | Zneg y' -> Gt)
- | Zpos x' -> (match y with
- | Zpos y' -> pcompare x' y' Eq
- | _ -> Gt)
+ (match y with
+ | Z0 -> Z0
+ | Zpos y' -> Zneg (Coq_Pos.mul x' y')
+ | Zneg y' -> Zpos (Coq_Pos.mul x' y'))
+
+ (** val pow_pos : z -> positive -> z **)
+
+ let pow_pos z0 n0 =
+ Coq_Pos.iter n0 (mul z0) (Zpos XH)
+
+ (** val pow : z -> z -> z **)
+
+ let pow x = function
+ | Z0 -> Zpos XH
+ | Zpos p -> pow_pos x p
+ | Zneg p -> Z0
+
+ (** val compare : z -> z -> comparison **)
+
+ let compare x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> Eq
+ | Zpos y' -> Lt
+ | Zneg y' -> Gt)
+ | Zpos x' ->
+ (match y with
+ | Zpos y' -> Coq_Pos.compare x' y'
+ | _ -> Gt)
| Zneg x' ->
- (match y with
- | Zneg y' -> compOpp (pcompare x' y' Eq)
- | _ -> Lt)
-
-(** val zabs : z -> z **)
-
-let zabs = function
+ (match y with
+ | Zneg y' -> compOpp (Coq_Pos.compare x' y')
+ | _ -> Lt)
+
+ (** val sgn : z -> z **)
+
+ let sgn = function
| Z0 -> Z0
- | Zpos p -> Zpos p
- | Zneg p -> Zpos p
-
-(** val zmax : z -> z -> z **)
-
-let zmax m n0 =
- match zcompare m n0 with
- | Lt -> n0
- | _ -> m
-
-(** val zle_bool : z -> z -> bool **)
-
-let zle_bool x y =
- match zcompare x y with
+ | Zpos p -> Zpos XH
+ | Zneg p -> Zneg XH
+
+ (** val leb : z -> z -> bool **)
+
+ let leb x y =
+ match compare x y with
| Gt -> false
| _ -> true
-
-(** val zge_bool : z -> z -> bool **)
-
-let zge_bool x y =
- match zcompare x y with
+
+ (** val geb : z -> z -> bool **)
+
+ let geb x y =
+ match compare x y with
| Lt -> false
| _ -> true
-
-(** val zgt_bool : z -> z -> bool **)
-
-let zgt_bool x y =
- match zcompare x y with
- | Gt -> true
+
+ (** val ltb : z -> z -> bool **)
+
+ let ltb x y =
+ match compare x y with
+ | Lt -> true
| _ -> false
-
-(** val zeq_bool : z -> z -> bool **)
-
-let zeq_bool x y =
- match zcompare x y with
- | Eq -> true
+
+ (** val gtb : z -> z -> bool **)
+
+ let gtb x y =
+ match compare x y with
+ | Gt -> true
| _ -> false
-
-(** val n_of_nat : nat -> n **)
-
-let n_of_nat = function
- | O -> N0
- | S n' -> Npos (p_of_succ_nat n')
-
-(** val zdiv_eucl_POS : positive -> z -> z * z **)
-
-let rec zdiv_eucl_POS a b =
- match a with
+
+ (** val eqb : z -> z -> bool **)
+
+ let rec eqb x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> true
+ | _ -> false)
+ | Zpos p ->
+ (match y with
+ | Zpos q0 -> Coq_Pos.eqb p q0
+ | _ -> false)
+ | Zneg p ->
+ (match y with
+ | Zneg q0 -> Coq_Pos.eqb p q0
+ | _ -> false)
+
+ (** val max : z -> z -> z **)
+
+ let max n0 m =
+ match compare n0 m with
+ | Lt -> m
+ | _ -> n0
+
+ (** val min : z -> z -> z **)
+
+ let min n0 m =
+ match compare n0 m with
+ | Gt -> m
+ | _ -> n0
+
+ (** val abs : z -> z **)
+
+ let abs = function
+ | Zneg p -> Zpos p
+ | x -> x
+
+ (** val abs_nat : z -> nat **)
+
+ let abs_nat = function
+ | Z0 -> O
+ | Zpos p -> Coq_Pos.to_nat p
+ | Zneg p -> Coq_Pos.to_nat p
+
+ (** val abs_N : z -> n **)
+
+ let abs_N = function
+ | Z0 -> N0
+ | Zpos p -> Npos p
+ | Zneg p -> Npos p
+
+ (** val to_nat : z -> nat **)
+
+ let to_nat = function
+ | Zpos p -> Coq_Pos.to_nat p
+ | _ -> O
+
+ (** val to_N : z -> n **)
+
+ let to_N = function
+ | Zpos p -> Npos p
+ | _ -> N0
+
+ (** val of_nat : nat -> z **)
+
+ let of_nat = function
+ | O -> Z0
+ | S n1 -> Zpos (Coq_Pos.of_succ_nat n1)
+
+ (** val of_N : n -> z **)
+
+ let of_N = function
+ | N0 -> Z0
+ | Npos p -> Zpos p
+
+ (** val iter : z -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)
+
+ let iter n0 f x =
+ match n0 with
+ | Zpos p -> Coq_Pos.iter p f x
+ | _ -> x
+
+ (** val pos_div_eucl : positive -> z -> z * z **)
+
+ let rec pos_div_eucl a b =
+ match a with
| XI a' ->
- let q0 , r = zdiv_eucl_POS a' b in
- let r' = zplus (zmult (Zpos (XO XH)) r) (Zpos XH) in
- if zgt_bool b r'
- then (zmult (Zpos (XO XH)) q0) , r'
- else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
+ let q0,r = pos_div_eucl a' b in
+ let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in
+ if gtb b r'
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
| XO a' ->
- let q0 , r = zdiv_eucl_POS a' b in
- let r' = zmult (Zpos (XO XH)) r in
- if zgt_bool b r'
- then (zmult (Zpos (XO XH)) q0) , r'
- else (zplus (zmult (Zpos (XO XH)) q0) (Zpos XH)) , (zminus r' b)
- | XH ->
- if zge_bool b (Zpos (XO XH)) then Z0 , (Zpos XH) else (Zpos XH) , Z0
-
-(** val zdiv_eucl : z -> z -> z * z **)
-
-let zdiv_eucl a b =
- match a with
- | Z0 -> Z0 , Z0
+ let q0,r = pos_div_eucl a' b in
+ let r' = mul (Zpos (XO XH)) r in
+ if gtb b r'
+ then (mul (Zpos (XO XH)) q0),r'
+ else (add (mul (Zpos (XO XH)) q0) (Zpos XH)),(sub r' b)
+ | XH -> if geb b (Zpos (XO XH)) then Z0,(Zpos XH) else (Zpos XH),Z0
+
+ (** val div_eucl : z -> z -> z * z **)
+
+ let div_eucl a b =
+ match a with
+ | Z0 -> Z0,Z0
| Zpos a' ->
- (match b with
- | Z0 -> Z0 , Z0
- | Zpos p -> zdiv_eucl_POS a' b
- | Zneg b' ->
- let q0 , r = zdiv_eucl_POS a' (Zpos b') in
- (match r with
- | Z0 -> (zopp q0) , Z0
- | _ -> (zopp (zplus q0 (Zpos XH))) , (zplus b r)))
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos p -> pos_div_eucl a' b
+ | Zneg b' ->
+ let q0,r = pos_div_eucl a' (Zpos b') in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(add b r)))
| Zneg a' ->
- (match b with
- | Z0 -> Z0 , Z0
- | Zpos p ->
- let q0 , r = zdiv_eucl_POS a' b in
- (match r with
- | Z0 -> (zopp q0) , Z0
- | _ -> (zopp (zplus q0 (Zpos XH))) , (zminus b r))
- | Zneg b' ->
- let q0 , r = zdiv_eucl_POS a' (Zpos b') in q0 , (zopp r))
+ (match b with
+ | Z0 -> Z0,Z0
+ | Zpos p ->
+ let q0,r = pos_div_eucl a' b in
+ (match r with
+ | Z0 -> (opp q0),Z0
+ | _ -> (opp (add q0 (Zpos XH))),(sub b r))
+ | Zneg b' -> let q0,r = pos_div_eucl a' (Zpos b') in q0,(opp r))
+
+ (** val div : z -> z -> z **)
+
+ let div a b =
+ let q0,x = div_eucl a b in q0
+
+ (** val modulo : z -> z -> z **)
+
+ let modulo a b =
+ let x,r = div_eucl a b in r
+
+ (** val quotrem : z -> z -> z * z **)
+
+ let quotrem a b =
+ match a with
+ | Z0 -> Z0,Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> Z0,a
+ | Zpos b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (of_N q0),(of_N r)
+ | Zneg b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (opp (of_N q0)),(of_N r))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> Z0,a
+ | Zpos b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in
+ (opp (of_N q0)),(opp (of_N r))
+ | Zneg b0 ->
+ let q0,r = N.pos_div_eucl a0 (Npos b0) in (of_N q0),(opp (of_N r)))
+
+ (** val quot : z -> z -> z **)
+
+ let quot a b =
+ fst (quotrem a b)
+
+ (** val rem : z -> z -> z **)
+
+ let rem a b =
+ snd (quotrem a b)
+
+ (** val even : z -> bool **)
+
+ let even = function
+ | Z0 -> true
+ | Zpos p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+ | Zneg p ->
+ (match p with
+ | XO p2 -> true
+ | _ -> false)
+
+ (** val odd : z -> bool **)
+
+ let odd = function
+ | Z0 -> false
+ | Zpos p ->
+ (match p with
+ | XO p2 -> false
+ | _ -> true)
+ | Zneg p ->
+ (match p with
+ | XO p2 -> false
+ | _ -> true)
+
+ (** val div2 : z -> z **)
+
+ let div2 = function
+ | Z0 -> Z0
+ | Zpos p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zpos (Coq_Pos.div2 p))
+ | Zneg p -> Zneg (Coq_Pos.div2_up p)
+
+ (** val quot2 : z -> z **)
+
+ let quot2 = function
+ | Z0 -> Z0
+ | Zpos p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zpos (Coq_Pos.div2 p))
+ | Zneg p ->
+ (match p with
+ | XH -> Z0
+ | _ -> Zneg (Coq_Pos.div2 p))
+
+ (** val log2 : z -> z **)
+
+ let log2 = function
+ | Zpos p2 ->
+ (match p2 with
+ | XI p -> Zpos (Coq_Pos.size p)
+ | XO p -> Zpos (Coq_Pos.size p)
+ | XH -> Z0)
+ | _ -> Z0
+
+ (** val sqrtrem : z -> z * z **)
+
+ let sqrtrem = function
+ | Zpos p ->
+ let s,m = Coq_Pos.sqrtrem p in
+ (match m with
+ | Coq_Pos.IsPos r -> (Zpos s),(Zpos r)
+ | _ -> (Zpos s),Z0)
+ | _ -> Z0,Z0
+
+ (** val sqrt : z -> z **)
+
+ let sqrt = function
+ | Zpos p -> Zpos (Coq_Pos.sqrt p)
+ | _ -> Z0
+
+ (** val gcd : z -> z -> z **)
+
+ let gcd a b =
+ match a with
+ | Z0 -> abs b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> abs a
+ | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
+ | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
+
+ (** val ggcd : z -> z -> z * (z * z) **)
+
+ let ggcd a b =
+ match a with
+ | Z0 -> (abs b),(Z0,(sgn b))
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> (abs a),((sgn a),Z0)
+ | Zpos b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zpos aa),(Zpos bb))
+ | Zneg b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zpos aa),(Zneg bb)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> (abs a),((sgn a),Z0)
+ | Zpos b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zneg aa),(Zpos bb))
+ | Zneg b0 ->
+ let g,p = Coq_Pos.ggcd a0 b0 in
+ let aa,bb = p in (Zpos g),((Zneg aa),(Zneg bb)))
+
+ (** val testbit : z -> z -> bool **)
+
+ let testbit a = function
+ | Z0 -> odd a
+ | Zpos p ->
+ (match a with
+ | Z0 -> false
+ | Zpos a0 -> Coq_Pos.testbit a0 (Npos p)
+ | Zneg a0 -> negb (N.testbit (Coq_Pos.pred_N a0) (Npos p)))
+ | Zneg p -> false
+
+ (** val shiftl : z -> z -> z **)
+
+ let shiftl a = function
+ | Z0 -> a
+ | Zpos p -> Coq_Pos.iter p (mul (Zpos (XO XH))) a
+ | Zneg p -> Coq_Pos.iter p div2 a
+
+ (** val shiftr : z -> z -> z **)
+
+ let shiftr a n0 =
+ shiftl a (opp n0)
+
+ (** val coq_lor : z -> z -> z **)
+
+ let coq_lor a b =
+ match a with
+ | Z0 -> b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> Zpos (Coq_Pos.coq_lor a0 b0)
+ | Zneg b0 -> Zneg (N.succ_pos (N.ldiff (Coq_Pos.pred_N b0) (Npos a0))))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> Zneg (N.succ_pos (N.ldiff (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 ->
+ Zneg
+ (N.succ_pos (N.coq_land (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0))))
+
+ (** val coq_land : z -> z -> z **)
+
+ let coq_land a b =
+ match a with
+ | Z0 -> Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> Z0
+ | Zpos b0 -> of_N (Coq_Pos.coq_land a0 b0)
+ | Zneg b0 -> of_N (N.ldiff (Npos a0) (Coq_Pos.pred_N b0)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> Z0
+ | Zpos b0 -> of_N (N.ldiff (Npos b0) (Coq_Pos.pred_N a0))
+ | Zneg b0 ->
+ Zneg
+ (N.succ_pos (N.coq_lor (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0))))
+
+ (** val ldiff : z -> z -> z **)
+
+ let ldiff a b =
+ match a with
+ | Z0 -> Z0
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> of_N (Coq_Pos.ldiff a0 b0)
+ | Zneg b0 -> of_N (N.coq_land (Npos a0) (Coq_Pos.pred_N b0)))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 ->
+ Zneg (N.succ_pos (N.coq_lor (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 -> of_N (N.ldiff (Coq_Pos.pred_N b0) (Coq_Pos.pred_N a0)))
+
+ (** val coq_lxor : z -> z -> z **)
+
+ let coq_lxor a b =
+ match a with
+ | Z0 -> b
+ | Zpos a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 -> of_N (Coq_Pos.coq_lxor a0 b0)
+ | Zneg b0 ->
+ Zneg (N.succ_pos (N.coq_lxor (Npos a0) (Coq_Pos.pred_N b0))))
+ | Zneg a0 ->
+ (match b with
+ | Z0 -> a
+ | Zpos b0 ->
+ Zneg (N.succ_pos (N.coq_lxor (Coq_Pos.pred_N a0) (Npos b0)))
+ | Zneg b0 -> of_N (N.coq_lxor (Coq_Pos.pred_N a0) (Coq_Pos.pred_N b0)))
+
+ (** val eq_dec : z -> z -> bool **)
+
+ let eq_dec x y =
+ match x with
+ | Z0 ->
+ (match y with
+ | Z0 -> true
+ | _ -> false)
+ | Zpos x0 ->
+ (match y with
+ | Zpos p2 -> Coq_Pos.eq_dec x0 p2
+ | _ -> false)
+ | Zneg x0 ->
+ (match y with
+ | Zneg p2 -> Coq_Pos.eq_dec x0 p2
+ | _ -> false)
+
+ module BootStrap =
+ struct
+
+ end
+
+ module OrderElts =
+ struct
+ type t = z
+ end
+
+ module OrderTac = MakeOrderTac(OrderElts)
+
+ (** val sqrt_up : z -> z **)
+
+ let sqrt_up a =
+ match compare Z0 a with
+ | Lt -> succ (sqrt (pred a))
+ | _ -> Z0
+
+ (** val log2_up : z -> z **)
+
+ let log2_up a =
+ match compare (Zpos XH) a with
+ | Lt -> succ (log2 (pred a))
+ | _ -> Z0
+
+ module NZDivP =
+ struct
+
+ end
+
+ module Quot2Div =
+ struct
+ (** val div : z -> z -> z **)
+
+ let div =
+ quot
+
+ (** val modulo : z -> z -> z **)
+
+ let modulo =
+ rem
+ end
+
+ module NZQuot =
+ struct
+
+ end
+
+ (** val lcm : z -> z -> z **)
+
+ let lcm a b =
+ abs (mul a (div b (gcd a b)))
+
+ (** val b2z : bool -> z **)
+
+ let b2z = function
+ | true -> Zpos XH
+ | false -> Z0
+
+ (** val setbit : z -> z -> z **)
+
+ let setbit a n0 =
+ coq_lor a (shiftl (Zpos XH) n0)
+
+ (** val clearbit : z -> z -> z **)
+
+ let clearbit a n0 =
+ ldiff a (shiftl (Zpos XH) n0)
+
+ (** val lnot : z -> z **)
+
+ let lnot a =
+ pred (opp a)
+
+ (** val ones : z -> z **)
+
+ let ones n0 =
+ pred (shiftl (Zpos XH) n0)
+
+ module T =
+ struct
+
+ end
+
+ module ORev =
+ struct
+ type t = z
+ end
+
+ module MRev =
+ struct
+ (** val max : z -> z -> z **)
+
+ let max x y =
+ min y x
+ end
+
+ module MPRev = MaxLogicalProperties(ORev)(MRev)
+
+ module P =
+ struct
+ (** val max_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let max_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat n0 (max n0 m) __ (hl __)
+ | _ -> compat m (max n0 m) __ (hr __))
+
+ (** val max_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 x1 =
+ max_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val max_dec : z -> z -> bool **)
+
+ let max_dec n0 m =
+ max_case n0 m (fun x y _ h0 -> h0) true false
+
+ (** val min_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1)
+ -> 'a1 **)
+
+ let min_case_strong n0 m compat hl hr =
+ let c = compSpec2Type n0 m (compare n0 m) in
+ (match c with
+ | CompGtT -> compat m (min n0 m) __ (hr __)
+ | _ -> compat n0 (min n0 m) __ (hl __))
+
+ (** val min_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 x1 =
+ min_case_strong n0 m x (fun _ -> x0) (fun _ -> x1)
+
+ (** val min_dec : z -> z -> bool **)
+
+ let min_dec n0 m =
+ min_case n0 m (fun x y _ h0 -> h0) true false
+ end
+
+ (** val max_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let max_case_strong n0 m x x0 =
+ P.max_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val max_case : z -> z -> 'a1 -> 'a1 -> 'a1 **)
+
+ let max_case n0 m x x0 =
+ max_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val max_dec : z -> z -> bool **)
+
+ let max_dec =
+ P.max_dec
+
+ (** val min_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1 **)
+
+ let min_case_strong n0 m x x0 =
+ P.min_case_strong n0 m (fun x1 y _ x2 -> x2) x x0
+
+ (** val min_case : z -> z -> 'a1 -> 'a1 -> 'a1 **)
+
+ let min_case n0 m x x0 =
+ min_case_strong n0 m (fun _ -> x) (fun _ -> x0)
+
+ (** val min_dec : z -> z -> bool **)
+
+ let min_dec =
+ P.min_dec
+ end
-(** val zdiv : z -> z -> z **)
+(** val zeq_bool : z -> z -> bool **)
-let zdiv a b =
- let q0 , x = zdiv_eucl a b in q0
+let zeq_bool x y =
+ match Z.compare x y with
+ | Eq -> true
+ | _ -> false
type 'c pol =
- | Pc of 'c
- | Pinj of positive * 'c pol
- | PX of 'c pol * positive * 'c pol
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
(** val p0 : 'a1 -> 'a1 pol **)
@@ -457,49 +2796,51 @@ let p1 cI =
let rec peq ceqb p p' =
match p with
- | Pc c -> (match p' with
- | Pc c' -> ceqb c c'
- | _ -> false)
- | Pinj (j, q0) ->
- (match p' with
- | Pinj (j', q') ->
- (match pcompare j j' Eq with
- | Eq -> peq ceqb q0 q'
- | _ -> false)
- | _ -> false)
- | PX (p2, i, q0) ->
- (match p' with
- | PX (p'0, i', q') ->
- (match pcompare i i' Eq with
- | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
- | _ -> false)
- | _ -> false)
+ | Pc c ->
+ (match p' with
+ | Pc c' -> ceqb c c'
+ | _ -> false)
+ | Pinj (j, q0) ->
+ (match p' with
+ | Pinj (j', q') ->
+ (match Coq_Pos.compare j j' with
+ | Eq -> peq ceqb q0 q'
+ | _ -> false)
+ | _ -> false)
+ | PX (p2, i, q0) ->
+ (match p' with
+ | PX (p'0, i', q') ->
+ (match Coq_Pos.compare i i' with
+ | Eq -> if peq ceqb p2 p'0 then peq ceqb q0 q' else false
+ | _ -> false)
+ | _ -> false)
+
+(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **)
+
+let mkPinj j p = match p with
+| Pc c -> p
+| Pinj (j', q0) -> Pinj ((Coq_Pos.add j j'), q0)
+| PX (p2, p3, p4) -> Pinj (j, p)
(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)
let mkPinj_pred j p =
match j with
- | XI j0 -> Pinj ((XO j0), p)
- | XO j0 -> Pinj ((pdouble_minus_one j0), p)
- | XH -> p
+ | XI j0 -> Pinj ((XO j0), p)
+ | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p)
+ | XH -> p
(** val mkPX :
'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let mkPX cO ceqb p i q0 =
match p with
- | Pc c ->
- if ceqb c cO
- then (match q0 with
- | Pc c0 -> q0
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p2, p3, p4) -> Pinj (XH, q0))
- else PX (p, i, q0)
- | Pinj (p2, p3) -> PX (p, i, q0)
- | PX (p', i', q') ->
- if peq ceqb q' (p0 cO)
- then PX (p', (pplus i' i), q0)
- else PX (p, i, q0)
+ | Pc c -> if ceqb c cO then mkPinj XH q0 else PX (p, i, q0)
+ | Pinj (p2, p3) -> PX (p, i, q0)
+ | PX (p', i', q') ->
+ if peq ceqb q' (p0 cO)
+ then PX (p', (Coq_Pos.add i' i), q0)
+ else PX (p, i, q0)
(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)
@@ -514,202 +2855,155 @@ let mkX cO cI =
(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)
let rec popp copp = function
- | Pc c -> Pc (copp c)
- | Pinj (j, q0) -> Pinj (j, (popp copp q0))
- | PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
+| Pc c -> Pc (copp c)
+| Pinj (j, q0) -> Pinj (j, (popp copp q0))
+| PX (p2, i, q0) -> PX ((popp copp p2), i, (popp copp q0))
(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
let rec paddC cadd p c =
match p with
- | Pc c1 -> Pc (cadd c1 c)
- | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
- | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
+ | Pc c1 -> Pc (cadd c1 c)
+ | Pinj (j, q0) -> Pinj (j, (paddC cadd q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (paddC cadd q0 c))
(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)
let rec psubC csub p c =
match p with
- | Pc c1 -> Pc (csub c1 c)
- | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
- | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
+ | Pc c1 -> Pc (csub c1 c)
+ | Pinj (j, q0) -> Pinj (j, (psubC csub q0 c))
+ | PX (p2, i, q0) -> PX (p2, i, (psubC csub q0 c))
(** val paddI :
('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
positive -> 'a1 pol -> 'a1 pol **)
let rec paddI cadd pop q0 j = function
- | Pc c ->
- let p2 = paddC cadd q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pop q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pop (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = paddI cadd pop q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p2, i, q') ->
- (match j with
- | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
- | XO j0 -> PX (p2, i, (paddI cadd pop q0 (pdouble_minus_one j0) q'))
- | XH -> PX (p2, i, (pop q' q0)))
+| Pc c -> mkPinj j (paddC cadd q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (paddI cadd pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (paddI cadd pop q0 (XO j0) q'))
+ | XO j0 -> PX (p2, i, (paddI cadd pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
(** val psubI :
('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec psubI cadd copp pop q0 j = function
- | Pc c ->
- let p2 = paddC cadd (popp copp q0) c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pop q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pop (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = psubI cadd copp pop q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p2, i, q') ->
- (match j with
- | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
- | XO j0 -> PX (p2, i,
- (psubI cadd copp pop q0 (pdouble_minus_one j0) q'))
- | XH -> PX (p2, i, (pop q' q0)))
+| Pc c -> mkPinj j (paddC cadd (popp copp q0) c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pop q' q0)
+ | Zpos k -> mkPinj j (pop (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (psubI cadd copp pop q0 k q'))
+| PX (p2, i, q') ->
+ (match j with
+ | XI j0 -> PX (p2, i, (psubI cadd copp pop q0 (XO j0) q'))
+ | XO j0 ->
+ PX (p2, i, (psubI cadd copp pop q0 (Coq_Pos.pred_double j0) q'))
+ | XH -> PX (p2, i, (pop q' q0)))
(** val paddX :
'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
-> positive -> 'a1 pol -> 'a1 pol **)
let rec paddX cO ceqb pop p' i' p = match p with
- | Pc c -> PX (p', i', p)
- | Pinj (j, q') ->
- (match j with
- | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
- | XO j0 -> PX (p', i', (Pinj ((pdouble_minus_one j0), q')))
- | XH -> PX (p', i', q'))
- | PX (p2, i, q') ->
- (match zPminus i i' with
- | Z0 -> mkPX cO ceqb (pop p2 p') i q'
- | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
- | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
+| Pc c -> PX (p', i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX (p', i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')
(** val psubX :
'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec psubX cO copp ceqb pop p' i' p = match p with
- | Pc c -> PX ((popp copp p'), i', p)
- | Pinj (j, q') ->
- (match j with
- | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
- | XO j0 -> PX ((popp copp p'), i', (Pinj (
- (pdouble_minus_one j0), q')))
- | XH -> PX ((popp copp p'), i', q'))
- | PX (p2, i, q') ->
- (match zPminus i i' with
- | Z0 -> mkPX cO ceqb (pop p2 p') i q'
- | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
- | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
+| Pc c -> PX ((popp copp p'), i', p)
+| Pinj (j, q') ->
+ (match j with
+ | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
+ | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q')))
+ | XH -> PX ((popp copp p'), i', q'))
+| PX (p2, i, q') ->
+ (match Z.pos_sub i i' with
+ | Z0 -> mkPX cO ceqb (pop p2 p') i q'
+ | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
+ | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')
(** val padd :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
-> 'a1 pol **)
let rec padd cO cadd ceqb p = function
- | Pc c' -> paddC cadd p c'
- | Pinj (j', q') -> paddI cadd (fun x x0 -> padd cO cadd ceqb x x0) q' j' p
- | PX (p'0, i', q') ->
- (match p with
- | Pc c -> PX (p'0, i', (paddC cadd q' c))
- | Pinj (j, q0) ->
- (match j with
- | XI j0 -> PX (p'0, i',
- (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
- | XO j0 -> PX (p'0, i',
- (padd cO cadd ceqb (Pinj ((pdouble_minus_one j0), q0))
- q'))
- | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
- | PX (p2, i, q0) ->
- (match zPminus i i' with
- | Z0 ->
- mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i
- (padd cO cadd ceqb q0 q')
- | Zpos k ->
- mkPX cO ceqb
- (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
- (padd cO cadd ceqb q0 q')
- | Zneg k ->
- mkPX cO ceqb
- (paddX cO ceqb (fun x x0 -> padd cO cadd ceqb x x0) p'0
- k p2) i (padd cO cadd ceqb q0 q')))
+| Pc c' -> paddC cadd p c'
+| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX (p'0, i', (paddC cadd q' c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX (p'0, i',
+ (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'))
+ | XH -> PX (p'0, i', (padd cO cadd ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
+ (padd cO cadd ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i
+ (padd cO cadd ceqb q0 q')))
(** val psub :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
-> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
let rec psub cO cadd csub copp ceqb p = function
- | Pc c' -> psubC csub p c'
- | Pinj (j', q') ->
- psubI cadd copp (fun x x0 -> psub cO cadd csub copp ceqb x x0) q' j' p
- | PX (p'0, i', q') ->
- (match p with
- | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
- | Pinj (j, q0) ->
- (match j with
- | XI j0 -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
- | XO j0 -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb (Pinj
- ((pdouble_minus_one j0), q0)) q'))
- | XH -> PX ((popp copp p'0), i',
- (psub cO cadd csub copp ceqb q0 q')))
- | PX (p2, i, q0) ->
- (match zPminus i i' with
- | Z0 ->
- mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
- (psub cO cadd csub copp ceqb q0 q')
- | Zpos k ->
- mkPX cO ceqb
- (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
- i' (psub cO cadd csub copp ceqb q0 q')
- | Zneg k ->
- mkPX cO ceqb
- (psubX cO copp ceqb (fun x x0 ->
- psub cO cadd csub copp ceqb x x0) p'0 k p2) i
- (psub cO cadd csub copp ceqb q0 q')))
+| Pc c' -> psubC csub p c'
+| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p
+| PX (p'0, i', q') ->
+ (match p with
+ | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
+ | Pinj (j, q0) ->
+ (match j with
+ | XI j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((XO j0), q0)) q'))
+ | XO j0 ->
+ PX ((popp copp p'0), i',
+ (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q0))
+ q'))
+ | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q0 q')))
+ | PX (p2, i, q0) ->
+ (match Z.pos_sub i i' with
+ | Z0 ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
+ (psub cO cadd csub copp ceqb q0 q')
+ | Zpos k ->
+ mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
+ i' (psub cO cadd csub copp ceqb q0 q')
+ | Zneg k ->
+ mkPX cO ceqb
+ (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i
+ (psub cO cadd csub copp ceqb q0 q')))
(** val pmulC_aux :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
@@ -717,16 +3011,11 @@ let rec psub cO cadd csub copp ceqb p = function
let rec pmulC_aux cO cmul ceqb p c =
match p with
- | Pc c' -> Pc (cmul c' c)
- | Pinj (j, q0) ->
- let p2 = pmulC_aux cO cmul ceqb q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | PX (p2, i, q0) ->
- mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i
- (pmulC_aux cO cmul ceqb q0 c)
+ | Pc c' -> Pc (cmul c' c)
+ | Pinj (j, q0) -> mkPinj j (pmulC_aux cO cmul ceqb q0 c)
+ | PX (p2, i, q0) ->
+ mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i
+ (pmulC_aux cO cmul ceqb q0 c)
(** val pmulC :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
@@ -742,108 +3031,75 @@ let pmulC cO cI cmul ceqb p c =
'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)
let rec pmulI cO cI cmul ceqb pmul0 q0 j = function
- | Pc c ->
- let p2 = pmulC cO cI cmul ceqb q0 c in
- (match p2 with
- | Pc c0 -> p2
- | Pinj (j', q1) -> Pinj ((pplus j j'), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Pinj (j', q') ->
- (match zPminus j' j with
- | Z0 ->
- let p2 = pmul0 q' q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zpos k ->
- let p2 = pmul0 (Pinj (k, q')) q0 in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j, p2))
- | Zneg k ->
- let p2 = pmulI cO cI cmul ceqb pmul0 q0 k q' in
- (match p2 with
- | Pc c -> p2
- | Pinj (j'0, q1) -> Pinj ((pplus j' j'0), q1)
- | PX (p3, p4, p5) -> Pinj (j', p2)))
- | PX (p', i', q') ->
- (match j with
- | XI j' ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
- (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
- | XO j' ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
- (pmulI cO cI cmul ceqb pmul0 q0 (pdouble_minus_one j') q')
- | XH ->
- mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i'
- (pmul0 q' q0))
+| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q0 c)
+| Pinj (j', q') ->
+ (match Z.pos_sub j' j with
+ | Z0 -> mkPinj j (pmul0 q' q0)
+ | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q0)
+ | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q0 k q'))
+| PX (p', i', q') ->
+ (match j with
+ | XI j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (XO j') q')
+ | XO j' ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 j p') i'
+ (pmulI cO cI cmul ceqb pmul0 q0 (Coq_Pos.pred_double j') q')
+ | XH ->
+ mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q0 XH p') i' (pmul0 q' q0))
(** val pmul :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
- | Pc c -> pmulC cO cI cmul ceqb p c
- | Pinj (j', q') ->
- pmulI cO cI cmul ceqb (fun x x0 -> pmul cO cI cadd cmul ceqb x x0) q'
- j' p
- | PX (p', i', q') ->
- (match p with
- | Pc c -> pmulC cO cI cmul ceqb p'' c
- | Pinj (j, q0) ->
- mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i'
- (match j with
- | XI j0 ->
- pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
- | XO j0 ->
- pmul cO cI cadd cmul ceqb (Pinj
- ((pdouble_minus_one j0), q0)) q'
- | XH -> pmul cO cI cadd cmul ceqb q0 q')
- | PX (p2, i, q0) ->
- padd cO cadd ceqb
- (mkPX cO ceqb
- (padd cO cadd ceqb
- (mkPX cO ceqb (pmul cO cI cadd cmul ceqb p2 p') i (p0 cO))
- (pmul cO cI cadd cmul ceqb
- (match q0 with
- | Pc c -> q0
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p3, p4, p5) -> Pinj (XH, q0)) p')) i'
- (p0 cO))
- (mkPX cO ceqb
- (pmulI cO cI cmul ceqb (fun x x0 ->
- pmul cO cI cadd cmul ceqb x x0) q' XH p2) i
- (pmul cO cI cadd cmul ceqb q0 q')))
+| Pc c -> pmulC cO cI cmul ceqb p c
+| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p
+| PX (p', i', q') ->
+ (match p with
+ | Pc c -> pmulC cO cI cmul ceqb p'' c
+ | Pinj (j, q0) ->
+ let qQ' =
+ match j with
+ | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q0)) q'
+ | XO j0 ->
+ pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q0)) q'
+ | XH -> pmul cO cI cadd cmul ceqb q0 q'
+ in
+ mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ'
+ | PX (p2, i, q0) ->
+ let qQ' = pmul cO cI cadd cmul ceqb q0 q' in
+ let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in
+ let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q0) p' in
+ let pP' = pmul cO cI cadd cmul ceqb p2 p' in
+ padd cO cadd ceqb
+ (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i'
+ (p0 cO)) (mkPX cO ceqb pQ' i qQ'))
(** val psquare :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 pol -> 'a1 pol **)
let rec psquare cO cI cadd cmul ceqb = function
- | Pc c -> Pc (cmul c c)
- | Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
- | PX (p2, i, q0) ->
- mkPX cO ceqb
- (padd cO cadd ceqb
- (mkPX cO ceqb (psquare cO cI cadd cmul ceqb p2) i (p0 cO))
- (pmul cO cI cadd cmul ceqb p2
- (let p3 = pmulC cO cI cmul ceqb q0 (cadd cI cI) in
- match p3 with
- | Pc c -> p3
- | Pinj (j', q1) -> Pinj ((pplus XH j'), q1)
- | PX (p4, p5, p6) -> Pinj (XH, p3)))) i
- (psquare cO cI cadd cmul ceqb q0)
+| Pc c -> Pc (cmul c c)
+| Pinj (j, q0) -> Pinj (j, (psquare cO cI cadd cmul ceqb q0))
+| PX (p2, i, q0) ->
+ let twoPQ =
+ pmul cO cI cadd cmul ceqb p2
+ (mkPinj XH (pmulC cO cI cmul ceqb q0 (cadd cI cI)))
+ in
+ let q2 = psquare cO cI cadd cmul ceqb q0 in
+ let p3 = psquare cO cI cadd cmul ceqb p2 in
+ mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2
type 'c pExpr =
- | PEc of 'c
- | PEX of positive
- | PEadd of 'c pExpr * 'c pExpr
- | PEsub of 'c pExpr * 'c pExpr
- | PEmul of 'c pExpr * 'c pExpr
- | PEopp of 'c pExpr
- | PEpow of 'c pExpr * n
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)
@@ -856,68 +3112,78 @@ let mk_X cO cI j =
pol **)
let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
- | XI p3 ->
- subst_l
- (pmul cO cI cadd cmul ceqb
- (ppow_pos cO cI cadd cmul ceqb subst_l
- (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
- | XO p3 ->
- ppow_pos cO cI cadd cmul ceqb subst_l
- (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
- | XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
+| XI p3 ->
+ subst_l
+ (pmul cO cI cadd cmul ceqb
+ (ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
+| XO p3 ->
+ ppow_pos cO cI cadd cmul ceqb subst_l
+ (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
+| XH -> subst_l (pmul cO cI cadd cmul ceqb res p)
(** val ppow_N :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)
let ppow_N cO cI cadd cmul ceqb subst_l p = function
- | N0 -> p1 cI
- | Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
+| N0 -> p1 cI
+| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2
(** val norm_aux :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
let rec norm_aux cO cI cadd cmul csub copp ceqb = function
- | PEc c -> Pc c
- | PEX j -> mk_X cO cI j
- | PEadd (pe1, pe2) ->
- (match pe1 with
- | PEopp pe3 ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- (norm_aux cO cI cadd cmul csub copp ceqb pe3)
- | _ ->
- (match pe2 with
- | PEopp pe3 ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe3)
- | _ ->
- padd cO cadd ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
- | PEsub (pe1, pe2) ->
- psub cO cadd csub copp ceqb
- (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- | PEmul (pe1, pe2) ->
- pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- (norm_aux cO cI cadd cmul csub copp ceqb pe2)
- | PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
- | PEpow (pe1, n0) ->
- ppow_N cO cI cadd cmul ceqb (fun p -> p)
- (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
+| PEc c -> Pc c
+| PEX j -> mk_X cO cI j
+| PEadd (pe1, pe2) ->
+ (match pe1 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ (match pe2 with
+ | PEopp pe3 ->
+ psub cO cadd csub copp ceqb
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe3)
+ | _ ->
+ padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
+| PEsub (pe1, pe2) ->
+ psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEmul (pe1, pe2) ->
+ pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe2)
+| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
+| PEpow (pe1, n0) ->
+ ppow_N cO cI cadd cmul ceqb (fun p -> p)
+ (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0
type 'a bFormula =
- | TT
- | FF
- | X
- | A of 'a
- | Cj of 'a bFormula * 'a bFormula
- | D of 'a bFormula * 'a bFormula
- | N of 'a bFormula
- | I of 'a bFormula * 'a bFormula
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+(** val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula **)
+
+let rec map_bformula fct = function
+| TT -> TT
+| FF -> FF
+| X -> X
+| A a -> A (fct a)
+| Cj (f1, f2) -> Cj ((map_bformula fct f1), (map_bformula fct f2))
+| D (f1, f2) -> D ((map_bformula fct f1), (map_bformula fct f2))
+| N f0 -> N (map_bformula fct f0)
+| I (f1, f2) -> I ((map_bformula fct f1), (map_bformula fct f2))
type 'term' clause = 'term' list
@@ -931,19 +3197,61 @@ let tt =
(** val ff : 'a1 cnf **)
let ff =
- [] :: []
+ []::[]
+
+(** val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option **)
+
+let rec add_term unsat deduce t1 = function
+| [] ->
+ (match deduce t1 t1 with
+ | Some u -> if unsat u then None else Some (t1::[])
+ | None -> Some (t1::[]))
+| t'::cl0 ->
+ (match deduce t1 t' with
+ | Some u ->
+ if unsat u
+ then None
+ else (match add_term unsat deduce t1 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None)
+ | None ->
+ (match add_term unsat deduce t1 cl0 with
+ | Some cl' -> Some (t'::cl')
+ | None -> None))
+
+(** val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause
+ -> 'a1 clause option **)
+
+let rec or_clause unsat deduce cl1 cl2 =
+ match cl1 with
+ | [] -> Some cl2
+ | t1::cl ->
+ (match add_term unsat deduce t1 cl2 with
+ | Some cl' -> or_clause unsat deduce cl cl'
+ | None -> None)
-(** val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf **)
+(** val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf ->
+ 'a1 cnf **)
-let or_clause_cnf t0 f =
- map (fun x -> app t0 x) f
+let or_clause_cnf unsat deduce t1 f =
+ fold_right (fun e acc ->
+ match or_clause unsat deduce t1 e with
+ | Some cl -> cl::acc
+ | None -> acc) [] f
-(** val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
+(** val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
+ cnf **)
-let rec or_cnf f f' =
+let rec or_cnf unsat deduce f f' =
match f with
- | [] -> tt
- | e :: rst -> app (or_cnf rst f') (or_clause_cnf e f')
+ | [] -> tt
+ | e::rst ->
+ app (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f')
(** val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf **)
@@ -951,133 +3259,168 @@ let and_cnf f1 f2 =
app f1 f2
(** val xcnf :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
-
-let rec xcnf normalise0 negate0 pol0 = function
- | TT -> if pol0 then tt else ff
- | FF -> if pol0 then ff else tt
- | X -> ff
- | A x -> if pol0 then normalise0 x else negate0 x
- | Cj (e1, e2) ->
- if pol0
- then and_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- else or_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- | D (e1, e2) ->
- if pol0
- then or_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- else and_cnf (xcnf normalise0 negate0 pol0 e1)
- (xcnf normalise0 negate0 pol0 e2)
- | N e -> xcnf normalise0 negate0 (negb pol0) e
- | I (e1, e2) ->
- if pol0
- then or_cnf (xcnf normalise0 negate0 (negb pol0) e1)
- (xcnf normalise0 negate0 pol0 e2)
- else and_cnf (xcnf normalise0 negate0 (negb pol0) e1)
- (xcnf normalise0 negate0 pol0 e2)
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf **)
+
+let rec xcnf unsat deduce normalise0 negate0 pol0 = function
+| TT -> if pol0 then tt else ff
+| FF -> if pol0 then ff else tt
+| X -> ff
+| A x -> if pol0 then normalise0 x else negate0 x
+| Cj (e1, e2) ->
+ if pol0
+ then and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| D (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 pol0 e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+| N e -> xcnf unsat deduce normalise0 negate0 (negb pol0) e
+| I (e1, e2) ->
+ if pol0
+ then or_cnf unsat deduce
+ (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
+ else and_cnf (xcnf unsat deduce normalise0 negate0 (negb pol0) e1)
+ (xcnf unsat deduce normalise0 negate0 pol0 e2)
(** val cnf_checker :
('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool **)
let rec cnf_checker checker f l =
match f with
- | [] -> true
- | e :: f0 ->
- (match l with
- | [] -> false
- | c :: l0 ->
- if checker e c then cnf_checker checker f0 l0 else false)
+ | [] -> true
+ | e::f0 ->
+ (match l with
+ | [] -> false
+ | c::l0 -> if checker e c then cnf_checker checker f0 l0 else false)
(** val tauto_checker :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1
- bFormula -> 'a3 list -> bool **)
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1
+ -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list ->
+ bool **)
+
+let tauto_checker unsat deduce normalise0 negate0 checker f w =
+ cnf_checker checker (xcnf unsat deduce normalise0 negate0 true f) w
+
+(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cneqb ceqb x y =
+ negb (ceqb x y)
-let tauto_checker normalise0 negate0 checker f w =
- cnf_checker checker (xcnf normalise0 negate0 true f) w
+(** val cltb :
+ ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)
+
+let cltb ceqb cleb x y =
+ (&&) (cleb x y) (cneqb ceqb x y)
type 'c polC = 'c pol
type op1 =
- | Equal
- | NonEqual
- | Strict
- | NonStrict
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
-type 'c nFormula = 'c polC * op1
+(** val opMult : op1 -> op1 -> op1 option **)
+
+let opMult o o' =
+ match o with
+ | Equal -> Some Equal
+ | NonEqual ->
+ (match o' with
+ | Strict -> None
+ | NonStrict -> None
+ | x -> Some x)
+ | Strict ->
+ (match o' with
+ | NonEqual -> None
+ | _ -> Some o')
+ | NonStrict ->
+ (match o' with
+ | NonEqual -> None
+ | Strict -> Some NonStrict
+ | x -> Some x)
(** val opAdd : op1 -> op1 -> op1 option **)
let opAdd o o' =
match o with
- | Equal -> Some o'
- | NonEqual -> (match o' with
- | Equal -> Some NonEqual
- | _ -> None)
- | Strict -> (match o' with
- | NonEqual -> None
- | _ -> Some Strict)
- | NonStrict ->
- (match o' with
- | NonEqual -> None
- | Strict -> Some Strict
- | _ -> Some NonStrict)
+ | Equal -> Some o'
+ | NonEqual ->
+ (match o' with
+ | Equal -> Some NonEqual
+ | _ -> None)
+ | Strict ->
+ (match o' with
+ | NonEqual -> None
+ | _ -> Some Strict)
+ | NonStrict ->
+ (match o' with
+ | Equal -> Some NonStrict
+ | NonEqual -> None
+ | x -> Some x)
type 'c psatz =
- | PsatzIn of nat
- | PsatzSquare of 'c polC
- | PsatzMulC of 'c polC * 'c psatz
- | PsatzMulE of 'c psatz * 'c psatz
- | PsatzAdd of 'c psatz * 'c psatz
- | PsatzC of 'c
- | PsatzZ
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **)
+
+let map_option f = function
+| Some x -> f x
+| None -> None
+
+(** val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **)
+
+let map_option2 f o o' =
+ match o with
+ | Some x ->
+ (match o' with
+ | Some x' -> f x x'
+ | None -> None)
+ | None -> None
(** val pexpr_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)
let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
- | ef , o ->
- (match o with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef) , Equal)
- | _ -> None)
+| ef,o ->
+ (match o with
+ | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef),Equal)
+ | _ -> None)
(** val nformula_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)
let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
- let e1 , o1 = f1 in
- let e2 , o2 = f2 in
- (match o1 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual ->
- (match o2 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) ,
- NonEqual)
- | _ -> None)
- | Strict ->
- (match o2 with
- | NonEqual -> None
- | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , o2))
- | NonStrict ->
- (match o2 with
- | Equal -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , Equal)
- | NonEqual -> None
- | _ -> Some ((pmul cO cI cplus ctimes ceqb e1 e2) , NonStrict)))
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2),x))
+ (opMult o1 o2)
(** val nformula_plus_nformula :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
nFormula -> 'a1 nFormula option **)
let nformula_plus_nformula cO cplus ceqb f1 f2 =
- let e1 , o1 = f1 in
- let e2 , o2 = f2 in
- (match opAdd o1 o2 with
- | Some x -> Some ((padd cO cplus ceqb e1 e2) , x)
- | None -> None)
+ let e1,o1 = f1 in
+ let e2,o2 = f2 in
+ map_option (fun x -> Some ((padd cO cplus ceqb e1 e2),x)) (opAdd o1 o2)
(** val eval_Psatz :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
@@ -1085,47 +3428,36 @@ let nformula_plus_nformula cO cplus ceqb f1 f2 =
nFormula option **)
let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
- | PsatzIn n0 -> Some (nth n0 l ((Pc cO) , Equal))
- | PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0) , NonStrict)
- | PsatzMulC (re, e0) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l e0 with
- | Some x -> pexpr_times_nformula cO cI cplus ctimes ceqb re x
- | None -> None)
- | PsatzMulE (f1, f2) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
- | Some x ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
- | Some x' ->
- nformula_times_nformula cO cI cplus ctimes ceqb x x'
- | None -> None)
- | None -> None)
- | PsatzAdd (f1, f2) ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f1 with
- | Some x ->
- (match eval_Psatz cO cI cplus ctimes ceqb cleb l f2 with
- | Some x' -> nformula_plus_nformula cO cplus ceqb x x'
- | None -> None)
- | None -> None)
- | PsatzC c ->
- if (&&) (cleb cO c) (negb (ceqb cO c))
- then Some ((Pc c) , Strict)
- else None
- | PsatzZ -> Some ((Pc cO) , Equal)
+| PsatzIn n0 -> Some (nth n0 l ((Pc cO),Equal))
+| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0),NonStrict)
+| PsatzMulC (re, e0) ->
+ map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l e0)
+| PsatzMulE (f1, f2) ->
+ map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzAdd (f1, f2) ->
+ map_option2 (nformula_plus_nformula cO cplus ceqb)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
+ (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
+| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c),Strict) else None
+| PsatzZ -> Some ((Pc cO),Equal)
(** val check_inconsistent :
'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
bool **)
let check_inconsistent cO ceqb cleb = function
- | e , op ->
- (match e with
- | Pc c ->
- (match op with
- | Equal -> negb (ceqb c cO)
- | NonEqual -> ceqb c cO
- | Strict -> cleb c cO
- | NonStrict -> (&&) (cleb c cO) (negb (ceqb c cO)))
- | _ -> false)
+| e,op ->
+ (match e with
+ | Pc c ->
+ (match op with
+ | Equal -> cneqb ceqb c cO
+ | NonEqual -> ceqb c cO
+ | Strict -> cleb c cO
+ | NonStrict -> cltb ceqb cleb c cO)
+ | _ -> false)
(** val check_normalised_formulas :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
@@ -1134,18 +3466,18 @@ let check_inconsistent cO ceqb cleb = function
let check_normalised_formulas cO cI cplus ctimes ceqb cleb l cm =
match eval_Psatz cO cI cplus ctimes ceqb cleb l cm with
- | Some f -> check_inconsistent cO ceqb cleb f
- | None -> false
+ | Some f -> check_inconsistent cO ceqb cleb f
+ | None -> false
type op2 =
- | OpEq
- | OpNEq
- | OpLe
- | OpGe
- | OpLt
- | OpGt
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
-type 'c formula = { flhs : 'c pExpr; fop : op2; frhs : 'c pExpr }
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
(** val flhs : 'a1 formula -> 'a1 pExpr **)
@@ -1163,157 +3495,170 @@ let frhs x = x.frhs
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)
-let norm cO cI cplus ctimes cminus copp ceqb pe =
- norm_aux cO cI cplus ctimes cminus copp ceqb pe
+let norm cO cI cplus ctimes cminus copp ceqb =
+ norm_aux cO cI cplus ctimes cminus copp ceqb
(** val psub0 :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
-> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)
-let psub0 cO cplus cminus copp ceqb p p' =
- psub cO cplus cminus copp ceqb p p'
+let psub0 cO cplus cminus copp ceqb =
+ psub cO cplus cminus copp ceqb
(** val padd0 :
'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
-> 'a1 pol **)
-let padd0 cO cplus ceqb p p' =
- padd cO cplus ceqb p p'
+let padd0 cO cplus ceqb =
+ padd cO cplus ceqb
(** val xnormalise :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula list **)
-let xnormalise cO cI cplus ctimes cminus copp ceqb t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnormalise cO cI cplus ctimes cminus copp ceqb t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
(match o with
- | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
- (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
- | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
- | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: []
- | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
- | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
- []
- | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
- [])
+ | OpEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0
+ lhs0),Strict)::[])
+ | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[])
(** val cnf_normalise :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula cnf **)
-let cnf_normalise cO cI cplus ctimes cminus copp ceqb t0 =
- map (fun x -> x :: []) (xnormalise cO cI cplus ctimes cminus copp ceqb t0)
+let cnf_normalise cO cI cplus ctimes cminus copp ceqb t1 =
+ map (fun x -> x::[]) (xnormalise cO cI cplus ctimes cminus copp ceqb t1)
(** val xnegate :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula list **)
-let xnegate cO cI cplus ctimes cminus copp ceqb t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnegate cO cI cplus ctimes cminus copp ceqb t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm cO cI cplus ctimes cminus copp ceqb lhs in
let rhs0 = norm cO cI cplus ctimes cminus copp ceqb rhs in
(match o with
- | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Equal) :: []
- | OpNEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) ::
- (((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: [])
- | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , NonStrict) ::
- []
- | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , NonStrict) ::
- []
- | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0) , Strict) :: []
- | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0) , Strict) :: [])
+ | OpEq -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::(((psub0 cO cplus
+ cminus copp
+ ceqb rhs0
+ lhs0),Strict)::[])
+ | OpLe -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub0 cO cplus cminus copp ceqb rhs0 lhs0),Strict)::[]
+ | OpGt -> ((psub0 cO cplus cminus copp ceqb lhs0 rhs0),Strict)::[])
(** val cnf_negate :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
-> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 formula -> 'a1
nFormula cnf **)
-let cnf_negate cO cI cplus ctimes cminus copp ceqb t0 =
- map (fun x -> x :: []) (xnegate cO cI cplus ctimes cminus copp ceqb t0)
+let cnf_negate cO cI cplus ctimes cminus copp ceqb t1 =
+ map (fun x -> x::[]) (xnegate cO cI cplus ctimes cminus copp ceqb t1)
(** val xdenorm : positive -> 'a1 pol -> 'a1 pExpr **)
let rec xdenorm jmp = function
- | Pc c -> PEc c
- | Pinj (j, p2) -> xdenorm (pplus j jmp) p2
- | PX (p2, j, q0) -> PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp),
- (Npos j))))), (xdenorm (psucc jmp) q0))
+| Pc c -> PEc c
+| Pinj (j, p2) -> xdenorm (Coq_Pos.add j jmp) p2
+| PX (p2, j, q0) ->
+ PEadd ((PEmul ((xdenorm jmp p2), (PEpow ((PEX jmp), (Npos j))))),
+ (xdenorm (Coq_Pos.succ jmp) q0))
(** val denorm : 'a1 pol -> 'a1 pExpr **)
let denorm p =
xdenorm XH p
+(** val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr **)
+
+let rec map_PExpr c_of_S = function
+| PEc c -> PEc (c_of_S c)
+| PEX p -> PEX p
+| PEadd (e1, e2) -> PEadd ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEsub (e1, e2) -> PEsub ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEmul (e1, e2) -> PEmul ((map_PExpr c_of_S e1), (map_PExpr c_of_S e2))
+| PEopp e0 -> PEopp (map_PExpr c_of_S e0)
+| PEpow (e0, n0) -> PEpow ((map_PExpr c_of_S e0), n0)
+
+(** val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula **)
+
+let map_Formula c_of_S f =
+ let { flhs = l; fop = o; frhs = r } = f in
+ { flhs = (map_PExpr c_of_S l); fop = o; frhs = (map_PExpr c_of_S r) }
+
(** val simpl_cone :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
'a1 psatz **)
let simpl_cone cO cI ctimes ceqb e = match e with
- | PsatzSquare t0 ->
- (match t0 with
- | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
- | _ -> PsatzSquare t0)
- | PsatzMulE (t1, t2) ->
- (match t1 with
- | PsatzMulE (x, x0) ->
- (match x with
- | PsatzC p2 ->
- (match t2 with
- | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
- | PsatzZ -> PsatzZ
- | _ -> e)
- | _ ->
- (match x0 with
- | PsatzC p2 ->
- (match t2 with
- | PsatzC c -> PsatzMulE ((PsatzC
- (ctimes c p2)), x)
- | PsatzZ -> PsatzZ
- | _ -> e)
- | _ ->
- (match t2 with
- | PsatzC c ->
- if ceqb cI c
- then t1
- else PsatzMulE (t1, t2)
- | PsatzZ -> PsatzZ
- | _ -> e)))
- | PsatzC c ->
- (match t2 with
- | PsatzMulE (x, x0) ->
- (match x with
- | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
- | _ ->
- (match x0 with
- | PsatzC p2 -> PsatzMulE ((PsatzC
- (ctimes c p2)), x)
- | _ ->
- if ceqb cI c
- then t2
- else PsatzMulE (t1, t2)))
- | PsatzAdd (y, z0) -> PsatzAdd ((PsatzMulE ((PsatzC c), y)),
- (PsatzMulE ((PsatzC c), z0)))
- | PsatzC c0 -> PsatzC (ctimes c c0)
- | PsatzZ -> PsatzZ
- | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+| PsatzSquare t1 ->
+ (match t1 with
+ | Pc c -> if ceqb cO c then PsatzZ else PsatzC (ctimes c c)
+ | _ -> PsatzSquare t1)
+| PsatzMulE (t1, t2) ->
+ (match t1 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
| PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match x0 with
+ | PsatzC p2 ->
+ (match t2 with
+ | PsatzC c -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | PsatzZ -> PsatzZ
+ | _ -> e)
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e)))
+ | PsatzC c ->
+ (match t2 with
+ | PsatzMulE (x, x0) ->
+ (match x with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x0)
| _ ->
- (match t2 with
- | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
- | PsatzZ -> PsatzZ
- | _ -> e))
- | PsatzAdd (t1, t2) ->
- (match t1 with
- | PsatzZ -> t2
- | _ -> (match t2 with
- | PsatzZ -> t1
- | _ -> PsatzAdd (t1, t2)))
- | _ -> e
+ (match x0 with
+ | PsatzC p2 -> PsatzMulE ((PsatzC (ctimes c p2)), x)
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2)))
+ | PsatzAdd (y, z0) ->
+ PsatzAdd ((PsatzMulE ((PsatzC c), y)), (PsatzMulE ((PsatzC c), z0)))
+ | PsatzC c0 -> PsatzC (ctimes c c0)
+ | PsatzZ -> PsatzZ
+ | _ -> if ceqb cI c then t2 else PsatzMulE (t1, t2))
+ | PsatzZ -> PsatzZ
+ | _ ->
+ (match t2 with
+ | PsatzC c -> if ceqb cI c then t1 else PsatzMulE (t1, t2)
+ | PsatzZ -> PsatzZ
+ | _ -> e))
+| PsatzAdd (t1, t2) ->
+ (match t1 with
+ | PsatzZ -> t2
+ | _ ->
+ (match t2 with
+ | PsatzZ -> t1
+ | _ -> PsatzAdd (t1, t2)))
+| _ -> e
type q = { qnum : z; qden : positive }
@@ -1328,28 +3673,28 @@ let qden x = x.qden
(** val qeq_bool : q -> q -> bool **)
let qeq_bool x y =
- zeq_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+ zeq_bool (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
(** val qle_bool : q -> q -> bool **)
let qle_bool x y =
- zle_bool (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden))
+ Z.leb (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden))
(** val qplus : q -> q -> q **)
let qplus x y =
- { qnum = (zplus (zmult x.qnum (Zpos y.qden)) (zmult y.qnum (Zpos x.qden)));
- qden = (pmult x.qden y.qden) }
+ { qnum = (Z.add (Z.mul x.qnum (Zpos y.qden)) (Z.mul y.qnum (Zpos x.qden)));
+ qden = (Coq_Pos.mul x.qden y.qden) }
(** val qmult : q -> q -> q **)
let qmult x y =
- { qnum = (zmult x.qnum y.qnum); qden = (pmult x.qden y.qden) }
+ { qnum = (Z.mul x.qnum y.qnum); qden = (Coq_Pos.mul x.qden y.qden) }
(** val qopp : q -> q **)
let qopp x =
- { qnum = (zopp x.qnum); qden = x.qden }
+ { qnum = (Z.opp x.qnum); qden = x.qden }
(** val qminus : q -> q -> q **)
@@ -1360,9 +3705,9 @@ let qminus x y =
let qinv x =
match x.qnum with
- | Z0 -> { qnum = Z0; qden = XH }
- | Zpos p -> { qnum = (Zpos x.qden); qden = p }
- | Zneg p -> { qnum = (Zneg x.qden); qden = p }
+ | Z0 -> { qnum = Z0; qden = XH }
+ | Zpos p -> { qnum = (Zpos x.qden); qden = p }
+ | Zneg p -> { qnum = (Zneg x.qden); qden = p }
(** val qpower_positive : q -> positive -> q **)
@@ -1372,332 +3717,330 @@ let qpower_positive q0 p =
(** val qpower : q -> z -> q **)
let qpower q0 = function
- | Z0 -> { qnum = (Zpos XH); qden = XH }
- | Zpos p -> qpower_positive q0 p
- | Zneg p -> qinv (qpower_positive q0 p)
+| Z0 -> { qnum = (Zpos XH); qden = XH }
+| Zpos p -> qpower_positive q0 p
+| Zneg p -> qinv (qpower_positive q0 p)
-(** val pgcdn : nat -> positive -> positive -> positive **)
+type 'a t0 =
+| Empty
+| Leaf of 'a
+| Node of 'a t0 * 'a * 'a t0
-let rec pgcdn n0 a b =
- match n0 with
- | O -> XH
- | S n1 ->
- (match a with
- | XI a' ->
- (match b with
- | XI b' ->
- (match pcompare a' b' Eq with
- | Eq -> a
- | Lt -> pgcdn n1 (pminus b' a') a
- | Gt -> pgcdn n1 (pminus a' b') b)
- | XO b0 -> pgcdn n1 a b0
- | XH -> XH)
- | XO a0 ->
- (match b with
- | XI p -> pgcdn n1 a0 b
- | XO b0 -> XO (pgcdn n1 a0 b0)
- | XH -> XH)
- | XH -> XH)
-
-(** val pgcd : positive -> positive -> positive **)
-
-let pgcd a b =
- pgcdn (plus (psize a) (psize b)) a b
-
-(** val zgcd : z -> z -> z **)
-
-let zgcd a b =
- match a with
- | Z0 -> zabs b
- | Zpos a0 ->
- (match b with
- | Z0 -> zabs a
- | Zpos b0 -> Zpos (pgcd a0 b0)
- | Zneg b0 -> Zpos (pgcd a0 b0))
- | Zneg a0 ->
- (match b with
- | Z0 -> zabs a
- | Zpos b0 -> Zpos (pgcd a0 b0)
- | Zneg b0 -> Zpos (pgcd a0 b0))
-
-type 'a t =
- | Empty
- | Leaf of 'a
- | Node of 'a t * 'a * 'a t
-
-(** val find : 'a1 -> 'a1 t -> positive -> 'a1 **)
+(** val find : 'a1 -> 'a1 t0 -> positive -> 'a1 **)
let rec find default vm p =
match vm with
- | Empty -> default
- | Leaf i -> i
- | Node (l, e, r) ->
- (match p with
- | XI p2 -> find default r p2
- | XO p2 -> find default l p2
- | XH -> e)
+ | Empty -> default
+ | Leaf i -> i
+ | Node (l, e, r) ->
+ (match p with
+ | XI p2 -> find default r p2
+ | XO p2 -> find default l p2
+ | XH -> e)
type zWitness = z psatz
(** val zWeakChecker : z nFormula list -> z psatz -> bool **)
-let zWeakChecker x x0 =
- check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let zWeakChecker =
+ check_normalised_formulas Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
(** val psub1 : z pol -> z pol -> z pol **)
-let psub1 p p' =
- psub0 Z0 zplus zminus zopp zeq_bool p p'
+let psub1 =
+ psub0 Z0 Z.add Z.sub Z.opp zeq_bool
(** val padd1 : z pol -> z pol -> z pol **)
-let padd1 p p' =
- padd0 Z0 zplus zeq_bool p p'
+let padd1 =
+ padd0 Z0 Z.add zeq_bool
(** val norm0 : z pExpr -> z pol **)
-let norm0 pe =
- norm Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool pe
+let norm0 =
+ norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool
(** val xnormalise0 : z formula -> z nFormula list **)
-let xnormalise0 t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnormalise0 t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm0 lhs in
let rhs0 = norm0 rhs in
(match o with
- | OpEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
- (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
- | OpNEq -> ((psub1 lhs0 rhs0) , Equal) :: []
- | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpLt -> ((psub1 lhs0 rhs0) , NonStrict) :: []
- | OpGt -> ((psub1 rhs0 lhs0) , NonStrict) :: [])
+ | OpEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpNEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpLe -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGe -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpLt -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpGt -> ((psub1 rhs0 lhs0),NonStrict)::[])
(** val normalise : z formula -> z nFormula cnf **)
-let normalise t0 =
- map (fun x -> x :: []) (xnormalise0 t0)
+let normalise t1 =
+ map (fun x -> x::[]) (xnormalise0 t1)
(** val xnegate0 : z formula -> z nFormula list **)
-let xnegate0 t0 =
- let { flhs = lhs; fop = o; frhs = rhs } = t0 in
+let xnegate0 t1 =
+ let { flhs = lhs; fop = o; frhs = rhs } = t1 in
let lhs0 = norm0 lhs in
let rhs0 = norm0 rhs in
(match o with
- | OpEq -> ((psub1 lhs0 rhs0) , Equal) :: []
- | OpNEq -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) ::
- (((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
- | OpLe -> ((psub1 rhs0 lhs0) , NonStrict) :: []
- | OpGe -> ((psub1 lhs0 rhs0) , NonStrict) :: []
- | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))) , NonStrict) :: []
- | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))) , NonStrict) :: [])
+ | OpEq -> ((psub1 lhs0 rhs0),Equal)::[]
+ | OpNEq ->
+ ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::(((psub1 rhs0
+ (padd1 lhs0
+ (Pc (Zpos
+ XH)))),NonStrict)::[])
+ | OpLe -> ((psub1 rhs0 lhs0),NonStrict)::[]
+ | OpGe -> ((psub1 lhs0 rhs0),NonStrict)::[]
+ | OpLt -> ((psub1 rhs0 (padd1 lhs0 (Pc (Zpos XH)))),NonStrict)::[]
+ | OpGt -> ((psub1 lhs0 (padd1 rhs0 (Pc (Zpos XH)))),NonStrict)::[])
(** val negate : z formula -> z nFormula cnf **)
-let negate t0 =
- map (fun x -> x :: []) (xnegate0 t0)
+let negate t1 =
+ map (fun x -> x::[]) (xnegate0 t1)
+
+(** val zunsat : z nFormula -> bool **)
+
+let zunsat =
+ check_inconsistent Z0 zeq_bool Z.leb
+
+(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **)
+
+let zdeduce =
+ nformula_plus_nformula Z0 Z.add zeq_bool
(** val ceiling : z -> z -> z **)
let ceiling a b =
- let q0 , r = zdiv_eucl a b in
+ let q0,r = Z.div_eucl a b in
(match r with
- | Z0 -> q0
- | _ -> zplus q0 (Zpos XH))
+ | Z0 -> q0
+ | _ -> Z.add q0 (Zpos XH))
type zArithProof =
- | DoneProof
- | RatProof of zWitness * zArithProof
- | CutProof of zWitness * zArithProof
- | EnumProof of zWitness * zWitness * zArithProof list
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
(** val zgcdM : z -> z -> z **)
let zgcdM x y =
- zmax (zgcd x y) (Zpos XH)
+ Z.max (Z.gcd x y) (Zpos XH)
-(** val zgcd_pol : z polC -> z * z **)
+(** val zgcd_pol : z polC -> z * z **)
let rec zgcd_pol = function
- | Pc c -> Z0 , c
- | Pinj (p2, p3) -> zgcd_pol p3
- | PX (p2, p3, q0) ->
- let g1 , c1 = zgcd_pol p2 in
- let g2 , c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2) , c2
+| Pc c -> Z0,c
+| Pinj (p2, p3) -> zgcd_pol p3
+| PX (p2, p3, q0) ->
+ let g1,c1 = zgcd_pol p2 in
+ let g2,c2 = zgcd_pol q0 in (zgcdM (zgcdM g1 c1) g2),c2
(** val zdiv_pol : z polC -> z -> z polC **)
let rec zdiv_pol p x =
match p with
- | Pc c -> Pc (zdiv c x)
- | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
- | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
+ | Pc c -> Pc (Z.div c x)
+ | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
+ | PX (p2, j, q0) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q0 x))
-(** val makeCuttingPlane : z polC -> z polC * z **)
+(** val makeCuttingPlane : z polC -> z polC * z **)
let makeCuttingPlane p =
- let g , c = zgcd_pol p in
- if zgt_bool g Z0
- then (zdiv_pol (psubC zminus p c) g) , (zopp (ceiling (zopp c) g))
- else p , Z0
+ let g,c = zgcd_pol p in
+ if Z.gtb g Z0
+ then (zdiv_pol (psubC Z.sub p c) g),(Z.opp (ceiling (Z.opp c) g))
+ else p,Z0
-(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
+(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)
let genCuttingPlane = function
- | e , op ->
- (match op with
- | Equal ->
- let g , c = zgcd_pol e in
- if (&&) (zgt_bool g Z0)
- ((&&) (zgt_bool c Z0) (negb (zeq_bool (zgcd g c) g)))
- then None
- else Some ((e , Z0) , op)
- | NonEqual -> Some ((e , Z0) , op)
- | Strict ->
- let p , c = makeCuttingPlane (psubC zminus e (Zpos XH)) in
- Some ((p , c) , NonStrict)
- | NonStrict ->
- let p , c = makeCuttingPlane e in Some ((p , c) , NonStrict))
-
-(** val nformula_of_cutting_plane :
- ((z polC * z) * op1) -> z nFormula **)
+| e,op ->
+ (match op with
+ | Equal ->
+ let g,c = zgcd_pol e in
+ if (&&) (Z.gtb g Z0)
+ ((&&) (negb (zeq_bool c Z0)) (negb (zeq_bool (Z.gcd g c) g)))
+ then None
+ else Some ((makeCuttingPlane e),Equal)
+ | NonEqual -> Some ((e,Z0),op)
+ | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))),NonStrict)
+ | NonStrict -> Some ((makeCuttingPlane e),NonStrict))
+
+(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **)
let nformula_of_cutting_plane = function
- | e_z , o -> let e , z0 = e_z in (padd1 e (Pc z0)) , o
+| e_z,o -> let e,z0 = e_z in (padd1 e (Pc z0)),o
(** val is_pol_Z0 : z polC -> bool **)
let is_pol_Z0 = function
- | Pc z0 -> (match z0 with
- | Z0 -> true
- | _ -> false)
- | _ -> false
+| Pc z0 ->
+ (match z0 with
+ | Z0 -> true
+ | _ -> false)
+| _ -> false
(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)
-let eval_Psatz0 x x0 =
- eval_Psatz Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let eval_Psatz0 =
+ eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb
-(** val check_inconsistent0 : z nFormula -> bool **)
+(** val valid_cut_sign : op1 -> bool **)
-let check_inconsistent0 f =
- check_inconsistent Z0 zeq_bool zle_bool f
+let valid_cut_sign = function
+| Equal -> true
+| NonStrict -> true
+| _ -> false
(** val zChecker : z nFormula list -> zArithProof -> bool **)
let rec zChecker l = function
- | DoneProof -> false
- | RatProof (w, pf0) ->
- (match eval_Psatz0 l w with
- | Some f ->
- if check_inconsistent0 f then true else zChecker (f :: l) pf0
- | None -> false)
- | CutProof (w, pf0) ->
- (match eval_Psatz0 l w with
- | Some f ->
- (match genCuttingPlane f with
- | Some cp ->
- zChecker ((nformula_of_cutting_plane cp) :: l) pf0
- | None -> true)
- | None -> false)
- | EnumProof (w1, w2, pf0) ->
- (match eval_Psatz0 l w1 with
- | Some f1 ->
- (match eval_Psatz0 l w2 with
- | Some f2 ->
- (match genCuttingPlane f1 with
- | Some p ->
- let p2 , op3 = p in
- let e1 , z1 = p2 in
- (match genCuttingPlane f2 with
- | Some p3 ->
- let p4 , op4 = p3 in
- let e2 , z2 = p4 in
- (match op3 with
- | NonStrict ->
- (match op4 with
- | NonStrict ->
- if is_pol_Z0 (padd1 e1 e2)
- then
- let rec label pfs lb ub =
-
- match pfs with
- |
- [] -> zgt_bool lb ub
- |
- pf1 :: rsr ->
- (&&)
- (zChecker
- (((psub1 e1 (Pc lb)) ,
- Equal) :: l) pf1)
- (label rsr
- (zplus lb (Zpos XH)) ub)
- in label pf0 (zopp z1) z2
- else false
- | _ -> false)
- | _ -> false)
- | None -> false)
- | None -> false)
- | None -> false)
- | None -> false)
+| DoneProof -> false
+| RatProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f -> if zunsat f then true else zChecker (f::l) pf0
+ | None -> false)
+| CutProof (w, pf0) ->
+ (match eval_Psatz0 l w with
+ | Some f ->
+ (match genCuttingPlane f with
+ | Some cp -> zChecker ((nformula_of_cutting_plane cp)::l) pf0
+ | None -> true)
+ | None -> false)
+| EnumProof (w1, w2, pf0) ->
+ (match eval_Psatz0 l w1 with
+ | Some f1 ->
+ (match eval_Psatz0 l w2 with
+ | Some f2 ->
+ (match genCuttingPlane f1 with
+ | Some p ->
+ let p2,op3 = p in
+ let e1,z1 = p2 in
+ (match genCuttingPlane f2 with
+ | Some p3 ->
+ let p4,op4 = p3 in
+ let e2,z2 = p4 in
+ if (&&) ((&&) (valid_cut_sign op3) (valid_cut_sign op4))
+ (is_pol_Z0 (padd1 e1 e2))
+ then let rec label pfs lb ub =
+ match pfs with
+ | [] -> Z.gtb lb ub
+ | pf1::rsr ->
+ (&&) (zChecker (((psub1 e1 (Pc lb)),Equal)::l) pf1)
+ (label rsr (Z.add lb (Zpos XH)) ub)
+ in label pf0 (Z.opp z1) z2
+ else false
+ | None -> true)
+ | None -> true)
+ | None -> false)
+ | None -> false)
(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)
let zTautoChecker f w =
- tauto_checker normalise negate zChecker f w
-
-(** val n_of_Z : z -> n **)
-
-let n_of_Z = function
- | Zpos p -> Npos p
- | _ -> N0
+ tauto_checker zunsat zdeduce normalise negate zChecker f w
type qWitness = q psatz
(** val qWeakChecker : q nFormula list -> q psatz -> bool **)
-let qWeakChecker x x0 =
+let qWeakChecker =
check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
- qden = XH } qplus qmult qeq_bool qle_bool x x0
+ qden = XH } qplus qmult qeq_bool qle_bool
(** val qnormalise : q formula -> q nFormula cnf **)
-let qnormalise t0 =
+let qnormalise =
cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
- qplus qmult qminus qopp qeq_bool t0
+ qplus qmult qminus qopp qeq_bool
(** val qnegate : q formula -> q nFormula cnf **)
-let qnegate t0 =
+let qnegate =
cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
- qmult qminus qopp qeq_bool t0
+ qmult qminus qopp qeq_bool
+
+(** val qunsat : q nFormula -> bool **)
+
+let qunsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
+
+(** val qdeduce : q nFormula -> q nFormula -> q nFormula option **)
+
+let qdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
(** val qTautoChecker : q formula bFormula -> qWitness list -> bool **)
let qTautoChecker f w =
- tauto_checker qnormalise qnegate qWeakChecker f w
+ tauto_checker qunsat qdeduce qnormalise qnegate qWeakChecker f w
+
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+(** val q_of_Rcst : rcst -> q **)
+
+let rec q_of_Rcst = function
+| C0 -> { qnum = Z0; qden = XH }
+| C1 -> { qnum = (Zpos XH); qden = XH }
+| CQ q0 -> q0
+| CZ z0 -> { qnum = z0; qden = XH }
+| CPlus (r1, r2) -> qplus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMinus (r1, r2) -> qminus (q_of_Rcst r1) (q_of_Rcst r2)
+| CMult (r1, r2) -> qmult (q_of_Rcst r1) (q_of_Rcst r2)
+| CInv r0 -> qinv (q_of_Rcst r0)
+| COpp r0 -> qopp (q_of_Rcst r0)
+
+type rWitness = q psatz
+
+(** val rWeakChecker : q nFormula list -> q psatz -> bool **)
+
+let rWeakChecker =
+ check_normalised_formulas { qnum = Z0; qden = XH } { qnum = (Zpos XH);
+ qden = XH } qplus qmult qeq_bool qle_bool
+
+(** val rnormalise : q formula -> q nFormula cnf **)
-type rWitness = z psatz
+let rnormalise =
+ cnf_normalise { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH }
+ qplus qmult qminus qopp qeq_bool
-(** val rWeakChecker : z nFormula list -> z psatz -> bool **)
+(** val rnegate : q formula -> q nFormula cnf **)
-let rWeakChecker x x0 =
- check_normalised_formulas Z0 (Zpos XH) zplus zmult zeq_bool zle_bool x x0
+let rnegate =
+ cnf_negate { qnum = Z0; qden = XH } { qnum = (Zpos XH); qden = XH } qplus
+ qmult qminus qopp qeq_bool
-(** val rnormalise : z formula -> z nFormula cnf **)
+(** val runsat : q nFormula -> bool **)
-let rnormalise t0 =
- cnf_normalise Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+let runsat =
+ check_inconsistent { qnum = Z0; qden = XH } qeq_bool qle_bool
-(** val rnegate : z formula -> z nFormula cnf **)
+(** val rdeduce : q nFormula -> q nFormula -> q nFormula option **)
-let rnegate t0 =
- cnf_negate Z0 (Zpos XH) zplus zmult zminus zopp zeq_bool t0
+let rdeduce =
+ nformula_plus_nformula { qnum = Z0; qden = XH } qplus qeq_bool
-(** val rTautoChecker : z formula bFormula -> rWitness list -> bool **)
+(** val rTautoChecker : rcst formula bFormula -> rWitness list -> bool **)
let rTautoChecker f w =
- tauto_checker rnormalise rnegate rWeakChecker f w
+ tauto_checker runsat rdeduce rnormalise rnegate rWeakChecker
+ (map_bformula (map_Formula q_of_Rcst) f) w
diff --git a/plugins/micromega/micromega.mli b/plugins/micromega/micromega.mli
index 3e3ae2c3..bcd61f39 100644
--- a/plugins/micromega/micromega.mli
+++ b/plugins/micromega/micromega.mli
@@ -1,115 +1,848 @@
+type __ = Obj.t
+
val negb : bool -> bool
type nat =
- | O
- | S of nat
+| O
+| S of nat
-type comparison =
- | Eq
- | Lt
- | Gt
+val fst : ('a1 * 'a2) -> 'a1
-val compOpp : comparison -> comparison
-
-val plus : nat -> nat -> nat
+val snd : ('a1 * 'a2) -> 'a2
val app : 'a1 list -> 'a1 list -> 'a1 list
-val nth : nat -> 'a1 list -> 'a1 -> 'a1
-
-val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
-
-type positive =
- | XI of positive
- | XO of positive
- | XH
-
-val psucc : positive -> positive
-
-val pplus : positive -> positive -> positive
-
-val pplus_carry : positive -> positive -> positive
-
-val p_of_succ_nat : nat -> positive
-
-val pdouble_minus_one : positive -> positive
-
-type positive_mask =
- | IsNul
- | IsPos of positive
- | IsNeg
+type comparison =
+| Eq
+| Lt
+| Gt
-val pdouble_plus_one_mask : positive_mask -> positive_mask
+val compOpp : comparison -> comparison
-val pdouble_mask : positive_mask -> positive_mask
+type compareSpecT =
+| CompEqT
+| CompLtT
+| CompGtT
-val pdouble_minus_two : positive -> positive_mask
+val compareSpec2Type : comparison -> compareSpecT
-val pminus_mask : positive -> positive -> positive_mask
+type 'a compSpecT = compareSpecT
-val pminus_mask_carry : positive -> positive -> positive_mask
+val compSpec2Type : 'a1 -> 'a1 -> comparison -> 'a1 compSpecT
-val pminus : positive -> positive -> positive
+type 'a sig0 =
+ 'a
+ (* singleton inductive, whose constructor was exist *)
-val pmult : positive -> positive -> positive
+val plus : nat -> nat -> nat
-val pcompare : positive -> positive -> comparison -> comparison
+val nat_iter : nat -> ('a1 -> 'a1) -> 'a1 -> 'a1
-val psize : positive -> nat
+type positive =
+| XI of positive
+| XO of positive
+| XH
type n =
- | N0
- | Npos of positive
-
-val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1
+| N0
+| Npos of positive
type z =
- | Z0
- | Zpos of positive
- | Zneg of positive
-
-val zdouble_plus_one : z -> z
-
-val zdouble_minus_one : z -> z
-
-val zdouble : z -> z
-
-val zPminus : positive -> positive -> z
-
-val zplus : z -> z -> z
-
-val zopp : z -> z
-
-val zminus : z -> z -> z
-
-val zmult : z -> z -> z
-
-val zcompare : z -> z -> comparison
-
-val zabs : z -> z
+| Z0
+| Zpos of positive
+| Zneg of positive
+
+module type TotalOrder' =
+ sig
+ type t
+ end
+
+module MakeOrderTac :
+ functor (O:TotalOrder') ->
+ sig
+
+ end
+
+module MaxLogicalProperties :
+ functor (O:TotalOrder') ->
+ functor (M:sig
+ val max : O.t -> O.t -> O.t
+ end) ->
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+module Pos :
+ sig
+ type t = positive
+
+ val succ : positive -> positive
+
+ val add : positive -> positive -> positive
+
+ val add_carry : positive -> positive -> positive
+
+ val pred_double : positive -> positive
+
+ val pred : positive -> positive
+
+ val pred_N : positive -> n
+
+ type mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val succ_double_mask : mask -> mask
+
+ val double_mask : mask -> mask
+
+ val double_pred_mask : positive -> mask
+
+ val pred_mask : mask -> mask
+
+ val sub_mask : positive -> positive -> mask
+
+ val sub_mask_carry : positive -> positive -> mask
+
+ val sub : positive -> positive -> positive
+
+ val mul : positive -> positive -> positive
+
+ val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pow : positive -> positive -> positive
+
+ val div2 : positive -> positive
+
+ val div2_up : positive -> positive
+
+ val size_nat : positive -> nat
+
+ val size : positive -> positive
+
+ val compare_cont : positive -> positive -> comparison -> comparison
+
+ val compare : positive -> positive -> comparison
+
+ val min : positive -> positive -> positive
+
+ val max : positive -> positive -> positive
+
+ val eqb : positive -> positive -> bool
+
+ val leb : positive -> positive -> bool
+
+ val ltb : positive -> positive -> bool
+
+ val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask) ->
+ positive * mask
+
+ val sqrtrem : positive -> positive * mask
+
+ val sqrt : positive -> positive
+
+ val gcdn : nat -> positive -> positive -> positive
+
+ val gcd : positive -> positive -> positive
+
+ val ggcdn : nat -> positive -> positive -> positive * (positive * positive)
+
+ val ggcd : positive -> positive -> positive * (positive * positive)
+
+ val coq_Nsucc_double : n -> n
+
+ val coq_Ndouble : n -> n
+
+ val coq_lor : positive -> positive -> positive
+
+ val coq_land : positive -> positive -> n
+
+ val ldiff : positive -> positive -> n
+
+ val coq_lxor : positive -> positive -> n
+
+ val shiftl_nat : positive -> nat -> positive
+
+ val shiftr_nat : positive -> nat -> positive
+
+ val shiftl : positive -> n -> positive
+
+ val shiftr : positive -> n -> positive
+
+ val testbit_nat : positive -> nat -> bool
+
+ val testbit : positive -> n -> bool
+
+ val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1
+
+ val to_nat : positive -> nat
+
+ val of_nat : nat -> positive
+
+ val of_succ_nat : nat -> positive
+ end
+
+module Coq_Pos :
+ sig
+ module Coq__1 : sig
+ type t = positive
+ end
+ type t = Coq__1.t
+
+ val succ : positive -> positive
+
+ val add : positive -> positive -> positive
+
+ val add_carry : positive -> positive -> positive
+
+ val pred_double : positive -> positive
+
+ val pred : positive -> positive
+
+ val pred_N : positive -> n
+
+ type mask = Pos.mask =
+ | IsNul
+ | IsPos of positive
+ | IsNeg
+
+ val mask_rect : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val mask_rec : 'a1 -> (positive -> 'a1) -> 'a1 -> mask -> 'a1
+
+ val succ_double_mask : mask -> mask
+
+ val double_mask : mask -> mask
+
+ val double_pred_mask : positive -> mask
+
+ val pred_mask : mask -> mask
+
+ val sub_mask : positive -> positive -> mask
+
+ val sub_mask_carry : positive -> positive -> mask
+
+ val sub : positive -> positive -> positive
+
+ val mul : positive -> positive -> positive
+
+ val iter : positive -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pow : positive -> positive -> positive
+
+ val div2 : positive -> positive
+
+ val div2_up : positive -> positive
+
+ val size_nat : positive -> nat
+
+ val size : positive -> positive
+
+ val compare_cont : positive -> positive -> comparison -> comparison
+
+ val compare : positive -> positive -> comparison
+
+ val min : positive -> positive -> positive
+
+ val max : positive -> positive -> positive
+
+ val eqb : positive -> positive -> bool
+
+ val leb : positive -> positive -> bool
+
+ val ltb : positive -> positive -> bool
+
+ val sqrtrem_step :
+ (positive -> positive) -> (positive -> positive) -> (positive * mask) ->
+ positive * mask
+
+ val sqrtrem : positive -> positive * mask
+
+ val sqrt : positive -> positive
+
+ val gcdn : nat -> positive -> positive -> positive
+
+ val gcd : positive -> positive -> positive
+
+ val ggcdn : nat -> positive -> positive -> positive * (positive * positive)
+
+ val ggcd : positive -> positive -> positive * (positive * positive)
+
+ val coq_Nsucc_double : n -> n
+
+ val coq_Ndouble : n -> n
+
+ val coq_lor : positive -> positive -> positive
+
+ val coq_land : positive -> positive -> n
+
+ val ldiff : positive -> positive -> n
+
+ val coq_lxor : positive -> positive -> n
+
+ val shiftl_nat : positive -> nat -> positive
+
+ val shiftr_nat : positive -> nat -> positive
+
+ val shiftl : positive -> n -> positive
+
+ val shiftr : positive -> n -> positive
+
+ val testbit_nat : positive -> nat -> bool
+
+ val testbit : positive -> n -> bool
+
+ val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1
+
+ val to_nat : positive -> nat
+
+ val of_nat : nat -> positive
+
+ val of_succ_nat : nat -> positive
+
+ val eq_dec : positive -> positive -> bool
+
+ val peano_rect : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1
+
+ val peano_rec : 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> 'a1
+
+ type coq_PeanoView =
+ | PeanoOne
+ | PeanoSucc of positive * coq_PeanoView
+
+ val coq_PeanoView_rect :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1
+
+ val coq_PeanoView_rec :
+ 'a1 -> (positive -> coq_PeanoView -> 'a1 -> 'a1) -> positive ->
+ coq_PeanoView -> 'a1
+
+ val peanoView_xO : positive -> coq_PeanoView -> coq_PeanoView
+
+ val peanoView_xI : positive -> coq_PeanoView -> coq_PeanoView
+
+ val peanoView : positive -> coq_PeanoView
+
+ val coq_PeanoView_iter :
+ 'a1 -> (positive -> 'a1 -> 'a1) -> positive -> coq_PeanoView -> 'a1
+
+ val switch_Eq : comparison -> comparison -> comparison
+
+ val mask2cmp : mask -> comparison
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = Coq__1.t
+ end
+
+ module MRev :
+ sig
+ val max : t -> t -> t
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : t -> t -> bool
+
+ val min_case_strong :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ t -> t -> (t -> t -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : t -> t -> bool
+ end
+
+ val max_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : t -> t -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : t -> t -> bool
+
+ val min_case_strong : t -> t -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : t -> t -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : t -> t -> bool
+ end
+
+module N :
+ sig
+ type t = n
+
+ val zero : n
+
+ val one : n
+
+ val two : n
+
+ val succ_double : n -> n
+
+ val double : n -> n
+
+ val succ : n -> n
+
+ val pred : n -> n
+
+ val succ_pos : n -> positive
+
+ val add : n -> n -> n
+
+ val sub : n -> n -> n
+
+ val mul : n -> n -> n
+
+ val compare : n -> n -> comparison
+
+ val eqb : n -> n -> bool
+
+ val leb : n -> n -> bool
+
+ val ltb : n -> n -> bool
+
+ val min : n -> n -> n
+
+ val max : n -> n -> n
+
+ val div2 : n -> n
+
+ val even : n -> bool
+
+ val odd : n -> bool
+
+ val pow : n -> n -> n
+
+ val log2 : n -> n
+
+ val size : n -> n
+
+ val size_nat : n -> nat
+
+ val pos_div_eucl : positive -> n -> n * n
+
+ val div_eucl : n -> n -> n * n
+
+ val div : n -> n -> n
+
+ val modulo : n -> n -> n
+
+ val gcd : n -> n -> n
+
+ val ggcd : n -> n -> n * (n * n)
+
+ val sqrtrem : n -> n * n
+
+ val sqrt : n -> n
+
+ val coq_lor : n -> n -> n
+
+ val coq_land : n -> n -> n
+
+ val ldiff : n -> n -> n
+
+ val coq_lxor : n -> n -> n
+
+ val shiftl_nat : n -> nat -> n
+
+ val shiftr_nat : n -> nat -> n
+
+ val shiftl : n -> n -> n
+
+ val shiftr : n -> n -> n
+
+ val testbit_nat : n -> nat -> bool
+
+ val testbit : n -> n -> bool
+
+ val to_nat : n -> nat
+
+ val of_nat : nat -> n
+
+ val iter : n -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val eq_dec : n -> n -> bool
+
+ val discr : n -> positive option
+
+ val binary_rect : 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val binary_rec : 'a1 -> (n -> 'a1 -> 'a1) -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val peano_rect : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ val peano_rec : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ module BootStrap :
+ sig
+
+ end
+
+ val recursion : 'a1 -> (n -> 'a1 -> 'a1) -> n -> 'a1
+
+ module OrderElts :
+ sig
+ type t = n
+ end
+
+ module OrderTac :
+ sig
+
+ end
+
+ module NZPowP :
+ sig
+
+ end
+
+ module NZSqrtP :
+ sig
+
+ end
+
+ val sqrt_up : n -> n
+
+ val log2_up : n -> n
+
+ module NZDivP :
+ sig
+
+ end
+
+ val lcm : n -> n -> n
+
+ val b2n : bool -> n
+
+ val setbit : n -> n -> n
+
+ val clearbit : n -> n -> n
+
+ val ones : n -> n
+
+ val lnot : n -> n -> n
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = n
+ end
+
+ module MRev :
+ sig
+ val max : n -> n -> n
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : n -> n -> bool
+
+ val min_case_strong :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ n -> n -> (n -> n -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : n -> n -> bool
+ end
+
+ val max_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : n -> n -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : n -> n -> bool
+
+ val min_case_strong : n -> n -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : n -> n -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : n -> n -> bool
+ end
-val zmax : z -> z -> z
+val pow_pos : ('a1 -> 'a1 -> 'a1) -> 'a1 -> positive -> 'a1
-val zle_bool : z -> z -> bool
+val nth : nat -> 'a1 list -> 'a1 -> 'a1
-val zge_bool : z -> z -> bool
+val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list
-val zgt_bool : z -> z -> bool
+val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1
+
+module Z :
+ sig
+ type t = z
+
+ val zero : z
+
+ val one : z
+
+ val two : z
+
+ val double : z -> z
+
+ val succ_double : z -> z
+
+ val pred_double : z -> z
+
+ val pos_sub : positive -> positive -> z
+
+ val add : z -> z -> z
+
+ val opp : z -> z
+
+ val succ : z -> z
+
+ val pred : z -> z
+
+ val sub : z -> z -> z
+
+ val mul : z -> z -> z
+
+ val pow_pos : z -> positive -> z
+
+ val pow : z -> z -> z
+
+ val compare : z -> z -> comparison
+
+ val sgn : z -> z
+
+ val leb : z -> z -> bool
+
+ val geb : z -> z -> bool
+
+ val ltb : z -> z -> bool
+
+ val gtb : z -> z -> bool
+
+ val eqb : z -> z -> bool
+
+ val max : z -> z -> z
+
+ val min : z -> z -> z
+
+ val abs : z -> z
+
+ val abs_nat : z -> nat
+
+ val abs_N : z -> n
+
+ val to_nat : z -> nat
+
+ val to_N : z -> n
+
+ val of_nat : nat -> z
+
+ val of_N : n -> z
+
+ val iter : z -> ('a1 -> 'a1) -> 'a1 -> 'a1
+
+ val pos_div_eucl : positive -> z -> z * z
+
+ val div_eucl : z -> z -> z * z
+
+ val div : z -> z -> z
+
+ val modulo : z -> z -> z
+
+ val quotrem : z -> z -> z * z
+
+ val quot : z -> z -> z
+
+ val rem : z -> z -> z
+
+ val even : z -> bool
+
+ val odd : z -> bool
+
+ val div2 : z -> z
+
+ val quot2 : z -> z
+
+ val log2 : z -> z
+
+ val sqrtrem : z -> z * z
+
+ val sqrt : z -> z
+
+ val gcd : z -> z -> z
+
+ val ggcd : z -> z -> z * (z * z)
+
+ val testbit : z -> z -> bool
+
+ val shiftl : z -> z -> z
+
+ val shiftr : z -> z -> z
+
+ val coq_lor : z -> z -> z
+
+ val coq_land : z -> z -> z
+
+ val ldiff : z -> z -> z
+
+ val coq_lxor : z -> z -> z
+
+ val eq_dec : z -> z -> bool
+
+ module BootStrap :
+ sig
+
+ end
+
+ module OrderElts :
+ sig
+ type t = z
+ end
+
+ module OrderTac :
+ sig
+
+ end
+
+ val sqrt_up : z -> z
+
+ val log2_up : z -> z
+
+ module NZDivP :
+ sig
+
+ end
+
+ module Quot2Div :
+ sig
+ val div : z -> z -> z
+
+ val modulo : z -> z -> z
+ end
+
+ module NZQuot :
+ sig
+
+ end
+
+ val lcm : z -> z -> z
+
+ val b2z : bool -> z
+
+ val setbit : z -> z -> z
+
+ val clearbit : z -> z -> z
+
+ val lnot : z -> z
+
+ val ones : z -> z
+
+ module T :
+ sig
+
+ end
+
+ module ORev :
+ sig
+ type t = z
+ end
+
+ module MRev :
+ sig
+ val max : z -> z -> z
+ end
+
+ module MPRev :
+ sig
+ module T :
+ sig
+
+ end
+ end
+
+ module P :
+ sig
+ val max_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val max_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : z -> z -> bool
+
+ val min_case_strong :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> (__ -> 'a1) -> (__ -> 'a1) ->
+ 'a1
+
+ val min_case :
+ z -> z -> (z -> z -> __ -> 'a1 -> 'a1) -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : z -> z -> bool
+ end
+
+ val max_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val max_case : z -> z -> 'a1 -> 'a1 -> 'a1
+
+ val max_dec : z -> z -> bool
+
+ val min_case_strong : z -> z -> (__ -> 'a1) -> (__ -> 'a1) -> 'a1
+
+ val min_case : z -> z -> 'a1 -> 'a1 -> 'a1
+
+ val min_dec : z -> z -> bool
+ end
val zeq_bool : z -> z -> bool
-val n_of_nat : nat -> n
-
-val zdiv_eucl_POS : positive -> z -> z * z
-
-val zdiv_eucl : z -> z -> z * z
-
-val zdiv : z -> z -> z
-
type 'c pol =
- | Pc of 'c
- | Pinj of positive * 'c pol
- | PX of 'c pol * positive * 'c pol
+| Pc of 'c
+| Pinj of positive * 'c pol
+| PX of 'c pol * positive * 'c pol
val p0 : 'a1 -> 'a1 pol
@@ -117,6 +850,8 @@ val p1 : 'a1 -> 'a1 pol
val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool
+val mkPinj : positive -> 'a1 pol -> 'a1 pol
+
val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol
val mkPX :
@@ -177,13 +912,13 @@ val psquare :
bool) -> 'a1 pol -> 'a1 pol
type 'c pExpr =
- | PEc of 'c
- | PEX of positive
- | PEadd of 'c pExpr * 'c pExpr
- | PEsub of 'c pExpr * 'c pExpr
- | PEmul of 'c pExpr * 'c pExpr
- | PEopp of 'c pExpr
- | PEpow of 'c pExpr * n
+| PEc of 'c
+| PEX of positive
+| PEadd of 'c pExpr * 'c pExpr
+| PEsub of 'c pExpr * 'c pExpr
+| PEmul of 'c pExpr * 'c pExpr
+| PEopp of 'c pExpr
+| PEpow of 'c pExpr * n
val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol
@@ -200,14 +935,16 @@ val norm_aux :
'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol
type 'a bFormula =
- | TT
- | FF
- | X
- | A of 'a
- | Cj of 'a bFormula * 'a bFormula
- | D of 'a bFormula * 'a bFormula
- | N of 'a bFormula
- | I of 'a bFormula * 'a bFormula
+| TT
+| FF
+| X
+| A of 'a
+| Cj of 'a bFormula * 'a bFormula
+| D of 'a bFormula * 'a bFormula
+| N of 'a bFormula
+| I of 'a bFormula * 'a bFormula
+
+val map_bformula : ('a1 -> 'a2) -> 'a1 bFormula -> 'a2 bFormula
type 'term' clause = 'term' list
@@ -217,41 +954,65 @@ val tt : 'a1 cnf
val ff : 'a1 cnf
-val or_clause_cnf : 'a1 clause -> 'a1 cnf -> 'a1 cnf
+val add_term :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 -> 'a1 clause -> 'a1
+ clause option
-val or_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf
+val or_clause :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 clause ->
+ 'a1 clause option
+
+val or_clause_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 clause -> 'a1 cnf -> 'a1
+ cnf
+
+val or_cnf :
+ ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> 'a1 cnf -> 'a1 cnf -> 'a1
+ cnf
val and_cnf : 'a1 cnf -> 'a1 cnf -> 'a1 cnf
val xcnf :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> bool -> 'a1 bFormula -> 'a2 cnf
val cnf_checker : ('a1 list -> 'a2 -> bool) -> 'a1 cnf -> 'a2 list -> bool
val tauto_checker :
- ('a1 -> 'a2 cnf) -> ('a1 -> 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1
- bFormula -> 'a3 list -> bool
+ ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a2 cnf) -> ('a1 ->
+ 'a2 cnf) -> ('a2 list -> 'a3 -> bool) -> 'a1 bFormula -> 'a3 list -> bool
+
+val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
+
+val cltb : ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool
type 'c polC = 'c pol
type op1 =
- | Equal
- | NonEqual
- | Strict
- | NonStrict
+| Equal
+| NonEqual
+| Strict
+| NonStrict
+
+type 'c nFormula = 'c polC * op1
-type 'c nFormula = 'c polC * op1
+val opMult : op1 -> op1 -> op1 option
val opAdd : op1 -> op1 -> op1 option
type 'c psatz =
- | PsatzIn of nat
- | PsatzSquare of 'c polC
- | PsatzMulC of 'c polC * 'c psatz
- | PsatzMulE of 'c psatz * 'c psatz
- | PsatzAdd of 'c psatz * 'c psatz
- | PsatzC of 'c
- | PsatzZ
+| PsatzIn of nat
+| PsatzSquare of 'c polC
+| PsatzMulC of 'c polC * 'c psatz
+| PsatzMulE of 'c psatz * 'c psatz
+| PsatzAdd of 'c psatz * 'c psatz
+| PsatzC of 'c
+| PsatzZ
+
+val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option
+
+val map_option2 :
+ ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option
val pexpr_times_nformula :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 ->
@@ -278,14 +1039,14 @@ val check_normalised_formulas :
bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> bool
type op2 =
- | OpEq
- | OpNEq
- | OpLe
- | OpGe
- | OpLt
- | OpGt
+| OpEq
+| OpNEq
+| OpLe
+| OpGe
+| OpLt
+| OpGt
-type 'c formula = { flhs : 'c pExpr; fop : op2; frhs : 'c pExpr }
+type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }
val flhs : 'a1 formula -> 'a1 pExpr
@@ -329,6 +1090,10 @@ val xdenorm : positive -> 'a1 pol -> 'a1 pExpr
val denorm : 'a1 pol -> 'a1 pExpr
+val map_PExpr : ('a2 -> 'a1) -> 'a2 pExpr -> 'a1 pExpr
+
+val map_Formula : ('a2 -> 'a1) -> 'a2 formula -> 'a1 formula
+
val simpl_cone :
'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 psatz ->
'a1 psatz
@@ -357,18 +1122,12 @@ val qpower_positive : q -> positive -> q
val qpower : q -> z -> q
-val pgcdn : nat -> positive -> positive -> positive
-
-val pgcd : positive -> positive -> positive
-
-val zgcd : z -> z -> z
-
-type 'a t =
- | Empty
- | Leaf of 'a
- | Node of 'a t * 'a * 'a t
+type 'a t0 =
+| Empty
+| Leaf of 'a
+| Node of 'a t0 * 'a * 'a t0
-val find : 'a1 -> 'a1 t -> positive -> 'a1
+val find : 'a1 -> 'a1 t0 -> positive -> 'a1
type zWitness = z psatz
@@ -388,38 +1147,40 @@ val xnegate0 : z formula -> z nFormula list
val negate : z formula -> z nFormula cnf
+val zunsat : z nFormula -> bool
+
+val zdeduce : z nFormula -> z nFormula -> z nFormula option
+
val ceiling : z -> z -> z
type zArithProof =
- | DoneProof
- | RatProof of zWitness * zArithProof
- | CutProof of zWitness * zArithProof
- | EnumProof of zWitness * zWitness * zArithProof list
+| DoneProof
+| RatProof of zWitness * zArithProof
+| CutProof of zWitness * zArithProof
+| EnumProof of zWitness * zWitness * zArithProof list
val zgcdM : z -> z -> z
-val zgcd_pol : z polC -> z * z
+val zgcd_pol : z polC -> z * z
val zdiv_pol : z polC -> z -> z polC
-val makeCuttingPlane : z polC -> z polC * z
+val makeCuttingPlane : z polC -> z polC * z
-val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option
+val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option
-val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula
+val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula
val is_pol_Z0 : z polC -> bool
val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option
-val check_inconsistent0 : z nFormula -> bool
+val valid_cut_sign : op1 -> bool
val zChecker : z nFormula list -> zArithProof -> bool
val zTautoChecker : z formula bFormula -> zArithProof list -> bool
-val n_of_Z : z -> n
-
type qWitness = q psatz
val qWeakChecker : q nFormula list -> q psatz -> bool
@@ -428,15 +1189,36 @@ val qnormalise : q formula -> q nFormula cnf
val qnegate : q formula -> q nFormula cnf
+val qunsat : q nFormula -> bool
+
+val qdeduce : q nFormula -> q nFormula -> q nFormula option
+
val qTautoChecker : q formula bFormula -> qWitness list -> bool
-type rWitness = z psatz
+type rcst =
+| C0
+| C1
+| CQ of q
+| CZ of z
+| CPlus of rcst * rcst
+| CMinus of rcst * rcst
+| CMult of rcst * rcst
+| CInv of rcst
+| COpp of rcst
+
+val q_of_Rcst : rcst -> q
+
+type rWitness = q psatz
+
+val rWeakChecker : q nFormula list -> q psatz -> bool
+
+val rnormalise : q formula -> q nFormula cnf
-val rWeakChecker : z nFormula list -> z psatz -> bool
+val rnegate : q formula -> q nFormula cnf
-val rnormalise : z formula -> z nFormula cnf
+val runsat : q nFormula -> bool
-val rnegate : z formula -> z nFormula cnf
+val rdeduce : q nFormula -> q nFormula -> q nFormula option
-val rTautoChecker : z formula bFormula -> rWitness list -> bool
+val rTautoChecker : rcst formula bFormula -> rWitness list -> bool
diff --git a/plugins/micromega/micromega_plugin.mllib b/plugins/micromega/micromega_plugin.mllib
index debc296e..f53a9e37 100644
--- a/plugins/micromega/micromega_plugin.mllib
+++ b/plugins/micromega/micromega_plugin.mllib
@@ -1,6 +1,7 @@
Sos_types
Mutils
Micromega
+Polynomial
Mfourier
Certificate
Persistent_cache
diff --git a/plugins/micromega/mutils.ml b/plugins/micromega/mutils.ml
index ef23b912..3129e54d 100644
--- a/plugins/micromega/mutils.ml
+++ b/plugins/micromega/mutils.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,20 +8,31 @@
(* *)
(* Micromega: A reflexive tactic using the Positivstellensatz *)
(* *)
+(* ** Utility functions ** *)
+(* *)
+(* - Modules CoqToCaml, CamlToCoq *)
+(* - Modules Cmp, Tag, TagSet *)
+(* *)
(* Frédéric Besson (Irisa/Inria) 2006-2008 *)
(* *)
(************************************************************************)
let debug = false
+let rec pp_list f o l =
+ match l with
+ | [] -> ()
+ | e::l -> f o e ; output_string o ";" ; pp_list f o l
+
+
let finally f rst =
try
let res = f () in
rst () ; res
- with x ->
+ with reraise ->
(try rst ()
- with _ -> raise x
- ); raise x
+ with any -> raise reraise
+ ); raise reraise
let map_option f x =
match x with
@@ -46,12 +57,16 @@ let iteri f l =
| e::l -> f i e ; xiter (i+1) l in
xiter 0 l
-let mapi f l =
- let rec xmap i l =
- match l with
- | [] -> []
- | e::l -> (f i e)::xmap (i+1) l in
- xmap 0 l
+let all_sym_pairs f l =
+ let pair_with acc e l = List.fold_left (fun acc x -> (f e x) ::acc) acc l in
+
+ let rec xpairs acc l =
+ match l with
+ | [] -> acc
+ | e::l -> xpairs (pair_with acc e l) l in
+ xpairs [] l
+
+
let rec map3 f l1 l2 l3 =
match l1 , l2 ,l3 with
@@ -59,8 +74,6 @@ let rec map3 f l1 l2 l3 =
| e1::l1 , e2::l2 , e3::l3 -> (f e1 e2 e3)::(map3 f l1 l2 l3)
| _ -> raise (Invalid_argument "map3")
-
-
let rec is_sublist l1 l2 =
match l1 ,l2 with
| [] ,_ -> true
@@ -69,8 +82,6 @@ let rec is_sublist l1 l2 =
if e = e' then is_sublist l1' l2'
else is_sublist l1 l2'
-
-
let list_try_find f =
let rec try_find_f = function
| [] -> failwith "try_find"
@@ -91,6 +102,18 @@ let interval n m =
in
interval_n ([],m)
+let extract pred l =
+ List.fold_left (fun (fd,sys) e ->
+ match fd with
+ | None ->
+ begin
+ match pred e with
+ | None -> fd, e::sys
+ | Some v -> Some(v,e) , sys
+ end
+ | _ -> (fd, e::sys)
+ ) (None,[]) l
+
open Num
open Big_int
@@ -100,7 +123,6 @@ let ppcm x y =
let y' = div_big_int y g in
mult_big_int g (mult_big_int x' y')
-
let denominator = function
| Int _ | Big_int _ -> unit_big_int
| Ratio r -> Ratio.denominator_ratio r
@@ -125,8 +147,6 @@ let rec gcd_list l =
if compare_big_int res zero_big_int = 0
then unit_big_int else res
-
-
let rats_to_ints l =
let c = ppcm_list unit_big_int l in
List.map (fun x -> (div_big_int (mult_big_int (numerator x) c)
@@ -140,7 +160,6 @@ let mapi f l =
| e::l -> (f e i)::(xmapi (i+1) l) in
xmapi 0 l
-
let concatMapi f l = List.rev (mapi (fun e i -> (i,f e)) l)
(* assoc_pos j [a0...an] = [j,a0....an,j+n],j+n+1 *)
@@ -178,6 +197,9 @@ let select_pos lpos l =
else xselect (i+1) lpos l in
xselect 0 lpos l
+(**
+ * MODULE: Coq to Caml data-structure mappings
+ *)
module CoqToCaml =
struct
@@ -194,20 +216,17 @@ struct
| XI p -> 1+ 2*(positive p)
| XO p -> 2*(positive p)
-
let n nt =
match nt with
| N0 -> 0
| Npos p -> positive p
-
let rec index i = (* Swap left-right ? *)
match i with
| XH -> 1
| XI i -> 1+(2*(index i))
| XO i -> 2*(index i)
-
let z x =
match x with
| Z0 -> 0
@@ -222,14 +241,12 @@ struct
| XI p -> add_int_big_int 1 (mult_int_big_int 2 (positive_big_int p))
| XO p -> (mult_int_big_int 2 (positive_big_int p))
-
let z_big_int x =
match x with
| Z0 -> zero_big_int
| Zpos p -> (positive_big_int p)
| Zneg p -> minus_big_int (positive_big_int p)
-
let num x = Num.Big_int (z_big_int x)
let q_to_num {qnum = x ; qden = y} =
@@ -238,6 +255,10 @@ struct
end
+(**
+ * MODULE: Caml to Coq data-structure mappings
+ *)
+
module CamlToCoq =
struct
open Micromega
@@ -252,7 +273,7 @@ struct
else if n land 1 = 1 then XI (positive (n lsr 1))
else XO (positive (n lsr 1))
- let n nt =
+ let n nt =
if nt < 0
then assert false
else if nt = 0 then N0
@@ -266,8 +287,7 @@ struct
let idx n =
(*a.k.a path_of_int *)
- (* returns the list of digits of n in reverse order with
- initial 1 removed *)
+ (* returns the list of digits of n in reverse order with initial 1 removed *)
let rec digits_of_int n =
if n=1 then []
else (n mod 2 = 1)::(digits_of_int (n lsr 1))
@@ -309,6 +329,11 @@ struct
end
+(**
+ * MODULE: Comparisons on lists: by evaluating the elements in a single list,
+ * between two lists given an ordering, and using a hash computation
+ *)
+
module Cmp =
struct
@@ -317,7 +342,7 @@ struct
| [] -> 0 (* Equal *)
| f::l ->
let cmp = f () in
- if cmp = 0 then compare_lexical l else cmp
+ if cmp = 0 then compare_lexical l else cmp
let rec compare_list cmp l1 l2 =
match l1 , l2 with
@@ -328,36 +353,59 @@ struct
let c = cmp e1 e2 in
if c = 0 then compare_list cmp l1 l2 else c
+(**
+ * hash_list takes a hash function and a list, and computes an integer which
+ * is the hash value of the list.
+ *)
let hash_list hash l =
let rec _hash_list l h =
match l with
| [] -> h lxor (Hashtbl.hash [])
- | e::l -> _hash_list l ((hash e) lxor h) in
+ | e::l -> _hash_list l ((hash e) lxor h)
+ in _hash_list l 0
- _hash_list l 0
end
+(**
+ * MODULE: Labels for atoms in propositional formulas.
+ * Tags are used to identify unused atoms in CNFs, and propagate them back to
+ * the original formula. The translation back to Coq then ignores these
+ * superfluous items, which speeds the translation up a bit.
+ *)
+
module type Tag =
sig
+
type t
val from : int -> t
val next : t -> t
val pp : out_channel -> t -> unit
val compare : t -> t -> int
+
end
module Tag : Tag =
struct
+
type t = int
+
let from i = i
let next i = i + 1
let pp o i = output_string o (string_of_int i)
let compare : int -> int -> int = Pervasives.compare
+
end
+(**
+ * MODULE: Ordered sets of tags.
+ *)
+
module TagSet = Set.Make(Tag)
+(**
+ * Forking routine, plumbing the appropriate pipes where needed.
+ *)
let command exe_path args vl =
(* creating pipes for stdin, stdout, stderr *)
@@ -365,7 +413,6 @@ let command exe_path args vl =
and (stdout_read,stdout_write) = Unix.pipe ()
and (stderr_read,stderr_write) = Unix.pipe () in
-
(* Create the process *)
let pid = Unix.create_process exe_path args stdin_read stdout_write stderr_write in
@@ -378,24 +425,22 @@ let command exe_path args vl =
let _pid,status = Unix.waitpid [] pid in
finally
+ (* Recover the result *)
(fun () ->
- (* Recover the result *)
match status with
| Unix.WEXITED 0 ->
- let inch = Unix.in_channel_of_descr stdout_read in
- begin try Marshal.from_channel inch with x -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string x)) end
- | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i)
+ let inch = Unix.in_channel_of_descr stdout_read in
+ begin try Marshal.from_channel inch
+ with x when x <> Sys.Break ->
+ failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string x))
+ end
+ | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i)
| Unix.WSIGNALED i -> failwith (Printf.sprintf "command \"%s\" killed %i" exe_path i)
- | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i))
+ | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i))
+ (* Cleanup *)
(fun () ->
- (* Cleanup *)
- List.iter (fun x -> try Unix.close x with _ -> ()) [stdin_read; stdin_write; stdout_read ; stdout_write ; stderr_read; stderr_write]
- )
-
-
-
-
-
+ List.iter (fun x -> try Unix.close x with e when e <> Sys.Break -> ())
+ [stdin_read; stdin_write; stdout_read; stdout_write; stderr_read; stderr_write])
(* Local Variables: *)
(* coding: utf-8 *)
diff --git a/plugins/micromega/persistent_cache.ml b/plugins/micromega/persistent_cache.ml
index b48fa36b..6d1a2927 100644
--- a/plugins/micromega/persistent_cache.ml
+++ b/plugins/micromega/persistent_cache.ml
@@ -1,14 +1,14 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* *)
-(* A persistent hashtable *)
+(* A persistent hashtable *)
(* *)
-(* Frédéric Besson (Inria Rennes) 2009 *)
+(* Frédéric Besson (Inria Rennes) 2009-2011 *)
(* *)
(************************************************************************)
@@ -20,8 +20,7 @@ module type PHashtable =
val create : int -> string -> 'a t
(** [create i f] creates an empty persistent table
- with initial size i
- associated with file [f] *)
+ with initial size i associated with file [f] *)
val open_in : string -> 'a t
@@ -40,7 +39,7 @@ module type PHashtable =
val close : 'a t -> unit
(** [close tbl] is closing the table.
Once closed, a table cannot be used.
- i.e, copy, find,add will raise UnboundTable *)
+ i.e, find,add will raise UnboundTable *)
val memo : string -> (key -> 'a) -> (key -> 'a)
(** [memo cache f] returns a memo function for [f] using file [cache] as persistent table.
@@ -52,20 +51,17 @@ open Hashtbl
module PHashtable(Key:HashedType) : PHashtable with type key = Key.t =
struct
+ open Unix
type key = Key.t
module Table = Hashtbl.Make(Key)
-
-
exception InvalidTableFormat
exception UnboundTable
-
type mode = Closed | Open
-
type 'a t =
{
outch : out_channel ;
@@ -75,8 +71,9 @@ struct
let create i f =
+ let flags = [O_WRONLY; O_TRUNC;O_CREAT] in
{
- outch = open_out_bin f ;
+ outch = out_channel_of_descr (openfile f flags 0o666);
status = Open ;
htbl = Table.create i
}
@@ -85,10 +82,10 @@ let finally f rst =
try
let res = f () in
rst () ; res
- with x ->
+ with reraise ->
(try rst ()
- with _ -> raise x
- ); raise x
+ with any -> raise reraise
+ ); raise reraise
let read_key_elem inch =
@@ -96,12 +93,32 @@ let read_key_elem inch =
Some (Marshal.from_channel inch)
with
| End_of_file -> None
- | _ -> raise InvalidTableFormat
+ | e when e <> Sys.Break -> raise InvalidTableFormat
+
+(** In win32, it seems that we should unlock the exact zone
+ that has been locked, and not the whole file *)
+
+let locked_start = ref 0
+
+let lock fd =
+ locked_start := lseek fd 0 SEEK_CUR;
+ lockf fd F_LOCK 0
+
+let rlock fd =
+ locked_start := lseek fd 0 SEEK_CUR;
+ lockf fd F_RLOCK 0
+
+let unlock fd =
+ let pos = lseek fd 0 SEEK_CUR in
+ ignore (lseek fd !locked_start SEEK_SET);
+ lockf fd F_ULOCK 0;
+ ignore (lseek fd pos SEEK_SET)
let open_in f =
- let flags = [Open_rdonly;Open_binary;Open_creat] in
- let inch = open_in_gen flags 0o666 f in
- let htbl = Table.create 10 in
+ let flags = [O_RDONLY ; O_CREAT] in
+ let finch = openfile f flags 0o666 in
+ let inch = in_channel_of_descr finch in
+ let htbl = Table.create 100 in
let rec xload () =
match read_key_elem inch with
@@ -109,27 +126,38 @@ let open_in f =
| Some (key,elem) ->
Table.add htbl key elem ;
xload () in
-
try
- finally (fun () -> xload () ) (fun () -> close_in inch) ;
+ (* Locking of the (whole) file while reading *)
+ rlock finch;
+ finally
+ (fun () -> xload () )
+ (fun () ->
+ unlock finch ;
+ close_in_noerr inch ;
+ ) ;
{
- outch = begin
- let flags = [Open_append;Open_binary;Open_creat] in
- open_out_gen flags 0o666 f
- end ;
+ outch = out_channel_of_descr (openfile f [O_WRONLY;O_APPEND;O_CREAT] 0o666) ;
status = Open ;
htbl = htbl
}
with InvalidTableFormat ->
(* Try to keep as many entries as possible *)
begin
- let flags = [Open_wronly; Open_trunc;Open_binary;Open_creat] in
- let outch = open_out_gen flags 0o666 f in
- Table.iter (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl;
- { outch = outch ;
- status = Open ;
- htbl = htbl
- }
+ let flags = [O_WRONLY; O_TRUNC;O_CREAT] in
+ let out = (openfile f flags 0o666) in
+ let outch = out_channel_of_descr out in
+ lock out;
+ (try
+ Table.iter
+ (fun k e -> Marshal.to_channel outch (k,e) [Marshal.No_sharing]) htbl;
+ flush outch ;
+ with e when e <> Sys.Break -> () )
+ ;
+ unlock out ;
+ { outch = outch ;
+ status = Open ;
+ htbl = htbl
+ }
end
@@ -147,9 +175,14 @@ let add t k e =
if status = Closed
then raise UnboundTable
else
+ let fd = descr_of_out_channel outch in
begin
Table.add tbl k e ;
- Marshal.to_channel outch (k,e) [Marshal.No_sharing]
+ lock fd;
+ ignore (lseek fd 0 SEEK_END);
+ Marshal.to_channel outch (k,e) [Marshal.No_sharing] ;
+ flush outch ;
+ unlock fd
end
let find t k =
diff --git a/plugins/micromega/polynomial.ml b/plugins/micromega/polynomial.ml
new file mode 100644
index 00000000..36b05a72
--- /dev/null
+++ b/plugins/micromega/polynomial.ml
@@ -0,0 +1,739 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+(* *)
+(* Micromega: A reflexive tactic using the Positivstellensatz *)
+(* *)
+(* Frédéric Besson (Irisa/Inria) 2006-20011 *)
+(* *)
+(************************************************************************)
+
+open Num
+module Utils = Mutils
+open Utils
+
+type var = int
+
+
+let (<+>) = add_num
+let (<->) = minus_num
+let (<*>) = mult_num
+
+
+module Monomial :
+sig
+ type t
+ val const : t
+ val is_const : t -> bool
+ val var : var -> t
+ val is_var : t -> bool
+ val find : var -> t -> int
+ val mult : var -> t -> t
+ val prod : t -> t -> t
+ val exp : t -> int -> t
+ val div : t -> t -> t * int
+ val compare : t -> t -> int
+ val pp : out_channel -> t -> unit
+ val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a
+ val sqrt : t -> t option
+end
+ =
+struct
+ (* A monomial is represented by a multiset of variables *)
+ module Map = Map.Make(struct type t = var let compare = Pervasives.compare end)
+ open Map
+
+ type t = int Map.t
+
+ let pp o m = Map.iter
+ (fun k v ->
+ if v = 1 then Printf.fprintf o "x%i." k
+ else Printf.fprintf o "x%i^%i." k v) m
+
+
+ (* The monomial that corresponds to a constant *)
+ let const = Map.empty
+
+ let sum_degree m = Map.fold (fun _ n s -> s + n) m 0
+
+ (* Total ordering of monomials *)
+ let compare: t -> t -> int =
+ fun m1 m2 ->
+ let s1 = sum_degree m1
+ and s2 = sum_degree m2 in
+ if s1 = s2 then Map.compare Pervasives.compare m1 m2
+ else Pervasives.compare s1 s2
+
+ let is_const m = (m = Map.empty)
+
+ (* The monomial 'x' *)
+ let var x = Map.add x 1 Map.empty
+
+ let is_var m =
+ try
+ not (Map.fold (fun _ i fk ->
+ if fk = true (* first key *)
+ then
+ if i = 1 then false
+ else raise Not_found
+ else raise Not_found) m true)
+ with Not_found -> false
+
+ let sqrt m =
+ if is_const m then None
+ else
+ try
+ Some (Map.fold (fun v i acc ->
+ let i' = i / 2 in
+ if i mod 2 = 0
+ then add v i' m
+ else raise Not_found) m const)
+ with Not_found -> None
+
+ (* Get the degre of a variable in a monomial *)
+ let find x m = try find x m with Not_found -> 0
+
+ (* Multiply a monomial by a variable *)
+ let mult x m = add x ( (find x m) + 1) m
+
+ (* Product of monomials *)
+ let prod m1 m2 = Map.fold (fun k d m -> add k ((find k m) + d) m) m1 m2
+
+
+ let exp m n =
+ let rec exp acc n =
+ if n = 0 then acc
+ else exp (prod acc m) (n - 1) in
+
+ exp const n
+
+
+ (* [div m1 m2 = mr,n] such that mr * (m2)^n = m1 *)
+ let div m1 m2 =
+ let n = fold (fun x i n -> let i' = find x m1 in
+ let nx = i' / i in
+ min n nx) m2 max_int in
+
+ let mr = fold (fun x i' m ->
+ let i = find x m2 in
+ let ir = i' - i * n in
+ if ir = 0 then m
+ else add x ir m) m1 empty in
+ (mr,n)
+
+
+ let fold = fold
+
+end
+
+module Poly :
+ (* A polynomial is a map of monomials *)
+ (*
+ This is probably a naive implementation
+ (expected to be fast enough - Coq is probably the bottleneck)
+ *The new ring contribution is using a sparse Horner representation.
+ *)
+sig
+ type t
+ val get : Monomial.t -> t -> num
+ val variable : var -> t
+ val add : Monomial.t -> num -> t -> t
+ val constant : num -> t
+ val mult : Monomial.t -> num -> t -> t
+ val product : t -> t -> t
+ val addition : t -> t -> t
+ val uminus : t -> t
+ val fold : (Monomial.t -> num -> 'a -> 'a) -> t -> 'a -> 'a
+ val pp : out_channel -> t -> unit
+ val compare : t -> t -> int
+ val is_null : t -> bool
+ val is_linear : t -> bool
+end =
+struct
+ (*normalisation bug : 0*x ... *)
+ module P = Map.Make(Monomial)
+ open P
+
+ type t = num P.t
+
+ let pp o p = P.iter
+ (fun k v ->
+ if Monomial.compare Monomial.const k = 0
+ then Printf.fprintf o "%s " (string_of_num v)
+ else Printf.fprintf o "%s*%a " (string_of_num v) Monomial.pp k) p
+
+ (* Get the coefficient of monomial mn *)
+ let get : Monomial.t -> t -> num =
+ fun mn p -> try find mn p with Not_found -> (Int 0)
+
+
+ (* The polynomial 1.x *)
+ let variable : var -> t =
+ fun x -> add (Monomial.var x) (Int 1) empty
+
+ (*The constant polynomial *)
+ let constant : num -> t =
+ fun c -> add (Monomial.const) c empty
+
+ (* The addition of a monomial *)
+
+ let add : Monomial.t -> num -> t -> t =
+ fun mn v p ->
+ if sign_num v = 0 then p
+ else
+ let vl = (get mn p) <+> v in
+ if sign_num vl = 0 then
+ remove mn p
+ else add mn vl p
+
+
+ (** Design choice: empty is not a polynomial
+ I do not remember why ....
+ **)
+
+ (* The product by a monomial *)
+ let mult : Monomial.t -> num -> t -> t =
+ fun mn v p ->
+ if sign_num v = 0
+ then constant (Int 0)
+ else
+ fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v<*>v') res) p empty
+
+
+ let addition : t -> t -> t =
+ fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2
+
+
+ let product : t -> t -> t =
+ fun p1 p2 ->
+ fold (fun mn v res -> addition (mult mn v p2) res ) p1 empty
+
+
+ let uminus : t -> t =
+ fun p -> map (fun v -> minus_num v) p
+
+ let fold = P.fold
+
+ let is_null p = fold (fun mn vl b -> b & sign_num vl = 0) p true
+
+ let compare = compare compare_num
+
+ let is_linear p = P.fold (fun m _ acc -> acc && (Monomial.is_const m || Monomial.is_var m)) p true
+
+(* let is_linear p =
+ let res = is_linear p in
+ Printf.printf "is_linear %a = %b\n" pp p res ; res
+*)
+end
+
+
+module Vect =
+ struct
+ (** [t] is the type of vectors.
+ A vector [(x1,v1) ; ... ; (xn,vn)] is such that:
+ - variables indexes are ordered (x1 <c ... < xn
+ - values are all non-zero
+ *)
+ type var = int
+ type t = (var * num) list
+
+(** [equal v1 v2 = true] if the vectors are syntactically equal.
+ ([num] is not handled by [Pervasives.equal] *)
+
+ let rec equal v1 v2 =
+ match v1 , v2 with
+ | [] , [] -> true
+ | [] , _ -> false
+ | _::_ , [] -> false
+ | (i1,n1)::v1 , (i2,n2)::v2 ->
+ (i1 = i2) && n1 =/ n2 && equal v1 v2
+
+ let hash v =
+ let rec hash i = function
+ | [] -> i
+ | (vr,vl)::l -> hash (i + (Hashtbl.hash (vr, float_of_num vl))) l in
+ Hashtbl.hash (hash 0 v )
+
+
+ let null = []
+
+ let pp_vect o vect =
+ List.iter (fun (v,n) -> Printf.printf "%sx%i + " (string_of_num n) v) vect
+
+ let from_list (l: num list) =
+ let rec xfrom_list i l =
+ match l with
+ | [] -> []
+ | e::l ->
+ if e <>/ Int 0
+ then (i,e)::(xfrom_list (i+1) l)
+ else xfrom_list (i+1) l in
+
+ xfrom_list 0 l
+
+ let zero_num = Int 0
+ let unit_num = Int 1
+
+
+ let to_list m =
+ let rec xto_list i l =
+ match l with
+ | [] -> []
+ | (x,v)::l' ->
+ if i = x then v::(xto_list (i+1) l') else zero_num ::(xto_list (i+1) l) in
+ xto_list 0 m
+
+
+ let cons i v rst = if v =/ Int 0 then rst else (i,v)::rst
+
+ let rec update i f t =
+ match t with
+ | [] -> cons i (f zero_num) []
+ | (k,v)::l ->
+ match Pervasives.compare i k with
+ | 0 -> cons k (f v) l
+ | -1 -> cons i (f zero_num) t
+ | 1 -> (k,v) ::(update i f l)
+ | _ -> failwith "compare_num"
+
+ let rec set i n t =
+ match t with
+ | [] -> cons i n []
+ | (k,v)::l ->
+ match Pervasives.compare i k with
+ | 0 -> cons k n l
+ | -1 -> cons i n t
+ | 1 -> (k,v) :: (set i n l)
+ | _ -> failwith "compare_num"
+
+ let gcd m =
+ let res = List.fold_left (fun x (i,e) -> Big_int.gcd_big_int x (Utils.numerator e)) Big_int.zero_big_int m in
+ if Big_int.compare_big_int res Big_int.zero_big_int = 0
+ then Big_int.unit_big_int else res
+
+ let rec mul z t =
+ match z with
+ | Int 0 -> []
+ | Int 1 -> t
+ | _ -> List.map (fun (i,n) -> (i, mult_num z n)) t
+
+
+ let rec add v1 v2 =
+ match v1 , v2 with
+ | (x1,n1)::v1' , (x2,n2)::v2' ->
+ if x1 = x2
+ then
+ let n' = n1 +/ n2 in
+ if n' =/ Int 0 then add v1' v2'
+ else
+ let res = add v1' v2' in
+ (x1,n') ::res
+ else if x1 < x2
+ then let res = add v1' v2 in
+ (x1, n1)::res
+ else let res = add v1 v2' in
+ (x2, n2)::res
+ | [] , [] -> []
+ | [] , _ -> v2
+ | _ , [] -> v1
+
+
+
+
+ let compare : t -> t -> int = Utils.Cmp.compare_list (fun x y -> Utils.Cmp.compare_lexical
+ [
+ (fun () -> Pervasives.compare (fst x) (fst y));
+ (fun () -> compare_num (snd x) (snd y))])
+
+ (** [tail v vect] returns
+ - [None] if [v] is not a variable of the vector [vect]
+ - [Some(vl,rst)] where [vl] is the value of [v] in vector [vect]
+ and [rst] is the remaining of the vector
+ We exploit that vectors are ordered lists
+ *)
+ let rec tail (v:var) (vect:t) =
+ match vect with
+ | [] -> None
+ | (v',vl)::vect' ->
+ match Pervasives.compare v' v with
+ | 0 -> Some (vl,vect) (* Ok, found *)
+ | -1 -> tail v vect' (* Might be in the tail *)
+ | _ -> None (* Hopeless *)
+
+ let get v vect =
+ match tail v vect with
+ | None -> None
+ | Some(vl,_) -> Some vl
+
+
+ let rec fresh v =
+ match v with
+ | [] -> 1
+ | [v,_] -> v + 1
+ | _::v -> fresh v
+
+ end
+
+type vector = Vect.t
+
+type cstr_compat = {coeffs : vector ; op : op ; cst : num}
+and op = |Eq | Ge
+
+let string_of_op = function Eq -> "=" | Ge -> ">="
+
+let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} =
+ Printf.fprintf o "%a %s %s" Vect.pp_vect coeffs (string_of_op op) (string_of_num cst)
+
+let opMult o1 o2 =
+ match o1, o2 with
+ | Eq , Eq -> Eq
+ | Eq , Ge | Ge , Eq -> Ge
+ | Ge , Ge -> Ge
+
+let opAdd o1 o2 =
+ match o1 , o2 with
+ | Eq , _ | _ , Eq -> Eq
+ | Ge , Ge -> Ge
+
+
+
+
+open Big_int
+
+type index = int
+
+type prf_rule =
+ | Hyp of int
+ | Def of int
+ | Cst of big_int
+ | Zero
+ | Square of (Vect.t * num)
+ | MulC of (Vect.t * num) * prf_rule
+ | Gcd of big_int * prf_rule
+ | MulPrf of prf_rule * prf_rule
+ | AddPrf of prf_rule * prf_rule
+ | CutPrf of prf_rule
+
+type proof =
+ | Done
+ | Step of int * prf_rule * proof
+ | Enum of int * prf_rule * Vect.t * prf_rule * proof list
+
+
+let rec output_prf_rule o = function
+ | Hyp i -> Printf.fprintf o "Hyp %i" i
+ | Def i -> Printf.fprintf o "Def %i" i
+ | Cst c -> Printf.fprintf o "Cst %s" (string_of_big_int c)
+ | Zero -> Printf.fprintf o "Zero"
+ | Square _ -> Printf.fprintf o "( )^2"
+ | MulC(p,pr) -> Printf.fprintf o "P * %a" output_prf_rule pr
+ | MulPrf(p1,p2) -> Printf.fprintf o "%a * %a" output_prf_rule p1 output_prf_rule p2
+ | AddPrf(p1,p2) -> Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2
+ | CutPrf(p) -> Printf.fprintf o "[%a]" output_prf_rule p
+ | Gcd(c,p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (string_of_big_int c)
+
+let rec output_proof o = function
+ | Done -> Printf.fprintf o "."
+ | Step(i,p,pf) -> Printf.fprintf o "%i:= %a ; %a" i output_prf_rule p output_proof pf
+ | Enum(i,p1,v,p2,pl) -> Printf.fprintf o "%i{%a<=%a<=%a}%a" i
+ output_prf_rule p1 Vect.pp_vect v output_prf_rule p2
+ (pp_list output_proof) pl
+
+let rec pr_rule_max_id = function
+ | Hyp i | Def i -> i
+ | Cst _ | Zero | Square _ -> -1
+ | MulC(_,p) | CutPrf p | Gcd(_,p) -> pr_rule_max_id p
+ | MulPrf(p1,p2)| AddPrf(p1,p2) -> max (pr_rule_max_id p1) (pr_rule_max_id p2)
+
+let rec proof_max_id = function
+ | Done -> -1
+ | Step(i,pr,prf) -> max i (max (pr_rule_max_id pr) (proof_max_id prf))
+ | Enum(i,p1,_,p2,l) ->
+ let m = max (pr_rule_max_id p1) (pr_rule_max_id p2) in
+ List.fold_left (fun i prf -> max i (proof_max_id prf)) (max i m) l
+
+let rec pr_rule_def_cut id = function
+ | MulC(p,prf) ->
+ let (bds,id',prf') = pr_rule_def_cut id prf in
+ (bds, id', MulC(p,prf'))
+ | MulPrf(p1,p2) ->
+ let (bds1,id,p1) = pr_rule_def_cut id p1 in
+ let (bds2,id,p2) = pr_rule_def_cut id p2 in
+ (bds2@bds1,id,MulPrf(p1,p2))
+ | AddPrf(p1,p2) ->
+ let (bds1,id,p1) = pr_rule_def_cut id p1 in
+ let (bds2,id,p2) = pr_rule_def_cut id p2 in
+ (bds2@bds1,id,AddPrf(p1,p2))
+ | CutPrf p ->
+ let (bds,id,p) = pr_rule_def_cut id p in
+ ((id,p)::bds,id+1,Def id)
+ | Gcd(c,p) ->
+ let (bds,id,p) = pr_rule_def_cut id p in
+ ((id,p)::bds,id+1,Def id)
+ | Square _|Cst _|Def _|Hyp _|Zero as x -> ([],id,x)
+
+
+(* Do not define top-level cuts *)
+let pr_rule_def_cut id = function
+ | CutPrf p ->
+ let (bds,ids,p') = pr_rule_def_cut id p in
+ bds,ids, CutPrf p'
+ | p -> pr_rule_def_cut id p
+
+
+let rec implicit_cut p =
+ match p with
+ | CutPrf p -> implicit_cut p
+ | _ -> p
+
+
+let rec normalise_proof id prf =
+ match prf with
+ | Done -> (id,Done)
+ | Step(i,Gcd(c,p),Done) -> normalise_proof id (Step(i,p,Done))
+ | Step(i,p,prf) ->
+ let bds,id,p' = pr_rule_def_cut id p in
+ let (id,prf) = normalise_proof id prf in
+ let prf = List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
+ (Step(i,p',prf)) bds in
+
+ (id,prf)
+ | Enum(i,p1,v,p2,pl) ->
+ (* Why do I have top-level cuts ? *)
+(* let p1 = implicit_cut p1 in
+ let p2 = implicit_cut p2 in
+ let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
+ (List.fold_left max 0 ids ,
+ Enum(i,p1,v,p2,prfs))
+*)
+
+ let bds1,id,p1' = pr_rule_def_cut id (implicit_cut p1) in
+ let bds2,id,p2' = pr_rule_def_cut id (implicit_cut p2) in
+ let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in
+ (List.fold_left max 0 ids ,
+ List.fold_left (fun acc (i,p) -> Step(i, CutPrf p,acc))
+ (Enum(i,p1',v,p2',prfs)) (bds2@bds1))
+
+
+let normalise_proof id prf =
+ let res = normalise_proof id prf in
+ if debug then Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof (snd res) ;
+ res
+
+
+
+let add_proof x y =
+ match x, y with
+ | Zero , p | p , Zero -> p
+ | _ -> AddPrf(x,y)
+
+
+let mul_proof c p =
+ match sign_big_int c with
+ | 0 -> Zero (* This is likely to be a bug *)
+ | -1 -> MulC(([],Big_int c),p) (* [p] should represent an equality *)
+ | 1 ->
+ if eq_big_int c unit_big_int
+ then p
+ else MulPrf(Cst c,p)
+ | _ -> assert false
+
+
+let mul_proof_ext (p,c) prf =
+ match p with
+ | [] -> mul_proof (numerator c) prf
+ | _ -> MulC((p,c),prf)
+
+
+
+(*
+ let rec scale_prf_rule = function
+ | Hyp i -> (unit_big_int, Hyp i)
+ | Def i -> (unit_big_int, Def i)
+ | Cst c -> (unit_big_int, Cst i)
+ | Zero -> (unit_big_int, Zero)
+ | Square p -> (unit_big_int,Square p)
+ | Div(c,pr) ->
+ let (bi,pr') = scale_prf_rule pr in
+ (mult_big_int c bi , pr')
+ | MulC(p,pr) ->
+ let bi,pr' = scale_prf_rule pr in
+ (bi,MulC p,pr')
+ | MulPrf(p1,p2) ->
+ let b1,p1 = scale_prf_rule p1 in
+ let b2,p2 = scale_prf_rule p2 in
+
+
+ | AddPrf(p1,p2) ->
+ let b1,p1 = scale_prf_rule p1 in
+ let b2,p2 = scale_prf_rule p2 in
+ let g = gcd_big_int
+*)
+
+
+
+
+
+module LinPoly =
+struct
+ type t = Vect.t * num
+
+ module MonT =
+ struct
+ module MonoMap = Map.Make(Monomial)
+ module IntMap = Map.Make(struct type t = int let compare = Pervasives.compare end)
+
+ (** A hash table might be preferable but requires a hash function. *)
+ let (index_of_monomial : int MonoMap.t ref) = ref (MonoMap.empty)
+ let (monomial_of_index : Monomial.t IntMap.t ref) = ref (IntMap.empty)
+ let fresh = ref 0
+
+ let clear () =
+ index_of_monomial := MonoMap.empty;
+ monomial_of_index := IntMap.empty ;
+ fresh := 0
+
+
+ let register m =
+ try
+ MonoMap.find m !index_of_monomial
+ with Not_found ->
+ begin
+ let res = !fresh in
+ index_of_monomial := MonoMap.add m res !index_of_monomial ;
+ monomial_of_index := IntMap.add res m !monomial_of_index ;
+ incr fresh ; res
+ end
+
+ let retrieve i = IntMap.find i !monomial_of_index
+
+
+ end
+
+ let normalise (v,c) =
+ (List.sort (fun x y -> Pervasives.compare (fst x) (fst y)) v , c)
+
+
+ let output_mon o (x,v) =
+ Printf.fprintf o "%s.%a +" (string_of_num v) Monomial.pp (MonT.retrieve x)
+
+
+
+ let output_cstr o {coeffs = coeffs ; op = op ; cst = cst} =
+ Printf.fprintf o "%a %s %s" (pp_list output_mon) coeffs (string_of_op op) (string_of_num cst)
+
+
+
+ let linpol_of_pol p =
+ let (v,c) =
+ Poly.fold
+ (fun mon num (vct,cst) ->
+ if Monomial.is_const mon then (vct,num)
+ else
+ let vr = MonT.register mon in
+ ((vr,num)::vct,cst)) p ([], Int 0) in
+ normalise (v,c)
+
+ let mult v m (vect,c) =
+ if Monomial.is_const m
+ then
+ (Vect.mul v vect, v <*> c)
+ else
+ if sign_num v <> 0
+ then
+ let hd =
+ if sign_num c <> 0
+ then [MonT.register m,v <*> c]
+ else [] in
+
+ let vect = hd @ (List.map (fun (x,n) ->
+ let x = MonT.retrieve x in
+ let x_m = MonT.register (Monomial.prod m x) in
+ (x_m, v <*> n)) vect ) in
+ normalise (vect , Int 0)
+ else ([],Int 0)
+
+ let mult v m (vect,c) =
+ let (vect',c') = mult v m (vect,c) in
+ if debug then
+ Printf.printf "mult %s %a (%a,%s) -> (%a,%s)\n" (string_of_num v) Monomial.pp m
+ (pp_list output_mon) vect (string_of_num c)
+ (pp_list output_mon) vect' (string_of_num c') ;
+ (vect',c')
+
+
+
+ let make_lin_pol v mon =
+ if Monomial.is_const mon
+ then [] , v
+ else [MonT.register mon, v],Int 0
+
+
+
+
+
+
+ let xpivot_eq (c,prf) x v (c',prf') =
+ if debug then Printf.printf "xpivot_eq {%a} %a %s {%a}\n"
+ output_cstr c
+ Monomial.pp (MonT.retrieve x)
+ (string_of_num v) output_cstr c' ;
+
+
+ let {coeffs = coeffs ; op = op ; cst = cst} = c' in
+ let m = MonT.retrieve x in
+
+ let apply_pivot (vqn,q,n) (c',prf') =
+ (* Morally, we have (Vect.get (q*x^n) c'.coeffs) = vmn with n >=0 *)
+
+ let cc' = abs_num v in
+ let cc_num = Int (- (sign_num v)) <*> vqn in
+ let cc_mon = Monomial.prod q (Monomial.exp m (n-1)) in
+
+ let (c_coeff,c_cst) = mult cc_num cc_mon (c.coeffs, minus_num c.cst) in
+
+ let c' = {coeffs = Vect.add (Vect.mul cc' c'.coeffs) c_coeff ; op = op ; cst = (minus_num c_cst) <+> (cc' <*> c'.cst)} in
+ let prf' = add_proof
+ (mul_proof_ext (make_lin_pol cc_num cc_mon) prf)
+ (mul_proof (numerator cc') prf') in
+
+ if debug then Printf.printf "apply_pivot -> {%a}\n" output_cstr c' ;
+ (c',prf') in
+
+
+ let cmp (q,n) (q',n') =
+ if n < n' then -1
+ else if n = n' then Monomial.compare q q'
+ else 1 in
+
+
+ let find_pivot (c',prf') =
+ let (v,q,n) = List.fold_left
+ (fun (v,q,n) (x,v') ->
+ let x = MonT.retrieve x in
+ let (q',n') = Monomial.div x m in
+ if cmp (q,n) (q',n') = -1 then (v',q',n') else (v,q,n)) (Int 0, Monomial.const,0) c'.coeffs in
+ if n > 0 then Some (v,q,n) else None in
+
+ let rec pivot (q,n) (c',prf') =
+ match find_pivot (c',prf') with
+ | None -> (c',prf')
+ | Some(v,q',n') ->
+ if cmp (q',n') (q,n) = -1
+ then pivot (q',n') (apply_pivot (v,q',n') (c',prf'))
+ else (c',prf') in
+
+ pivot (Monomial.const,max_int) (c',prf')
+
+
+ let pivot_eq x (c,prf) =
+ match Vect.get x c.coeffs with
+ | None -> (fun x -> None)
+ | Some v -> fun cp' -> Some (xpivot_eq (c,prf) x v cp')
+
+
+end
diff --git a/plugins/micromega/sos.ml b/plugins/micromega/sos.ml
index 3029496b..6ddc48e7 100644
--- a/plugins/micromega/sos.ml
+++ b/plugins/micromega/sos.ml
@@ -526,17 +526,17 @@ let sdpa_run_succeeded =
(* ------------------------------------------------------------------------- *)
let sdpa_default_parameters =
-"100 unsigned int maxIteration;
-1.0E-7 double 0.0 < epsilonStar;
-1.0E2 double 0.0 < lambdaStar;
-2.0 double 1.0 < omegaStar;
--1.0E5 double lowerBound;
-1.0E5 double upperBound;
-0.1 double 0.0 <= betaStar < 1.0;
-0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
-0.9 double 0.0 < gammaStar < 1.0;
-1.0E-7 double 0.0 < epsilonDash;
-";;
+"100 unsigned int maxIteration;\
+\n1.0E-7 double 0.0 < epsilonStar;\
+\n1.0E2 double 0.0 < lambdaStar;\
+\n2.0 double 1.0 < omegaStar;\
+\n-1.0E5 double lowerBound;\
+\n1.0E5 double upperBound;\
+\n0.1 double 0.0 <= betaStar < 1.0;\
+\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\
+\n0.9 double 0.0 < gammaStar < 1.0;\
+\n1.0E-7 double 0.0 < epsilonDash;\
+\n";;
(* ------------------------------------------------------------------------- *)
(* These were suggested by Makoto Yamashita for problems where we are *)
@@ -544,17 +544,17 @@ let sdpa_default_parameters =
(* ------------------------------------------------------------------------- *)
let sdpa_alt_parameters =
-"1000 unsigned int maxIteration;
-1.0E-7 double 0.0 < epsilonStar;
-1.0E4 double 0.0 < lambdaStar;
-2.0 double 1.0 < omegaStar;
--1.0E5 double lowerBound;
-1.0E5 double upperBound;
-0.1 double 0.0 <= betaStar < 1.0;
-0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;
-0.9 double 0.0 < gammaStar < 1.0;
-1.0E-7 double 0.0 < epsilonDash;
-";;
+"1000 unsigned int maxIteration;\
+\n1.0E-7 double 0.0 < epsilonStar;\
+\n1.0E4 double 0.0 < lambdaStar;\
+\n2.0 double 1.0 < omegaStar;\
+\n-1.0E5 double lowerBound;\
+\n1.0E5 double upperBound;\
+\n0.1 double 0.0 <= betaStar < 1.0;\
+\n0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\
+\n0.9 double 0.0 < gammaStar < 1.0;\
+\n1.0E-7 double 0.0 < epsilonDash;\
+\n";;
let sdpa_params = sdpa_alt_parameters;;
@@ -563,21 +563,21 @@ let sdpa_params = sdpa_alt_parameters;;
(* ------------------------------------------------------------------------- *)
let csdp_default_parameters =
-"axtol=1.0e-8
-atytol=1.0e-8
-objtol=1.0e-8
-pinftol=1.0e8
-dinftol=1.0e8
-maxiter=100
-minstepfrac=0.9
-maxstepfrac=0.97
-minstepp=1.0e-8
-minstepd=1.0e-8
-usexzgap=1
-tweakgap=0
-affine=0
-printlevel=1
-";;
+"axtol=1.0e-8\
+\natytol=1.0e-8\
+\nobjtol=1.0e-8\
+\npinftol=1.0e8\
+\ndinftol=1.0e8\
+\nmaxiter=100\
+\nminstepfrac=0.9\
+\nmaxstepfrac=0.97\
+\nminstepp=1.0e-8\
+\nminstepd=1.0e-8\
+\nusexzgap=1\
+\ntweakgap=0\
+\naffine=0\
+\nprintlevel=1\
+\n";;
let csdp_params = csdp_default_parameters;;
diff --git a/plugins/micromega/sos.mli b/plugins/micromega/sos.mli
index 23219be2..bc08d3c9 100644
--- a/plugins/micromega/sos.mli
+++ b/plugins/micromega/sos.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/micromega/sos_types.ml b/plugins/micromega/sos_types.ml
index 6bd463ef..f9d2fb0b 100644
--- a/plugins/micromega/sos_types.ml
+++ b/plugins/micromega/sos_types.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/nsatz/Nsatz.v b/plugins/nsatz/Nsatz.v
index ac321ba2..4f4f2039 100644
--- a/plugins/nsatz/Nsatz.v
+++ b/plugins/nsatz/Nsatz.v
@@ -1,20 +1,19 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*
- Tactic nsatz: proofs of polynomials equalities in a domain (ring without zero divisor).
- Reification is done by type classes, following a technique shown by Mathieu
-Sozeau. Verification of certificate is done by a code written by Benjamin
-Gregoire, following an idea of Laurent Théry.
-
+ Tactic nsatz: proofs of polynomials equalities in an integral domain
+(commutative ring without zero divisor).
+
Examples: see test-suite/success/Nsatz.v
-Loïc Pottier, july 2010
+Reification is done using type classes, defined in Ncring_tac.v
+
*)
Require Import List.
@@ -22,74 +21,27 @@ Require Import Setoid.
Require Import BinPos.
Require Import BinList.
Require Import Znumtheory.
-Require Import Ring_polynom Ring_tac InitialRing.
Require Export Morphisms Setoid Bool.
+Require Export Algebra_syntax.
+Require Export Ncring.
+Require Export Ncring_initial.
+Require Export Ncring_tac.
+Require Export Integral_domain.
+Require Import DiscrR.
Declare ML Module "nsatz_plugin".
-Class Zero (A : Type) := {zero : A}.
-Notation "0" := zero.
-Class One (A : Type) := {one : A}.
-Notation "1" := one.
-Class Addition (A : Type) := {addition : A -> A -> A}.
-Notation "x + y" := (addition x y).
-Class Multiplication (A : Type) := {multiplication : A -> A -> A}.
-Notation "x * y" := (multiplication x y).
-Class Subtraction (A : Type) := {subtraction : A -> A -> A}.
-Notation "x - y" := (subtraction x y).
-Class Opposite (A : Type) := {opposite : A -> A}.
-Notation "- x" := (opposite x).
-
-Class Ring (R:Type) := {
- ring0: R; ring1: R;
- ring_plus: R->R->R; ring_mult: R->R->R;
- ring_sub: R->R->R; ring_opp: R->R;
- ring_eq : R -> R -> Prop;
- ring_ring:
- ring_theory ring0 ring1 ring_plus ring_mult ring_sub
- ring_opp ring_eq;
- ring_setoid: Equivalence ring_eq;
- ring_plus_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_plus;
- ring_mult_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_mult;
- ring_sub_comp: Proper (ring_eq==>ring_eq==>ring_eq) ring_sub;
- ring_opp_comp: Proper (ring_eq==>ring_eq) ring_opp
-}.
-
-Class Domain (R : Type) := {
- domain_ring:> Ring R;
- domain_axiom_product:
- forall x y, ring_eq (ring_mult x y) ring0 -> (ring_eq x ring0) \/ (ring_eq y ring0);
- domain_axiom_one_zero: not (ring_eq ring1 ring0)}.
-
-Section domain.
-
-Variable R: Type.
-Variable Rd: Domain R.
-
-Existing Instance ring_setoid.
-Existing Instance ring_plus_comp.
-Existing Instance ring_mult_comp.
-Existing Instance ring_sub_comp.
-Existing Instance ring_opp_comp.
-
-Add Ring Rr: (@ring_ring R (@domain_ring R Rd)).
-
-Instance zero_ring : Zero R := {zero := ring0}.
-Instance one_ring : One R := {one := ring1}.
-Instance addition_ring : Addition R := {addition x y := ring_plus x y}.
-Instance multiplication_ring : Multiplication R := {multiplication x y := ring_mult x y}.
-Instance subtraction_ring : Subtraction R := {subtraction x y := ring_sub x y}.
-Instance opposite_ring : Opposite R := {opposite x := ring_opp x}.
-
-Infix "==" := ring_eq (at level 70, no associativity).
+Section nsatz1.
+
+Context {R:Type}`{Rid:Integral_domain R}.
Lemma psos_r1b: forall x y:R, x - y == 0 -> x == y.
intros x y H; setoid_replace x with ((x - y) + y); simpl;
- [setoid_rewrite H | idtac]; simpl; ring.
+ [setoid_rewrite H | idtac]; simpl. cring. cring.
Qed.
Lemma psos_r1: forall x y, x == y -> x - y == 0.
-intros x y H; simpl; setoid_rewrite H; simpl; ring.
+intros x y H; simpl; setoid_rewrite H; simpl; cring.
Qed.
Lemma nsatzR_diff: forall x y:R, not (x == y) -> not (x - y == 0).
@@ -97,28 +49,30 @@ intros.
intro; apply H.
simpl; setoid_replace x with ((x - y) + y). simpl.
setoid_rewrite H0.
-simpl; ring.
-simpl. simpl; ring.
+simpl; cring.
+simpl. simpl; cring.
Qed.
(* adpatation du code de Benjamin aux setoides *)
Require Import ZArith.
+Require Export Ring_polynom.
+Require Export InitialRing.
Definition PolZ := Pol Z.
Definition PEZ := PExpr Z.
-Definition P0Z : PolZ := @P0 Z 0%Z.
+Definition P0Z : PolZ := P0 (C:=Z) 0%Z.
Definition PolZadd : PolZ -> PolZ -> PolZ :=
- @Padd Z 0%Z Zplus Zeq_bool.
+ @Padd Z 0%Z Z.add Zeq_bool.
Definition PolZmul : PolZ -> PolZ -> PolZ :=
- @Pmul Z 0%Z 1%Z Zplus Zmult Zeq_bool.
+ @Pmul Z 0%Z 1%Z Z.add Z.mul Zeq_bool.
Definition PolZeq := @Peq Z Zeq_bool.
Definition norm :=
- @norm_aux Z 0%Z 1%Z Zplus Zmult Zminus Zopp Zeq_bool.
+ @norm_aux Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool.
Fixpoint mult_l (la : list PEZ) (lp: list PolZ) : PolZ :=
match la, lp with
@@ -140,53 +94,65 @@ Definition check (lpe:list PEZ) (qe:PEZ) (certif: list (list PEZ) * list PEZ) :=
(* Correction *)
Definition PhiR : list R -> PolZ -> R :=
- (Pphi 0 ring_plus ring_mult (gen_phiZ 0 1 ring_plus ring_mult ring_opp)).
-
-Definition pow (r : R) (n : nat) := pow_N 1 ring_mult r (Nnat.N_of_nat n).
+ (Pphi ring0 add mul
+ (InitialRing.gen_phiZ ring0 ring1 add mul opp)).
Definition PEevalR : list R -> PEZ -> R :=
- PEeval 0 ring_plus ring_mult ring_sub ring_opp
- (gen_phiZ 0 1 ring_plus ring_mult ring_opp)
- Nnat.nat_of_N pow.
+ PEeval ring0 add mul sub opp
+ (gen_phiZ ring0 ring1 add mul opp)
+ N.to_nat pow.
Lemma P0Z_correct : forall l, PhiR l P0Z = 0.
Proof. trivial. Qed.
-Lemma Rext: ring_eq_ext ring_plus ring_mult ring_opp ring_eq.
-apply mk_reqe. intros. setoid_rewrite H; rewrite H0; ring.
- intros. setoid_rewrite H; setoid_rewrite H0; ring.
-intros. setoid_rewrite H; ring. Qed.
-
-Lemma Rset : Setoid_Theory R ring_eq.
+Lemma Rext: ring_eq_ext add mul opp _==_.
+Proof.
+constructor; solve_proper.
+Qed.
+
+Lemma Rset : Setoid_Theory R _==_.
apply ring_setoid.
Qed.
+Definition Rtheory:ring_theory ring0 ring1 add mul sub opp _==_.
+apply mk_rt.
+apply ring_add_0_l.
+apply ring_add_comm.
+apply ring_add_assoc.
+apply ring_mul_1_l.
+apply cring_mul_comm.
+apply ring_mul_assoc.
+apply ring_distr_l.
+apply ring_sub_def.
+apply ring_opp_def.
+Defined.
+
Lemma PolZadd_correct : forall P' P l,
PhiR l (PolZadd P P') == ((PhiR l P) + (PhiR l P')).
Proof.
-simpl.
- refine (Padd_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+unfold PolZadd, PhiR. intros. simpl.
+ refine (Padd_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma PolZmul_correct : forall P P' l,
PhiR l (PolZmul P P') == ((PhiR l P) * (PhiR l P')).
Proof.
- refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd)))).
+unfold PolZmul, PhiR. intros.
+ refine (Pmul_ok Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) _ _ _).
Qed.
Lemma R_power_theory
- : power_theory 1 ring_mult ring_eq Nnat.nat_of_N pow.
-apply mkpow_th. unfold pow. intros. rewrite Nnat.N_of_nat_of_N. ring. Qed.
+ : Ring_theory.power_theory ring1 mul _==_ N.to_nat pow.
+apply Ring_theory.mkpow_th. unfold pow. intros. rewrite Nnat.N2Nat.id.
+reflexivity. Qed.
Lemma norm_correct :
forall (l : list R) (pe : PEZ), PEevalR l pe == PhiR l (norm pe).
Proof.
- intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext (@ring_ring _ (@domain_ring _ Rd)))
- (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))) R_power_theory)
- with (lmp:= List.nil).
- compute;trivial.
+ intros;apply (norm_aux_spec Rset Rext (Rth_ARth Rset Rext Rtheory)
+ (gen_phiZ_morph Rset Rext Rtheory) R_power_theory).
Qed.
Lemma PolZeq_correct : forall P P' l,
@@ -194,7 +160,7 @@ Lemma PolZeq_correct : forall P P' l,
PhiR l P == PhiR l P'.
Proof.
intros;apply
- (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext (@ring_ring _ (@domain_ring _ Rd))));trivial.
+ (Peq_ok Rset Rext (gen_phiZ_morph Rset Rext Rtheory));trivial.
Qed.
Fixpoint Cond0 (A:Type) (Interp:A->R) (l:list A) : Prop :=
@@ -207,12 +173,12 @@ Lemma mult_l_correct : forall l la lp,
Cond0 PolZ (PhiR l) lp ->
PhiR l (mult_l la lp) == 0.
Proof.
- induction la;simpl;intros. ring.
- destruct lp;trivial. simpl. ring.
+ induction la;simpl;intros. cring.
+ destruct lp;trivial. simpl. cring.
simpl in H;destruct H.
- setoid_rewrite PolZadd_correct.
- simpl. setoid_rewrite PolZmul_correct. simpl. setoid_rewrite H.
- setoid_rewrite IHla. unfold zero. simpl. ring. trivial.
+ rewrite PolZadd_correct.
+ simpl. rewrite PolZmul_correct. simpl. rewrite H.
+ rewrite IHla. cring. trivial.
Qed.
Lemma compute_list_correct : forall l lla lp,
@@ -242,86 +208,63 @@ Qed.
(* fin *)
-Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0.
-induction n. unfold pow; simpl. intros. absurd (1 == 0).
-simpl. apply domain_axiom_one_zero.
- trivial. setoid_replace (pow p (S n)) with (p * (pow p n)). intros.
-case (@domain_axiom_product _ _ _ _ H). trivial. trivial.
-unfold pow; simpl.
-clear IHn. induction n; simpl; try ring.
- rewrite pow_pos_Psucc. ring. exact Rset.
- intros. setoid_rewrite H; setoid_rewrite H0; ring.
- intros. simpl; ring. intros. simpl; ring. Qed.
-
-Lemma Rdomain_pow: forall c p r, ~c == ring0 -> ring_mult c (pow p r) == ring0 -> p == ring0.
-intros. case (@domain_axiom_product _ _ _ _ H0). intros; absurd (c == ring0); auto.
-intros. apply pow_not_zero with r. trivial. Qed.
-
-Definition R2:= ring_plus ring1 ring1.
+Definition R2:= 1 + 1.
Fixpoint IPR p {struct p}: R :=
match p with
xH => ring1
- | xO xH => ring_plus ring1 ring1
- | xO p1 => ring_mult R2 (IPR p1)
- | xI xH => ring_plus ring1 (ring_plus ring1 ring1)
- | xI p1 => ring_plus ring1 (ring_mult R2 (IPR p1))
+ | xO xH => 1+1
+ | xO p1 => R2*(IPR p1)
+ | xI xH => 1+(1+1)
+ | xI p1 => 1+(R2*(IPR p1))
end.
Definition IZR1 z :=
- match z with Z0 => ring0
+ match z with Z0 => 0
| Zpos p => IPR p
- | Zneg p => ring_opp(IPR p)
+ | Zneg p => -(IPR p)
end.
Fixpoint interpret3 t fv {struct t}: R :=
match t with
| (PEadd t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_plus v1 v2)
+ let v2 := interpret3 t2 fv in (v1 + v2)
| (PEmul t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_mult v1 v2)
+ let v2 := interpret3 t2 fv in (v1 * v2)
| (PEsub t1 t2) =>
let v1 := interpret3 t1 fv in
- let v2 := interpret3 t2 fv in (ring_sub v1 v2)
+ let v2 := interpret3 t2 fv in (v1 - v2)
| (PEopp t1) =>
- let v1 := interpret3 t1 fv in (ring_opp v1)
+ let v1 := interpret3 t1 fv in (-v1)
| (PEpow t1 t2) =>
- let v1 := interpret3 t1 fv in pow v1 (Nnat.nat_of_N t2)
+ let v1 := interpret3 t1 fv in pow v1 (N.to_nat t2)
| (PEc t1) => (IZR1 t1)
- | (PEX n) => List.nth (pred (nat_of_P n)) fv 0
+ | (PEX n) => List.nth (pred (Pos.to_nat n)) fv 0
end.
-End domain.
+End nsatz1.
+
+Ltac equality_to_goal H x y:=
+ let h := fresh "nH" in
+ (* eliminate trivial hypotheses, but it takes time!:
+ (assert (h:equality x y);
+ [solve [cring] | clear H; clear h])
+ || *) (try generalize (@psos_r1 _ _ _ _ _ _ _ _ _ _ _ x y H); clear H)
+.
Ltac equalities_to_goal :=
lazymatch goal with
- | H: (@ring_eq _ _ ?x ?y) |- _ =>
- try generalize (@psos_r1 _ _ _ _ H); clear H
+ | H: (_ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ _ ?x ?y) |- _ => equality_to_goal H x y
+ | H: (_ _ _ _ ?x ?y) |- _ => equality_to_goal H x y
+(* extension possible :-) *)
+ | H: (?x == ?y) |- _ => equality_to_goal H x y
end.
-Ltac nsatz_domain_begin tacsimpl :=
- intros;
- try apply (@psos_r1b _ _);
- repeat equalities_to_goal;
- tacsimpl.
-
-Ltac generalise_eq_hyps:=
- repeat
- (match goal with
- |h : (@ring_eq _ _ ?p ?q)|- _ => revert h
- end).
-
-Ltac lpol_goal t :=
- match t with
- | ?a = ring0 -> ?b =>
- let r:= lpol_goal b in
- constr:(a::r)
- | ?a = ring0 => constr:(a::nil)
- end.
-
(* lp est incluse dans fv. La met en tete. *)
Ltac parametres_en_tete fv lp :=
@@ -344,13 +287,12 @@ Ltac rev l :=
| (cons ?x ?l) => let l' := rev l in append1 x l'
end.
-
-
Ltac nsatz_call_n info nparam p rr lp kont :=
- (*idtac "Trying power: " rr;*)
+(* idtac "Trying power: " rr;*)
let ll := constr:(PEc info :: PEc nparam :: PEpow p rr :: lp) in
+(* idtac "calcul...";*)
nsatz_compute ll;
- (*idtac "done";*)
+(* idtac "done";*)
match goal with
| |- (?c::PEpow _ ?r::?lq0)::?lci0 = _ -> _ =>
intros _;
@@ -364,58 +306,20 @@ Ltac nsatz_call radicalmax info nparam p lp kont :=
lazymatch n with
| 0%N => fail
| _ =>
- (let r := eval compute in (Nminus radicalmax (Npred n)) in
+ (let r := eval compute in (N.sub radicalmax (N.pred n)) in
nsatz_call_n info nparam p r lp kont) ||
- let n' := eval compute in (Npred n) in try_n n'
+ let n' := eval compute in (N.pred n) in try_n n'
end in
try_n radicalmax.
-Set Implicit Arguments.
-Class Cclosed_seq T (l:list T) := {}.
-Instance Iclosed_nil T : Cclosed_seq (T:=T) nil.
-Instance Iclosed_cons T t l `{Cclosed_seq (T:=T) l} : Cclosed_seq (T:=T) (t::l).
-
-Class Cfind_at (R:Type) (b:R) (l:list R) (i:nat) := {}.
-Instance Ifind0 (R:Type) (b:R) l: Cfind_at b (b::l) 0.
-Instance IfindS (R:Type) (b2 b1:R) l i `{Cfind_at R b1 l i} : Cfind_at b1 (b2::l) (S i) | 1.
-Definition Ifind0' := Ifind0.
-Definition IfindS' := IfindS.
-
-Definition li_find_at (R:Type) (b:R) l i `{Cfind_at R b l i} {H:Cclosed_seq (T:=R) l} := (l,i).
-
-Class Creify (R:Type) (e:PExpr Z) (l:list R) (b:R) := {}.
-Instance Ireify_zero (R:Type) (Rd:Domain R) l : Creify (PEc 0%Z) l ring0.
-Instance Ireify_one (R:Type) (Rd:Domain R) l : Creify (PEc 1%Z) l ring1.
-Instance Ireify_plus (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEadd e1 e2) l (ring_plus b1 b2).
-Instance Ireify_mult (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEmul e1 e2) l (ring_mult b1 b2).
-Instance Ireify_sub (R:Type) (Rd:Domain R) e1 l b1 e2 b2 `{Creify R e1 l b1} `{Creify R e2 l b2}
- : Creify (PEsub e1 e2) l (ring_sub b1 b2).
-Instance Ireify_opp (R:Type) (Rd:Domain R) e1 l b1 `{Creify R e1 l b1}
- : Creify (PEopp e1) l (ring_opp b1).
-Instance Ireify_var (R:Type) b l i `{Cfind_at R b l i}
- : Creify (PEX _ (P_of_succ_nat i)) l b | 100.
-
-
-Class Creifylist (R:Type) (le:list (PExpr Z)) (l:list R) (lb:list R) := {}.
-Instance Creify_nil (R:Type) l : Creifylist nil l (@nil R).
-Instance Creify_cons (R:Type) e1 l b1 le2 lb2 `{Creify R e1 l b1} `{Creifylist R le2 l lb2}
- : Creifylist (e1::le2) l (b1::lb2).
-
-Definition li_reifyl (R:Type) le l lb `{Creifylist R le l lb}
- {H:Cclosed_seq (T:=R) l} := (l,le).
-
-Unset Implicit Arguments.
-
Ltac lterm_goal g :=
match g with
- ring_eq ?b1 ?b2 => constr:(b1::b2::nil)
- | ring_eq ?b1 ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
+ ?b1 == ?b2 => constr:(b1::b2::nil)
+ | ?b1 == ?b2 -> ?g => let l := lterm_goal g in constr:(b1::b2::l)
end.
-Ltac reify_goal l le lb Rd:=
+Ltac reify_goal l le lb:=
match le with
nil => idtac
| ?e::?le1 =>
@@ -423,241 +327,182 @@ Ltac reify_goal l le lb Rd:=
?b::?lb1 => (* idtac "b="; idtac b;*)
let x := fresh "B" in
set (x:= b) at 1;
- change x with (@interpret3 _ Rd e l);
+ change x with (interpret3 e l);
clear x;
- reify_goal l le1 lb1 Rd
+ reify_goal l le1 lb1
end
end.
Ltac get_lpol g :=
match g with
- ring_eq (interpret3 _ _ ?p _) _ => constr:(p::nil)
- | ring_eq (interpret3 _ _ ?p _) _ -> ?g =>
+ (interpret3 ?p _) == _ => constr:(p::nil)
+ | (interpret3 ?p _) == _ -> ?g =>
let l := get_lpol g in constr:(p::l)
end.
-Ltac nsatz_domain_generic radicalmax info lparam lvar tacsimpl Rd :=
- match goal with
- |- ?g => let lb := lterm_goal g in
- (*idtac "lb"; idtac lb;*)
- match eval red in (li_reifyl (lb:=lb)) with
- | (?fv, ?le) =>
- let fv := match lvar with
- (@nil _) => fv
- | _ => lvar
- end in
- (* idtac "variables:";idtac fv;*)
- let nparam := eval compute in (Z_of_nat (List.length lparam)) in
- let fv := parametres_en_tete fv lparam in
- (*idtac "variables:"; idtac fv;
- idtac "nparam:"; idtac nparam; *)
- match eval red in (li_reifyl (l:=fv) (lb:=lb)) with
- | (?fv, ?le) =>
- (*idtac "variables:";idtac fv; idtac le; idtac lb;*)
- reify_goal fv le lb Rd;
- match goal with
+Ltac nsatz_generic radicalmax info lparam lvar :=
+ let nparam := eval compute in (Z.of_nat (List.length lparam)) in
+ match goal with
+ |- ?g => let lb := lterm_goal g in
+ match (match lvar with
+ |(@nil _) =>
+ match lparam with
+ |(@nil _) =>
+ let r := eval red in (list_reifyl (lterm:=lb)) in r
+ |_ =>
+ match eval red in (list_reifyl (lterm:=lb)) with
+ |(?fv, ?le) =>
+ let fv := parametres_en_tete fv lparam in
+ (* we reify a second time, with the good order
+ for variables *)
+ let r := eval red in
+ (list_reifyl (lterm:=lb) (lvar:=fv)) in r
+ end
+ end
+ |_ =>
+ let fv := parametres_en_tete lvar lparam in
+ let r := eval red in (list_reifyl (lterm:=lb) (lvar:=fv)) in r
+ end) with
+ |(?fv, ?le) =>
+ reify_goal fv le lb ;
+ match goal with
|- ?g =>
let lp := get_lpol g in
let lpol := eval compute in (List.rev lp) in
- (*idtac "polynomes:"; idtac lpol;*)
- tacsimpl; intros;
-
+ intros;
+
let SplitPolyList kont :=
match lpol with
| ?p2::?lp2 => kont p2 lp2
| _ => idtac "polynomial not in the ideal"
end in
- tacsimpl;
+
SplitPolyList ltac:(fun p lp =>
set (p21:=p) ;
set (lp21:=lp);
- (*idtac "lp:"; idtac lp; *)
+(* idtac "nparam:"; idtac nparam; idtac "p:"; idtac p; idtac "lp:"; idtac lp; *)
nsatz_call radicalmax info nparam p lp ltac:(fun c r lq lci =>
set (q := PEmul c (PEpow p21 r));
let Hg := fresh "Hg" in
assert (Hg:check lp21 q (lci,lq) = true);
[ (vm_compute;reflexivity) || idtac "invalid nsatz certificate"
| let Hg2 := fresh "Hg" in
- assert (Hg2: ring_eq (interpret3 _ Rd q fv) ring0);
- [ tacsimpl;
- apply (@check_correct _ Rd fv lp21 q (lci,lq) Hg);
- tacsimpl;
+ assert (Hg2: (interpret3 q fv) == 0);
+ [ (*simpl*) idtac;
+ generalize (@check_correct _ _ _ _ _ _ _ _ _ _ _ fv lp21 q (lci,lq) Hg);
+ let cc := fresh "H" in
+ (*simpl*) idtac; intro cc; apply cc; clear cc;
+ (*simpl*) idtac;
repeat (split;[assumption|idtac]); exact I
- | simpl in Hg2; tacsimpl;
- apply Rdomain_pow with (interpret3 _ Rd c fv) (Nnat.nat_of_N r); auto with domain;
- tacsimpl; apply domain_axiom_one_zero
- || (simpl) || idtac "could not prove discrimination result"
+ | (*simpl in Hg2;*) (*simpl*) idtac;
+ apply Rintegral_domain_pow with (interpret3 c fv) (N.to_nat r);
+ (*simpl*) idtac;
+ try apply integral_domain_one_zero;
+ try apply integral_domain_minus_one_zero;
+ try trivial;
+ try exact integral_domain_one_zero;
+ try exact integral_domain_minus_one_zero
+ || (solve [simpl; unfold R2, equality, eq_notation, addition, add_notation,
+ one, one_notation, multiplication, mul_notation, zero, zero_notation;
+ discrR || omega])
+ || ((*simpl*) idtac) || idtac "could not prove discrimination result"
]
]
)
)
-end end end end .
+end end end .
-Ltac nsatz_domainpv pretac radicalmax info lparam lvar tacsimpl rd :=
- pretac;
- nsatz_domain_begin tacsimpl; auto with domain;
- nsatz_domain_generic radicalmax info lparam lvar tacsimpl rd.
+Ltac nsatz_default:=
+ intros;
+ try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
+ match goal with |- (@equality ?r _ _ _) =>
+ repeat equalities_to_goal;
+ nsatz_generic 6%N 1%Z (@nil r) (@nil r)
+ end.
+
+Tactic Notation "nsatz" := nsatz_default.
-Ltac nsatz_domain:=
+Tactic Notation "nsatz" "with"
+ "radicalmax" ":=" constr(radicalmax)
+ "strategy" ":=" constr(info)
+ "parameters" ":=" constr(lparam)
+ "variables" ":=" constr(lvar):=
intros;
- match goal with
- |- (@ring_eq _ (@domain_ring ?r ?rd) _ _ ) =>
- nsatz_domainpv ltac:idtac 6%N 1%Z (@nil r) (@nil r) ltac:(simpl) rd
+ try apply (@psos_r1b _ _ _ _ _ _ _ _ _ _ _);
+ match goal with |- (@equality ?r _ _ _) =>
+ repeat equalities_to_goal;
+ nsatz_generic radicalmax info lparam lvar
end.
-(* Dans R *)
+(* Real numbers *)
Require Import Reals.
Require Import RealField.
-Instance Rri : Ring R := {
- ring0 := 0%R;
- ring1 := 1%R;
- ring_plus := Rplus;
- ring_mult := Rmult;
- ring_sub := Rminus;
- ring_opp := Ropp;
- ring_eq := @eq R;
- ring_ring := RTheory}.
-
-Lemma Raxiom_one_zero: 1%R <> 0%R.
-discrR.
+Lemma Rsth : Setoid_Theory R (@eq R).
+constructor;red;intros;subst;trivial.
Qed.
-Instance Rdi : Domain R := {
- domain_ring := Rri;
- domain_axiom_product := Rmult_integral;
- domain_axiom_one_zero := Raxiom_one_zero}.
-
-Hint Resolve ring_setoid ring_plus_comp ring_mult_comp ring_sub_comp ring_opp_comp: domain.
-
-Ltac replaceR:=
-replace 0%R with (@ring0 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace 1%R with (@ring1 _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rplus with (@ring_plus _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rmult with (@ring_mult _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Rminus with (@ring_sub _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace Ropp with (@ring_opp _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity];
-replace (@eq R) with (@ring_eq _ (@domain_ring _ Rdi)) in *;[idtac|reflexivity].
-
-Ltac simplR:=
- simpl; replaceR.
-
-Ltac pretacR:=
- replaceR;
- replace Rri with (@domain_ring _ Rdi) in *; [idtac | reflexivity].
+Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
-Ltac nsatz_domainR:=
- nsatz_domainpv ltac:pretacR 6%N 1%Z (@Datatypes.nil R) (@Datatypes.nil R)
- ltac:simplR Rdi;
- discrR.
+Instance Rri : (Ring (Ro:=Rops)).
+constructor;
+try (try apply Rsth;
+ try (unfold respectful, Proper; unfold equality; unfold eq_notation in *;
+ intros; try rewrite H; try rewrite H0; reflexivity)).
+ exact Rplus_0_l. exact Rplus_comm. symmetry. apply Rplus_assoc.
+ exact Rmult_1_l. exact Rmult_1_r. symmetry. apply Rmult_assoc.
+ exact Rmult_plus_distr_r. intros; apply Rmult_plus_distr_l.
+exact Rplus_opp_r.
+Defined.
-
-Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
-nsatz_domainR.
-Qed.
-
-
-(* Dans Z *)
-Instance Zri : Ring Z := {
- ring0 := 0%Z;
- ring1 := 1%Z;
- ring_plus := Zplus;
- ring_mult := Zmult;
- ring_sub := Zminus;
- ring_opp := Zopp;
- ring_eq := (@eq Z);
- ring_ring := Zth}.
-
-Lemma Zaxiom_one_zero: 1%Z <> 0%Z.
-discriminate.
+Lemma R_one_zero: 1%R <> 0%R.
+discrR.
Qed.
-Instance Zdi : Domain Z := {
- domain_ring := Zri;
- domain_axiom_product := Zmult_integral;
- domain_axiom_one_zero := Zaxiom_one_zero}.
-
-Ltac replaceZ :=
-replace 0%Z with (@ring0 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace 1%Z with (@ring1 _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zplus with (@ring_plus _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zmult with (@ring_mult _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zminus with (@ring_sub _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace Zopp with (@ring_opp _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity];
-replace (@eq Z) with (@ring_eq _ (@domain_ring _ Zdi)) in *;[idtac|reflexivity].
-
-Ltac simplZ:=
- simpl; replaceZ.
+Instance Rcri: (Cring (Rr:=Rri)).
+red. exact Rmult_comm. Defined.
-Ltac pretacZ :=
-replaceZ;
-replace Zri with (@domain_ring _ Zdi) in *; [idtac | reflexivity].
+Instance Rdi : (Integral_domain (Rcr:=Rcri)).
+constructor.
+exact Rmult_integral. exact R_one_zero. Defined.
-Ltac nsatz_domainZ:=
-nsatz_domainpv ltac:pretacZ 6%N 1%Z (@Datatypes.nil Z) (@Datatypes.nil Z) ltac:simplZ Zdi.
-
-
-(* Dans Q *)
+(* Rational numbers *)
Require Import QArith.
-Instance Qri : Ring Q := {
- ring0 := 0%Q;
- ring1 := 1%Q;
- ring_plus := Qplus;
- ring_mult := Qmult;
- ring_sub := Qminus;
- ring_opp := Qopp;
- ring_eq := Qeq;
- ring_ring := Qsrt}.
-
-Lemma Qaxiom_one_zero: not (Qeq 1%Q 0%Q).
-discriminate.
+Instance Qops: (@Ring_ops Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq).
+
+Instance Qri : (Ring (Ro:=Qops)).
+constructor.
+try apply Q_Setoid.
+apply Qplus_comp.
+apply Qmult_comp.
+apply Qminus_comp.
+apply Qopp_comp.
+ exact Qplus_0_l. exact Qplus_comm. apply Qplus_assoc.
+ exact Qmult_1_l. exact Qmult_1_r. apply Qmult_assoc.
+ apply Qmult_plus_distr_l. intros. apply Qmult_plus_distr_r.
+reflexivity. exact Qplus_opp_r.
+Defined.
+
+Lemma Q_one_zero: not (Qeq 1%Q 0%Q).
+unfold Qeq. simpl. auto with *. Qed.
+
+Instance Qcri: (Cring (Rr:=Qri)).
+red. exact Qmult_comm. Defined.
+
+Instance Qdi : (Integral_domain (Rcr:=Qcri)).
+constructor.
+exact Qmult_integral. exact Q_one_zero. Defined.
+
+(* Integers *)
+Lemma Z_one_zero: 1%Z <> 0%Z.
+omega.
Qed.
-Instance Qdi : Domain Q := {
- domain_ring := Qri;
- domain_axiom_product := Qmult_integral;
- domain_axiom_one_zero := Qaxiom_one_zero}.
-
-Ltac replaceQ :=
-replace 0%Q with (@ring0 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace 1%Q with (@ring1 _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qplus with (@ring_plus _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qmult with (@ring_mult _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qminus with (@ring_sub _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qopp with (@ring_opp _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity];
-replace Qeq with (@ring_eq _ (@domain_ring _ Qdi)) in *;[idtac|reflexivity].
-
-Ltac simplQ:=
- simpl; replaceQ.
-
-Ltac pretacQ :=
-replaceQ;
-replace Qri with (@domain_ring _ Qdi) in *; [idtac | reflexivity].
-
-Ltac nsatz_domainQ:=
-nsatz_domainpv ltac:pretacQ 6%N 1%Z (@Datatypes.nil Q) (@Datatypes.nil Q) ltac:simplQ Qdi.
-
-(* tactique générique *)
-
-Ltac nsatz :=
- intros;
- match goal with
- | |- (@eq R _ _) => nsatz_domainR
- | |- (@eq Z _ _) => nsatz_domainZ
- | |- (@Qeq _ _) => nsatz_domainQ
- | |- _ => nsatz_domain
- end.
-(*
-Goal forall x y:Q, Qeq x y -> Qeq (x*x-x+1)%Q ((y*y-y)+1+0)%Q.
-nsatz.
-Qed.
+Instance Zcri: (Cring (Rr:=Zr)).
+red. exact Z.mul_comm. Defined.
-Goal forall x y:Z, x = y -> (x*x-x+1)%Z = ((y*y-y)+1+0)%Z.
-nsatz.
-Qed.
+Instance Zdi : (Integral_domain (Rcr:=Zcri)).
+constructor.
+exact Zmult_integral. exact Z_one_zero. Defined.
-Goal forall x y:R, x = y -> (x*x-x+1)%R = ((y*y-y)+1+0)%R.
-nsatz.
-Qed.
-*)
diff --git a/plugins/nsatz/ideal.ml b/plugins/nsatz/ideal.ml
index 5fde2cfc..68fb2626 100644
--- a/plugins/nsatz/ideal.ml
+++ b/plugins/nsatz/ideal.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -237,7 +237,8 @@ open Format
let getvar lv i =
try (nth lv i)
- with _ -> (fold_left (fun r x -> r^" "^x) "lv= " lv)
+ with e when Errors.noncritical e ->
+ (fold_left (fun r x -> r^" "^x) "lv= " lv)
^" i="^(string_of_int i)
let string_of_pol zeroP hdP tlP coefterm monterm string_of_coef
@@ -363,7 +364,7 @@ let stringPcut p =
nsP2:=10;
let res =
if (length p)> !nsP2
- then (stringP [hd p])^" + "^(string_of_int (length p))^" termes"
+ then (stringP [hd p])^" + "^(string_of_int (length p))^" terms"
else stringP p in
(*Polynomesrec.nsP1:= max_int;*)
nsP2:= max_int;
@@ -590,7 +591,7 @@ let coefpoldep = Hashtbl.create 51
(* coef of q in p = sum_i c_i*q_i *)
let coefpoldep_find p q =
try (Hashtbl.find coefpoldep (p.num,q.num))
- with _ -> []
+ with Not_found -> []
let coefpoldep_remove p q =
Hashtbl.remove coefpoldep (p.num,q.num)
@@ -992,7 +993,7 @@ let pbuchf pq p lp0=
coefpoldep_remove a q;
coefpoldep_set a q c) lca !poldep;
let a0 = a in
- info ("\nnew polynomials: "^(stringPcut (ppol a0))^"\n");
+ info ("\nnew polynomial: "^(stringPcut (ppol a0))^"\n");
let ct = coef1 (* contentP a0 *) in
(*info ("content: "^(string_of_coef ct)^"\n");*)
poldep:=addS a0 lp;
diff --git a/plugins/nsatz/nsatz.ml4 b/plugins/nsatz/nsatz.ml4
index da0ee898..14c7609d 100644
--- a/plugins/nsatz/nsatz.ml4
+++ b/plugins/nsatz/nsatz.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -16,7 +16,7 @@ open Closure
open Environ
open Libnames
open Tactics
-open Rawterm
+open Glob_term
open Tacticals
open Tacexpr
open Pcoq
@@ -180,21 +180,24 @@ let ttmul = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEmul")
let ttopp = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEopp")
let ttpow = lazy (gen_constant "CC" ["setoid_ring";"Ring_polynom"] "PEpow")
-let tlist = lazy (gen_constant "CC" ["Lists";"List"] "list")
-let lnil = lazy (gen_constant "CC" ["Lists";"List"] "nil")
-let lcons = lazy (gen_constant "CC" ["Lists";"List"] "cons")
+let datatypes = ["Init";"Datatypes"]
+let binnums = ["Numbers";"BinNums"]
-let tz = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Z")
-let z0 = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Z0")
-let zpos = lazy (gen_constant "CC" ["ZArith";"BinInt"] "Zpos")
-let zneg = lazy(gen_constant "CC" ["ZArith";"BinInt"] "Zneg")
+let tlist = lazy (gen_constant "CC" datatypes "list")
+let lnil = lazy (gen_constant "CC" datatypes "nil")
+let lcons = lazy (gen_constant "CC" datatypes "cons")
-let pxI = lazy(gen_constant "CC" ["NArith";"BinPos"] "xI")
-let pxO = lazy(gen_constant "CC" ["NArith";"BinPos"] "xO")
-let pxH = lazy(gen_constant "CC" ["NArith";"BinPos"] "xH")
+let tz = lazy (gen_constant "CC" binnums "Z")
+let z0 = lazy (gen_constant "CC" binnums "Z0")
+let zpos = lazy (gen_constant "CC" binnums "Zpos")
+let zneg = lazy(gen_constant "CC" binnums "Zneg")
-let nN0 = lazy (gen_constant "CC" ["NArith";"BinNat"] "N0")
-let nNpos = lazy(gen_constant "CC" ["NArith";"BinNat"] "Npos")
+let pxI = lazy(gen_constant "CC" binnums "xI")
+let pxO = lazy(gen_constant "CC" binnums "xO")
+let pxH = lazy(gen_constant "CC" binnums "xH")
+
+let nN0 = lazy (gen_constant "CC" binnums "N0")
+let nNpos = lazy(gen_constant "CC" binnums "Npos")
let mkt_app name l = mkApp (Lazy.force name, Array.of_list l)
@@ -237,14 +240,14 @@ else
let rec parse_pos p =
match kind_of_term p with
| App (a,[|p2|]) ->
- if a = Lazy.force pxO then num_2 */ (parse_pos p2)
+ if eq_constr a (Lazy.force pxO) then num_2 */ (parse_pos p2)
else num_1 +/ (num_2 */ (parse_pos p2))
| _ -> num_1
let parse_z z =
match kind_of_term z with
| App (a,[|p2|]) ->
- if a = Lazy.force zpos then parse_pos p2 else (num_0 -/ (parse_pos p2))
+ if eq_constr a (Lazy.force zpos) then parse_pos p2 else (num_0 -/ (parse_pos p2))
| _ -> num_0
let parse_n z =
@@ -256,15 +259,15 @@ let parse_n z =
let rec parse_term p =
match kind_of_term p with
| App (a,[|_;p2|]) ->
- if a = Lazy.force ttvar then Var (string_of_num (parse_pos p2))
- else if a = Lazy.force ttconst then Const (parse_z p2)
- else if a = Lazy.force ttopp then Opp (parse_term p2)
+ if eq_constr a (Lazy.force ttvar) then Var (string_of_num (parse_pos p2))
+ else if eq_constr a (Lazy.force ttconst) then Const (parse_z p2)
+ else if eq_constr a (Lazy.force ttopp) then Opp (parse_term p2)
else Zero
| App (a,[|_;p2;p3|]) ->
- if a = Lazy.force ttadd then Add (parse_term p2, parse_term p3)
- else if a = Lazy.force ttsub then Sub (parse_term p2, parse_term p3)
- else if a = Lazy.force ttmul then Mul (parse_term p2, parse_term p3)
- else if a = Lazy.force ttpow then
+ if eq_constr a (Lazy.force ttadd) then Add (parse_term p2, parse_term p3)
+ else if eq_constr a (Lazy.force ttsub) then Sub (parse_term p2, parse_term p3)
+ else if eq_constr a (Lazy.force ttmul) then Mul (parse_term p2, parse_term p3)
+ else if eq_constr a (Lazy.force ttpow) then
Pow (parse_term p2, int_of_num (parse_n p3))
else Zero
| _ -> Zero
@@ -323,6 +326,8 @@ open PIdeal
let term_pol_sparse np t=
let d = !nvars in
let rec aux t =
+(* info ("conversion de: "^(string_of_term t)^"\n");*)
+ let res =
match t with
| Zero -> zeroP
| Const r ->
@@ -339,9 +344,11 @@ let term_pol_sparse np t=
| Sub (t1,t2) -> plusP (aux t1) (oppP (aux t2))
| Mul (t1,t2) -> multP (aux t1) (aux t2)
| Pow (t1,n) -> puisP (aux t1) n
- in (*info ("conversion de: "^(string_of_term t)^"\n");*)
+ in
+(* info ("donne: "^(stringP res)^"\n");*)
+ res
+ in
let res= aux t in
- (*info ("donne: "^(stringP res)^"\n");*)
res
(* sparse polynomial to term *)
@@ -364,7 +371,7 @@ let polrec_to_term p =
(* approximation of the Horner form used in the tactic ring *)
let pol_sparse_to_term n2 p =
- info "pol_sparse_to_term ->\n";
+ (* info "pol_sparse_to_term ->\n";*)
let p = PIdeal.repr p in
let rec aux p =
match p with
@@ -408,7 +415,7 @@ let pol_sparse_to_term n2 p =
then Var (string_of_int (i0))
else pow (Var (string_of_int (i0)),e0) in
add(mul(vm, aux (List.rev (!p1))), aux (List.rev (!p2))))
- in info "-> pol_sparse_to_term\n";
+ in (*info "-> pol_sparse_to_term\n";*)
aux p
@@ -489,35 +496,35 @@ let theoremedeszeros_termes lp =
match lp with
| Const (Int sugarparam)::Const (Int nparam)::lp ->
((match sugarparam with
- |0 -> info "calcul sans sugar\n";
+ |0 -> info "computation without sugar\n";
lexico:=false;
sugar_flag := false;
divide_rem_with_critical_pair := false
- |1 -> info "calcul avec sugar\n";
+ |1 -> info "computation with sugar\n";
lexico:=false;
sugar_flag := true;
divide_rem_with_critical_pair := false
- |2 -> info "ordre lexico calcul sans sugar\n";
+ |2 -> info "ordre lexico computation without sugar\n";
lexico:=true;
sugar_flag := false;
divide_rem_with_critical_pair := false
- |3 -> info "ordre lexico calcul avec sugar\n";
+ |3 -> info "ordre lexico computation with sugar\n";
lexico:=true;
sugar_flag := true;
divide_rem_with_critical_pair := false
- |4 -> info "calcul sans sugar, division par les paires\n";
+ |4 -> info "computation without sugar, division by pairs\n";
lexico:=false;
sugar_flag := false;
divide_rem_with_critical_pair := true
- |5 -> info "calcul avec sugar, division par les paires\n";
+ |5 -> info "computation with sugar, division by pairs\n";
lexico:=false;
sugar_flag := true;
divide_rem_with_critical_pair := true
- |6 -> info "ordre lexico calcul sans sugar, division par les paires\n";
+ |6 -> info "ordre lexico computation without sugar, division by pairs\n";
lexico:=true;
sugar_flag := false;
divide_rem_with_critical_pair := true
- |7 -> info "ordre lexico calcul avec sugar, division par les paires\n";
+ |7 -> info "ordre lexico computation with sugar, division by pairs\n";
lexico:=true;
sugar_flag := true;
divide_rem_with_critical_pair := true
@@ -534,6 +541,7 @@ let theoremedeszeros_termes lp =
| p::lp1 ->
let lpol = List.rev lp1 in
let (cert,lp0,p,_lct) = theoremedeszeros lpol p in
+ info "cert ok\n";
let lc = cert.last_comb::List.rev cert.gb_comb in
match remove_zeros (fun x -> x=zeroP) lc with
| [] -> assert false
@@ -545,8 +553,8 @@ let theoremedeszeros_termes lp =
let lci = List.rev lci in
let lci = List.map (List.map (pol_sparse_to_term m)) lci in
let lq = List.map (pol_sparse_to_term m) lq in
- info ("nombre de parametres: "^string_of_int nparam^"\n");
- info "terme calcule\n";
+ info ("number of parametres: "^string_of_int nparam^"\n");
+ info "term computed\n";
(c,r,lci,lq)
)
|_ -> assert false
@@ -565,7 +573,7 @@ let nsatz lpol =
let certif = hash_certif certif in
let certif = certif_term certif in
let c = mkt_term c in
- info "constr calcule\n";
+ info "constr computed\n";
(c, certif)
*)
@@ -586,7 +594,7 @@ let nsatz lpol =
mkt_app lcons [tlp ();ltterm;r])
res
(mkt_app lnil [tlp ()]) in
- info "terme calcule\n";
+ info "term computed\n";
res
let return_term t =
diff --git a/plugins/nsatz/polynom.ml b/plugins/nsatz/polynom.ml
index ee7b9f33..fdc8e865 100644
--- a/plugins/nsatz/polynom.ml
+++ b/plugins/nsatz/polynom.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -173,7 +173,7 @@ let rec equal p q =
then failwith "raté")
p1;
true)
- with _ -> false)
+ with e when Errors.noncritical e -> false)
| (_,_) -> false
(* normalize polynomial: remove head zeros, coefficients are normalized
@@ -282,12 +282,11 @@ let rec multx n v p =
p2.(i+n)<-p1.(i);
done;
Prec (x,p2)
- |_ -> if p = (Pint coef0) then (Pint coef0)
+ |_ -> if equal p (Pint coef0) then (Pint coef0)
else (let p2=Array.create (n+1) (Pint coef0) in
p2.(n)<-p;
Prec (v,p2))
-
(* product *)
let rec multP p q =
match (p,q) with
@@ -525,7 +524,7 @@ let div_pol_rat p q=
q x in
(* degueulasse, mais c 'est pour enlever un warning *)
if s==s then true else true)
- with _ -> false
+ with e when Errors.noncritical e -> false
(***********************************************************************
5. Pseudo-division and gcd with subresultants.
diff --git a/plugins/nsatz/polynom.mli b/plugins/nsatz/polynom.mli
index 980a8306..0643327f 100644
--- a/plugins/nsatz/polynom.mli
+++ b/plugins/nsatz/polynom.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/nsatz/utile.ml b/plugins/nsatz/utile.ml
index c16bd425..17c8654b 100644
--- a/plugins/nsatz/utile.ml
+++ b/plugins/nsatz/utile.ml
@@ -33,10 +33,11 @@ let set_of_list_eq eq l =
let memos s memoire nf f x =
try (let v = Hashtbl.find memoire (nf x) in pr s;v)
- with _ -> (pr "#";
- let v = f x in
- Hashtbl.add memoire (nf x) v;
- v)
+ with e when Errors.noncritical e ->
+ (pr "#";
+ let v = f x in
+ Hashtbl.add memoire (nf x) v;
+ v)
(**********************************************************************
@@ -64,7 +65,7 @@ let facteurs_liste div constant lp =
if not (constant r)
then l1:=r::(!l1)
else p_dans_lmin:=true)
- with _ -> ())
+ with e when Errors.noncritical e -> ())
lmin;
if !p_dans_lmin
then factor lmin lp1
@@ -75,7 +76,8 @@ let facteurs_liste div constant lp =
List.iter (fun q -> try (let r = div q p in
if not (constant r)
then l1:=r::(!l1))
- with _ -> lmin1:=q::(!lmin1))
+ with e when Errors.noncritical e ->
+ lmin1:=q::(!lmin1))
lmin;
factor (List.rev (p::(!lmin1))) !l1)
(* au moins un q de lmin divise p non trivialement *)
@@ -105,7 +107,7 @@ let factorise_tableau div zero c f l1 =
li:=j::(!li);
r:=rr;
done)
- with _ -> ())
+ with e when Errors.noncritical e -> ())
l1;
res.(i)<-(!r,!li))
f;
diff --git a/plugins/omega/Omega.v b/plugins/omega/Omega.v
index c8a06265..ea5a8cb7 100644
--- a/plugins/omega/Omega.v
+++ b/plugins/omega/Omega.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -13,17 +13,15 @@
(* *)
(**************************************************************************)
-(* $Id: Omega.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* We do not require [ZArith] anymore, but only what's necessary for Omega *)
Require Export ZArith_base.
Require Export OmegaLemmas.
Require Export PreOmega.
Declare ML Module "omega_plugin".
-Hint Resolve Zle_refl Zplus_comm Zplus_assoc Zmult_comm Zmult_assoc Zplus_0_l
- Zplus_0_r Zmult_1_l Zplus_opp_l Zplus_opp_r Zmult_plus_distr_l
- Zmult_plus_distr_r: zarith.
+Hint Resolve Z.le_refl Z.add_comm Z.add_assoc Z.mul_comm Z.mul_assoc Z.add_0_l
+ Z.add_0_r Z.mul_1_l Z.add_opp_diag_l Z.add_opp_diag_r Z.mul_add_distr_r
+ Z.mul_add_distr_l: zarith.
Require Export Zhints.
diff --git a/plugins/omega/OmegaLemmas.v b/plugins/omega/OmegaLemmas.v
index ec9faedd..1872f576 100644
--- a/plugins/omega/OmegaLemmas.v
+++ b/plugins/omega/OmegaLemmas.v
@@ -6,234 +6,192 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(*i $Id: OmegaLemmas.v 12337 2009-09-17 15:58:14Z glondu $ i*)
-
-Require Import ZArith_base.
-Open Local Scope Z_scope.
+Require Import BinInt Znat.
+Local Open Scope Z_scope.
(** Factorization lemmas *)
-Theorem Zred_factor0 : forall n:Z, n = n * 1.
- intro x; rewrite (Zmult_1_r x); reflexivity.
+Theorem Zred_factor0 n : n = n * 1.
+Proof.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor1 : forall n:Z, n + n = n * 2.
+Theorem Zred_factor1 n : n + n = n * 2.
Proof.
- exact Zplus_diag_eq_mult_2.
+ rewrite Z.mul_comm. apply Z.add_diag.
Qed.
-Theorem Zred_factor2 : forall n m:Z, n + n * m = n * (1 + m).
+Theorem Zred_factor2 n m : n + n * m = n * (1 + m).
Proof.
- intros x y; pattern x at 1 in |- *; rewrite <- (Zmult_1_r x);
- rewrite <- Zmult_plus_distr_r; trivial with arith.
+ rewrite Z.mul_add_distr_l; now Z.nzsimpl.
Qed.
-Theorem Zred_factor3 : forall n m:Z, n * m + n = n * (1 + m).
+Theorem Zred_factor3 n m : n * m + n = n * (1 + m).
Proof.
- intros x y; pattern x at 2 in |- *; rewrite <- (Zmult_1_r x);
- rewrite <- Zmult_plus_distr_r; rewrite Zplus_comm;
- trivial with arith.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor4 : forall n m p:Z, n * m + n * p = n * (m + p).
+Theorem Zred_factor4 n m p : n * m + n * p = n * (m + p).
Proof.
- intros x y z; symmetry in |- *; apply Zmult_plus_distr_r.
+ symmetry; apply Z.mul_add_distr_l.
Qed.
-Theorem Zred_factor5 : forall n m:Z, n * 0 + m = m.
+Theorem Zred_factor5 n m : n * 0 + m = m.
Proof.
- intros x y; rewrite <- Zmult_0_r_reverse; auto with arith.
+ now Z.nzsimpl.
Qed.
-Theorem Zred_factor6 : forall n:Z, n = n + 0.
+Theorem Zred_factor6 n : n = n + 0.
Proof.
- intro; rewrite Zplus_0_r; trivial with arith.
+ now Z.nzsimpl.
Qed.
(** Other specific variants of theorems dedicated for the Omega tactic *)
Lemma new_var : forall x : Z, exists y : Z, x = y.
-intros x; exists x; trivial with arith.
+Proof.
+intros x; now exists x.
Qed.
-Lemma OMEGA1 : forall x y : Z, x = y -> 0 <= x -> 0 <= y.
-intros x y H; rewrite H; auto with arith.
+Lemma OMEGA1 x y : x = y -> 0 <= x -> 0 <= y.
+Proof.
+now intros ->.
Qed.
-Lemma OMEGA2 : forall x y : Z, 0 <= x -> 0 <= y -> 0 <= x + y.
-exact Zplus_le_0_compat.
+Lemma OMEGA2 x y : 0 <= x -> 0 <= y -> 0 <= x + y.
+Proof.
+Z.order_pos.
Qed.
-Lemma OMEGA3 : forall x y k : Z, k > 0 -> x = y * k -> x = 0 -> y = 0.
-
-intros x y k H1 H2 H3; apply (Zmult_integral_l k);
- [ unfold not in |- *; intros H4; absurd (k > 0);
- [ rewrite H4; unfold Zgt in |- *; simpl in |- *; discriminate
- | assumption ]
- | rewrite <- H2; assumption ].
+Lemma OMEGA3 x y k : k > 0 -> x = y * k -> x = 0 -> y = 0.
+Proof.
+intros LT -> EQ. apply Z.mul_eq_0 in EQ. destruct EQ; now subst.
Qed.
-Lemma OMEGA4 : forall x y z : Z, x > 0 -> y > x -> z * y + x <> 0.
-
-unfold not in |- *; intros x y z H1 H2 H3; cut (y > 0);
- [ intros H4; cut (0 <= z * y + x);
- [ intros H5; generalize (Zmult_le_approx y z x H4 H2 H5); intros H6;
- absurd (z * y + x > 0);
- [ rewrite H3; unfold Zgt in |- *; simpl in |- *; discriminate
- | apply Zle_gt_trans with x;
- [ pattern x at 1 in |- *; rewrite <- (Zplus_0_l x);
- apply Zplus_le_compat_r; rewrite Zmult_comm;
- generalize H4; unfold Zgt in |- *; case y;
- [ simpl in |- *; intros H7; discriminate H7
- | intros p H7; rewrite <- (Zmult_0_r (Zpos p));
- unfold Zle in |- *; rewrite Zcompare_mult_compat;
- exact H6
- | simpl in |- *; intros p H7; discriminate H7 ]
- | assumption ] ]
- | rewrite H3; unfold Zle in |- *; simpl in |- *; discriminate ]
- | apply Zgt_trans with x; [ assumption | assumption ] ].
+Lemma OMEGA4 x y z : x > 0 -> y > x -> z * y + x <> 0.
+Proof.
+Z.swap_greater. intros Hx Hxy.
+rewrite Z.add_move_0_l, <- Z.mul_opp_l.
+destruct (Z.lt_trichotomy (-z) 1) as [LT|[->|GT]].
+- intro. revert LT. apply Z.le_ngt, (Z.le_succ_l 0).
+ apply Z.mul_pos_cancel_r with y; Z.order.
+- Z.nzsimpl. Z.order.
+- rewrite (Z.mul_lt_mono_pos_r y), Z.mul_1_l in GT; Z.order.
Qed.
-Lemma OMEGA5 : forall x y z : Z, x = 0 -> y = 0 -> x + y * z = 0.
-
-intros x y z H1 H2; rewrite H1; rewrite H2; simpl in |- *; trivial with arith.
+Lemma OMEGA5 x y z : x = 0 -> y = 0 -> x + y * z = 0.
+Proof.
+now intros -> ->.
Qed.
-Lemma OMEGA6 : forall x y z : Z, 0 <= x -> y = 0 -> 0 <= x + y * z.
-
-intros x y z H1 H2; rewrite H2; simpl in |- *; rewrite Zplus_0_r; assumption.
+Lemma OMEGA6 x y z : 0 <= x -> y = 0 -> 0 <= x + y * z.
+Proof.
+intros H ->. now Z.nzsimpl.
Qed.
-Lemma OMEGA7 :
- forall x y z t : Z, z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
-
-intros x y z t H1 H2 H3 H4; rewrite <- (Zplus_0_l 0); apply Zplus_le_compat;
- apply Zmult_gt_0_le_0_compat; assumption.
+Lemma OMEGA7 x y z t :
+ z > 0 -> t > 0 -> 0 <= x -> 0 <= y -> 0 <= x * z + y * t.
+Proof.
+intros. Z.swap_greater. Z.order_pos.
Qed.
-Lemma OMEGA8 : forall x y : Z, 0 <= x -> 0 <= y -> x = - y -> x = 0.
-
-intros x y H1 H2 H3; elim (Zle_lt_or_eq 0 x H1);
- [ intros H4; absurd (0 < x);
- [ change (0 >= x) in |- *; apply Zle_ge; apply Zplus_le_reg_l with y;
- rewrite H3; rewrite Zplus_opp_r; rewrite Zplus_0_r;
- assumption
- | assumption ]
- | intros H4; rewrite H4; trivial with arith ].
+Lemma OMEGA8 x y : 0 <= x -> 0 <= y -> x = - y -> x = 0.
+Proof.
+intros H1 H2 H3. rewrite <- Z.opp_nonpos_nonneg in H2. Z.order.
Qed.
-Lemma OMEGA9 : forall x y z t : Z, y = 0 -> x = z -> y + (- x + z) * t = 0.
-
-intros x y z t H1 H2; rewrite H2; rewrite Zplus_opp_l; rewrite Zmult_0_l;
- rewrite Zplus_0_r; assumption.
+Lemma OMEGA9 x y z t : y = 0 -> x = z -> y + (- x + z) * t = 0.
+Proof.
+intros. subst. now rewrite Z.add_opp_diag_l.
Qed.
-Lemma OMEGA10 :
- forall v c1 c2 l1 l2 k1 k2 : Z,
+Lemma OMEGA10 v c1 c2 l1 l2 k1 k2 :
(v * c1 + l1) * k1 + (v * c2 + l2) * k2 =
v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite (Zplus_permute (l1 * k1) (v * c2 * k2)); trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+rewrite <- !Z.add_assoc. f_equal. apply Z.add_shuffle3.
Qed.
-Lemma OMEGA11 :
- forall v1 c1 l1 l2 k1 : Z,
+Lemma OMEGA11 v1 c1 l1 l2 k1 :
(v1 * c1 + l1) * k1 + l2 = v1 * (c1 * k1) + (l1 * k1 + l2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+now rewrite Z.add_assoc.
Qed.
-Lemma OMEGA12 :
- forall v2 c2 l1 l2 k2 : Z,
+Lemma OMEGA12 v2 c2 l1 l2 k2 :
l1 + (v2 * c2 + l2) * k2 = v2 * (c2 * k2) + (l1 + l2 * k2).
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite Zplus_permute; trivial with arith.
+Proof.
+rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+apply Z.add_shuffle3.
Qed.
-Lemma OMEGA13 :
- forall (v l1 l2 : Z) (x : positive),
+Lemma OMEGA13 (v l1 l2 : Z) (x : positive) :
v * Zpos x + l1 + (v * Zneg x + l2) = l1 + l2.
-
-intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zpos x) l1);
- rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
- rewrite <- Zopp_neg; rewrite (Zplus_comm (- Zneg x) (Zneg x));
- rewrite Zplus_opp_r; rewrite Zmult_0_r; rewrite Zplus_0_r;
- trivial with arith.
+Proof.
+ rewrite Z.add_shuffle1.
+ rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
+ now Z.nzsimpl.
Qed.
-Lemma OMEGA14 :
- forall (v l1 l2 : Z) (x : positive),
+Lemma OMEGA14 (v l1 l2 : Z) (x : positive) :
v * Zneg x + l1 + (v * Zpos x + l2) = l1 + l2.
-
-intros; rewrite Zplus_assoc; rewrite (Zplus_comm (v * Zneg x) l1);
- rewrite (Zplus_assoc_reverse l1); rewrite <- Zmult_plus_distr_r;
- rewrite <- Zopp_neg; rewrite Zplus_opp_r; rewrite Zmult_0_r;
- rewrite Zplus_0_r; trivial with arith.
+Proof.
+ rewrite Z.add_shuffle1.
+ rewrite <- Z.mul_add_distr_l, <- Pos2Z.opp_neg, Z.add_opp_diag_r.
+ now Z.nzsimpl.
Qed.
-Lemma OMEGA15 :
- forall v c1 c2 l1 l2 k2 : Z,
- v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- rewrite (Zplus_permute l1 (v * c2 * k2)); trivial with arith.
+Lemma OMEGA15 v c1 c2 l1 l2 k2 :
+ v * c1 + l1 + (v * c2 + l2) * k2 = v * (c1 + c2 * k2) + (l1 + l2 * k2).
+Proof.
+ rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
+ apply Z.add_shuffle1.
Qed.
-Lemma OMEGA16 : forall v c l k : Z, (v * c + l) * k = v * (c * k) + l * k.
-
-intros; repeat rewrite Zmult_plus_distr_l || rewrite Zmult_plus_distr_r;
- repeat rewrite Zmult_assoc; repeat elim Zplus_assoc;
- trivial with arith.
+Lemma OMEGA16 v c l k : (v * c + l) * k = v * (c * k) + l * k.
+Proof.
+ now rewrite ?Z.mul_add_distr_r, ?Z.mul_add_distr_l, ?Z.mul_assoc.
Qed.
-Lemma OMEGA17 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
-
-unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1;
- apply Zplus_reg_l with (y * z); rewrite Zplus_comm;
- rewrite H3; rewrite H2; auto with arith.
+Lemma OMEGA17 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
+Proof.
+ unfold Zne, not. intros NE EQ. subst. now Z.nzsimpl.
Qed.
-Lemma OMEGA18 : forall x y k : Z, x = y * k -> Zne x 0 -> Zne y 0.
-
-unfold Zne, not in |- *; intros x y k H1 H2 H3; apply H2; rewrite H1;
- rewrite H3; auto with arith.
+Lemma OMEGA18 x y k : x = y * k -> Zne x 0 -> Zne y 0.
+Proof.
+ unfold Zne, not. intros. subst; auto.
Qed.
-Lemma OMEGA19 : forall x : Z, Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
-
-unfold Zne in |- *; intros x H; elim (Zle_or_lt 0 x);
- [ intros H1; elim Zle_lt_or_eq with (1 := H1);
- [ intros H2; left; change (0 <= Zpred x) in |- *; apply Zsucc_le_reg;
- rewrite <- Zsucc_pred; apply Zlt_le_succ; assumption
- | intros H2; absurd (x = 0); auto with arith ]
- | intros H1; right; rewrite <- Zopp_eq_mult_neg_1; rewrite Zplus_comm;
- apply Zle_left; apply Zsucc_le_reg; simpl in |- *;
- apply Zlt_le_succ; auto with arith ].
+Lemma OMEGA19 x : Zne x 0 -> 0 <= x + -1 \/ 0 <= x * -1 + -1.
+Proof.
+ unfold Zne. intros Hx. apply Z.lt_gt_cases in Hx.
+ destruct Hx as [LT|GT].
+ - right. change (-1) with (-(1)).
+ rewrite Z.mul_opp_r, <- Z.opp_add_distr. Z.nzsimpl.
+ rewrite Z.opp_nonneg_nonpos. now apply Z.le_succ_l.
+ - left. now apply Z.lt_le_pred.
Qed.
-Lemma OMEGA20 : forall x y z : Z, Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
-
-unfold Zne, not in |- *; intros x y z H1 H2 H3; apply H1; rewrite H2 in H3;
- simpl in H3; rewrite Zplus_0_r in H3; trivial with arith.
+Lemma OMEGA20 x y z : Zne x 0 -> y = 0 -> Zne (x + y * z) 0.
+Proof.
+ unfold Zne, not. intros H1 H2 H3; apply H1; rewrite H2 in H3;
+ simpl in H3; rewrite Z.add_0_r in H3; trivial with arith.
Qed.
Definition fast_Zplus_comm (x y : Z) (P : Z -> Prop)
- (H : P (y + x)) := eq_ind_r P H (Zplus_comm x y).
+ (H : P (y + x)) := eq_ind_r P H (Z.add_comm x y).
Definition fast_Zplus_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n + (m + p))) := eq_ind_r P H (Zplus_assoc_reverse n m p).
Definition fast_Zplus_assoc (n m p : Z) (P : Z -> Prop)
- (H : P (n + m + p)) := eq_ind_r P H (Zplus_assoc n m p).
+ (H : P (n + m + p)) := eq_ind_r P H (Z.add_assoc n m p).
Definition fast_Zplus_permute (n m p : Z) (P : Z -> Prop)
- (H : P (m + (n + p))) := eq_ind_r P H (Zplus_permute n m p).
+ (H : P (m + (n + p))) := eq_ind_r P H (Z.add_shuffle3 n m p).
Definition fast_OMEGA10 (v c1 c2 l1 l2 k1 k2 : Z) (P : Z -> Prop)
(H : P (v * (c1 * k1 + c2 * k2) + (l1 * k1 + l2 * k2))) :=
@@ -261,24 +219,24 @@ Definition fast_Zred_factor0 (x : Z) (P : Z -> Prop)
(H : P (x * 1)) := eq_ind_r P H (Zred_factor0 x).
Definition fast_Zopp_eq_mult_neg_1 (x : Z) (P : Z -> Prop)
- (H : P (x * -1)) := eq_ind_r P H (Zopp_eq_mult_neg_1 x).
+ (H : P (x * -1)) := eq_ind_r P H (Z.opp_eq_mul_m1 x).
Definition fast_Zmult_comm (x y : Z) (P : Z -> Prop)
- (H : P (y * x)) := eq_ind_r P H (Zmult_comm x y).
+ (H : P (y * x)) := eq_ind_r P H (Z.mul_comm x y).
Definition fast_Zopp_plus_distr (x y : Z) (P : Z -> Prop)
- (H : P (- x + - y)) := eq_ind_r P H (Zopp_plus_distr x y).
+ (H : P (- x + - y)) := eq_ind_r P H (Z.opp_add_distr x y).
Definition fast_Zopp_involutive (x : Z) (P : Z -> Prop) (H : P x) :=
- eq_ind_r P H (Zopp_involutive x).
+ eq_ind_r P H (Z.opp_involutive x).
Definition fast_Zopp_mult_distr_r (x y : Z) (P : Z -> Prop)
(H : P (x * - y)) := eq_ind_r P H (Zopp_mult_distr_r x y).
Definition fast_Zmult_plus_distr_l (n m p : Z) (P : Z -> Prop)
- (H : P (n * p + m * p)) := eq_ind_r P H (Zmult_plus_distr_l n m p).
+ (H : P (n * p + m * p)) := eq_ind_r P H (Z.mul_add_distr_r n m p).
Definition fast_Zmult_opp_comm (x y : Z) (P : Z -> Prop)
- (H : P (x * - y)) := eq_ind_r P H (Zmult_opp_comm x y).
+ (H : P (x * - y)) := eq_ind_r P H (Z.mul_opp_comm x y).
Definition fast_Zmult_assoc_reverse (n m p : Z) (P : Z -> Prop)
(H : P (n * (m * p))) := eq_ind_r P H (Zmult_assoc_reverse n m p).
@@ -300,3 +258,10 @@ Definition fast_Zred_factor5 (x y : Z) (P : Z -> Prop)
Definition fast_Zred_factor6 (x : Z) (P : Z -> Prop)
(H : P (x + 0)) := eq_ind_r P H (Zred_factor6 x).
+
+Theorem intro_Z :
+ forall n:nat, exists y : Z, Z.of_nat n = y /\ 0 <= y * 1 + 0.
+Proof.
+ intros n; exists (Z.of_nat n); split; trivial.
+ rewrite Z.mul_1_r, Z.add_0_r. apply Nat2Z.is_nonneg.
+Qed.
diff --git a/plugins/omega/OmegaPlugin.v b/plugins/omega/OmegaPlugin.v
index 69a6ea72..433db414 100644
--- a/plugins/omega/OmegaPlugin.v
+++ b/plugins/omega/OmegaPlugin.v
@@ -1,11 +1,9 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: OmegaPlugin.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Declare ML Module "omega_plugin".
diff --git a/plugins/omega/PreOmega.v b/plugins/omega/PreOmega.v
index a5a085a9..60e606a6 100644
--- a/plugins/omega/PreOmega.v
+++ b/plugins/omega/PreOmega.v
@@ -1,6 +1,14 @@
-Require Import Arith Max Min ZArith_base NArith Nnat.
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
-Open Local Scope Z_scope.
+Require Import Arith Max Min BinInt BinNat Znat Nnat.
+
+Local Open Scope Z_scope.
(** * zify: the Z-ification tactic *)
@@ -15,20 +23,20 @@ Open Local Scope Z_scope.
- { eq, le, lt, ge, gt } on { Z, positive, N, nat }
Recognized operations:
- - on Z: Zmin, Zmax, Zabs, Zsgn are translated in term of <= < =
- - on nat: + * - S O pred min max nat_of_P nat_of_N Zabs_nat
- - on positive: Zneg Zpos xI xO xH + * - Psucc Ppred Pmin Pmax P_of_succ_nat
- - on N: N0 Npos + * - Nsucc Nmin Nmax N_of_nat Zabs_N
+ - on Z: Z.min, Z.max, Z.abs, Z.sgn are translated in term of <= < =
+ - on nat: + * - S O pred min max Pos.to_nat N.to_nat Z.abs_nat
+ - on positive: Zneg Zpos xI xO xH + * - Pos.succ Pos.pred Pos.min Pos.max Pos.of_succ_nat
+ - on N: N0 Npos + * - N.succ N.min N.max N.of_nat Z.abs_N
*)
-(** I) translation of Zmax, Zmin, Zabs, Zsgn into recognized equations *)
+(** I) translation of Z.max, Z.min, Z.abs, Z.sgn into recognized equations *)
Ltac zify_unop_core t thm a :=
(* Let's introduce the specification theorem for t *)
- let H:= fresh "H" in assert (H:=thm a);
+ pose proof (thm a);
(* Then we replace (t a) everywhere with a fresh variable *)
let z := fresh "z" in set (z:=t a) in *; clearbody z.
@@ -48,7 +56,7 @@ Ltac zify_unop t thm a :=
end.
Ltac zify_unop_nored t thm a :=
- (* in this version, we don't try to reduce the unop (that can be (Zplus x)) *)
+ (* in this version, we don't try to reduce the unop (that can be (Z.add x)) *)
let isz := isZcst a in
match isz with
| true => zify_unop_core t thm a
@@ -72,14 +80,14 @@ Ltac zify_binop t thm a b:=
Ltac zify_op_1 :=
match goal with
- | |- context [ Zmax ?a ?b ] => zify_binop Zmax Zmax_spec a b
- | H : context [ Zmax ?a ?b ] |- _ => zify_binop Zmax Zmax_spec a b
- | |- context [ Zmin ?a ?b ] => zify_binop Zmin Zmin_spec a b
- | H : context [ Zmin ?a ?b ] |- _ => zify_binop Zmin Zmin_spec a b
- | |- context [ Zsgn ?a ] => zify_unop Zsgn Zsgn_spec a
- | H : context [ Zsgn ?a ] |- _ => zify_unop Zsgn Zsgn_spec a
- | |- context [ Zabs ?a ] => zify_unop Zabs Zabs_spec a
- | H : context [ Zabs ?a ] |- _ => zify_unop Zabs Zabs_spec a
+ | |- context [ Z.max ?a ?b ] => zify_binop Z.max Z.max_spec a b
+ | H : context [ Z.max ?a ?b ] |- _ => zify_binop Z.max Z.max_spec a b
+ | |- context [ Z.min ?a ?b ] => zify_binop Z.min Z.min_spec a b
+ | H : context [ Z.min ?a ?b ] |- _ => zify_binop Z.min Z.min_spec a b
+ | |- context [ Z.sgn ?a ] => zify_unop Z.sgn Z.sgn_spec a
+ | H : context [ Z.sgn ?a ] |- _ => zify_unop Z.sgn Z.sgn_spec a
+ | |- context [ Z.abs ?a ] => zify_unop Z.abs Z.abs_spec a
+ | H : context [ Z.abs ?a ] |- _ => zify_unop Z.abs Z.abs_spec a
end.
Ltac zify_op := repeat zify_op_1.
@@ -91,113 +99,95 @@ Ltac zify_op := repeat zify_op_1.
(** II) Conversion from nat to Z *)
-Definition Z_of_nat' := Z_of_nat.
+Definition Z_of_nat' := Z.of_nat.
Ltac hide_Z_of_nat t :=
- let z := fresh "z" in set (z:=Z_of_nat t) in *;
- change Z_of_nat with Z_of_nat' in z;
+ let z := fresh "z" in set (z:=Z.of_nat t) in *;
+ change Z.of_nat with Z_of_nat' in z;
unfold z in *; clear z.
Ltac zify_nat_rel :=
match goal with
(* I: equalities *)
- | H : (@eq nat ?a ?b) |- _ => generalize (inj_eq _ _ H); clear H; intro H
- | |- (@eq nat ?a ?b) => apply (inj_eq_rev a b)
- | H : context [ @eq nat ?a ?b ] |- _ => rewrite (inj_eq_iff a b) in H
- | |- context [ @eq nat ?a ?b ] => rewrite (inj_eq_iff a b)
+ | |- (@eq nat ?a ?b) => apply (Nat2Z.inj a b) (* shortcut *)
+ | H : context [ @eq nat ?a ?b ] |- _ => rewrite <- (Nat2Z.inj_iff a b) in H
+ | |- context [ @eq nat ?a ?b ] => rewrite <- (Nat2Z.inj_iff a b)
(* II: less than *)
- | H : (lt ?a ?b) |- _ => generalize (inj_lt _ _ H); clear H; intro H
- | |- (lt ?a ?b) => apply (inj_lt_rev a b)
- | H : context [ lt ?a ?b ] |- _ => rewrite (inj_lt_iff a b) in H
- | |- context [ lt ?a ?b ] => rewrite (inj_lt_iff a b)
+ | H : context [ lt ?a ?b ] |- _ => rewrite (Nat2Z.inj_lt a b) in H
+ | |- context [ lt ?a ?b ] => rewrite (Nat2Z.inj_lt a b)
(* III: less or equal *)
- | H : (le ?a ?b) |- _ => generalize (inj_le _ _ H); clear H; intro H
- | |- (le ?a ?b) => apply (inj_le_rev a b)
- | H : context [ le ?a ?b ] |- _ => rewrite (inj_le_iff a b) in H
- | |- context [ le ?a ?b ] => rewrite (inj_le_iff a b)
+ | H : context [ le ?a ?b ] |- _ => rewrite (Nat2Z.inj_le a b) in H
+ | |- context [ le ?a ?b ] => rewrite (Nat2Z.inj_le a b)
(* IV: greater than *)
- | H : (gt ?a ?b) |- _ => generalize (inj_gt _ _ H); clear H; intro H
- | |- (gt ?a ?b) => apply (inj_gt_rev a b)
- | H : context [ gt ?a ?b ] |- _ => rewrite (inj_gt_iff a b) in H
- | |- context [ gt ?a ?b ] => rewrite (inj_gt_iff a b)
+ | H : context [ gt ?a ?b ] |- _ => rewrite (Nat2Z.inj_gt a b) in H
+ | |- context [ gt ?a ?b ] => rewrite (Nat2Z.inj_gt a b)
(* V: greater or equal *)
- | H : (ge ?a ?b) |- _ => generalize (inj_ge _ _ H); clear H; intro H
- | |- (ge ?a ?b) => apply (inj_ge_rev a b)
- | H : context [ ge ?a ?b ] |- _ => rewrite (inj_ge_iff a b) in H
- | |- context [ ge ?a ?b ] => rewrite (inj_ge_iff a b)
+ | H : context [ ge ?a ?b ] |- _ => rewrite (Nat2Z.inj_ge a b) in H
+ | |- context [ ge ?a ?b ] => rewrite (Nat2Z.inj_ge a b)
end.
Ltac zify_nat_op :=
match goal with
(* misc type conversions: positive/N/Z to nat *)
- | H : context [ Z_of_nat (nat_of_P ?a) ] |- _ => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a) in H
- | |- context [ Z_of_nat (nat_of_P ?a) ] => rewrite <- (Zpos_eq_Z_of_nat_o_nat_of_P a)
- | H : context [ Z_of_nat (nat_of_N ?a) ] |- _ => rewrite (Z_of_nat_of_N a) in H
- | |- context [ Z_of_nat (nat_of_N ?a) ] => rewrite (Z_of_nat_of_N a)
- | H : context [ Z_of_nat (Zabs_nat ?a) ] |- _ => rewrite (inj_Zabs_nat a) in H
- | |- context [ Z_of_nat (Zabs_nat ?a) ] => rewrite (inj_Zabs_nat a)
-
- (* plus -> Zplus *)
- | H : context [ Z_of_nat (plus ?a ?b) ] |- _ => rewrite (inj_plus a b) in H
- | |- context [ Z_of_nat (plus ?a ?b) ] => rewrite (inj_plus a b)
-
- (* min -> Zmin *)
- | H : context [ Z_of_nat (min ?a ?b) ] |- _ => rewrite (inj_min a b) in H
- | |- context [ Z_of_nat (min ?a ?b) ] => rewrite (inj_min a b)
-
- (* max -> Zmax *)
- | H : context [ Z_of_nat (max ?a ?b) ] |- _ => rewrite (inj_max a b) in H
- | |- context [ Z_of_nat (max ?a ?b) ] => rewrite (inj_max a b)
-
- (* minus -> Zmax (Zminus ... ...) 0 *)
- | H : context [ Z_of_nat (minus ?a ?b) ] |- _ => rewrite (inj_minus a b) in H
- | |- context [ Z_of_nat (minus ?a ?b) ] => rewrite (inj_minus a b)
-
- (* pred -> minus ... -1 -> Zmax (Zminus ... -1) 0 *)
- | H : context [ Z_of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H
- | |- context [ Z_of_nat (pred ?a) ] => rewrite (pred_of_minus a)
-
- (* mult -> Zmult and a positivity hypothesis *)
- | H : context [ Z_of_nat (mult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
- | |- context [ Z_of_nat (mult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Zle_0_nat (mult a b)); rewrite (inj_mult a b) in *
+ | H : context [ Z.of_nat (Pos.to_nat ?a) ] |- _ => rewrite (positive_nat_Z a) in H
+ | |- context [ Z.of_nat (Pos.to_nat ?a) ] => rewrite (positive_nat_Z a)
+ | H : context [ Z.of_nat (N.to_nat ?a) ] |- _ => rewrite (N_nat_Z a) in H
+ | |- context [ Z.of_nat (N.to_nat ?a) ] => rewrite (N_nat_Z a)
+ | H : context [ Z.of_nat (Z.abs_nat ?a) ] |- _ => rewrite (Zabs2Nat.id_abs a) in H
+ | |- context [ Z.of_nat (Z.abs_nat ?a) ] => rewrite (Zabs2Nat.id_abs a)
+
+ (* plus -> Z.add *)
+ | H : context [ Z.of_nat (plus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_add a b) in H
+ | |- context [ Z.of_nat (plus ?a ?b) ] => rewrite (Nat2Z.inj_add a b)
+
+ (* min -> Z.min *)
+ | H : context [ Z.of_nat (min ?a ?b) ] |- _ => rewrite (Nat2Z.inj_min a b) in H
+ | |- context [ Z.of_nat (min ?a ?b) ] => rewrite (Nat2Z.inj_min a b)
+
+ (* max -> Z.max *)
+ | H : context [ Z.of_nat (max ?a ?b) ] |- _ => rewrite (Nat2Z.inj_max a b) in H
+ | |- context [ Z.of_nat (max ?a ?b) ] => rewrite (Nat2Z.inj_max a b)
+
+ (* minus -> Z.max (Z.sub ... ...) 0 *)
+ | H : context [ Z.of_nat (minus ?a ?b) ] |- _ => rewrite (Nat2Z.inj_sub_max a b) in H
+ | |- context [ Z.of_nat (minus ?a ?b) ] => rewrite (Nat2Z.inj_sub_max a b)
+
+ (* pred -> minus ... -1 -> Z.max (Z.sub ... -1) 0 *)
+ | H : context [ Z.of_nat (pred ?a) ] |- _ => rewrite (pred_of_minus a) in H
+ | |- context [ Z.of_nat (pred ?a) ] => rewrite (pred_of_minus a)
+
+ (* mult -> Z.mul and a positivity hypothesis *)
+ | H : context [ Z.of_nat (mult ?a ?b) ] |- _ =>
+ pose proof (Nat2Z.is_nonneg (mult a b));
+ rewrite (Nat2Z.inj_mul a b) in *
+ | |- context [ Z.of_nat (mult ?a ?b) ] =>
+ pose proof (Nat2Z.is_nonneg (mult a b));
+ rewrite (Nat2Z.inj_mul a b) in *
(* O -> Z0 *)
- | H : context [ Z_of_nat O ] |- _ => simpl (Z_of_nat O) in H
- | |- context [ Z_of_nat O ] => simpl (Z_of_nat O)
+ | H : context [ Z.of_nat O ] |- _ => simpl (Z.of_nat O) in H
+ | |- context [ Z.of_nat O ] => simpl (Z.of_nat O)
- (* S -> number or Zsucc *)
- | H : context [ Z_of_nat (S ?a) ] |- _ =>
+ (* S -> number or Z.succ *)
+ | H : context [ Z.of_nat (S ?a) ] |- _ =>
let isnat := isnatcst a in
match isnat with
- | true => simpl (Z_of_nat (S a)) in H
- | _ => rewrite (inj_S a) in H
+ | true => simpl (Z.of_nat (S a)) in H
+ | _ => rewrite (Nat2Z.inj_succ a) in H
end
- | |- context [ Z_of_nat (S ?a) ] =>
+ | |- context [ Z.of_nat (S ?a) ] =>
let isnat := isnatcst a in
match isnat with
- | true => simpl (Z_of_nat (S a))
- | _ => rewrite (inj_S a)
+ | true => simpl (Z.of_nat (S a))
+ | _ => rewrite (Nat2Z.inj_succ a)
end
(* atoms of type nat : we add a positivity condition (if not already there) *)
- | H : context [ Z_of_nat ?a ] |- _ =>
- match goal with
- | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
- | H' : 0 <= Z_of_nat' a |- _ => fail
- | _ => let H:= fresh "H" in
- assert (H:=Zle_0_nat a); hide_Z_of_nat a
- end
- | |- context [ Z_of_nat ?a ] =>
- match goal with
- | H' : 0 <= Z_of_nat a |- _ => hide_Z_of_nat a
- | H' : 0 <= Z_of_nat' a |- _ => fail
- | _ => let H:= fresh "H" in
- assert (H:=Zle_0_nat a); hide_Z_of_nat a
- end
+ | _ : 0 <= Z.of_nat ?a |- _ => hide_Z_of_nat a
+ | _ : context [ Z.of_nat ?a ] |- _ =>
+ pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a
+ | |- context [ Z.of_nat ?a ] =>
+ pose proof (Nat2Z.is_nonneg a); hide_Z_of_nat a
end.
Ltac zify_nat := repeat zify_nat_rel; repeat zify_nat_op; unfold Z_of_nat' in *.
@@ -218,22 +208,21 @@ Ltac hide_Zpos t :=
Ltac zify_positive_rel :=
match goal with
(* I: equalities *)
- | H : (@eq positive ?a ?b) |- _ => generalize (Zpos_eq _ _ H); clear H; intro H
- | |- (@eq positive ?a ?b) => apply (Zpos_eq_rev a b)
- | H : context [ @eq positive ?a ?b ] |- _ => rewrite (Zpos_eq_iff a b) in H
- | |- context [ @eq positive ?a ?b ] => rewrite (Zpos_eq_iff a b)
+ | |- (@eq positive ?a ?b) => apply Pos2Z.inj
+ | H : context [ @eq positive ?a ?b ] |- _ => rewrite <- (Pos2Z.inj_iff a b) in H
+ | |- context [ @eq positive ?a ?b ] => rewrite <- (Pos2Z.inj_iff a b)
(* II: less than *)
- | H : context [ (?a<?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
- | |- context [ (?a<?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
+ | H : context [ (?a < ?b)%positive ] |- _ => change (a<b)%positive with (Zpos a<Zpos b) in H
+ | |- context [ (?a < ?b)%positive ] => change (a<b)%positive with (Zpos a<Zpos b)
(* III: less or equal *)
- | H : context [ (?a<=?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
- | |- context [ (?a<=?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
+ | H : context [ (?a <= ?b)%positive ] |- _ => change (a<=b)%positive with (Zpos a<=Zpos b) in H
+ | |- context [ (?a <= ?b)%positive ] => change (a<=b)%positive with (Zpos a<=Zpos b)
(* IV: greater than *)
- | H : context [ (?a>?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
- | |- context [ (?a>?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
+ | H : context [ (?a > ?b)%positive ] |- _ => change (a>b)%positive with (Zpos a>Zpos b) in H
+ | |- context [ (?a > ?b)%positive ] => change (a>b)%positive with (Zpos a>Zpos b)
(* V: greater or equal *)
- | H : context [ (?a>=?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
- | |- context [ (?a>=?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
+ | H : context [ (?a >= ?b)%positive ] |- _ => change (a>=b)%positive with (Zpos a>=Zpos b) in H
+ | |- context [ (?a >= ?b)%positive ] => change (a>=b)%positive with (Zpos a>=Zpos b)
end.
Ltac zify_positive_op :=
@@ -253,66 +242,66 @@ Ltac zify_positive_op :=
end
(* misc type conversions: nat to positive *)
- | H : context [ Zpos (P_of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H
- | |- context [ Zpos (P_of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a)
+ | H : context [ Zpos (Pos.of_succ_nat ?a) ] |- _ => rewrite (Zpos_P_of_succ_nat a) in H
+ | |- context [ Zpos (Pos.of_succ_nat ?a) ] => rewrite (Zpos_P_of_succ_nat a)
- (* Pplus -> Zplus *)
- | H : context [ Zpos (Pplus ?a ?b) ] |- _ => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b)) in H
- | |- context [ Zpos (Pplus ?a ?b) ] => change (Zpos (Pplus a b)) with (Zplus (Zpos a) (Zpos b))
+ (* Pos.add -> Z.add *)
+ | H : context [ Zpos (?a + ?b) ] |- _ => change (Zpos (a+b)) with (Zpos a + Zpos b) in H
+ | |- context [ Zpos (?a + ?b) ] => change (Zpos (a+b)) with (Zpos a + Zpos b)
- (* Pmin -> Zmin *)
- | H : context [ Zpos (Pmin ?a ?b) ] |- _ => rewrite (Zpos_min a b) in H
- | |- context [ Zpos (Pmin ?a ?b) ] => rewrite (Zpos_min a b)
+ (* Pos.min -> Z.min *)
+ | H : context [ Zpos (Pos.min ?a ?b) ] |- _ => rewrite (Pos2Z.inj_min a b) in H
+ | |- context [ Zpos (Pos.min ?a ?b) ] => rewrite (Pos2Z.inj_min a b)
- (* Pmax -> Zmax *)
- | H : context [ Zpos (Pmax ?a ?b) ] |- _ => rewrite (Zpos_max a b) in H
- | |- context [ Zpos (Pmax ?a ?b) ] => rewrite (Zpos_max a b)
+ (* Pos.max -> Z.max *)
+ | H : context [ Zpos (Pos.max ?a ?b) ] |- _ => rewrite (Pos2Z.inj_max a b) in H
+ | |- context [ Zpos (Pos.max ?a ?b) ] => rewrite (Pos2Z.inj_max a b)
- (* Pminus -> Zmax 1 (Zminus ... ...) *)
- | H : context [ Zpos (Pminus ?a ?b) ] |- _ => rewrite (Zpos_minus a b) in H
- | |- context [ Zpos (Pminus ?a ?b) ] => rewrite (Zpos_minus a b)
+ (* Pos.sub -> Z.max 1 (Z.sub ... ...) *)
+ | H : context [ Zpos (Pos.sub ?a ?b) ] |- _ => rewrite (Pos2Z.inj_sub a b) in H
+ | |- context [ Zpos (Pos.sub ?a ?b) ] => rewrite (Pos2Z.inj_sub a b)
- (* Psucc -> Zsucc *)
- | H : context [ Zpos (Psucc ?a) ] |- _ => rewrite (Zpos_succ_morphism a) in H
- | |- context [ Zpos (Psucc ?a) ] => rewrite (Zpos_succ_morphism a)
+ (* Pos.succ -> Z.succ *)
+ | H : context [ Zpos (Pos.succ ?a) ] |- _ => rewrite (Pos2Z.inj_succ a) in H
+ | |- context [ Zpos (Pos.succ ?a) ] => rewrite (Pos2Z.inj_succ a)
- (* Ppred -> Pminus ... -1 -> Zmax 1 (Zminus ... - 1) *)
- | H : context [ Zpos (Ppred ?a) ] |- _ => rewrite (Ppred_minus a) in H
- | |- context [ Zpos (Ppred ?a) ] => rewrite (Ppred_minus a)
+ (* Pos.pred -> Pos.sub ... -1 -> Z.max 1 (Z.sub ... - 1) *)
+ | H : context [ Zpos (Pos.pred ?a) ] |- _ => rewrite <- (Pos.sub_1_r a) in H
+ | |- context [ Zpos (Pos.pred ?a) ] => rewrite <- (Pos.sub_1_r a)
- (* Pmult -> Zmult and a positivity hypothesis *)
- | H : context [ Zpos (Pmult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
- | |- context [ Zpos (Pmult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Zgt_pos_0 (Pmult a b)); rewrite (Zpos_mult_morphism a b) in *
+ (* Pos.mul -> Z.mul and a positivity hypothesis *)
+ | H : context [ Zpos (?a * ?b) ] |- _ =>
+ pose proof (Pos2Z.is_pos (Pos.mul a b));
+ change (Zpos (a*b)) with (Zpos a * Zpos b) in *
+ | |- context [ Zpos (?a * ?b) ] =>
+ pose proof (Pos2Z.is_pos (Pos.mul a b));
+ change (Zpos (a*b)) with (Zpos a * Zpos b) in *
(* xO *)
| H : context [ Zpos (xO ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a)) in H
- | _ => rewrite (Zpos_xO a) in H
+ | _ => rewrite (Pos2Z.inj_xO a) in H
end
| |- context [ Zpos (xO ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xO a)) with (Zpos' (xO a))
- | _ => rewrite (Zpos_xO a)
+ | _ => rewrite (Pos2Z.inj_xO a)
end
(* xI *)
| H : context [ Zpos (xI ?a) ] |- _ =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a)) in H
- | _ => rewrite (Zpos_xI a) in H
+ | _ => rewrite (Pos2Z.inj_xI a) in H
end
| |- context [ Zpos (xI ?a) ] =>
let isp := isPcst a in
match isp with
| true => change (Zpos (xI a)) with (Zpos' (xI a))
- | _ => rewrite (Zpos_xI a)
+ | _ => rewrite (Pos2Z.inj_xI a)
end
(* xI : nothing to do, just prevent adding a useless positivity condition *)
@@ -320,18 +309,9 @@ Ltac zify_positive_op :=
| |- context [ Zpos xH ] => hide_Zpos xH
(* atoms of type positive : we add a positivity condition (if not already there) *)
- | H : context [ Zpos ?a ] |- _ =>
- match goal with
- | H' : Zpos a > 0 |- _ => hide_Zpos a
- | H' : Zpos' a > 0 |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
- end
- | |- context [ Zpos ?a ] =>
- match goal with
- | H' : Zpos a > 0 |- _ => hide_Zpos a
- | H' : Zpos' a > 0 |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Zgt_pos_0 a); hide_Zpos a
- end
+ | _ : 0 < Zpos ?a |- _ => hide_Zpos a
+ | _ : context [ Zpos ?a ] |- _ => pose proof (Pos2Z.is_pos a); hide_Zpos a
+ | |- context [ Zpos ?a ] => pose proof (Pos2Z.is_pos a); hide_Zpos a
end.
Ltac zify_positive :=
@@ -343,95 +323,75 @@ Ltac zify_positive :=
(* IV) conversion from N to Z *)
-Definition Z_of_N' := Z_of_N.
+Definition Z_of_N' := Z.of_N.
Ltac hide_Z_of_N t :=
- let z := fresh "z" in set (z:=Z_of_N t) in *;
- change Z_of_N with Z_of_N' in z;
+ let z := fresh "z" in set (z:=Z.of_N t) in *;
+ change Z.of_N with Z_of_N' in z;
unfold z in *; clear z.
Ltac zify_N_rel :=
match goal with
(* I: equalities *)
- | H : (@eq N ?a ?b) |- _ => generalize (Z_of_N_eq _ _ H); clear H; intro H
- | |- (@eq N ?a ?b) => apply (Z_of_N_eq_rev a b)
- | H : context [ @eq N ?a ?b ] |- _ => rewrite (Z_of_N_eq_iff a b) in H
- | |- context [ @eq N ?a ?b ] => rewrite (Z_of_N_eq_iff a b)
+ | |- (@eq N ?a ?b) => apply (N2Z.inj a b) (* shortcut *)
+ | H : context [ @eq N ?a ?b ] |- _ => rewrite <- (N2Z.inj_iff a b) in H
+ | |- context [ @eq N ?a ?b ] => rewrite <- (N2Z.inj_iff a b)
(* II: less than *)
- | H : (?a<?b)%N |- _ => generalize (Z_of_N_lt _ _ H); clear H; intro H
- | |- (?a<?b)%N => apply (Z_of_N_lt_rev a b)
- | H : context [ (?a<?b)%N ] |- _ => rewrite (Z_of_N_lt_iff a b) in H
- | |- context [ (?a<?b)%N ] => rewrite (Z_of_N_lt_iff a b)
+ | H : context [ (?a < ?b)%N ] |- _ => rewrite (N2Z.inj_lt a b) in H
+ | |- context [ (?a < ?b)%N ] => rewrite (N2Z.inj_lt a b)
(* III: less or equal *)
- | H : (?a<=?b)%N |- _ => generalize (Z_of_N_le _ _ H); clear H; intro H
- | |- (?a<=?b)%N => apply (Z_of_N_le_rev a b)
- | H : context [ (?a<=?b)%N ] |- _ => rewrite (Z_of_N_le_iff a b) in H
- | |- context [ (?a<=?b)%N ] => rewrite (Z_of_N_le_iff a b)
+ | H : context [ (?a <= ?b)%N ] |- _ => rewrite (N2Z.inj_le a b) in H
+ | |- context [ (?a <= ?b)%N ] => rewrite (N2Z.inj_le a b)
(* IV: greater than *)
- | H : (?a>?b)%N |- _ => generalize (Z_of_N_gt _ _ H); clear H; intro H
- | |- (?a>?b)%N => apply (Z_of_N_gt_rev a b)
- | H : context [ (?a>?b)%N ] |- _ => rewrite (Z_of_N_gt_iff a b) in H
- | |- context [ (?a>?b)%N ] => rewrite (Z_of_N_gt_iff a b)
+ | H : context [ (?a > ?b)%N ] |- _ => rewrite (N2Z.inj_gt a b) in H
+ | |- context [ (?a > ?b)%N ] => rewrite (N2Z.inj_gt a b)
(* V: greater or equal *)
- | H : (?a>=?b)%N |- _ => generalize (Z_of_N_ge _ _ H); clear H; intro H
- | |- (?a>=?b)%N => apply (Z_of_N_ge_rev a b)
- | H : context [ (?a>=?b)%N ] |- _ => rewrite (Z_of_N_ge_iff a b) in H
- | |- context [ (?a>=?b)%N ] => rewrite (Z_of_N_ge_iff a b)
+ | H : context [ (?a >= ?b)%N ] |- _ => rewrite (N2Z.inj_ge a b) in H
+ | |- context [ (?a >= ?b)%N ] => rewrite (N2Z.inj_ge a b)
end.
Ltac zify_N_op :=
match goal with
(* misc type conversions: nat to positive *)
- | H : context [ Z_of_N (N_of_nat ?a) ] |- _ => rewrite (Z_of_N_of_nat a) in H
- | |- context [ Z_of_N (N_of_nat ?a) ] => rewrite (Z_of_N_of_nat a)
- | H : context [ Z_of_N (Zabs_N ?a) ] |- _ => rewrite (Z_of_N_abs a) in H
- | |- context [ Z_of_N (Zabs_N ?a) ] => rewrite (Z_of_N_abs a)
- | H : context [ Z_of_N (Npos ?a) ] |- _ => rewrite (Z_of_N_pos a) in H
- | |- context [ Z_of_N (Npos ?a) ] => rewrite (Z_of_N_pos a)
- | H : context [ Z_of_N N0 ] |- _ => change (Z_of_N N0) with Z0 in H
- | |- context [ Z_of_N N0 ] => change (Z_of_N N0) with Z0
-
- (* Nplus -> Zplus *)
- | H : context [ Z_of_N (Nplus ?a ?b) ] |- _ => rewrite (Z_of_N_plus a b) in H
- | |- context [ Z_of_N (Nplus ?a ?b) ] => rewrite (Z_of_N_plus a b)
-
- (* Nmin -> Zmin *)
- | H : context [ Z_of_N (Nmin ?a ?b) ] |- _ => rewrite (Z_of_N_min a b) in H
- | |- context [ Z_of_N (Nmin ?a ?b) ] => rewrite (Z_of_N_min a b)
-
- (* Nmax -> Zmax *)
- | H : context [ Z_of_N (Nmax ?a ?b) ] |- _ => rewrite (Z_of_N_max a b) in H
- | |- context [ Z_of_N (Nmax ?a ?b) ] => rewrite (Z_of_N_max a b)
-
- (* Nminus -> Zmax 0 (Zminus ... ...) *)
- | H : context [ Z_of_N (Nminus ?a ?b) ] |- _ => rewrite (Z_of_N_minus a b) in H
- | |- context [ Z_of_N (Nminus ?a ?b) ] => rewrite (Z_of_N_minus a b)
-
- (* Nsucc -> Zsucc *)
- | H : context [ Z_of_N (Nsucc ?a) ] |- _ => rewrite (Z_of_N_succ a) in H
- | |- context [ Z_of_N (Nsucc ?a) ] => rewrite (Z_of_N_succ a)
-
- (* Nmult -> Zmult and a positivity hypothesis *)
- | H : context [ Z_of_N (Nmult ?a ?b) ] |- _ =>
- let H:= fresh "H" in
- assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
- | |- context [ Z_of_N (Nmult ?a ?b) ] =>
- let H:= fresh "H" in
- assert (H:=Z_of_N_le_0 (Nmult a b)); rewrite (Z_of_N_mult a b) in *
+ | H : context [ Z.of_N (N.of_nat ?a) ] |- _ => rewrite (nat_N_Z a) in H
+ | |- context [ Z.of_N (N.of_nat ?a) ] => rewrite (nat_N_Z a)
+ | H : context [ Z.of_N (Z.abs_N ?a) ] |- _ => rewrite (N2Z.inj_abs_N a) in H
+ | |- context [ Z.of_N (Z.abs_N ?a) ] => rewrite (N2Z.inj_abs_N a)
+ | H : context [ Z.of_N (Npos ?a) ] |- _ => rewrite (N2Z.inj_pos a) in H
+ | |- context [ Z.of_N (Npos ?a) ] => rewrite (N2Z.inj_pos a)
+ | H : context [ Z.of_N N0 ] |- _ => change (Z.of_N N0) with Z0 in H
+ | |- context [ Z.of_N N0 ] => change (Z.of_N N0) with Z0
+
+ (* N.add -> Z.add *)
+ | H : context [ Z.of_N (N.add ?a ?b) ] |- _ => rewrite (N2Z.inj_add a b) in H
+ | |- context [ Z.of_N (N.add ?a ?b) ] => rewrite (N2Z.inj_add a b)
+
+ (* N.min -> Z.min *)
+ | H : context [ Z.of_N (N.min ?a ?b) ] |- _ => rewrite (N2Z.inj_min a b) in H
+ | |- context [ Z.of_N (N.min ?a ?b) ] => rewrite (N2Z.inj_min a b)
+
+ (* N.max -> Z.max *)
+ | H : context [ Z.of_N (N.max ?a ?b) ] |- _ => rewrite (N2Z.inj_max a b) in H
+ | |- context [ Z.of_N (N.max ?a ?b) ] => rewrite (N2Z.inj_max a b)
+
+ (* N.sub -> Z.max 0 (Z.sub ... ...) *)
+ | H : context [ Z.of_N (N.sub ?a ?b) ] |- _ => rewrite (N2Z.inj_sub_max a b) in H
+ | |- context [ Z.of_N (N.sub ?a ?b) ] => rewrite (N2Z.inj_sub_max a b)
+
+ (* N.succ -> Z.succ *)
+ | H : context [ Z.of_N (N.succ ?a) ] |- _ => rewrite (N2Z.inj_succ a) in H
+ | |- context [ Z.of_N (N.succ ?a) ] => rewrite (N2Z.inj_succ a)
+
+ (* N.mul -> Z.mul and a positivity hypothesis *)
+ | H : context [ Z.of_N (N.mul ?a ?b) ] |- _ =>
+ pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in *
+ | |- context [ Z.of_N (N.mul ?a ?b) ] =>
+ pose proof (N2Z.is_nonneg (N.mul a b)); rewrite (N2Z.inj_mul a b) in *
(* atoms of type N : we add a positivity condition (if not already there) *)
- | H : context [ Z_of_N ?a ] |- _ =>
- match goal with
- | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
- | H' : 0 <= Z_of_N' a |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
- end
- | |- context [ Z_of_N ?a ] =>
- match goal with
- | H' : 0 <= Z_of_N a |- _ => hide_Z_of_N a
- | H' : 0 <= Z_of_N' a |- _ => fail
- | _ => let H:= fresh "H" in assert (H:=Z_of_N_le_0 a); hide_Z_of_N a
- end
+ | _ : 0 <= Z.of_N ?a |- _ => hide_Z_of_N a
+ | _ : context [ Z.of_N ?a ] |- _ => pose proof (N2Z.is_nonneg a); hide_Z_of_N a
+ | |- context [ Z.of_N ?a ] => pose proof (N2Z.is_nonneg a); hide_Z_of_N a
end.
Ltac zify_N := repeat zify_N_rel; repeat zify_N_op; unfold Z_of_N' in *.
diff --git a/plugins/omega/coq_omega.ml b/plugins/omega/coq_omega.ml
index 20565d06..ffa99fc7 100644
--- a/plugins/omega/coq_omega.ml
+++ b/plugins/omega/coq_omega.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -13,8 +13,6 @@
(* *)
(**************************************************************************)
-(* $Id: coq_omega.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util
open Pp
open Reduction
@@ -22,7 +20,6 @@ open Proof_type
open Names
open Nameops
open Term
-open Termops
open Declarations
open Environ
open Sign
@@ -60,6 +57,7 @@ open Goptions
let _ =
declare_bool_option
{ optsync = false;
+ optdepr = false;
optname = "Omega system time displaying flag";
optkey = ["Omega";"System"];
optread = read display_system_flag;
@@ -68,6 +66,7 @@ let _ =
let _ =
declare_bool_option
{ optsync = false;
+ optdepr = false;
optname = "Omega action display flag";
optkey = ["Omega";"Action"];
optread = read display_action_flag;
@@ -76,6 +75,7 @@ let _ =
let _ =
declare_bool_option
{ optsync = false;
+ optdepr = false;
optname = "Omega old style flag";
optkey = ["Omega";"OldStyle"];
optread = read old_style_flag;
@@ -128,12 +128,12 @@ let intern_id,unintern_id =
let mk_then = tclTHENLIST
-let exists_tac c = constructor_tac false (Some 1) 1 (Rawterm.ImplicitBindings [c])
+let exists_tac c = constructor_tac false (Some 1) 1 (Glob_term.ImplicitBindings [c])
let generalize_tac t = generalize_time (generalize t)
let elim t = elim_time (simplest_elim t)
let exact t = exact_time (Tactics.refine t)
-let unfold s = Tactics.unfold_in_concl [all_occurrences, Lazy.force s]
+let unfold s = Tactics.unfold_in_concl [Termops.all_occurrences, Lazy.force s]
let rev_assoc k =
let rec loop = function
@@ -150,7 +150,7 @@ let tag_hypothesis,tag_of_hyp, hyp_of_tag =
let hide_constr,find_constr,clear_tables,dump_tables =
let l = ref ([]:(constr * (identifier * identifier * bool)) list) in
(fun h id eg b -> l := (h,(id,eg,b)):: !l),
- (fun h -> try List.assoc h !l with Not_found -> failwith "find_contr"),
+ (fun h -> try list_assoc_f eq_constr h !l with Not_found -> failwith "find_contr"),
(fun () -> l := []),
(fun () -> !l)
@@ -169,6 +169,11 @@ let coq_modules =
let init_constant = gen_constant_in_modules "Omega" init_modules
let constant = gen_constant_in_modules "Omega" coq_modules
+let z_constant = gen_constant_in_modules "Omega" [["Coq";"ZArith"]]
+let zbase_constant =
+ gen_constant_in_modules "Omega" [["Coq";"ZArith";"BinInt"]]
+
+
(* Zarith *)
let coq_xH = lazy (constant "xH")
let coq_xO = lazy (constant "xO")
@@ -179,25 +184,26 @@ let coq_Zneg = lazy (constant "Zneg")
let coq_Z = lazy (constant "Z")
let coq_comparison = lazy (constant "comparison")
let coq_Gt = lazy (constant "Gt")
-let coq_Zplus = lazy (constant "Zplus")
-let coq_Zmult = lazy (constant "Zmult")
-let coq_Zopp = lazy (constant "Zopp")
-let coq_Zminus = lazy (constant "Zminus")
-let coq_Zsucc = lazy (constant "Zsucc")
-let coq_Zgt = lazy (constant "Zgt")
-let coq_Zle = lazy (constant "Zle")
-let coq_Z_of_nat = lazy (constant "Z_of_nat")
-let coq_inj_plus = lazy (constant "inj_plus")
-let coq_inj_mult = lazy (constant "inj_mult")
-let coq_inj_minus1 = lazy (constant "inj_minus1")
+let coq_Zplus = lazy (zbase_constant "Z.add")
+let coq_Zmult = lazy (zbase_constant "Z.mul")
+let coq_Zopp = lazy (zbase_constant "Z.opp")
+let coq_Zminus = lazy (zbase_constant "Z.sub")
+let coq_Zsucc = lazy (zbase_constant "Z.succ")
+let coq_Zpred = lazy (zbase_constant "Z.pred")
+let coq_Zgt = lazy (zbase_constant "Z.gt")
+let coq_Zle = lazy (zbase_constant "Z.le")
+let coq_Z_of_nat = lazy (zbase_constant "Z.of_nat")
+let coq_inj_plus = lazy (z_constant "Nat2Z.inj_add")
+let coq_inj_mult = lazy (z_constant "Nat2Z.inj_mul")
+let coq_inj_minus1 = lazy (z_constant "Nat2Z.inj_sub")
let coq_inj_minus2 = lazy (constant "inj_minus2")
-let coq_inj_S = lazy (constant "inj_S")
-let coq_inj_le = lazy (constant "inj_le")
-let coq_inj_lt = lazy (constant "inj_lt")
-let coq_inj_ge = lazy (constant "inj_ge")
-let coq_inj_gt = lazy (constant "inj_gt")
-let coq_inj_neq = lazy (constant "inj_neq")
-let coq_inj_eq = lazy (constant "inj_eq")
+let coq_inj_S = lazy (z_constant "Nat2Z.inj_succ")
+let coq_inj_le = lazy (z_constant "Znat.inj_le")
+let coq_inj_lt = lazy (z_constant "Znat.inj_lt")
+let coq_inj_ge = lazy (z_constant "Znat.inj_ge")
+let coq_inj_gt = lazy (z_constant "Znat.inj_gt")
+let coq_inj_neq = lazy (z_constant "inj_neq")
+let coq_inj_eq = lazy (z_constant "inj_eq")
let coq_fast_Zplus_assoc_reverse = lazy (constant "fast_Zplus_assoc_reverse")
let coq_fast_Zplus_assoc = lazy (constant "fast_Zplus_assoc")
let coq_fast_Zmult_assoc_reverse = lazy (constant "fast_Zmult_assoc_reverse")
@@ -247,24 +253,25 @@ let coq_Zle_left = lazy (constant "Zle_left")
let coq_new_var = lazy (constant "new_var")
let coq_intro_Z = lazy (constant "intro_Z")
-let coq_dec_eq = lazy (constant "dec_eq")
+let coq_dec_eq = lazy (zbase_constant "Z.eq_decidable")
let coq_dec_Zne = lazy (constant "dec_Zne")
-let coq_dec_Zle = lazy (constant "dec_Zle")
-let coq_dec_Zlt = lazy (constant "dec_Zlt")
+let coq_dec_Zle = lazy (zbase_constant "Z.le_decidable")
+let coq_dec_Zlt = lazy (zbase_constant "Z.lt_decidable")
let coq_dec_Zgt = lazy (constant "dec_Zgt")
let coq_dec_Zge = lazy (constant "dec_Zge")
let coq_not_Zeq = lazy (constant "not_Zeq")
+let coq_not_Zne = lazy (constant "not_Zne")
let coq_Znot_le_gt = lazy (constant "Znot_le_gt")
let coq_Znot_lt_ge = lazy (constant "Znot_lt_ge")
let coq_Znot_ge_lt = lazy (constant "Znot_ge_lt")
let coq_Znot_gt_le = lazy (constant "Znot_gt_le")
let coq_neq = lazy (constant "neq")
let coq_Zne = lazy (constant "Zne")
-let coq_Zle = lazy (constant "Zle")
-let coq_Zgt = lazy (constant "Zgt")
-let coq_Zge = lazy (constant "Zge")
-let coq_Zlt = lazy (constant "Zlt")
+let coq_Zle = lazy (zbase_constant "Z.le")
+let coq_Zgt = lazy (zbase_constant "Z.gt")
+let coq_Zge = lazy (zbase_constant "Z.ge")
+let coq_Zlt = lazy (zbase_constant "Z.lt")
(* Peano/Datatypes *)
let coq_le = lazy (init_constant "le")
@@ -322,12 +329,13 @@ let evaluable_ref_of_constr s c = match kind_of_term (Lazy.force c) with
EvalConstRef kn
| _ -> anomaly ("Coq_omega: "^s^" is not an evaluable constant")
-let sp_Zsucc = lazy (evaluable_ref_of_constr "Zsucc" coq_Zsucc)
-let sp_Zminus = lazy (evaluable_ref_of_constr "Zminus" coq_Zminus)
-let sp_Zle = lazy (evaluable_ref_of_constr "Zle" coq_Zle)
-let sp_Zgt = lazy (evaluable_ref_of_constr "Zgt" coq_Zgt)
-let sp_Zge = lazy (evaluable_ref_of_constr "Zge" coq_Zge)
-let sp_Zlt = lazy (evaluable_ref_of_constr "Zlt" coq_Zlt)
+let sp_Zsucc = lazy (evaluable_ref_of_constr "Z.succ" coq_Zsucc)
+let sp_Zpred = lazy (evaluable_ref_of_constr "Z.pred" coq_Zpred)
+let sp_Zminus = lazy (evaluable_ref_of_constr "Z.sub" coq_Zminus)
+let sp_Zle = lazy (evaluable_ref_of_constr "Z.le" coq_Zle)
+let sp_Zgt = lazy (evaluable_ref_of_constr "Z.gt" coq_Zgt)
+let sp_Zge = lazy (evaluable_ref_of_constr "Z.ge" coq_Zge)
+let sp_Zlt = lazy (evaluable_ref_of_constr "Z.lt" coq_Zlt)
let sp_not = lazy (evaluable_ref_of_constr "not" (lazy (build_coq_not ())))
let mk_var v = mkVar (id_of_string v)
@@ -356,7 +364,7 @@ let mk_integer n =
[| loop (abs n) |])
type omega_constant =
- | Zplus | Zmult | Zminus | Zsucc | Zopp
+ | Zplus | Zmult | Zminus | Zsucc | Zopp | Zpred
| Plus | Mult | Minus | Pred | S | O
| Zpos | Zneg | Z0 | Z_of_nat
| Eq | Neq
@@ -376,32 +384,39 @@ type result =
| Kimp of constr * constr
| Kufo
+(* Nota: Kimp correspond to a binder (Prod), but hopefully we won't
+ have to bother with term lifting: Kimp will correspond to anonymous
+ product, for which (Rel 1) doesn't occur in the right term.
+ Moreover, we'll work on fully introduced goals, hence no Rel's in
+ the term parts that we manipulate, but rather Var's.
+ Said otherwise: all constr manipulated here are closed *)
+
let destructurate_prop t =
let c, args = decompose_app t in
match kind_of_term c, args with
- | _, [_;_;_] when c = build_coq_eq () -> Kapp (Eq,args)
- | _, [_;_] when c = Lazy.force coq_neq -> Kapp (Neq,args)
- | _, [_;_] when c = Lazy.force coq_Zne -> Kapp (Zne,args)
- | _, [_;_] when c = Lazy.force coq_Zle -> Kapp (Zle,args)
- | _, [_;_] when c = Lazy.force coq_Zlt -> Kapp (Zlt,args)
- | _, [_;_] when c = Lazy.force coq_Zge -> Kapp (Zge,args)
- | _, [_;_] when c = Lazy.force coq_Zgt -> Kapp (Zgt,args)
- | _, [_;_] when c = build_coq_and () -> Kapp (And,args)
- | _, [_;_] when c = build_coq_or () -> Kapp (Or,args)
- | _, [_;_] when c = Lazy.force coq_iff -> Kapp (Iff, args)
- | _, [_] when c = build_coq_not () -> Kapp (Not,args)
- | _, [] when c = build_coq_False () -> Kapp (False,args)
- | _, [] when c = build_coq_True () -> Kapp (True,args)
- | _, [_;_] when c = Lazy.force coq_le -> Kapp (Le,args)
- | _, [_;_] when c = Lazy.force coq_lt -> Kapp (Lt,args)
- | _, [_;_] when c = Lazy.force coq_ge -> Kapp (Ge,args)
- | _, [_;_] when c = Lazy.force coq_gt -> Kapp (Gt,args)
+ | _, [_;_;_] when eq_constr c (build_coq_eq ()) -> Kapp (Eq,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_neq) -> Kapp (Neq,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zne) -> Kapp (Zne,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zle) -> Kapp (Zle,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zlt) -> Kapp (Zlt,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zge) -> Kapp (Zge,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zgt) -> Kapp (Zgt,args)
+ | _, [_;_] when eq_constr c (build_coq_and ()) -> Kapp (And,args)
+ | _, [_;_] when eq_constr c (build_coq_or ()) -> Kapp (Or,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_iff) -> Kapp (Iff, args)
+ | _, [_] when eq_constr c (build_coq_not ()) -> Kapp (Not,args)
+ | _, [] when eq_constr c (build_coq_False ()) -> Kapp (False,args)
+ | _, [] when eq_constr c (build_coq_True ()) -> Kapp (True,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_le) -> Kapp (Le,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_lt) -> Kapp (Lt,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_ge) -> Kapp (Ge,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_gt) -> Kapp (Gt,args)
| Const sp, args ->
- Kapp (Other (string_of_id (basename_of_global (ConstRef sp))),args)
+ Kapp (Other (string_of_path (path_of_global (ConstRef sp))),args)
| Construct csp , args ->
- Kapp (Other (string_of_id (basename_of_global (ConstructRef csp))), args)
+ Kapp (Other (string_of_path (path_of_global (ConstructRef csp))), args)
| Ind isp, args ->
- Kapp (Other (string_of_id (basename_of_global (IndRef isp))),args)
+ Kapp (Other (string_of_path (path_of_global (IndRef isp))),args)
| Var id,[] -> Kvar id
| Prod (Anonymous,typ,body), [] -> Kimp(typ,body)
| Prod (Name _,_,_),[] -> error "Omega: Not a quantifier-free goal"
@@ -410,43 +425,44 @@ let destructurate_prop t =
let destructurate_type t =
let c, args = decompose_app t in
match kind_of_term c, args with
- | _, [] when c = Lazy.force coq_Z -> Kapp (Z,args)
- | _, [] when c = Lazy.force coq_nat -> Kapp (Nat,args)
+ | _, [] when eq_constr c (Lazy.force coq_Z) -> Kapp (Z,args)
+ | _, [] when eq_constr c (Lazy.force coq_nat) -> Kapp (Nat,args)
| _ -> Kufo
let destructurate_term t =
let c, args = decompose_app t in
match kind_of_term c, args with
- | _, [_;_] when c = Lazy.force coq_Zplus -> Kapp (Zplus,args)
- | _, [_;_] when c = Lazy.force coq_Zmult -> Kapp (Zmult,args)
- | _, [_;_] when c = Lazy.force coq_Zminus -> Kapp (Zminus,args)
- | _, [_] when c = Lazy.force coq_Zsucc -> Kapp (Zsucc,args)
- | _, [_] when c = Lazy.force coq_Zopp -> Kapp (Zopp,args)
- | _, [_;_] when c = Lazy.force coq_plus -> Kapp (Plus,args)
- | _, [_;_] when c = Lazy.force coq_mult -> Kapp (Mult,args)
- | _, [_;_] when c = Lazy.force coq_minus -> Kapp (Minus,args)
- | _, [_] when c = Lazy.force coq_pred -> Kapp (Pred,args)
- | _, [_] when c = Lazy.force coq_S -> Kapp (S,args)
- | _, [] when c = Lazy.force coq_O -> Kapp (O,args)
- | _, [_] when c = Lazy.force coq_Zpos -> Kapp (Zneg,args)
- | _, [_] when c = Lazy.force coq_Zneg -> Kapp (Zpos,args)
- | _, [] when c = Lazy.force coq_Z0 -> Kapp (Z0,args)
- | _, [_] when c = Lazy.force coq_Z_of_nat -> Kapp (Z_of_nat,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zplus) -> Kapp (Zplus,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zmult) -> Kapp (Zmult,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_Zminus) -> Kapp (Zminus,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Zsucc) -> Kapp (Zsucc,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Zpred) -> Kapp (Zpred,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Zopp) -> Kapp (Zopp,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_plus) -> Kapp (Plus,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_mult) -> Kapp (Mult,args)
+ | _, [_;_] when eq_constr c (Lazy.force coq_minus) -> Kapp (Minus,args)
+ | _, [_] when eq_constr c (Lazy.force coq_pred) -> Kapp (Pred,args)
+ | _, [_] when eq_constr c (Lazy.force coq_S) -> Kapp (S,args)
+ | _, [] when eq_constr c (Lazy.force coq_O) -> Kapp (O,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Zpos) -> Kapp (Zneg,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Zneg) -> Kapp (Zpos,args)
+ | _, [] when eq_constr c (Lazy.force coq_Z0) -> Kapp (Z0,args)
+ | _, [_] when eq_constr c (Lazy.force coq_Z_of_nat) -> Kapp (Z_of_nat,args)
| Var id,[] -> Kvar id
| _ -> Kufo
let recognize_number t =
let rec loop t =
match decompose_app t with
- | f, [t] when f = Lazy.force coq_xI -> one + two * loop t
- | f, [t] when f = Lazy.force coq_xO -> two * loop t
- | f, [] when f = Lazy.force coq_xH -> one
+ | f, [t] when eq_constr f (Lazy.force coq_xI) -> one + two * loop t
+ | f, [t] when eq_constr f (Lazy.force coq_xO) -> two * loop t
+ | f, [] when eq_constr f (Lazy.force coq_xH) -> one
| _ -> failwith "not a number"
in
match decompose_app t with
- | f, [t] when f = Lazy.force coq_Zpos -> loop t
- | f, [t] when f = Lazy.force coq_Zneg -> neg (loop t)
- | f, [] when f = Lazy.force coq_Z0 -> zero
+ | f, [t] when eq_constr f (Lazy.force coq_Zpos) -> loop t
+ | f, [t] when eq_constr f (Lazy.force coq_Zneg) -> neg (loop t)
+ | f, [] when eq_constr f (Lazy.force coq_Z0) -> zero
| _ -> failwith "not a number"
type constr_path =
@@ -869,7 +885,7 @@ let rec transform p t =
try
let v,th,_ = find_constr t' in
[clever_rewrite_base p (mkVar v) (mkVar th)], Oatom v
- with _ ->
+ with e when Errors.noncritical e ->
let v = new_identifier_var ()
and th = new_identifier () in
hide_constr t' v th isnat;
@@ -891,6 +907,10 @@ let rec transform p t =
let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
[| t1; mk_integer one |])) in
unfold sp_Zsucc :: tac,t
+ | Kapp(Zpred,[t1]) ->
+ let tac,t = transform p (mkApp (Lazy.force coq_Zplus,
+ [| t1; mk_integer negone |])) in
+ unfold sp_Zpred :: tac,t
| Kapp(Zmult,[t1;t2]) ->
let tac1,t1' = transform (P_APP 1 :: p) t1
and tac2,t2' = transform (P_APP 2 :: p) t2 in
@@ -904,7 +924,8 @@ let rec transform p t =
| _ -> default false t
end
| Kapp((Zpos|Zneg|Z0),_) ->
- (try ([],Oz(recognize_number t)) with _ -> default false t)
+ (try ([],Oz(recognize_number t))
+ with e when Errors.noncritical e -> default false t)
| Kvar s -> [],Oatom s
| Kapp(Zopp,[t]) ->
let tac,t' = transform (P_APP 1 :: p) t in
@@ -1548,6 +1569,38 @@ let nat_inject gl =
in
loop (List.rev (pf_hyps_types gl)) gl
+let dec_binop = function
+ | Zne -> coq_dec_Zne
+ | Zle -> coq_dec_Zle
+ | Zlt -> coq_dec_Zlt
+ | Zge -> coq_dec_Zge
+ | Zgt -> coq_dec_Zgt
+ | Le -> coq_dec_le
+ | Lt -> coq_dec_lt
+ | Ge -> coq_dec_ge
+ | Gt -> coq_dec_gt
+ | _ -> raise Not_found
+
+let not_binop = function
+ | Zne -> coq_not_Zne
+ | Zle -> coq_Znot_le_gt
+ | Zlt -> coq_Znot_lt_ge
+ | Zge -> coq_Znot_ge_lt
+ | Zgt -> coq_Znot_gt_le
+ | Le -> coq_not_le
+ | Lt -> coq_not_lt
+ | Ge -> coq_not_ge
+ | Gt -> coq_not_gt
+ | _ -> raise Not_found
+
+(** A decidability check : for some [t], could we build a term
+ of type [decidable t] (i.e. [t\/~t]) ? Otherwise, we raise
+ [Undecidable]. Note that a successful check implies that
+ [t] has type Prop.
+*)
+
+exception Undecidable
+
let rec decidability gl t =
match destructurate_prop t with
| Kapp(Or,[t1;t2]) ->
@@ -1560,34 +1613,24 @@ let rec decidability gl t =
mkApp (Lazy.force coq_dec_iff, [| t1; t2;
decidability gl t1; decidability gl t2 |])
| Kimp(t1,t2) ->
- mkApp (Lazy.force coq_dec_imp, [| t1; t2;
- decidability gl t1; decidability gl t2 |])
- | Kapp(Not,[t1]) -> mkApp (Lazy.force coq_dec_not, [| t1;
- decidability gl t1 |])
+ (* This is the only situation where it's not obvious that [t]
+ is in Prop. The recursive call on [t2] will ensure that. *)
+ mkApp (Lazy.force coq_dec_imp,
+ [| t1; t2; decidability gl t1; decidability gl t2 |])
+ | Kapp(Not,[t1]) ->
+ mkApp (Lazy.force coq_dec_not, [| t1; decidability gl t1 |])
| Kapp(Eq,[typ;t1;t2]) ->
begin match destructurate_type (pf_nf gl typ) with
| Kapp(Z,[]) -> mkApp (Lazy.force coq_dec_eq, [| t1;t2 |])
| Kapp(Nat,[]) -> mkApp (Lazy.force coq_dec_eq_nat, [| t1;t2 |])
- | _ -> errorlabstrm "decidability"
- (str "Omega: Can't solve a goal with equality on " ++
- Printer.pr_lconstr typ)
+ | _ -> raise Undecidable
end
- | Kapp(Zne,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zne, [| t1;t2 |])
- | Kapp(Zle,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zle, [| t1;t2 |])
- | Kapp(Zlt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zlt, [| t1;t2 |])
- | Kapp(Zge,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zge, [| t1;t2 |])
- | Kapp(Zgt,[t1;t2]) -> mkApp (Lazy.force coq_dec_Zgt, [| t1;t2 |])
- | Kapp(Le, [t1;t2]) -> mkApp (Lazy.force coq_dec_le, [| t1;t2 |])
- | Kapp(Lt, [t1;t2]) -> mkApp (Lazy.force coq_dec_lt, [| t1;t2 |])
- | Kapp(Ge, [t1;t2]) -> mkApp (Lazy.force coq_dec_ge, [| t1;t2 |])
- | Kapp(Gt, [t1;t2]) -> mkApp (Lazy.force coq_dec_gt, [| t1;t2 |])
+ | Kapp(op,[t1;t2]) ->
+ (try mkApp (Lazy.force (dec_binop op), [| t1; t2 |])
+ with Not_found -> raise Undecidable)
| Kapp(False,[]) -> Lazy.force coq_dec_False
| Kapp(True,[]) -> Lazy.force coq_dec_True
- | Kapp(Other t,_::_) -> error
- ("Omega: Unrecognized predicate or connective: "^t)
- | Kapp(Other t,[]) -> error ("Omega: Unrecognized atomic proposition: "^t)
- | Kvar _ -> error "Omega: Can't solve a goal with proposition variables"
- | _ -> error "Omega: Unrecognized proposition"
+ | _ -> raise Undecidable
let onClearedName id tac =
(* We cannot ensure that hyps can be cleared (because of dependencies), *)
@@ -1598,6 +1641,14 @@ let onClearedName id tac =
let id = fresh_id [] id gl in
tclTHEN (introduction id) (tac id) gl)
+let onClearedName2 id tac =
+ tclTHEN
+ (tclTRY (clear [id]))
+ (fun gl ->
+ let id1 = fresh_id [] (add_suffix id "_left") gl in
+ let id2 = fresh_id [] (add_suffix id "_right") gl in
+ tclTHENLIST [ introduction id1; introduction id2; tac id1 id2 ] gl)
+
let destructure_hyps gl =
let rec loop = function
| [] -> (tclTHEN nat_inject coq_omega)
@@ -1611,50 +1662,24 @@ let destructure_hyps gl =
[ onClearedName i (fun i -> (loop ((i,None,t1)::lit)));
onClearedName i (fun i -> (loop ((i,None,t2)::lit))) ])
| Kapp(And,[t1;t2]) ->
- tclTHENLIST [
- (elim_id i);
- (tclTRY (clear [i]));
- (fun gl ->
- let i1 = fresh_id [] (add_suffix i "_left") gl in
- let i2 = fresh_id [] (add_suffix i "_right") gl in
- tclTHENLIST [
- (introduction i1);
- (introduction i2);
- (loop ((i1,None,t1)::(i2,None,t2)::lit)) ] gl)
- ]
+ tclTHEN
+ (elim_id i)
+ (onClearedName2 i (fun i1 i2 ->
+ loop ((i1,None,t1)::(i2,None,t2)::lit)))
| Kapp(Iff,[t1;t2]) ->
- tclTHENLIST [
- (elim_id i);
- (tclTRY (clear [i]));
- (fun gl ->
- let i1 = fresh_id [] (add_suffix i "_left") gl in
- let i2 = fresh_id [] (add_suffix i "_right") gl in
- tclTHENLIST [
- introduction i1;
- generalize_tac
- [mkApp (Lazy.force coq_imp_simp,
- [| t1; t2; decidability gl t1; mkVar i1|])];
- onClearedName i1 (fun i1 ->
- tclTHENLIST [
- introduction i2;
- generalize_tac
- [mkApp (Lazy.force coq_imp_simp,
- [| t2; t1; decidability gl t2; mkVar i2|])];
- onClearedName i2 (fun i2 ->
- loop
- ((i1,None,mk_or (mk_not t1) t2)::
- (i2,None,mk_or (mk_not t2) t1)::lit))
- ])] gl)
- ]
+ tclTHEN
+ (elim_id i)
+ (onClearedName2 i (fun i1 i2 ->
+ loop ((i1,None,mkArrow t1 t2)::(i2,None,mkArrow t2 t1)::lit)))
| Kimp(t1,t2) ->
- if
- is_Prop (pf_type_of gl t1) &
- is_Prop (pf_type_of gl t2) &
- closed0 t2
+ (* t1 and t2 might be in Type rather than Prop.
+ For t1, the decidability check will ensure being Prop. *)
+ if is_Prop (pf_type_of gl t2)
then
+ let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac [mkApp (Lazy.force coq_imp_simp,
- [| t1; t2; decidability gl t1; mkVar i|])]);
+ [| t1; t2; d1; mkVar i|])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_or (mk_not t1) t2)::lit))))
]
@@ -1670,86 +1695,53 @@ let destructure_hyps gl =
(loop ((i,None,mk_and (mk_not t1) (mk_not t2)):: lit))))
]
| Kapp(And,[t1;t2]) ->
+ let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac
- [mkApp (Lazy.force coq_not_and, [| t1; t2;
- decidability gl t1; mkVar i|])]);
+ [mkApp (Lazy.force coq_not_and,
+ [| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_or (mk_not t1) (mk_not t2))::lit))))
]
| Kapp(Iff,[t1;t2]) ->
+ let d1 = decidability gl t1 in
+ let d2 = decidability gl t2 in
tclTHENLIST [
(generalize_tac
- [mkApp (Lazy.force coq_not_iff, [| t1; t2;
- decidability gl t1; decidability gl t2; mkVar i|])]);
+ [mkApp (Lazy.force coq_not_iff,
+ [| t1; t2; d1; d2; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,
mk_or (mk_and t1 (mk_not t2))
(mk_and (mk_not t1) t2))::lit))))
]
| Kimp(t1,t2) ->
+ (* t2 must be in Prop otherwise ~(t1->t2) wouldn't be ok.
+ For t1, being decidable implies being Prop. *)
+ let d1 = decidability gl t1 in
tclTHENLIST [
(generalize_tac
- [mkApp (Lazy.force coq_not_imp, [| t1; t2;
- decidability gl t1;mkVar i |])]);
+ [mkApp (Lazy.force coq_not_imp,
+ [| t1; t2; d1; mkVar i |])]);
(onClearedName i (fun i ->
(loop ((i,None,mk_and t1 (mk_not t2)) :: lit))))
]
| Kapp(Not,[t]) ->
+ let d = decidability gl t in
tclTHENLIST [
(generalize_tac
- [mkApp (Lazy.force coq_not_not, [| t;
- decidability gl t; mkVar i |])]);
+ [mkApp (Lazy.force coq_not_not, [| t; d; mkVar i |])]);
(onClearedName i (fun i -> (loop ((i,None,t)::lit))))
]
- | Kapp(Zle, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_Znot_le_gt, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Zge, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_Znot_ge_lt, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Zlt, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_Znot_lt_ge, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Zgt, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_Znot_gt_le, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Le, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_not_le, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Ge, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_not_ge, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Lt, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_not_lt, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
- | Kapp(Gt, [t1;t2]) ->
- tclTHENLIST [
- (generalize_tac
- [mkApp (Lazy.force coq_not_gt, [| t1;t2;mkVar i|])]);
- (onClearedName i (fun _ -> loop lit))
- ]
+ | Kapp(op,[t1;t2]) ->
+ (try
+ let thm = not_binop op in
+ tclTHENLIST [
+ (generalize_tac
+ [mkApp (Lazy.force thm, [| t1;t2;mkVar i|])]);
+ (onClearedName i (fun _ -> loop lit))
+ ]
+ with Not_found -> loop lit)
| Kapp(Eq,[typ;t1;t2]) ->
if !old_style_flag then begin
match destructurate_type (pf_nf gl typ) with
@@ -1787,7 +1779,9 @@ let destructure_hyps gl =
| _ -> loop lit
end
| _ -> loop lit
- with e when catchable_exception e -> loop lit
+ with
+ | Undecidable -> loop lit
+ | e when catchable_exception e -> loop lit
end
in
loop (pf_hyps gl) gl
@@ -1803,13 +1797,16 @@ let destructure_goal gl =
| Kimp(a,b) -> (tclTHEN intro (loop b))
| Kapp(False,[]) -> destructure_hyps
| _ ->
- (tclTHEN
- (tclTHEN
- (Tactics.refine
- (mkApp (Lazy.force coq_dec_not_not, [| t;
- decidability gl t; mkNewMeta () |])))
- intro)
- (destructure_hyps))
+ let goal_tac =
+ try
+ let dec = decidability gl t in
+ tclTHEN
+ (Tactics.refine
+ (mkApp (Lazy.force coq_dec_not_not, [| t; dec; mkNewMeta () |])))
+ intro
+ with Undecidable -> Tactics.elim_type (build_coq_False ())
+ in
+ tclTHEN goal_tac destructure_hyps
in
(loop concl) gl
diff --git a/plugins/omega/g_omega.ml4 b/plugins/omega/g_omega.ml4
index cd6472c3..1542b60c 100644
--- a/plugins/omega/g_omega.ml4
+++ b/plugins/omega/g_omega.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -15,8 +15,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_omega.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Coq_omega
open Refiner
diff --git a/plugins/omega/omega.ml b/plugins/omega/omega.ml
index 8bb10194..98cad09e 100644
--- a/plugins/omega/omega.ml
+++ b/plugins/omega/omega.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -214,7 +214,7 @@ let rec display_action print_var = function
constant factors.\n" e1.id e2.id
| NEGATE_CONTRADICT(e1,e2,b) ->
Printf.printf
- "Equations E%d and E%d state that their body is at the same time
+ "Equations E%d and E%d state that their body is at the same time \
equal and different\n" e1.id e2.id
| CONSTANT_NOT_NUL (e,k) ->
Printf.printf "Equation E%d states %s = 0.\n" e (sbi k)
diff --git a/plugins/pluginsbyte.itarget b/plugins/pluginsbyte.itarget
index 1485c147..787995ed 100644
--- a/plugins/pluginsbyte.itarget
+++ b/plugins/pluginsbyte.itarget
@@ -1,13 +1,13 @@
field/field_plugin.cma
setoid_ring/newring_plugin.cma
extraction/extraction_plugin.cma
+decl_mode/decl_mode_plugin.cma
firstorder/ground_plugin.cma
rtauto/rtauto_plugin.cma
fourier/fourier_plugin.cma
romega/romega_plugin.cma
omega/omega_plugin.cma
micromega/micromega_plugin.cma
-dp/dp_plugin.cma
xml/xml_plugin.cma
subtac/subtac_plugin.cma
ring/ring_plugin.cma
diff --git a/plugins/pluginsdyn.itarget b/plugins/pluginsdyn.itarget
index 5d502411..bd3cec01 100644
--- a/plugins/pluginsdyn.itarget
+++ b/plugins/pluginsdyn.itarget
@@ -1,13 +1,13 @@
field/field_plugin.cmxs
setoid_ring/newring_plugin.cmxs
extraction/extraction_plugin.cmxs
+decl_mode/decl_mode_plugin.cmxs
firstorder/ground_plugin.cmxs
rtauto/rtauto_plugin.cmxs
fourier/fourier_plugin.cmxs
romega/romega_plugin.cmxs
omega/omega_plugin.cmxs
micromega/micromega_plugin.cmxs
-dp/dp_plugin.cmxs
xml/xml_plugin.cmxs
subtac/subtac_plugin.cmxs
ring/ring_plugin.cmxs
diff --git a/plugins/pluginsopt.itarget b/plugins/pluginsopt.itarget
index 2f72dab8..5264ba37 100644
--- a/plugins/pluginsopt.itarget
+++ b/plugins/pluginsopt.itarget
@@ -1,13 +1,13 @@
field/field_plugin.cmxa
setoid_ring/newring_plugin.cmxa
extraction/extraction_plugin.cmxa
+decl_mode/decl_mode_plugin.cmxa
firstorder/ground_plugin.cmxa
rtauto/rtauto_plugin.cmxa
fourier/fourier_plugin.cmxa
romega/romega_plugin.cmxa
omega/omega_plugin.cmxa
micromega/micromega_plugin.cmxa
-dp/dp_plugin.cmxa
xml/xml_plugin.cmxa
subtac/subtac_plugin.cmxa
ring/ring_plugin.cmxa
diff --git a/plugins/pluginsvo.itarget b/plugins/pluginsvo.itarget
index db56534c..bab15ad0 100644
--- a/plugins/pluginsvo.itarget
+++ b/plugins/pluginsvo.itarget
@@ -1,4 +1,3 @@
-dp/vo.otarget
field/vo.otarget
fourier/vo.otarget
funind/vo.otarget
@@ -10,4 +9,4 @@ ring/vo.otarget
romega/vo.otarget
rtauto/vo.otarget
setoid_ring/vo.otarget
-extraction/vo.otarget \ No newline at end of file
+extraction/vo.otarget
diff --git a/plugins/quote/Quote.v b/plugins/quote/Quote.v
index 55bb8bae..2206aedf 100644
--- a/plugins/quote/Quote.v
+++ b/plugins/quote/Quote.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Quote.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Declare ML Module "quote_plugin".
(***********************************************************************
@@ -28,7 +26,6 @@ Declare ML Module "quote_plugin".
***********************************************************************)
Set Implicit Arguments.
-Unset Boxed Definitions.
Section variables_map.
@@ -70,7 +67,7 @@ Fixpoint index_lt (n m:index) {struct m} : bool :=
end.
Lemma index_eq_prop : forall n m:index, index_eq n m = true -> n = m.
- simple induction n; simple induction m; simpl in |- *; intros.
+ simple induction n; simple induction m; simpl; intros.
rewrite (H i0 H1); reflexivity.
discriminate.
discriminate.
diff --git a/plugins/quote/g_quote.ml4 b/plugins/quote/g_quote.ml4
index 3c51223a..09b780fd 100644
--- a/plugins/quote/g_quote.ml4
+++ b/plugins/quote/g_quote.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,14 +8,12 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_quote.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util
open Tacexpr
open Quote
let make_cont k x =
- let k = TacDynamic(dummy_loc, Tacinterp.tactic_in (fun _ -> fst k)) in
+ let k = TacDynamic(dummy_loc, Tacinterp.tactic_in (fun _ -> k)) in
let x = TacDynamic(dummy_loc, Pretyping.constr_in x) in
let tac = <:tactic<let cont := $k in cont $x>> in
Tacinterp.interp tac
diff --git a/plugins/quote/quote.ml b/plugins/quote/quote.ml
index baba7e1b..216a719d 100644
--- a/plugins/quote/quote.ml
+++ b/plugins/quote/quote.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: quote.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* The `Quote' tactic *)
(* The basic idea is to automatize the inversion of interpetation functions
@@ -111,7 +109,6 @@ open Pattern
open Matching
open Tacmach
open Tactics
-open Proof_trees
open Tacexpr
(*i*)
@@ -169,7 +166,7 @@ exchange ?1 and ?2 in the example above)
module ConstrSet = Set.Make(
struct
type t = constr
- let compare = (Pervasives.compare : t->t->int)
+ let compare = constr_ord
end)
type inversion_scheme = {
@@ -211,7 +208,7 @@ let compute_lhs typ i nargsi =
let compute_rhs bodyi index_of_f =
let rec aux c =
match kind_of_term c with
- | App (j, args) when j = mkRel (index_of_f) (* recursive call *) ->
+ | App (j, args) when isRel j && destRel j = index_of_f (* recursive call *) ->
let i = destRel (array_last args) in
PMeta (Some (coerce_meta_in i))
| App (f,args) ->
@@ -224,7 +221,10 @@ let compute_rhs bodyi index_of_f =
(*s Now the function [compute_ivs] itself *)
let compute_ivs gl f cs =
- let cst = try destConst f with _ -> i_can't_do_that () in
+ let cst =
+ try destConst f
+ with e when Errors.noncritical e -> i_can't_do_that ()
+ in
let body = Environ.constant_value (Global.env()) cst in
match decomp_term body with
| Fix(([| len |], 0), ([| name |], [| typ |], [| body2 |])) ->
@@ -243,7 +243,7 @@ let compute_ivs gl f cs =
(* REL nargsi+1 to REL nargsi + nargs3 are arguments of f *)
(* REL 1 to REL nargsi are argsi (reverse order) *)
(* First we test if the RHS is the RHS for constants *)
- if bodyi = mkRel 1 then
+ if isRel bodyi && destRel bodyi = 1 then
c_lhs := Some (compute_lhs (snd (List.hd args3))
i nargsi)
(* Then we test if the RHS is the RHS for variables *)
@@ -373,13 +373,19 @@ let rec subterm gl (t : constr) (t' : constr) =
let rec sort_subterm gl l =
let rec insert c = function
| [] -> [c]
- | (h::t as l) when c = h -> l (* Avoid doing the same work twice *)
+ | (h::t as l) when eq_constr c h -> l (* Avoid doing the same work twice *)
| h::t -> if subterm gl c h then c::h::t else h::(insert c t)
in
match l with
| [] -> []
| h::t -> insert h (sort_subterm gl t)
+module Constrhash = Hashtbl.Make
+ (struct type t = constr
+ let equal = eq_constr
+ let hash = hash_constr
+ end)
+
(*s Now we are able to do the inversion itself.
We destructurate the term and use an imperative hashtable
to store leafs that are already encountered.
@@ -387,10 +393,9 @@ let rec sort_subterm gl l =
[ivs : inversion_scheme]\\
[lc: constr list]\\
[gl: goal sigma]\\ *)
-
let quote_terms ivs lc gl =
Coqlib.check_required_library ["Coq";"quote";"Quote"];
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
@@ -417,7 +422,7 @@ let quote_terms ivs lc gl =
Termops.subst_meta [1, c] c_lhs
| _ ->
begin
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
Termops.subst_meta [1, (path_of_int !counter)]
@@ -425,7 +430,7 @@ let quote_terms ivs lc gl =
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
end
@@ -473,7 +478,7 @@ Just testing ...
#use "include.ml";;
open Quote;;
-let r = raw_constr_of_string;;
+let r = glob_constr_of_string;;
let ivs = {
normal_lhs_rhs =
diff --git a/plugins/ring/LegacyArithRing.v b/plugins/ring/LegacyArithRing.v
index 2de16bc1..089dec02 100644
--- a/plugins/ring/LegacyArithRing.v
+++ b/plugins/ring/LegacyArithRing.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyArithRing.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* Instantiation of the Ring tactic for the naturals of Arith $*)
Require Import Bool.
@@ -15,9 +13,9 @@ Require Export LegacyRing.
Require Export Arith.
Require Import Eqdep_dec.
-Open Local Scope nat_scope.
+Local Open Scope nat_scope.
-Unboxed Fixpoint nateq (n m:nat) {struct m} : bool :=
+Fixpoint nateq (n m:nat) {struct m} : bool :=
match n, m with
| O, O => true
| S n', S m' => nateq n' m'
@@ -77,14 +75,14 @@ Ltac rewrite_S_to_plus :=
(**) (**)
rewrite_S_to_plus_term X1
with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2) in |- *
+ change (t1 = t2)
| |- (?X1 = ?X2) =>
try
let t1 :=
(**) (**)
rewrite_S_to_plus_term X1
with t2 := rewrite_S_to_plus_term X2 in
- change (t1 = t2) in |- *
+ change (t1 = t2)
end.
Ltac ring_nat := rewrite_S_to_plus; ring.
diff --git a/plugins/ring/LegacyNArithRing.v b/plugins/ring/LegacyNArithRing.v
index ae7e62e0..7f1597a1 100644
--- a/plugins/ring/LegacyNArithRing.v
+++ b/plugins/ring/LegacyNArithRing.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyNArithRing.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* Instantiation of the Ring tactic for the binary natural numbers *)
Require Import Bool.
@@ -16,7 +14,7 @@ Require Export ZArith_base.
Require Import NArith.
Require Import Eqdep_dec.
-Unboxed Definition Neq (n m:N) :=
+Definition Neq (n m:N) :=
match (n ?= m)%N with
| Datatypes.Eq => true
| _ => false
@@ -24,23 +22,22 @@ Unboxed Definition Neq (n m:N) :=
Lemma Neq_prop : forall n m:N, Is_true (Neq n m) -> n = m.
intros n m H; unfold Neq in H.
- apply Ncompare_Eq_eq.
+ apply N.compare_eq.
destruct (n ?= m)%N; [ reflexivity | contradiction | contradiction ].
Qed.
-Definition NTheory : Semi_Ring_Theory Nplus Nmult 1%N 0%N Neq.
+Definition NTheory : Semi_Ring_Theory N.add N.mul 1%N 0%N Neq.
split.
- apply Nplus_comm.
- apply Nplus_assoc.
- apply Nmult_comm.
- apply Nmult_assoc.
- apply Nplus_0_l.
- apply Nmult_1_l.
- apply Nmult_0_l.
- apply Nmult_plus_distr_r.
-(* apply Nplus_reg_l.*)
+ apply N.add_comm.
+ apply N.add_assoc.
+ apply N.mul_comm.
+ apply N.mul_assoc.
+ apply N.add_0_l.
+ apply N.mul_1_l.
+ apply N.mul_0_l.
+ apply N.mul_add_distr_r.
apply Neq_prop.
Qed.
Add Legacy Semi Ring
- N Nplus Nmult 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ].
+ N N.add N.mul 1%N 0%N Neq NTheory [ Npos 0%N xO xI 1%positive ].
diff --git a/plugins/ring/LegacyRing.v b/plugins/ring/LegacyRing.v
index e53e60d3..d4f40081 100644
--- a/plugins/ring/LegacyRing.v
+++ b/plugins/ring/LegacyRing.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyRing.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export Bool.
Require Export LegacyRing_theory.
Require Export Quote.
@@ -21,7 +19,7 @@ Declare ML Module "ring_plugin".
Definition BoolTheory :
Ring_Theory xorb andb true false (fun b:bool => b) eqb.
-split; simpl in |- *.
+split; simpl.
destruct n; destruct m; reflexivity.
destruct n; destruct m; destruct p; reflexivity.
destruct n; destruct m; reflexivity.
@@ -30,7 +28,7 @@ destruct n; reflexivity.
destruct n; reflexivity.
destruct n; reflexivity.
destruct n; destruct m; destruct p; reflexivity.
-destruct x; destruct y; reflexivity || simpl in |- *; tauto.
+destruct x; destruct y; reflexivity || simpl; tauto.
Defined.
Add Legacy Ring bool xorb andb true false (fun b:bool => b) eqb BoolTheory
diff --git a/plugins/ring/LegacyRing_theory.v b/plugins/ring/LegacyRing_theory.v
index bf61aee1..09de1bb4 100644
--- a/plugins/ring/LegacyRing_theory.v
+++ b/plugins/ring/LegacyRing_theory.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyRing_theory.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export Bool.
Set Implicit Arguments.
@@ -60,22 +58,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma SR_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma SR_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
@@ -102,7 +100,7 @@ eauto.
Qed.
Lemma SR_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply SR_distr_right. Qed.
+symmetry ; apply SR_distr_right. Qed.
Lemma SR_mult_zero_right : forall n:A, n * 0 = 0.
intro; rewrite mult_comm; eauto.
@@ -178,22 +176,22 @@ Hint Resolve plus_comm plus_assoc mult_comm mult_assoc plus_zero_left
(* Lemmas whose form is x=y are also provided in form y=x because Auto does
not symmetry *)
Lemma Th_mult_assoc2 : forall n m p:A, n * m * p = n * (m * p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_assoc2 : forall n m p:A, n + m + p = n + (m + p).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_zero_left2 : forall n:A, n = 0 + n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_one_left2 : forall n:A, n = 1 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_distr_left2 : forall n m p:A, n * p + m * p = (n + m) * p.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_opp_def2 : forall n:A, 0 = n + - n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_plus_permute : forall n m p:A, n + (m + p) = m + (n + p).
intros.
@@ -216,7 +214,7 @@ Hint Resolve Th_plus_permute Th_mult_permute.
Lemma aux1 : forall a:A, a + a = a -> a = 0.
intros.
generalize (opp_def a).
-pattern a at 1 in |- *.
+pattern a at 1.
rewrite <- H.
rewrite <- plus_assoc.
rewrite opp_def.
@@ -235,7 +233,7 @@ Qed.
Hint Resolve Th_mult_zero_left.
Lemma Th_mult_zero_left2 : forall n:A, 0 = 0 * n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma aux2 : forall x y z:A, x + y = 0 -> x + z = 0 -> y = z.
intros.
@@ -257,7 +255,7 @@ Qed.
Hint Resolve Th_opp_mult_left.
Lemma Th_opp_mult_left2 : forall x y:A, - x * y = - (x * y).
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_zero_right : forall n:A, n * 0 = 0.
intro; elim mult_comm; eauto.
@@ -308,14 +306,14 @@ Qed.
Hint Resolve Th_opp_opp.
Lemma Th_opp_opp2 : forall n:A, n = - - n.
-symmetry in |- *; eauto. Qed.
+symmetry ; eauto. Qed.
Lemma Th_mult_opp_opp : forall x y:A, - x * - y = x * y.
intros; rewrite <- Th_opp_mult_left; rewrite <- Th_opp_mult_right; auto.
Qed.
Lemma Th_mult_opp_opp2 : forall x y:A, x * y = - x * - y.
-symmetry in |- *; apply Th_mult_opp_opp. Qed.
+symmetry ; apply Th_mult_opp_opp. Qed.
Lemma Th_opp_zero : - 0 = 0.
rewrite <- (plus_zero_left (- 0)).
@@ -344,7 +342,7 @@ eauto.
Qed.
Lemma Th_distr_right2 : forall n m p:A, n * m + n * p = n * (m + p).
-symmetry in |- *; apply Th_distr_right.
+symmetry ; apply Th_distr_right.
Qed.
End Theory_of_rings.
@@ -359,7 +357,7 @@ Definition Semi_Ring_Theory_of :
Ring_Theory Aplus Amult Aone Azero Aopp Aeq ->
Semi_Ring_Theory Aplus Amult Aone Azero Aeq.
intros until 1; case H.
-split; intros; simpl in |- *; eauto.
+split; intros; simpl; eauto.
Defined.
(* Every ring can be viewed as a semi-ring : this property will be used
diff --git a/plugins/ring/LegacyZArithRing.v b/plugins/ring/LegacyZArithRing.v
index d1412104..3f01a5c3 100644
--- a/plugins/ring/LegacyZArithRing.v
+++ b/plugins/ring/LegacyZArithRing.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: LegacyZArithRing.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* Instantiation of the Ring tactic for the binary integers of ZArith *)
Require Export LegacyArithRing.
@@ -15,7 +13,7 @@ Require Export ZArith_base.
Require Import Eqdep_dec.
Require Import LegacyRing.
-Unboxed Definition Zeq (x y:Z) :=
+Definition Zeq (x y:Z) :=
match (x ?= y)%Z with
| Datatypes.Eq => true
| _ => false
@@ -23,15 +21,15 @@ Unboxed Definition Zeq (x y:Z) :=
Lemma Zeq_prop : forall x y:Z, Is_true (Zeq x y) -> x = y.
intros x y H; unfold Zeq in H.
- apply Zcompare_Eq_eq.
+ apply Z.compare_eq.
destruct (x ?= y)%Z; [ reflexivity | contradiction | contradiction ].
Qed.
-Definition ZTheory : Ring_Theory Zplus Zmult 1%Z 0%Z Zopp Zeq.
+Definition ZTheory : Ring_Theory Z.add Z.mul 1%Z 0%Z Z.opp Zeq.
split; intros; eauto with zarith.
apply Zeq_prop; assumption.
Qed.
(* NatConstants and NatTheory are defined in Ring_theory.v *)
-Add Legacy Ring Z Zplus Zmult 1%Z 0%Z Zopp Zeq ZTheory
+Add Legacy Ring Z Z.add Z.mul 1%Z 0%Z Z.opp Zeq ZTheory
[ Zpos Zneg 0%Z xO xI 1%positive ].
diff --git a/plugins/ring/Ring_abstract.v b/plugins/ring/Ring_abstract.v
index e6e2dda9..a00b7bcd 100644
--- a/plugins/ring/Ring_abstract.v
+++ b/plugins/ring/Ring_abstract.v
@@ -1,19 +1,15 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Ring_abstract.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import LegacyRing_theory.
Require Import Quote.
Require Import Ring_normalize.
-Unset Boxed Definitions.
-
Section abstract_semi_rings.
Inductive aspolynomial : Type :=
@@ -141,14 +137,13 @@ Hint Resolve (SR_plus_zero_right2 T).
Hint Resolve (SR_mult_one_right T).
Hint Resolve (SR_mult_one_right2 T).
(*Hint Resolve (SR_plus_reg_right T).*)
-Hint Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Remark iacs_aux_ok :
forall (x:A) (s:abstract_sum), iacs_aux x s = Aplus x (interp_acs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
Qed.
@@ -163,8 +158,8 @@ Lemma abstract_varlist_insert_ok :
simple induction s.
trivial.
- simpl in |- *; intros.
- elim (varlist_lt l v); simpl in |- *.
+ simpl; intros.
+ elim (varlist_lt l v); simpl.
eauto.
rewrite iacs_aux_ok.
rewrite H; auto.
@@ -182,13 +177,13 @@ Proof.
auto.
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *.
+ simpl; elim (varlist_lt v v0); simpl.
repeat rewrite iacs_aux_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
simpl in H0.
repeat rewrite iacs_aux_ok.
- rewrite H0. simpl in |- *; auto.
+ rewrite H0. simpl; auto.
Qed.
Lemma abstract_sum_scalar_ok :
@@ -197,9 +192,9 @@ Lemma abstract_sum_scalar_ok :
Amult (interp_vl Amult Aone Azero vm l) (interp_acs s).
Proof.
simple induction s.
- simpl in |- *; eauto.
+ simpl; eauto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite iacs_aux_ok.
rewrite abstract_varlist_insert_ok.
rewrite H.
@@ -213,22 +208,22 @@ Lemma abstract_sum_prod_ok :
Proof.
simple induction x.
- intros; simpl in |- *; eauto.
+ intros; simpl; eauto.
destruct y as [| v0 a0]; intros.
- simpl in |- *; rewrite H; eauto.
+ simpl; rewrite H; eauto.
- unfold abstract_sum_prod in |- *; fold abstract_sum_prod in |- *.
+ unfold abstract_sum_prod; fold abstract_sum_prod.
rewrite abstract_sum_merge_ok.
rewrite abstract_sum_scalar_ok.
- rewrite H; simpl in |- *; auto.
+ rewrite H; simpl; auto.
Qed.
Theorem aspolynomial_normalize_ok :
forall x:aspolynomial, interp_asp x = interp_acs (aspolynomial_normalize x).
Proof.
- simple induction x; simpl in |- *; intros; trivial.
+ simple induction x; simpl; intros; trivial.
rewrite abstract_sum_merge_ok.
rewrite H; rewrite H0; eauto.
rewrite abstract_sum_prod_ok.
@@ -450,14 +445,13 @@ Hint Resolve (Th_plus_zero_right2 T).
Hint Resolve (Th_mult_one_right T).
Hint Resolve (Th_mult_one_right2 T).
(*Hint Resolve (Th_plus_reg_right T).*)
-Hint Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma isacs_aux_ok :
forall (x:A) (s:signed_sum), isacs_aux x s = Aplus x (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -466,15 +460,15 @@ Qed.
Hint Extern 10 (_ = _ :>A) => rewrite isacs_aux_ok: core.
Ltac solve1 v v0 H H0 :=
- simpl in |- *; elim (varlist_lt v v0); simpl in |- *; rewrite isacs_aux_ok;
- [ rewrite H; simpl in |- *; auto | simpl in H0; rewrite H0; auto ].
+ simpl; elim (varlist_lt v v0); simpl; rewrite isacs_aux_ok;
+ [ rewrite H; simpl; auto | simpl in H0; rewrite H0; auto ].
Lemma signed_sum_merge_ok :
forall x y:signed_sum,
interp_sacs (signed_sum_merge x y) = Aplus (interp_sacs x) (interp_sacs y).
simple induction x.
- intro; simpl in |- *; auto.
+ intro; simpl; auto.
simple induction y; intros.
@@ -482,8 +476,8 @@ Lemma signed_sum_merge_ok :
solve1 v v0 H H0.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -503,8 +497,8 @@ Lemma signed_sum_merge_ok :
auto.
- simpl in |- *; generalize (varlist_eq_prop v v0).
- elim (varlist_eq v v0); simpl in |- *.
+ simpl; generalize (varlist_eq_prop v v0).
+ elim (varlist_eq v v0); simpl.
intro Heq; rewrite (Heq I).
rewrite H.
@@ -522,7 +516,7 @@ Lemma signed_sum_merge_ok :
Qed.
Ltac solve2 l v H :=
- elim (varlist_lt l v); simpl in |- *; rewrite isacs_aux_ok;
+ elim (varlist_lt l v); simpl; rewrite isacs_aux_ok;
[ auto | rewrite H; auto ].
Lemma plus_varlist_insert_ok :
@@ -534,12 +528,12 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -561,9 +555,9 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
generalize (varlist_eq_prop l v).
- elim (varlist_eq l v); simpl in |- *.
+ elim (varlist_eq l v); simpl.
intro Heq; rewrite (Heq I).
repeat rewrite isacs_aux_ok.
@@ -574,10 +568,10 @@ Proof.
rewrite (Th_opp_def T).
auto.
- simpl in |- *; intros.
+ simpl; intros.
solve2 l v H.
- simpl in |- *; intros; solve2 l v H.
+ simpl; intros; solve2 l v H.
Qed.
@@ -585,9 +579,9 @@ Lemma signed_sum_opp_ok :
forall s:signed_sum, interp_sacs (signed_sum_opp s) = Aopp (interp_sacs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- symmetry in |- *; apply (Th_opp_zero T).
+ symmetry ; apply (Th_opp_zero T).
repeat rewrite isacs_aux_ok.
rewrite H.
@@ -611,14 +605,14 @@ Proof.
simple induction s.
trivial.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -635,11 +629,11 @@ Lemma minus_sum_scalar_ok :
Aopp (Amult (interp_vl Amult Aone Azero vm l) (interp_sacs s)).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
- rewrite (Th_mult_zero_right T); symmetry in |- *; apply (Th_opp_zero T).
+ rewrite (Th_mult_zero_right T); symmetry ; apply (Th_opp_zero T).
- simpl in |- *; intros.
+ simpl; intros.
rewrite minus_varlist_insert_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
repeat rewrite isacs_aux_ok.
@@ -648,7 +642,7 @@ Proof.
rewrite (Th_plus_opp_opp T).
reflexivity.
- simpl in |- *; intros.
+ simpl; intros.
rewrite plus_varlist_insert_ok.
repeat rewrite isacs_aux_ok.
rewrite (varlist_merge_ok A Aplus Amult Aone Azero Aeq vm T).
@@ -668,16 +662,16 @@ Proof.
simple induction x.
- simpl in |- *; eauto 1.
+ simpl; eauto 1.
- intros; simpl in |- *.
+ intros; simpl.
rewrite signed_sum_merge_ok.
rewrite plus_sum_scalar_ok.
repeat rewrite isacs_aux_ok.
rewrite H.
auto.
- intros; simpl in |- *.
+ intros; simpl.
repeat rewrite isacs_aux_ok.
rewrite signed_sum_merge_ok.
rewrite minus_sum_scalar_ok.
@@ -691,7 +685,7 @@ Qed.
Theorem apolynomial_normalize_ok :
forall p:apolynomial, interp_sacs (apolynomial_normalize p) = interp_ap p.
Proof.
- simple induction p; simpl in |- *; auto 1.
+ simple induction p; simpl; auto 1.
intros.
rewrite signed_sum_merge_ok.
rewrite H; rewrite H0; reflexivity.
diff --git a/plugins/ring/Ring_normalize.v b/plugins/ring/Ring_normalize.v
index dd4e7314..d286208a 100644
--- a/plugins/ring/Ring_normalize.v
+++ b/plugins/ring/Ring_normalize.v
@@ -1,25 +1,22 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Ring_normalize.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import LegacyRing_theory.
Require Import Quote.
Set Implicit Arguments.
-Unset Boxed Definitions.
Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
intros.
apply index_eq_prop.
generalize H.
- case (index_eq n m); simpl in |- *; trivial; intros.
+ case (index_eq n m); simpl; trivial; intros.
contradiction.
Qed.
@@ -368,14 +365,13 @@ Hint Resolve (SR_plus_zero_right2 T).
Hint Resolve (SR_mult_one_right T).
Hint Resolve (SR_mult_one_right2 T).
(*Hint Resolve (SR_plus_reg_right T).*)
-Hint Resolve refl_equal sym_equal trans_equal.
-(* Hints Resolve refl_eqT sym_eqT trans_eqT. *)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl in |- *; intros.
+ simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
@@ -384,7 +380,7 @@ Remark ivl_aux_ok :
forall (v:varlist) (i:index),
ivl_aux i v = Amult (interp_var i) (interp_vl v).
Proof.
- simple induction v; simpl in |- *; intros.
+ simple induction v; simpl; intros.
trivial.
rewrite H; trivial.
Qed.
@@ -394,14 +390,14 @@ Lemma varlist_merge_ok :
interp_vl (varlist_merge x y) = Amult (interp_vl x) (interp_vl y).
Proof.
simple induction x.
- simpl in |- *; trivial.
+ simpl; trivial.
simple induction y.
- simpl in |- *; trivial.
- simpl in |- *; intros.
- elim (index_lt i i0); simpl in |- *; intros.
+ simpl; trivial.
+ simpl; intros.
+ elim (index_lt i i0); simpl; intros.
repeat rewrite ivl_aux_ok.
- rewrite H. simpl in |- *.
+ rewrite H. simpl.
rewrite ivl_aux_ok.
eauto.
@@ -414,7 +410,7 @@ Qed.
Remark ics_aux_ok :
forall (x:A) (s:canonical_sum), ics_aux x s = Aplus x (interp_cs s).
Proof.
- simple induction s; simpl in |- *; intros.
+ simple induction s; simpl; intros.
trivial.
reflexivity.
reflexivity.
@@ -424,7 +420,7 @@ Remark interp_m_ok :
forall (x:A) (l:varlist), interp_m x l = Amult x (interp_vl l).
Proof.
destruct l as [| i v].
- simpl in |- *; trivial.
+ simpl; trivial.
reflexivity.
Qed.
@@ -432,10 +428,10 @@ Lemma canonical_sum_merge_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_merge x y) = Aplus (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *.
+simple induction x; simpl.
trivial.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* monom and nil *)
eauto.
@@ -443,25 +439,25 @@ eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* monom and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -469,13 +465,13 @@ apply f_equal with (f := Aplus (Amult a (interp_vl v0))).
rewrite (SR_mult_one_left T).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
(* varlist and nil *)
trivial.
@@ -483,7 +479,7 @@ trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -491,17 +487,17 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
(* varlist and varlist *)
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *; repeat rewrite ics_aux_ok; rewrite H.
+simpl; repeat rewrite ics_aux_ok; rewrite H.
repeat rewrite interp_m_ok.
rewrite (SR_distr_left T).
repeat rewrite <- (SR_plus_assoc T).
@@ -509,10 +505,10 @@ rewrite (SR_mult_one_left T).
apply f_equal with (f := Aplus (interp_vl v0)).
trivial.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
repeat rewrite ics_aux_ok.
-rewrite H; simpl in |- *; rewrite ics_aux_ok; eauto.
-rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl in |- *;
+rewrite H; simpl; rewrite ics_aux_ok; eauto.
+rewrite ics_aux_ok; rewrite H0; repeat rewrite ics_aux_ok; simpl;
eauto.
Qed.
@@ -522,24 +518,24 @@ Lemma monom_insert_ok :
Aplus (Amult a (interp_vl l)) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; rewrite interp_m_ok; trivial.
+simpl; rewrite interp_m_ok; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -550,24 +546,24 @@ Lemma varlist_insert_ok :
interp_cs (varlist_insert l s) = Aplus (interp_vl l) (interp_cs s).
intros; generalize s; simple induction s0.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite interp_m_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
-simpl in |- *; intros.
+simpl; intros.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *; rewrite interp_m_ok;
+intro Hr; rewrite (Hr I); simpl; rewrite interp_m_ok;
repeat rewrite ics_aux_ok; rewrite (SR_distr_left T);
rewrite (SR_mult_one_left T); eauto.
-elim (varlist_lt l v); simpl in |- *;
+elim (varlist_lt l v); simpl;
[ repeat rewrite interp_m_ok; rewrite ics_aux_ok; eauto
| repeat rewrite interp_m_ok; rewrite ics_aux_ok; rewrite H;
rewrite ics_aux_ok; eauto ].
@@ -577,9 +573,9 @@ Lemma canonical_sum_scalar_ok :
forall (a:A) (s:canonical_sum),
interp_cs (canonical_sum_scalar a s) = Amult a (interp_cs s).
simple induction s.
-simpl in |- *; eauto.
+simpl; eauto.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -587,7 +583,7 @@ rewrite (SR_distr_right T).
repeat rewrite <- (SR_mult_assoc T).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
rewrite H.
@@ -600,9 +596,9 @@ Lemma canonical_sum_scalar2_ok :
forall (l:varlist) (s:canonical_sum),
interp_cs (canonical_sum_scalar2 l s) = Amult (interp_vl l) (interp_cs s).
simple induction s.
-simpl in |- *; trivial.
+simpl; trivial.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -614,7 +610,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite varlist_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -631,9 +627,9 @@ Lemma canonical_sum_scalar3_ok :
interp_cs (canonical_sum_scalar3 c l s) =
Amult c (Amult (interp_vl l) (interp_cs s)).
simple induction s.
-simpl in |- *; repeat rewrite (SR_mult_zero_right T); reflexivity.
+simpl; repeat rewrite (SR_mult_zero_right T); reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -645,7 +641,7 @@ repeat rewrite <- (SR_plus_assoc T).
rewrite (SR_mult_permute T a (interp_vl l) (interp_vl v)).
reflexivity.
-simpl in |- *; intros.
+simpl; intros.
rewrite monom_insert_ok.
repeat rewrite ics_aux_ok.
repeat rewrite interp_m_ok.
@@ -661,7 +657,7 @@ Qed.
Lemma canonical_sum_prod_ok :
forall x y:canonical_sum,
interp_cs (canonical_sum_prod x y) = Amult (interp_cs x) (interp_cs y).
-simple induction x; simpl in |- *; intros.
+simple induction x; simpl; intros.
trivial.
rewrite canonical_sum_merge_ok.
@@ -670,7 +666,7 @@ rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_assoc T a (interp_vl v) (interp_cs y)).
-symmetry in |- *.
+symmetry .
eauto.
rewrite canonical_sum_merge_ok.
@@ -682,7 +678,7 @@ Qed.
Theorem spolynomial_normalize_ok :
forall p:spolynomial, interp_cs (spolynomial_normalize p) = interp_sp p.
-simple induction p; simpl in |- *; intros.
+simple induction p; simpl; intros.
reflexivity.
reflexivity.
@@ -703,7 +699,7 @@ simple induction s.
reflexivity.
(* cons_monom *)
-simpl in |- *; intros.
+simpl; intros.
generalize (SR_eq_prop T a Azero).
elim (Aeq a Azero).
intro Heq; rewrite (Heq I).
@@ -713,25 +709,25 @@ rewrite interp_m_ok.
rewrite (SR_mult_zero_left T).
trivial.
-intros; simpl in |- *.
+intros; simpl.
generalize (SR_eq_prop T a Aone).
elim (Aeq a Aone).
intro Heq; rewrite (Heq I).
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
rewrite (SR_mult_one_left T).
reflexivity.
-simpl in |- *.
+simpl.
repeat rewrite ics_aux_ok.
rewrite interp_m_ok.
rewrite H.
reflexivity.
(* cons_varlist *)
-simpl in |- *; intros.
+simpl; intros.
repeat rewrite ics_aux_ok.
rewrite H.
reflexivity.
@@ -741,7 +737,7 @@ Qed.
Theorem spolynomial_simplify_ok :
forall p:spolynomial, interp_cs (spolynomial_simplify p) = interp_sp p.
intro.
-unfold spolynomial_simplify in |- *.
+unfold spolynomial_simplify.
rewrite canonical_sum_simplify_ok.
apply spolynomial_normalize_ok.
Qed.
@@ -749,11 +745,11 @@ Qed.
(* End properties. *)
End semi_rings.
-Implicit Arguments Cons_varlist.
-Implicit Arguments Cons_monom.
-Implicit Arguments SPconst.
-Implicit Arguments SPplus.
-Implicit Arguments SPmult.
+Arguments Cons_varlist : default implicits.
+Arguments Cons_monom : default implicits.
+Arguments SPconst : default implicits.
+Arguments SPplus : default implicits.
+Arguments SPmult : default implicits.
Section rings.
@@ -797,8 +793,7 @@ Hint Resolve (Th_plus_zero_right2 T).
Hint Resolve (Th_mult_one_right T).
Hint Resolve (Th_mult_one_right2 T).
(*Hint Resolve (Th_plus_reg_right T).*)
-Hint Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
(*** Definitions *)
@@ -855,7 +850,7 @@ Unset Implicit Arguments.
Lemma spolynomial_of_ok :
forall p:polynomial,
interp_p p = interp_sp Aplus Amult Azero vm (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
rewrite H.
@@ -868,23 +863,23 @@ Theorem polynomial_normalize_ok :
forall p:polynomial,
polynomial_normalize p =
spolynomial_normalize Aplus Amult Aone (spolynomial_of p).
-simple induction p; reflexivity || (simpl in |- *; intros).
+simple induction p; reflexivity || (simpl; intros).
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl in |- *.
+rewrite H; simpl.
elim
(canonical_sum_scalar3 Aplus Amult Aone (Aopp Aone) Nil_var
(spolynomial_normalize Aplus Amult Aone (spolynomial_of p0)));
[ reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity ].
+ | simpl; intros; rewrite H0; reflexivity
+ | simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem polynomial_simplify_ok :
forall p:polynomial,
interp_cs Aplus Amult Aone Azero vm (polynomial_simplify p) = interp_p p.
intro.
-unfold polynomial_simplify in |- *.
+unfold polynomial_simplify.
rewrite spolynomial_of_ok.
rewrite polynomial_normalize_ok.
rewrite (canonical_sum_simplify_ok A Aplus Amult Aone Azero Aeq vm T).
diff --git a/plugins/ring/Setoid_ring.v b/plugins/ring/Setoid_ring.v
index da4e3756..4717edc9 100644
--- a/plugins/ring/Setoid_ring.v
+++ b/plugins/ring/Setoid_ring.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Setoid_ring.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export Setoid_ring_theory.
Require Export Quote.
Require Export Setoid_ring_normalize.
diff --git a/plugins/ring/Setoid_ring_normalize.v b/plugins/ring/Setoid_ring_normalize.v
index c4527cfb..b0d790e0 100644
--- a/plugins/ring/Setoid_ring_normalize.v
+++ b/plugins/ring/Setoid_ring_normalize.v
@@ -1,22 +1,19 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Setoid_ring_normalize.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Import Setoid_ring_theory.
Require Import Quote.
Set Implicit Arguments.
-Unset Boxed Definitions.
Lemma index_eq_prop : forall n m:index, Is_true (index_eq n m) -> n = m.
Proof.
- simple induction n; simple induction m; simpl in |- *;
+ simple induction n; simple induction m; simpl;
try reflexivity || contradiction.
intros; rewrite (H i0); trivial.
intros; rewrite (H i0); trivial.
@@ -390,14 +387,13 @@ Hint Resolve (SSR_plus_zero_right2 S T).
Hint Resolve (SSR_mult_one_right S T).
Hint Resolve (SSR_mult_one_right2 S T).
Hint Resolve (SSR_plus_reg_right S T).
-Hint Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
Lemma varlist_eq_prop : forall x y:varlist, Is_true (varlist_eq x y) -> x = y.
Proof.
simple induction x; simple induction y; contradiction || (try reflexivity).
- simpl in |- *; intros.
+ simpl; intros.
generalize (andb_prop2 _ _ H1); intros; elim H2; intros.
rewrite (index_eq_prop _ _ H3); rewrite (H v0 H4); reflexivity.
Qed.
@@ -406,7 +402,7 @@ Remark ivl_aux_ok :
forall (v:varlist) (i:index),
Aequiv (ivl_aux i v) (Amult (interp_var i) (interp_vl v)).
Proof.
- simple induction v; simpl in |- *; intros.
+ simple induction v; simpl; intros.
trivial.
rewrite (H i); trivial.
Qed.
@@ -416,17 +412,17 @@ Lemma varlist_merge_ok :
Aequiv (interp_vl (varlist_merge x y)) (Amult (interp_vl x) (interp_vl y)).
Proof.
simple induction x.
- simpl in |- *; trivial.
+ simpl; trivial.
simple induction y.
- simpl in |- *; trivial.
- simpl in |- *; intros.
- elim (index_lt i i0); simpl in |- *; intros.
+ simpl; trivial.
+ simpl; intros.
+ elim (index_lt i i0); simpl; intros.
rewrite (ivl_aux_ok v i).
rewrite (ivl_aux_ok v0 i0).
rewrite (ivl_aux_ok (varlist_merge v (Cons_var i0 v0)) i).
rewrite (H (Cons_var i0 v0)).
- simpl in |- *.
+ simpl.
rewrite (ivl_aux_ok v0 i0).
eauto.
@@ -451,7 +447,7 @@ Remark ics_aux_ok :
forall (x:A) (s:canonical_sum),
Aequiv (ics_aux x s) (Aplus x (interp_setcs s)).
Proof.
- simple induction s; simpl in |- *; intros; trivial.
+ simple induction s; simpl; intros; trivial.
Qed.
Remark interp_m_ok :
@@ -471,16 +467,16 @@ Lemma canonical_sum_merge_ok :
Aequiv (interp_setcs (canonical_sum_merge x y))
(Aplus (interp_setcs x) (interp_setcs y)).
Proof.
-simple induction x; simpl in |- *.
+simple induction x; simpl.
trivial.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
eauto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m a v0) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
rewrite (ics_aux_ok (interp_m (Aplus a a0) v0) (canonical_sum_merge c c0)).
@@ -507,14 +503,14 @@ setoid_replace
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_monom a0 v0 c0)))
.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (ics_aux_ok (interp_m a0 v0) c0).
-rewrite (H (Cons_monom a0 v0 c0)); simpl in |- *.
+rewrite (H (Cons_monom a0 v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a0 v0) c0); auto.
intro.
@@ -540,13 +536,13 @@ rewrite
end) c0)).
rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c);
- rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl in |- *;
+ rewrite (ics_aux_ok (interp_m a0 v0) c0); simpl;
auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_m a v0) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
@@ -573,13 +569,13 @@ setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0);
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
intro.
rewrite
(ics_aux_ok (interp_m a v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_m a v) c);
rewrite (ics_aux_ok (interp_vl v0) c0).
-rewrite (H (Cons_varlist v0 c0)); simpl in |- *.
+rewrite (H (Cons_varlist v0 c0)); simpl.
rewrite (ics_aux_ok (interp_vl v0) c0).
auto.
@@ -605,16 +601,16 @@ rewrite
else Cons_varlist l2 (csm_aux t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_m a v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl in |- *.
+ simpl.
auto.
-simple induction y; simpl in |- *; intros.
+simple induction y; simpl; intros.
trivial.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0).
intros; rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v0) (canonical_sum_merge c c0));
rewrite (ics_aux_ok (interp_vl v0) c);
rewrite (ics_aux_ok (interp_m a v0) c0); rewrite (H c0).
@@ -638,12 +634,12 @@ setoid_replace
[ idtac | trivial ].
auto.
-elim (varlist_lt v v0); simpl in |- *; intros.
+elim (varlist_lt v v0); simpl; intros.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_monom a v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_m a v0) c0).
-rewrite (H (Cons_monom a v0 c0)); simpl in |- *.
+rewrite (H (Cons_monom a v0 c0)); simpl.
rewrite (ics_aux_ok (interp_m a v0) c0); auto.
rewrite
@@ -667,11 +663,11 @@ rewrite
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_m a v0) c0);
- simpl in |- *; auto.
+ simpl; auto.
generalize (varlist_eq_prop v v0).
elim (varlist_eq v v0); intros.
-rewrite (H1 I); simpl in |- *.
+rewrite (H1 I); simpl.
rewrite
(ics_aux_ok (interp_m (Aplus Aone Aone) v0) (canonical_sum_merge c c0))
; rewrite (ics_aux_ok (interp_vl v0) c);
@@ -695,12 +691,12 @@ setoid_replace
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v0)) with (interp_vl v0); auto.
-elim (varlist_lt v v0); simpl in |- *.
+elim (varlist_lt v v0); simpl.
rewrite
(ics_aux_ok (interp_vl v) (canonical_sum_merge c (Cons_varlist v0 c0)))
; rewrite (ics_aux_ok (interp_vl v) c);
rewrite (ics_aux_ok (interp_vl v0) c0); rewrite (H (Cons_varlist v0 c0));
- simpl in |- *.
+ simpl.
rewrite (ics_aux_ok (interp_vl v0) c0); auto.
rewrite
@@ -724,7 +720,7 @@ rewrite
else Cons_varlist l2 (csm_aux2 t2)
end) c0)); rewrite H0.
rewrite (ics_aux_ok (interp_vl v) c); rewrite (ics_aux_ok (interp_vl v0) c0);
- simpl in |- *; auto.
+ simpl; auto.
Qed.
Lemma monom_insert_ok :
@@ -733,10 +729,10 @@ Lemma monom_insert_ok :
(Aplus (Amult a (interp_vl l)) (interp_setcs s)).
Proof.
simple induction s; intros.
-simpl in |- *; rewrite (interp_m_ok a l); trivial.
+simpl; rewrite (interp_m_ok a l); trivial.
-simpl in |- *; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+simpl; generalize (varlist_eq_prop l v); elim (varlist_eq l v).
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a a0) v) c);
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok (Aplus a a0) v); rewrite (interp_m_ok a0 v).
@@ -745,7 +741,7 @@ setoid_replace (Amult (Aplus a a0) (interp_vl v)) with
[ idtac | trivial ].
auto.
-elim (varlist_lt l v); simpl in |- *; intros.
+elim (varlist_lt l v); simpl; intros.
rewrite (ics_aux_ok (interp_m a0 v) c).
rewrite (interp_m_ok a0 v); rewrite (interp_m_ok a l).
auto.
@@ -754,9 +750,9 @@ rewrite (ics_aux_ok (interp_m a0 v) (monom_insert a l c));
rewrite (ics_aux_ok (interp_m a0 v) c); rewrite H.
auto.
-simpl in |- *.
+simpl.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus a Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus a Aone) v).
@@ -767,7 +763,7 @@ setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v);
[ idtac | trivial ].
auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (monom_insert a l c)); rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
Qed.
@@ -777,11 +773,11 @@ Lemma varlist_insert_ok :
Aequiv (interp_setcs (varlist_insert l s))
(Aplus (interp_vl l) (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone a) v) c);
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok (Aplus Aone a) v); rewrite (interp_m_ok a v).
@@ -790,14 +786,14 @@ setoid_replace (Amult (Aplus Aone a) (interp_vl v)) with
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_m a v) (varlist_insert l c));
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite H; auto.
generalize (varlist_eq_prop l v); elim (varlist_eq l v).
-intro Hr; rewrite (Hr I); simpl in |- *.
+intro Hr; rewrite (Hr I); simpl.
rewrite (ics_aux_ok (interp_m (Aplus Aone Aone) v) c);
rewrite (ics_aux_ok (interp_vl v) c).
rewrite (interp_m_ok (Aplus Aone Aone) v).
@@ -806,7 +802,7 @@ setoid_replace (Amult (Aplus Aone Aone) (interp_vl v)) with
[ idtac | trivial ].
setoid_replace (Amult Aone (interp_vl v)) with (interp_vl v); auto.
-elim (varlist_lt l v); simpl in |- *; intros; auto.
+elim (varlist_lt l v); simpl; intros; auto.
rewrite (ics_aux_ok (interp_vl v) (varlist_insert l c)).
rewrite H.
rewrite (ics_aux_ok (interp_vl v) c); auto.
@@ -817,7 +813,7 @@ Lemma canonical_sum_scalar_ok :
Aequiv (interp_setcs (canonical_sum_scalar a s))
(Amult a (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
rewrite (ics_aux_ok (interp_m (Amult a a0) v) (canonical_sum_scalar a c));
@@ -840,7 +836,7 @@ Lemma canonical_sum_scalar2_ok :
Aequiv (interp_setcs (canonical_sum_scalar2 l s))
(Amult (interp_vl l) (interp_setcs s)).
Proof.
-simple induction s; simpl in |- *; intros; auto.
+simple induction s; simpl; intros; auto.
rewrite (monom_insert_ok a (varlist_merge l v) (canonical_sum_scalar2 l c)).
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
@@ -865,7 +861,7 @@ Lemma canonical_sum_scalar3_ok :
Aequiv (interp_setcs (canonical_sum_scalar3 c l s))
(Amult c (Amult (interp_vl l) (interp_setcs s))).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
rewrite (SSR_mult_zero_right S T (interp_vl l)).
auto.
@@ -914,7 +910,7 @@ Lemma canonical_sum_prod_ok :
Aequiv (interp_setcs (canonical_sum_prod x y))
(Amult (interp_setcs x) (interp_setcs y)).
Proof.
-simple induction x; simpl in |- *; intros.
+simple induction x; simpl; intros.
trivial.
rewrite
@@ -948,7 +944,7 @@ Theorem setspolynomial_normalize_ok :
forall p:setspolynomial,
Aequiv (interp_setcs (setspolynomial_normalize p)) (interp_setsp p).
Proof.
-simple induction p; simpl in |- *; intros; trivial.
+simple induction p; simpl; intros; trivial.
rewrite
(canonical_sum_merge_ok (setspolynomial_normalize s)
(setspolynomial_normalize s0)).
@@ -964,12 +960,12 @@ Lemma canonical_sum_simplify_ok :
forall s:canonical_sum,
Aequiv (interp_setcs (canonical_sum_simplify s)) (interp_setcs s).
Proof.
-simple induction s; simpl in |- *; intros.
+simple induction s; simpl; intros.
trivial.
generalize (SSR_eq_prop T a Azero).
elim (Aeq a Azero).
-simpl in |- *.
+simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
@@ -979,19 +975,19 @@ setoid_replace (Amult Azero (interp_vl v)) with Azero;
rewrite H.
trivial.
-intros; simpl in |- *.
+intros; simpl.
generalize (SSR_eq_prop T a Aone).
elim (Aeq a Aone).
intros.
rewrite (ics_aux_ok (interp_m a v) c).
rewrite (interp_m_ok a v).
rewrite (H1 I).
-simpl in |- *.
+simpl.
rewrite (ics_aux_ok (interp_vl v) (canonical_sum_simplify c)).
rewrite H.
auto.
-simpl in |- *.
+simpl.
intros.
rewrite (ics_aux_ok (interp_m a v) (canonical_sum_simplify c)).
rewrite (ics_aux_ok (interp_m a v) c).
@@ -1007,18 +1003,18 @@ Theorem setspolynomial_simplify_ok :
Aequiv (interp_setcs (setspolynomial_simplify p)) (interp_setsp p).
Proof.
intro.
-unfold setspolynomial_simplify in |- *.
+unfold setspolynomial_simplify.
rewrite (canonical_sum_simplify_ok (setspolynomial_normalize p)).
exact (setspolynomial_normalize_ok p).
Qed.
End semi_setoid_rings.
-Implicit Arguments Cons_varlist.
-Implicit Arguments Cons_monom.
-Implicit Arguments SetSPconst.
-Implicit Arguments SetSPplus.
-Implicit Arguments SetSPmult.
+Arguments Cons_varlist : default implicits.
+Arguments Cons_monom : default implicits.
+Arguments SetSPconst : default implicits.
+Arguments SetSPplus : default implicits.
+Arguments SetSPmult : default implicits.
@@ -1055,8 +1051,7 @@ Hint Resolve (STh_plus_zero_right2 S T).
Hint Resolve (STh_mult_one_right S T).
Hint Resolve (STh_mult_one_right2 S T).
Hint Resolve (STh_plus_reg_right S plus_morph T).
-Hint Resolve refl_equal sym_equal trans_equal.
-(*Hints Resolve refl_eqT sym_eqT trans_eqT.*)
+Hint Resolve eq_refl eq_sym eq_trans.
Hint Immediate T.
@@ -1113,7 +1108,7 @@ Unset Implicit Arguments.
Lemma setspolynomial_of_ok :
forall p:setpolynomial,
Aequiv (interp_setp p) (interp_setsp vm (setspolynomial_of p)).
-simple induction p; trivial; simpl in |- *; intros.
+simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; trivial.
rewrite H; rewrite H0; trivial.
rewrite H.
@@ -1127,23 +1122,23 @@ Qed.
Theorem setpolynomial_normalize_ok :
forall p:setpolynomial,
setpolynomial_normalize p = setspolynomial_normalize (setspolynomial_of p).
-simple induction p; trivial; simpl in |- *; intros.
+simple induction p; trivial; simpl; intros.
rewrite H; rewrite H0; reflexivity.
rewrite H; rewrite H0; reflexivity.
-rewrite H; simpl in |- *.
+rewrite H; simpl.
elim
(canonical_sum_scalar3 (Aopp Aone) Nil_var
(setspolynomial_normalize (setspolynomial_of s)));
[ reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity
- | simpl in |- *; intros; rewrite H0; reflexivity ].
+ | simpl; intros; rewrite H0; reflexivity
+ | simpl; intros; rewrite H0; reflexivity ].
Qed.
Theorem setpolynomial_simplify_ok :
forall p:setpolynomial,
Aequiv (interp_setcs vm (setpolynomial_simplify p)) (interp_setp p).
intro.
-unfold setpolynomial_simplify in |- *.
+unfold setpolynomial_simplify.
rewrite (setspolynomial_of_ok p).
rewrite setpolynomial_normalize_ok.
rewrite
diff --git a/plugins/ring/Setoid_ring_theory.v b/plugins/ring/Setoid_ring_theory.v
index f07cbaf6..52f5968b 100644
--- a/plugins/ring/Setoid_ring_theory.v
+++ b/plugins/ring/Setoid_ring_theory.v
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Setoid_ring_theory.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export Bool.
Require Export Setoid.
@@ -408,7 +406,7 @@ Unset Implicit Arguments.
Definition Semi_Setoid_Ring_Theory_of :
Setoid_Ring_Theory -> Semi_Setoid_Ring_Theory.
intros until 1; case H.
-split; intros; simpl in |- *; eauto.
+split; intros; simpl; eauto.
Defined.
Coercion Semi_Setoid_Ring_Theory_of : Setoid_Ring_Theory >->
diff --git a/plugins/ring/g_ring.ml4 b/plugins/ring/g_ring.ml4
index c5a33f39..8953b88f 100644
--- a/plugins/ring/g_ring.ml4
+++ b/plugins/ring/g_ring.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: g_ring.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Quote
open Ring
open Tacticals
diff --git a/plugins/ring/ring.ml b/plugins/ring/ring.ml
index 6e67272c..7b0d96bb 100644
--- a/plugins/ring/ring.ml
+++ b/plugins/ring/ring.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: ring.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* ML part of the Ring tactic *)
open Pp
@@ -21,7 +19,6 @@ open Reductionops
open Tacticals
open Tacexpr
open Tacmach
-open Proof_trees
open Printer
open Equality
open Vernacinterp
@@ -138,7 +135,7 @@ let mkLApp(fc,v) = mkApp(Lazy.force fc, v)
module OperSet =
Set.Make (struct
type t = global_reference
- let compare = (Pervasives.compare : t->t->int)
+ let compare = (RefOrdered.compare : t->t->int)
end)
type morph =
@@ -169,7 +166,7 @@ type theory =
(* Theories are stored in a table which is synchronised with the Reset
mechanism. *)
-module Cmap = Map.Make(struct type t = constr let compare = compare end)
+module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
let theories_map = ref Cmap.empty
@@ -265,7 +262,7 @@ let subst_th (subst,(c,th as obj)) =
(c',th')
-let (theory_to_obj, obj_to_theory) =
+let theory_to_obj : constr * theory -> obj =
let cache_th (_,(c, th)) = theories_map_add (c,th) in
declare_object {(default_object "tactic-ring-theory") with
open_function = (fun i o -> if i=1 then cache_th o);
@@ -295,7 +292,8 @@ let unbox = function
(* Protects the convertibility test against undue exceptions when using it
with untyped terms *)
-let safe_pf_conv_x gl c1 c2 = try pf_conv_x gl c1 c2 with _ -> false
+let safe_pf_conv_x gl c1 c2 =
+ try pf_conv_x gl c1 c2 with e when Errors.noncritical e -> false
(* Add a Ring or a Semi-Ring to the database after a type verification *)
@@ -380,8 +378,14 @@ Builds
*)
+module Constrhash = Hashtbl.Make
+ (struct type t = constr
+ let equal = eq_constr
+ let hash = hash_constr
+ end)
+
let build_spolynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
(* aux creates the spolynom p by a recursive destructuration of c
@@ -395,14 +399,14 @@ let build_spolynom gl th lc =
| _ when closed_under th.th_closed c ->
mkLApp(coq_SPconst, [|th.th_a; c |])
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SPvar, [|th.th_a; (path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -437,7 +441,7 @@ Builds
*)
let build_polynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
@@ -446,7 +450,7 @@ let build_polynom gl th lc =
mkLApp(coq_Pplus, [|th.th_a; aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_Pmult, [|th.th_a; aux c1; aux c2 |])
- (* The special case of Zminus *)
+ (* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp (th.th_plus, [|c1; mkApp(unbox th.th_opp, [|c2|])|])) ->
@@ -458,14 +462,14 @@ let build_polynom gl th lc =
| _ when closed_under th.th_closed c ->
mkLApp(coq_Pconst, [|th.th_a; c |])
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_Pvar, [|th.th_a; (path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -501,7 +505,7 @@ Builds
*)
let build_aspolynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
(* aux creates the aspolynom p by a recursive destructuration of c
@@ -515,13 +519,13 @@ let build_aspolynom gl th lc =
| _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_ASP0
| _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_ASP1
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar = mkLApp(coq_ASPvar, [|(path_of_int !counter) |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -555,7 +559,7 @@ Builds
*)
let build_apolynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
@@ -564,7 +568,7 @@ let build_apolynom gl th lc =
mkLApp(coq_APplus, [| aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_APmult, [| aux c1; aux c2 |])
- (* The special case of Zminus *)
+ (* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|]) |])) ->
@@ -575,14 +579,14 @@ let build_apolynom gl th lc =
| _ when safe_pf_conv_x gl c th.th_zero -> Lazy.force coq_AP0
| _ when safe_pf_conv_x gl c th.th_one -> Lazy.force coq_AP1
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_APvar, [| path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -616,7 +620,7 @@ Builds
*)
let build_setpolynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
@@ -625,7 +629,7 @@ let build_setpolynom gl th lc =
mkLApp(coq_SetPplus, [|th.th_a; aux c1; aux c2 |])
| App (binop, [|c1; c2|]) when safe_pf_conv_x gl binop th.th_mult ->
mkLApp(coq_SetPmult, [|th.th_a; aux c1; aux c2 |])
- (* The special case of Zminus *)
+ (* The special case of Z.sub *)
| App (binop, [|c1; c2|])
when safe_pf_conv_x gl c
(mkApp(th.th_plus, [|c1; mkApp(unbox th.th_opp,[|c2|])|])) ->
@@ -637,14 +641,14 @@ let build_setpolynom gl th lc =
| _ when closed_under th.th_closed c ->
mkLApp(coq_SetPconst, [| th.th_a; c |])
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SetPvar, [| th.th_a; path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -683,7 +687,7 @@ Builds
*)
let build_setspolynom gl th lc =
- let varhash = (Hashtbl.create 17 : (constr, constr) Hashtbl.t) in
+ let varhash = (Constrhash.create 17 : constr Constrhash.t) in
let varlist = ref ([] : constr list) in (* list of variables *)
let counter = ref 1 in (* number of variables created + 1 *)
let rec aux c =
@@ -695,14 +699,14 @@ let build_setspolynom gl th lc =
| _ when closed_under th.th_closed c ->
mkLApp(coq_SetSPconst, [| th.th_a; c |])
| _ ->
- try Hashtbl.find varhash c
+ try Constrhash.find varhash c
with Not_found ->
let newvar =
mkLApp(coq_SetSPvar, [|th.th_a; path_of_int !counter |]) in
begin
incr counter;
varlist := c :: !varlist;
- Hashtbl.add varhash c newvar;
+ Constrhash.add varhash c newvar;
newvar
end
in
@@ -823,9 +827,9 @@ let raw_polynom th op lc gl =
(tclTHENS
(tclORELSE
(Equality.general_rewrite true
- Termops.all_occurrences false c'i_eq_c''i)
+ Termops.all_occurrences true false c'i_eq_c''i)
(Equality.general_rewrite false
- Termops.all_occurrences false c'i_eq_c''i))
+ Termops.all_occurrences true false c'i_eq_c''i))
[tac]))
else
(tclORELSE
diff --git a/plugins/romega/ReflOmegaCore.v b/plugins/romega/ReflOmegaCore.v
index 04eac3a8..ab424c22 100644
--- a/plugins/romega/ReflOmegaCore.v
+++ b/plugins/romega/ReflOmegaCore.v
@@ -14,14 +14,14 @@ Delimit Scope Int_scope with I.
Module Type Int.
- Parameter int : Set.
+ Parameter t : Set.
- Parameter zero : int.
- Parameter one : int.
- Parameter plus : int -> int -> int.
- Parameter opp : int -> int.
- Parameter minus : int -> int -> int.
- Parameter mult : int -> int -> int.
+ Parameter zero : t.
+ Parameter one : t.
+ Parameter plus : t -> t -> t.
+ Parameter opp : t -> t.
+ Parameter minus : t -> t -> t.
+ Parameter mult : t -> t -> t.
Notation "0" := zero : Int_scope.
Notation "1" := one : Int_scope.
@@ -33,14 +33,14 @@ Module Type Int.
Open Scope Int_scope.
(* First, int is a ring: *)
- Axiom ring : @ring_theory int 0 1 plus mult minus opp (@eq int).
+ Axiom ring : @ring_theory t 0 1 plus mult minus opp (@eq t).
(* int should also be ordered: *)
- Parameter le : int -> int -> Prop.
- Parameter lt : int -> int -> Prop.
- Parameter ge : int -> int -> Prop.
- Parameter gt : int -> int -> Prop.
+ Parameter le : t -> t -> Prop.
+ Parameter lt : t -> t -> Prop.
+ Parameter ge : t -> t -> Prop.
+ Parameter gt : t -> t -> Prop.
Notation "x <= y" := (le x y): Int_scope.
Notation "x < y" := (lt x y) : Int_scope.
Notation "x >= y" := (ge x y) : Int_scope.
@@ -61,7 +61,7 @@ Module Type Int.
forall i j k, 0 < k -> i < j -> k*i<k*j.
(* We should have a way to decide the equality and the order*)
- Parameter compare : int -> int -> comparison.
+ Parameter compare : t -> t -> comparison.
Infix "?=" := compare (at level 70, no associativity) : Int_scope.
Axiom compare_Eq : forall i j, compare i j = Eq <-> i=j.
Axiom compare_Lt : forall i j, compare i j = Lt <-> i<j.
@@ -83,76 +83,53 @@ Module Z_as_Int <: Int.
Open Scope Z_scope.
- Definition int := Z.
+ Definition t := Z.
Definition zero := 0.
Definition one := 1.
- Definition plus := Zplus.
- Definition opp := Zopp.
- Definition minus := Zminus.
- Definition mult := Zmult.
+ Definition plus := Z.add.
+ Definition opp := Z.opp.
+ Definition minus := Z.sub.
+ Definition mult := Z.mul.
- Lemma ring : @ring_theory int zero one plus mult minus opp (@eq int).
+ Lemma ring : @ring_theory t zero one plus mult minus opp (@eq t).
Proof.
constructor.
- exact Zplus_0_l.
- exact Zplus_comm.
- exact Zplus_assoc.
- exact Zmult_1_l.
- exact Zmult_comm.
- exact Zmult_assoc.
- exact Zmult_plus_distr_l.
- unfold minus, Zminus; auto.
- exact Zplus_opp_r.
+ exact Z.add_0_l.
+ exact Z.add_comm.
+ exact Z.add_assoc.
+ exact Z.mul_1_l.
+ exact Z.mul_comm.
+ exact Z.mul_assoc.
+ exact Z.mul_add_distr_r.
+ unfold minus, Z.sub; auto.
+ exact Z.add_opp_diag_r.
Qed.
- Definition le := Zle.
- Definition lt := Zlt.
- Definition ge := Zge.
- Definition gt := Zgt.
- Lemma le_lt_iff : forall i j, (i<=j) <-> ~(j<i).
- Proof.
- split; intros.
- apply Zle_not_lt; auto.
- rewrite <- Zge_iff_le.
- apply Znot_lt_ge; auto.
- Qed.
- Definition ge_le_iff := Zge_iff_le.
- Definition gt_lt_iff := Zgt_iff_lt.
+ Definition le := Z.le.
+ Definition lt := Z.lt.
+ Definition ge := Z.ge.
+ Definition gt := Z.gt.
+ Definition le_lt_iff := Z.le_ngt.
+ Definition ge_le_iff := Z.ge_le_iff.
+ Definition gt_lt_iff := Z.gt_lt_iff.
- Definition lt_trans := Zlt_trans.
- Definition lt_not_eq := Zlt_not_eq.
+ Definition lt_trans := Z.lt_trans.
+ Definition lt_not_eq := Z.lt_neq.
- Definition lt_0_1 := Zlt_0_1.
- Definition plus_le_compat := Zplus_le_compat.
+ Definition lt_0_1 := Z.lt_0_1.
+ Definition plus_le_compat := Z.add_le_mono.
Definition mult_lt_compat_l := Zmult_lt_compat_l.
- Lemma opp_le_compat : forall i j, i<=j -> (-j)<=(-i).
- Proof.
- unfold Zle; intros; rewrite <- Zcompare_opp; auto.
- Qed.
+ Lemma opp_le_compat i j : i<=j -> (-j)<=(-i).
+ Proof. apply -> Z.opp_le_mono. Qed.
- Definition compare := Zcompare.
- Definition compare_Eq := Zcompare_Eq_iff_eq.
- Lemma compare_Lt : forall i j, compare i j = Lt <-> i<j.
- Proof. intros; unfold compare, Zlt; intuition. Qed.
- Lemma compare_Gt : forall i j, compare i j = Gt <-> i>j.
- Proof. intros; unfold compare, Zgt; intuition. Qed.
+ Definition compare := Z.compare.
+ Definition compare_Eq := Z.compare_eq_iff.
+ Lemma compare_Lt i j : compare i j = Lt <-> i<j.
+ Proof. reflexivity. Qed.
+ Lemma compare_Gt i j : compare i j = Gt <-> i>j.
+ Proof. reflexivity. Qed.
- Lemma le_lt_int : forall x y, x<y <-> x<=y+-(1).
- Proof.
- intros; split; intros.
- generalize (Zlt_left _ _ H); simpl; intros.
- apply Zle_left_rev; auto.
- apply Zlt_0_minus_lt.
- generalize (Zplus_le_lt_compat x (y+-1) (-x) (-x+1) H).
- rewrite Zplus_opp_r.
- rewrite <-Zplus_assoc.
- rewrite (Zplus_permute (-1)).
- simpl in *.
- rewrite Zplus_0_r.
- intro H'; apply H'.
- replace (-x+1) with (Zsucc (-x)); auto.
- apply Zlt_succ.
- Qed.
+ Definition le_lt_int := Z.lt_le_pred.
End Z_as_Int.
@@ -161,6 +138,7 @@ End Z_as_Int.
Module IntProperties (I:Int).
Import I.
+ Local Notation int := I.t.
(* Primo, some consequences of being a ring theory... *)
@@ -363,7 +341,7 @@ Module IntProperties (I:Int).
Lemma sum1 : forall a b c d : int, 0 = a -> 0 = b -> 0 = a * c + b * d.
Proof.
- intros; elim H; elim H0; simpl in |- *; auto.
+ intros; elim H; elim H0; simpl; auto.
now rewrite mult_0_l, mult_0_l, plus_0_l.
Qed.
@@ -850,6 +828,7 @@ Module IntOmega (I:Int).
Import I.
Module IP:=IntProperties(I).
Import IP.
+Local Notation int := I.t.
(* \subsubsection{Definition of reified integer expressions}
Terms are either:
@@ -868,11 +847,11 @@ Inductive term : Set :=
| Tvar : nat -> term.
Delimit Scope romega_scope with term.
-Arguments Scope Tint [Int_scope].
-Arguments Scope Tplus [romega_scope romega_scope].
-Arguments Scope Tmult [romega_scope romega_scope].
-Arguments Scope Tminus [romega_scope romega_scope].
-Arguments Scope Topp [romega_scope].
+Arguments Tint _%I.
+Arguments Tplus (_ _)%term.
+Arguments Tmult (_ _)%term.
+Arguments Tminus (_ _)%term.
+Arguments Topp _%term.
Infix "+" := Tplus : romega_scope.
Infix "*" := Tmult : romega_scope.
@@ -1014,7 +993,7 @@ Inductive h_step : Set :=
(* This type allows to navigate in the logical constructors that
form the predicats of the hypothesis in order to decompose them.
This allows in particular to extract one hypothesis from a
- conjonction with possibly the right level of negations. *)
+ conjunction with possibly the right level of negations. *)
Inductive direction : Set :=
| D_left : direction
@@ -1060,52 +1039,24 @@ Close Scope romega_scope.
Theorem eq_term_true : forall t1 t2 : term, eq_term t1 t2 = true -> t1 = t2.
Proof.
- simple induction t1; intros until t2; case t2; simpl in *;
- try (intros; discriminate; fail);
- [ intros; elim beq_true with (1 := H); trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 t22 H3; elim andb_prop with (1 := H3); intros H4 H5;
- elim H with (1 := H4); elim H0 with (1 := H5);
- trivial
- | intros t21 H3; elim H with (1 := H3); trivial
- | intros; elim beq_nat_true with (1 := H); trivial ].
+ induction t1; destruct t2; simpl in *; try discriminate;
+ (rewrite andb_true_iff; intros (H1,H2)) || intros H; f_equal;
+ auto using beq_true, beq_nat_true.
Qed.
-Ltac trivial_case := unfold not in |- *; intros; discriminate.
+Theorem eq_term_refl : forall t0 : term, eq_term t0 t0 = true.
+Proof.
+ induction t0; simpl in *; try (apply andb_true_iff; split); trivial.
+ - now apply beq_iff.
+ - now apply beq_nat_true_iff.
+Qed.
+
+Ltac trivial_case := unfold not; intros; discriminate.
Theorem eq_term_false :
forall t1 t2 : term, eq_term t1 t2 = false -> t1 <> t2.
Proof.
- simple induction t1;
- [ intros z t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
- intros; elim beq_false with (1 := H); simplify_eq H0;
- auto
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t12 H2 t2; case t2; try trivial_case; simpl in |- *;
- intros t21 t22 H3; unfold not in |- *; intro H4;
- elim andb_false_elim with (1 := H3); intros H5;
- [ elim H1 with (1 := H5); simplify_eq H4; auto
- | elim H2 with (1 := H5); simplify_eq H4; auto ]
- | intros t11 H1 t2; case t2; try trivial_case; simpl in |- *; intros t21 H3;
- unfold not in |- *; intro H4; elim H1 with (1 := H3);
- simplify_eq H4; auto
- | intros n t2; case t2; try trivial_case; simpl in |- *; unfold not in |- *;
- intros; elim beq_nat_false with (1 := H); simplify_eq H0;
- auto ].
+ intros t1 t2 H E. subst t2. now rewrite eq_term_refl in H.
Qed.
(* \subsubsection{Tactiques pour éliminer ces tests}
@@ -1123,17 +1074,17 @@ Qed.
avait utilisé le test précédent et fait une elimination dessus. *)
Ltac elim_eq_term t1 t2 :=
- pattern (eq_term t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (eq_term t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (eq_term_true t1 t2 Aux); clear Aux
| generalize (eq_term_false t1 t2 Aux); clear Aux ].
Ltac elim_beq t1 t2 :=
- pattern (beq t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (beq t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (beq_true t1 t2 Aux); clear Aux
| generalize (beq_false t1 t2 Aux); clear Aux ].
Ltac elim_bgt t1 t2 :=
- pattern (bgt t1 t2) in |- *; apply bool_eq_ind; intro Aux;
+ pattern (bgt t1 t2); apply bool_eq_ind; intro Aux;
[ generalize (bgt_true t1 t2 Aux); clear Aux
| generalize (bgt_false t1 t2 Aux); clear Aux ].
@@ -1209,15 +1160,15 @@ Theorem goal_to_hyps :
(interp_hyps envp env l -> False) -> interp_goal envp env l.
Proof.
simple induction l;
- [ simpl in |- *; auto
- | simpl in |- *; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
+ [ simpl; auto
+ | simpl; intros a l1 H1 H2 H3; apply H1; intro H4; apply H2; auto ].
Qed.
Theorem hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : hyps),
interp_goal envp env l -> interp_hyps envp env l -> False.
Proof.
- simple induction l; simpl in |- *; [ auto | intros; apply H; elim H1; auto ].
+ simple induction l; simpl; [ auto | intros; apply H; elim H1; auto ].
Qed.
(* \subsection{Manipulations sur les hypothèses} *)
@@ -1257,7 +1208,7 @@ Theorem valid_goal :
forall (ep : list Prop) (env : list int) (l : hyps) (a : hyps -> hyps),
valid_hyps a -> interp_goal ep env (a l) -> interp_goal ep env l.
Proof.
- intros; simpl in |- *; apply goal_to_hyps; intro H1;
+ intros; simpl; apply goal_to_hyps; intro H1;
apply (hyps_to_goal ep env (a l) H0); apply H; assumption.
Qed.
@@ -1282,7 +1233,7 @@ Theorem list_goal_to_hyps :
forall (envp : list Prop) (env : list int) (l : lhyps),
(interp_list_hyps envp env l -> False) -> interp_list_goal envp env l.
Proof.
- simple induction l; simpl in |- *;
+ simple induction l; simpl;
[ auto
| intros h1 l1 H H1; split;
[ apply goal_to_hyps; intro H2; apply H1; auto
@@ -1293,7 +1244,7 @@ Theorem list_hyps_to_goal :
forall (envp : list Prop) (env : list int) (l : lhyps),
interp_list_goal envp env l -> interp_list_hyps envp env l -> False.
Proof.
- simple induction l; simpl in |- *;
+ simple induction l; simpl;
[ auto
| intros h1 l1 H (H1, H2) H3; elim H3; intro H4;
[ apply hyps_to_goal with (1 := H1); assumption | auto ] ].
@@ -1310,7 +1261,7 @@ Definition valid_list_goal (f : hyps -> lhyps) :=
Theorem goal_valid :
forall f : hyps -> lhyps, valid_list_hyps f -> valid_list_goal f.
Proof.
- unfold valid_list_goal in |- *; intros f H ep e lp H1; apply goal_to_hyps;
+ unfold valid_list_goal; intros f H ep e lp H1; apply goal_to_hyps;
intro H2; apply list_hyps_to_goal with (1 := H1);
apply (H ep e lp); assumption.
Qed.
@@ -1321,8 +1272,8 @@ Theorem append_valid :
interp_list_hyps ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 [H| H]; [ contradiction | trivial ]
- | simpl in |- *; intros h1 t1 HR l2 [[H| H]| H];
+ [ simpl; intros l2 [H| H]; [ contradiction | trivial ]
+ | simpl; intros h1 t1 HR l2 [[H| H]| H];
[ auto
| right; apply (HR l2); left; trivial
| right; apply (HR l2); right; trivial ] ].
@@ -1338,11 +1289,11 @@ Theorem nth_valid :
forall (ep : list Prop) (e : list int) (i : nat) (l : hyps),
interp_hyps ep e l -> interp_proposition ep e (nth_hyps i l).
Proof.
- unfold nth_hyps in |- *; simple induction i;
- [ simple induction l; simpl in |- *; [ auto | intros; elim H0; auto ]
+ unfold nth_hyps; simple induction i;
+ [ simple induction l; simpl; [ auto | intros; elim H0; auto ]
| intros n H; simple induction l;
- [ simpl in |- *; trivial
- | intros; simpl in |- *; apply H; elim H1; auto ] ].
+ [ simpl; trivial
+ | intros; simpl; apply H; elim H1; auto ] ].
Qed.
(* Appliquer une opération (valide) sur deux hypothèses extraites de
@@ -1355,7 +1306,7 @@ Theorem apply_oper_2_valid :
forall (i j : nat) (f : proposition -> proposition -> proposition),
valid2 f -> valid_hyps (apply_oper_2 i j f).
Proof.
- intros i j f Hf; unfold apply_oper_2, valid_hyps in |- *; simpl in |- *;
+ intros i j f Hf; unfold apply_oper_2, valid_hyps; simpl;
intros lp Hlp; split; [ apply Hf; apply nth_valid; assumption | assumption ].
Qed.
@@ -1376,14 +1327,14 @@ Theorem apply_oper_1_valid :
forall (i : nat) (f : proposition -> proposition),
valid1 f -> valid_hyps (apply_oper_1 i f).
Proof.
- unfold valid_hyps in |- *; intros i f Hf ep e; elim i;
+ unfold valid_hyps; intros i f Hf ep e; elim i;
[ intro lp; case lp;
- [ simpl in |- *; trivial
- | simpl in |- *; intros p l' (H1, H2); split;
+ [ simpl; trivial
+ | simpl; intros p l' (H1, H2); split;
[ apply Hf with (1 := H1) | assumption ] ]
| intros n Hrec lp; case lp;
- [ simpl in |- *; auto
- | simpl in |- *; intros p l' (H1, H2); split;
+ [ simpl; auto
+ | simpl; intros p l' (H1, H2); split;
[ assumption | apply Hrec; assumption ] ] ].
Qed.
@@ -1421,14 +1372,14 @@ Definition apply_both (f g : term -> term) (t : term) :=
Theorem apply_left_stable :
forall f : term -> term, term_stable f -> term_stable (apply_left f).
Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f H e t; case t; auto; simpl;
intros; elim H; trivial.
Qed.
Theorem apply_right_stable :
forall f : term -> term, term_stable f -> term_stable (apply_right f).
Proof.
- unfold term_stable in |- *; intros f H e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f H e t; case t; auto; simpl;
intros t0 t1; elim H; trivial.
Qed.
@@ -1436,7 +1387,7 @@ Theorem apply_both_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (apply_both f g).
Proof.
- unfold term_stable in |- *; intros f g H1 H2 e t; case t; auto; simpl in |- *;
+ unfold term_stable; intros f g H1 H2 e t; case t; auto; simpl;
intros t0 t1; elim H1; elim H2; trivial.
Qed.
@@ -1444,7 +1395,7 @@ Theorem compose_term_stable :
forall f g : term -> term,
term_stable f -> term_stable g -> term_stable (fun t : term => f (g t)).
Proof.
- unfold term_stable in |- *; intros f g Hf Hg e t; elim Hf; apply Hg.
+ unfold term_stable; intros f g Hf Hg e t; elim Hf; apply Hg.
Qed.
(* \subsection{Les règles de réécriture} *)
@@ -1522,14 +1473,14 @@ Ltac loop t :=
| (if beq ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_beq X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
+ simpl; auto; Simplify
| (if bgt ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
- elim_bgt X1 X2; intro H; simpl in |- *; auto; Simplify
+ elim_bgt X1 X2; intro H; simpl; auto; Simplify
| (if eq_term ?X1 ?X2 then _ else _) =>
let H := fresh "H" in
elim_eq_term X1 X2; intro H; try (rewrite H in *; clear H);
- simpl in |- *; auto; Simplify
+ simpl; auto; Simplify
| (if _ && _ then _ else _) => rewrite andb_if; Simplify
| (if negb _ then _ else _) => rewrite negb_if; Simplify
| _ => fail
@@ -1543,7 +1494,7 @@ with Simplify := match goal with
Ltac prove_stable x th :=
match constr:x with
| ?X1 =>
- unfold term_stable, X1 in |- *; intros; Simplify; simpl in |- *;
+ unfold term_stable, X1; intros; Simplify; simpl;
apply th
end.
@@ -1663,7 +1614,7 @@ Definition T_OMEGA13 (t : term) :=
Theorem T_OMEGA13_stable : term_stable T_OMEGA13.
Proof.
- unfold term_stable, T_OMEGA13 in |- *; intros; Simplify; simpl in |- *;
+ unfold term_stable, T_OMEGA13; intros; Simplify; simpl;
apply OMEGA13.
Qed.
@@ -1910,16 +1861,16 @@ Fixpoint reduce (t : term) : term :=
Theorem reduce_stable : term_stable reduce.
Proof.
- unfold term_stable in |- *; intros e t; elim t; auto;
+ unfold term_stable; intros e t; elim t; auto;
try
- (intros t0 H0 t1 H1; simpl in |- *; rewrite H0; rewrite H1;
+ (intros t0 H0 t1 H1; simpl; rewrite H0; rewrite H1;
(case (reduce t0);
[ intro z0; case (reduce t1); intros; auto
| intros; auto
| intros; auto
| intros; auto
| intros; auto
- | intros; auto ])); intros t0 H0; simpl in |- *;
+ | intros; auto ])); intros t0 H0; simpl;
rewrite H0; case (reduce t0); intros; auto.
Qed.
@@ -1942,14 +1893,14 @@ Fixpoint fusion (trace : list t_fusion) (t : term) {struct trace} : term :=
end
end.
-Theorem fusion_stable : forall t : list t_fusion, term_stable (fusion t).
+Theorem fusion_stable : forall trace : list t_fusion, term_stable (fusion trace).
Proof.
- simple induction t; simpl in |- *;
+ simple induction trace; simpl;
[ exact reduce_stable
| intros stp l H; case stp;
[ apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA10_stable ]
- | unfold term_stable in |- *; intros e t1; rewrite T_OMEGA10_stable;
+ | unfold term_stable; intros e t1; rewrite T_OMEGA10_stable;
rewrite Tred_factor5_stable; apply H
| apply compose_term_stable;
[ apply apply_right_stable; assumption | exact T_OMEGA11_stable ]
@@ -1982,7 +1933,7 @@ Fixpoint fusion_cancel (trace : nat) (t : term) {struct trace} : term :=
Theorem fusion_cancel_stable : forall t : nat, term_stable (fusion_cancel t).
Proof.
- unfold term_stable, fusion_cancel in |- *; intros trace e; elim trace;
+ unfold term_stable, fusion_cancel; intros trace e; elim trace;
[ exact (reduce_stable e)
| intros n H t; elim H; exact (T_OMEGA13_stable e t) ].
Qed.
@@ -1999,7 +1950,7 @@ Fixpoint scalar_norm_add (trace : nat) (t : term) {struct trace} : term :=
Theorem scalar_norm_add_stable :
forall t : nat, term_stable (scalar_norm_add t).
Proof.
- unfold term_stable, scalar_norm_add in |- *; intros trace; elim trace;
+ unfold term_stable, scalar_norm_add; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA11_stable e t) | exact H ] ].
@@ -2014,7 +1965,7 @@ Fixpoint scalar_norm (trace : nat) (t : term) {struct trace} : term :=
Theorem scalar_norm_stable : forall t : nat, term_stable (scalar_norm t).
Proof.
- unfold term_stable, scalar_norm in |- *; intros trace; elim trace;
+ unfold term_stable, scalar_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (T_OMEGA16_stable e t) | exact H ] ].
@@ -2029,7 +1980,7 @@ Fixpoint add_norm (trace : nat) (t : term) {struct trace} : term :=
Theorem add_norm_stable : forall t : nat, term_stable (add_norm t).
Proof.
- unfold term_stable, add_norm in |- *; intros trace; elim trace;
+ unfold term_stable, add_norm; intros trace; elim trace;
[ exact reduce_stable
| intros n H e t; elim apply_right_stable;
[ exact (Tplus_assoc_r_stable e t) | exact H ] ].
@@ -2038,12 +1989,12 @@ Qed.
(* \subsection{La fonction de normalisation des termes (moteur de réécriture)} *)
-Fixpoint rewrite (s : step) : term -> term :=
+Fixpoint t_rewrite (s : step) : term -> term :=
match s with
- | C_DO_BOTH s1 s2 => apply_both (rewrite s1) (rewrite s2)
- | C_LEFT s => apply_left (rewrite s)
- | C_RIGHT s => apply_right (rewrite s)
- | C_SEQ s1 s2 => fun t : term => rewrite s2 (rewrite s1 t)
+ | C_DO_BOTH s1 s2 => apply_both (t_rewrite s1) (t_rewrite s2)
+ | C_LEFT s => apply_left (t_rewrite s)
+ | C_RIGHT s => apply_right (t_rewrite s)
+ | C_SEQ s1 s2 => fun t : term => t_rewrite s2 (t_rewrite s1 t)
| C_NOP => fun t : term => t
| C_OPP_PLUS => Topp_plus
| C_OPP_OPP => Topp_opp
@@ -2069,14 +2020,14 @@ Fixpoint rewrite (s : step) : term -> term :=
| C_MULT_COMM => Tmult_comm
end.
-Theorem rewrite_stable : forall s : step, term_stable (rewrite s).
+Theorem t_rewrite_stable : forall s : step, term_stable (t_rewrite s).
Proof.
- simple induction s; simpl in |- *;
+ simple induction s; simpl;
[ intros; apply apply_both_stable; auto
| intros; apply apply_left_stable; auto
| intros; apply apply_right_stable; auto
- | unfold term_stable in |- *; intros; elim H0; apply H
- | unfold term_stable in |- *; auto
+ | unfold term_stable; intros; elim H0; apply H
+ | unfold term_stable; auto
| exact Topp_plus_stable
| exact Topp_opp_stable
| exact Topp_mult_r_stable
@@ -2116,11 +2067,8 @@ Definition constant_not_nul (i : nat) (h : hyps) :=
Theorem constant_not_nul_valid :
forall i : nat, valid_hyps (constant_not_nul i).
Proof.
- unfold valid_hyps, constant_not_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
-
- elim_beq i1 i0; auto; simpl in |- *; intros H1 H2;
- elim H1; symmetry in |- *; auto.
+ unfold valid_hyps, constant_not_nul; intros i ep e lp H.
+ generalize (nth_valid ep e i lp H); Simplify.
Qed.
(* \paragraph{[O_CONSTANT_NEG]} *)
@@ -2134,8 +2082,8 @@ Definition constant_neg (i : nat) (h : hyps) :=
Theorem constant_neg_valid : forall i : nat, valid_hyps (constant_neg i).
Proof.
- unfold valid_hyps, constant_neg in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *.
+ unfold valid_hyps, constant_neg; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
Qed.
@@ -2154,12 +2102,12 @@ Definition not_exact_divide (k1 k2 : int) (body : term)
end.
Theorem not_exact_divide_valid :
- forall (k1 k2 : int) (body : term) (t i : nat),
- valid_hyps (not_exact_divide k1 k2 body t i).
+ forall (k1 k2 : int) (body : term) (t0 i : nat),
+ valid_hyps (not_exact_divide k1 k2 body t0 i).
Proof.
- unfold valid_hyps, not_exact_divide in |- *; intros;
+ unfold valid_hyps, not_exact_divide; intros;
generalize (nth_valid ep e i lp); Simplify.
- rewrite (scalar_norm_add_stable t e), <-H1.
+ rewrite (scalar_norm_add_stable t0 e), <-H1.
do 2 rewrite <- scalar_norm_add_stable; simpl in *; intros.
absurd (interp_term e body * k1 + k2 = 0);
[ now apply OMEGA4 | symmetry; auto ].
@@ -2186,16 +2134,16 @@ Definition contradiction (t i j : nat) (l : hyps) :=
Theorem contradiction_valid :
forall t i j : nat, valid_hyps (contradiction t i j).
Proof.
- unfold valid_hyps, contradiction in |- *; intros t i j ep e l H;
+ unfold valid_hyps, contradiction; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto;
- simpl in |- *; intros z z' H1 H2;
- generalize (refl_equal (interp_term e (fusion_cancel t (t2 + t4)%term)));
- pattern (fusion_cancel t (t2 + t4)%term) at 2 3 in |- *;
- case (fusion_cancel t (t2 + t4)%term); simpl in |- *;
- auto; intro k; elim (fusion_cancel_stable t); simpl in |- *.
+ simpl; intros z z' H1 H2;
+ generalize (eq_refl (interp_term e (fusion_cancel t (t2 + t4)%term)));
+ pattern (fusion_cancel t (t2 + t4)%term) at 2 3;
+ case (fusion_cancel t (t2 + t4)%term); simpl;
+ auto; intro k; elim (fusion_cancel_stable t); simpl.
Simplify; intro H3.
generalize (OMEGA2 _ _ H2 H1); rewrite H3.
rewrite gt_lt_iff in H0; rewrite le_lt_iff; intuition.
@@ -2250,23 +2198,23 @@ Definition negate_contradict_inv (t i1 i2 : nat) (h : hyps) :=
Theorem negate_contradict_valid :
forall i j : nat, valid_hyps (negate_contradict i j).
Proof.
- unfold valid_hyps, negate_contradict in |- *; intros i j ep e l H;
+ unfold valid_hyps, negate_contradict; intros i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify.
+ auto; simpl; intros H1 H2; Simplify.
Qed.
Theorem negate_contradict_inv_valid :
forall t i j : nat, valid_hyps (negate_contradict_inv t i j).
Proof.
- unfold valid_hyps, negate_contradict_inv in |- *; intros t i j ep e l H;
+ unfold valid_hyps, negate_contradict_inv; intros t i j ep e l H;
generalize (nth_valid _ _ i _ H); generalize (nth_valid _ _ j _ H);
case (nth_hyps i l); auto; intros t1 t2; case t1;
auto; intros z; auto; case (nth_hyps j l);
auto; intros t3 t4; case t3; auto; intros z';
- auto; simpl in |- *; intros H1 H2; Simplify;
+ auto; simpl; intros H1 H2; Simplify;
[
rewrite <- scalar_norm_stable in H2; simpl in *;
elim (mult_integral (interp_term e t4) (-(1))); intuition;
@@ -2333,9 +2281,9 @@ Definition sum (k1 k2 : int) (trace : list t_fusion)
Theorem sum_valid :
forall (k1 k2 : int) (t : list t_fusion), valid2 (sum k1 k2 t).
Proof.
- unfold valid2 in |- *; intros k1 k2 t ep e p1 p2; unfold sum in |- *;
- Simplify; simpl in |- *; auto; try elim (fusion_stable t);
- simpl in |- *; intros;
+ unfold valid2; intros k1 k2 t ep e p1 p2; unfold sum;
+ Simplify; simpl; auto; try elim (fusion_stable t);
+ simpl; intros;
[ apply sum1; assumption
| apply sum2; try assumption; apply sum4; assumption
| rewrite plus_comm; apply sum2; try assumption; apply sum4; assumption
@@ -2367,10 +2315,10 @@ Definition exact_divide (k : int) (body : term) (t : nat)
Theorem exact_divide_valid :
forall (k : int) (t : term) (n : nat), valid1 (exact_divide k t n).
Proof.
- unfold valid1, exact_divide in |- *; intros k1 k2 t ep e p1;
+ unfold valid1, exact_divide; intros k1 k2 t ep e p1;
Simplify; simpl; auto; subst;
rewrite <- scalar_norm_stable; simpl; intros;
- [ destruct (mult_integral _ _ (sym_eq H0)); intuition
+ [ destruct (mult_integral _ _ (eq_sym H0)); intuition
| contradict H0; rewrite <- H0, mult_0_l; auto
].
Qed.
@@ -2397,9 +2345,9 @@ Theorem divide_and_approx_valid :
forall (k1 k2 : int) (body : term) (t : nat),
valid1 (divide_and_approx k1 k2 body t).
Proof.
- unfold valid1, divide_and_approx in |- *; intros k1 k2 body t ep e p1;
+ unfold valid1, divide_and_approx; intros k1 k2 body t ep e p1;
Simplify; simpl; auto; subst;
- elim (scalar_norm_add_stable t e); simpl in |- *.
+ elim (scalar_norm_add_stable t e); simpl.
intro H2; apply mult_le_approx with (3 := H2); assumption.
Qed.
@@ -2421,9 +2369,9 @@ Definition merge_eq (t : nat) (prop1 prop2 : proposition) :=
Theorem merge_eq_valid : forall n : nat, valid2 (merge_eq n).
Proof.
- unfold valid2, merge_eq in |- *; intros n ep e p1 p2; Simplify; simpl in |- *;
- auto; elim (scalar_norm_stable n e); simpl in |- *;
- intros; symmetry in |- *; apply OMEGA8 with (2 := H0);
+ unfold valid2, merge_eq; intros n ep e p1 p2; Simplify; simpl;
+ auto; elim (scalar_norm_stable n e); simpl;
+ intros; symmetry ; apply OMEGA8 with (2 := H0);
[ assumption | elim opp_eq_mult_neg_1; trivial ].
Qed.
@@ -2440,8 +2388,8 @@ Definition constant_nul (i : nat) (h : hyps) :=
Theorem constant_nul_valid : forall i : nat, valid_hyps (constant_nul i).
Proof.
- unfold valid_hyps, constant_nul in |- *; intros;
- generalize (nth_valid ep e i lp); Simplify; simpl in |- *;
+ unfold valid_hyps, constant_nul; intros;
+ generalize (nth_valid ep e i lp); Simplify; simpl;
intro H1; absurd (0 = 0); intuition.
Qed.
@@ -2453,7 +2401,7 @@ Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
match prop2 with
| EqTerm b2 b3 =>
if beq Null 0
- then EqTerm (Tint 0) (rewrite s (b1 + (- b3 + b2) * Tint m)%term)
+ then EqTerm (Tint 0) (t_rewrite s (b1 + (- b3 + b2) * Tint m)%term)
else TrueTerm
| _ => TrueTerm
end
@@ -2462,8 +2410,8 @@ Definition state (m : int) (s : step) (prop1 prop2 : proposition) :=
Theorem state_valid : forall (m : int) (s : step), valid2 (state m s).
Proof.
- unfold valid2 in |- *; intros m s ep e p1 p2; unfold state in |- *; Simplify;
- simpl in |- *; auto; elim (rewrite_stable s e); simpl in |- *;
+ unfold valid2; intros m s ep e p1 p2; unfold state; Simplify;
+ simpl; auto; elim (t_rewrite_stable s e); simpl;
intros H1 H2; elim H1.
now rewrite H2, plus_opp_l, plus_0_l, mult_0_l.
Qed.
@@ -2490,18 +2438,18 @@ Theorem split_ineq_valid :
valid_list_hyps f1 ->
valid_list_hyps f2 -> valid_list_hyps (split_ineq i t f1 f2).
Proof.
- unfold valid_list_hyps, split_ineq in |- *; intros i t f1 f2 H1 H2 ep e lp H;
+ unfold valid_list_hyps, split_ineq; intros i t f1 f2 H1 H2 ep e lp H;
generalize (nth_valid _ _ i _ H); case (nth_hyps i lp);
- simpl in |- *; auto; intros t1 t2; case t1; simpl in |- *;
- auto; intros z; simpl in |- *; auto; intro H3.
+ simpl; auto; intros t1 t2; case t1; simpl;
+ auto; intros z; simpl; auto; intro H3.
Simplify.
apply append_valid; elim (OMEGA19 (interp_term e t2));
- [ intro H4; left; apply H1; simpl in |- *; elim (add_norm_stable t);
- simpl in |- *; auto
- | intro H4; right; apply H2; simpl in |- *; elim (scalar_norm_add_stable t);
- simpl in |- *; auto
- | generalize H3; unfold not in |- *; intros E1 E2; apply E1;
- symmetry in |- *; trivial ].
+ [ intro H4; left; apply H1; simpl; elim (add_norm_stable t);
+ simpl; auto
+ | intro H4; right; apply H2; simpl; elim (scalar_norm_add_stable t);
+ simpl; auto
+ | generalize H3; unfold not; intros E1 E2; apply E1;
+ symmetry ; trivial ].
Qed.
@@ -2532,49 +2480,49 @@ Fixpoint execute_omega (t : t_omega) (l : hyps) {struct t} : lhyps :=
execute_omega cont (apply_oper_2 i1 i2 (state m s) l)
end.
-Theorem omega_valid : forall t : t_omega, valid_list_hyps (execute_omega t).
+Theorem omega_valid : forall tr : t_omega, valid_list_hyps (execute_omega tr).
Proof.
- simple induction t; simpl in |- *;
- [ unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ simple induction tr; simpl;
+ [ unfold valid_list_hyps; simpl; intros; left;
apply (constant_not_nul_valid n ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ | unfold valid_list_hyps; simpl; intros; left;
apply (constant_neg_valid n ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros k1 k2 body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (divide_and_approx k1 k2 body n)
(divide_and_approx_valid k1 k2 body n) ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
- apply (not_exact_divide_valid i i0 t0 n n0 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps; simpl; intros; left;
+ apply (not_exact_divide_valid _ _ _ _ _ ep e lp H)
+ | unfold valid_list_hyps, valid_hyps;
intros k body n t' Ht' m ep e lp H; apply Ht';
apply
(apply_oper_1_valid m (exact_divide k body n)
(exact_divide_valid k body n) ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros k1 i1 k2 i2 trace t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (sum k1 k2 trace) (sum_valid k1 k2 trace) ep e
lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros; left;
+ | unfold valid_list_hyps; simpl; intros; left;
apply (contradiction_valid n n0 n1 ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros trace i1 i2 t' Ht' ep e lp H; apply Ht';
apply
(apply_oper_2_valid i1 i2 (merge_eq trace) (merge_eq_valid trace) ep e
lp H)
- | intros t' i k1 H1 k2 H2; unfold valid_list_hyps in |- *; simpl in |- *;
+ | intros t' i k1 H1 k2 H2; unfold valid_list_hyps; simpl;
intros ep e lp H;
apply
(split_ineq_valid i t' (execute_omega k1) (execute_omega k2) H1 H2 ep e
lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i ep e lp H; left;
+ | unfold valid_list_hyps; simpl; intros i ep e lp H; left;
apply (constant_nul_valid i ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros i j ep e lp H; left;
+ | unfold valid_list_hyps; simpl; intros i j ep e lp H; left;
apply (negate_contradict_valid i j ep e lp H)
- | unfold valid_list_hyps in |- *; simpl in |- *; intros n i j ep e lp H;
+ | unfold valid_list_hyps; simpl; intros n i j ep e lp H;
left; apply (negate_contradict_inv_valid n i j ep e lp H)
- | unfold valid_list_hyps, valid_hyps in |- *;
+ | unfold valid_list_hyps, valid_hyps;
intros m s i1 i2 t' Ht' ep e lp H; apply Ht';
apply (apply_oper_2_valid i1 i2 (state m s) (state_valid m s) ep e lp H) ].
Qed.
@@ -2585,20 +2533,20 @@ Qed.
Definition move_right (s : step) (p : proposition) :=
match p with
- | EqTerm t1 t2 => EqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
- | LeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t2 + - t1)%term)
- | GeqTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
- | LtTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t2 + Tint (-(1)) + - t1)%term)
- | GtTerm t1 t2 => LeqTerm (Tint 0) (rewrite s (t1 + Tint (-(1)) + - t2)%term)
- | NeqTerm t1 t2 => NeqTerm (Tint 0) (rewrite s (t1 + - t2)%term)
+ | EqTerm t1 t2 => EqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
+ | LeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + - t1)%term)
+ | GeqTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
+ | LtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t2 + Tint (-(1)) + - t1)%term)
+ | GtTerm t1 t2 => LeqTerm (Tint 0) (t_rewrite s (t1 + Tint (-(1)) + - t2)%term)
+ | NeqTerm t1 t2 => NeqTerm (Tint 0) (t_rewrite s (t1 + - t2)%term)
| p => p
end.
Theorem move_right_valid : forall s : step, valid1 (move_right s).
Proof.
- unfold valid1, move_right in |- *; intros s ep e p; Simplify; simpl in |- *;
- elim (rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
+ unfold valid1, move_right; intros s ep e p; Simplify; simpl;
+ elim (t_rewrite_stable s e); simpl;
+ [ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
@@ -2611,7 +2559,7 @@ Definition do_normalize (i : nat) (s : step) := apply_oper_1 i (move_right s).
Theorem do_normalize_valid :
forall (i : nat) (s : step), valid_hyps (do_normalize i s).
Proof.
- intros; unfold do_normalize in |- *; apply apply_oper_1_valid;
+ intros; unfold do_normalize; apply apply_oper_1_valid;
apply move_right_valid.
Qed.
@@ -2625,7 +2573,7 @@ Fixpoint do_normalize_list (l : list step) (i : nat)
Theorem do_normalize_list_valid :
forall (l : list step) (i : nat), valid_hyps (do_normalize_list l i).
Proof.
- simple induction l; simpl in |- *; unfold valid_hyps in |- *;
+ simple induction l; simpl; unfold valid_hyps;
[ auto
| intros a l' Hl' i ep e lp H; unfold valid_hyps in Hl'; apply Hl';
apply (do_normalize_valid i a ep e lp); assumption ].
@@ -2641,10 +2589,10 @@ Qed.
(* \subsubsection{Exécution de la trace} *)
Theorem execute_goal :
- forall (t : t_omega) (ep : list Prop) (env : list int) (l : hyps),
- interp_list_goal ep env (execute_omega t l) -> interp_goal ep env l.
+ forall (tr : t_omega) (ep : list Prop) (env : list int) (l : hyps),
+ interp_list_goal ep env (execute_omega tr l) -> interp_goal ep env l.
Proof.
- intros; apply (goal_valid (execute_omega t) (omega_valid t) ep env l H).
+ intros; apply (goal_valid (execute_omega tr) (omega_valid tr) ep env l H).
Qed.
@@ -2654,8 +2602,8 @@ Theorem append_goal :
interp_list_goal ep e (l1 ++ l2).
Proof.
intros ep e; simple induction l1;
- [ simpl in |- *; intros l2 (H1, H2); assumption
- | simpl in |- *; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
+ [ simpl; intros l2 (H1, H2); assumption
+ | simpl; intros h1 t1 HR l2 ((H1, H2), H3); split; auto ].
Qed.
(* A simple decidability checker : if the proposition belongs to the
@@ -2684,11 +2632,11 @@ Theorem decidable_correct :
forall (ep : list Prop) (e : list int) (p : proposition),
decidability p = true -> decidable (interp_proposition ep e p).
Proof.
- simple induction p; simpl in |- *; intros;
+ simple induction p; simpl; intros;
[ apply dec_eq
| apply dec_le
| left; auto
- | right; unfold not in |- *; auto
+ | right; unfold not; auto
| apply dec_not; auto
| apply dec_ge
| apply dec_gt
@@ -2724,7 +2672,7 @@ Theorem interp_full_false :
forall (ep : list Prop) (e : list int) (l : hyps) (c : proposition),
(interp_hyps ep e l -> interp_proposition ep e c) -> interp_full ep e (l, c).
Proof.
- simple induction l; unfold interp_full in |- *; simpl in |- *;
+ simple induction l; unfold interp_full; simpl;
[ auto | intros a l1 H1 c H2 H3; apply H1; auto ].
Qed.
@@ -2744,12 +2692,12 @@ Theorem to_contradict_valid :
forall (ep : list Prop) (e : list int) (lc : hyps * proposition),
interp_goal ep e (to_contradict lc) -> interp_full ep e lc.
Proof.
- intros ep e lc; case lc; intros l c; simpl in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
- [ simpl in |- *; intros H H1; apply interp_full_false; intros H2;
+ intros ep e lc; case lc; intros l c; simpl;
+ pattern (decidability c); apply bool_eq_ind;
+ [ simpl; intros H H1; apply interp_full_false; intros H2;
apply not_not;
[ apply decidable_correct; assumption
- | unfold not at 1 in |- *; intro H3; apply hyps_to_goal with (2 := H2);
+ | unfold not at 1; intro H3; apply hyps_to_goal with (2 := H2);
auto ]
| intros H1 H2; apply interp_full_false; intro H3;
elim hyps_to_goal with (1 := H2); assumption ].
@@ -2813,7 +2761,7 @@ Theorem map_cons_val :
interp_proposition ep e p ->
interp_list_hyps ep e l -> interp_list_hyps ep e (map_cons _ p l).
Proof.
- simple induction l; simpl in |- *; [ auto | intros; elim H1; intro H2; auto ].
+ simple induction l; simpl; [ auto | intros; elim H1; intro H2; auto ].
Qed.
Hint Resolve map_cons_val append_valid decidable_correct.
@@ -2822,43 +2770,43 @@ Theorem destructure_hyps_valid :
forall n : nat, valid_list_hyps (destructure_hyps n).
Proof.
simple induction n;
- [ unfold valid_list_hyps in |- *; simpl in |- *; auto
- | unfold valid_list_hyps at 2 in |- *; intros n1 H ep e lp; case lp;
- [ simpl in |- *; auto
+ [ unfold valid_list_hyps; simpl; auto
+ | unfold valid_list_hyps at 2; intros n1 H ep e lp; case lp;
+ [ simpl; auto
| intros p l; case p;
try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ (simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
[ intro p'; case p';
try
- (simpl in |- *; intros; apply map_cons_val; simpl in |- *; elim H0;
+ (simpl; intros; apply map_cons_val; simpl; elim H0;
auto);
- [ simpl in |- *; intros p1 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ [ simpl; intros p1 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
- [ apply H; simpl in |- *; split;
+ [ apply H; simpl; split;
[ apply not_not; auto | assumption ]
| auto ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply H; simpl in |- *;
+ | simpl; intros p1 p2 (H1, H2); apply H; simpl;
elim not_or with (1 := H1); auto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ | simpl; intros p1 p2 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim not_and with (2 := H1);
- [ intro; left; apply H; simpl in |- *; auto
- | intro; right; apply H; simpl in |- *; auto
+ [ intro; left; apply H; simpl; auto
+ | intro; right; apply H; simpl; auto
| auto ]
| auto ] ]
- | simpl in |- *; intros p1 p2 (H1, H2); apply append_valid;
- (elim H1; intro H3; simpl in |- *; [ left | right ]);
- apply H; simpl in |- *; auto
- | simpl in |- *; intros; apply H; simpl in |- *; tauto
- | simpl in |- *; intros p1 p2 (H1, H2);
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ | simpl; intros p1 p2 (H1, H2); apply append_valid;
+ (elim H1; intro H3; simpl; [ left | right ]);
+ apply H; simpl; auto
+ | simpl; intros; apply H; simpl; tauto
+ | simpl; intros p1 p2 (H1, H2);
+ pattern (decidability p1); apply bool_eq_ind;
intro H3;
[ apply append_valid; elim imp_simp with (2 := H1);
- [ intro H4; left; simpl in |- *; apply H; simpl in |- *; auto
- | intro H4; right; simpl in |- *; apply H; simpl in |- *; auto
+ [ intro H4; left; simpl; apply H; simpl; auto
+ | intro H4; right; simpl; apply H; simpl; auto
| auto ]
| auto ] ] ] ].
Qed.
@@ -2881,8 +2829,8 @@ Theorem p_apply_left_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_left f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto; intros p1; elim (H ep e p1); tauto).
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto; intros p1; elim (H ep e p1); tauto).
Qed.
Definition p_apply_right (f : proposition -> proposition)
@@ -2899,8 +2847,8 @@ Theorem p_apply_right_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_apply_right f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto;
[ intros p1; elim (H ep e p1); tauto
| intros p1 p2; elim (H ep e p2); tauto
| intros p1 p2; elim (H ep e p2); tauto
@@ -2923,53 +2871,53 @@ Theorem p_invert_stable :
forall f : proposition -> proposition,
prop_stable f -> prop_stable (p_invert f).
Proof.
- unfold prop_stable in |- *; intros f H ep e p; split;
- (case p; simpl in |- *; auto;
- [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl in |- *;
+ unfold prop_stable; intros f H ep e p; split;
+ (case p; simpl; auto;
+ [ intros t1 t2; elim (H ep e (NeqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; tauto
- | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl in |- *;
+ unfold decidable; tauto
+ | intros t1 t2; elim (H ep e (GtTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite le_lt_iff, <- gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl in |- *;
+ unfold decidable; rewrite le_lt_iff, <- gt_lt_iff; tauto
+ | intros t1 t2; elim (H ep e (LtTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; rewrite ge_le_iff, le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl in |- *;
+ unfold decidable; rewrite ge_le_iff, le_lt_iff; tauto
+ | intros t1 t2; elim (H ep e (LeqTerm t1 t2)); simpl;
generalize (dec_gt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite le_lt_iff;
+ unfold decidable; repeat rewrite le_lt_iff;
repeat rewrite gt_lt_iff; tauto
- | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl in |- *;
+ | intros t1 t2; elim (H ep e (GeqTerm t1 t2)); simpl;
generalize (dec_lt (interp_term e t1) (interp_term e t2));
- unfold decidable in |- *; repeat rewrite ge_le_iff;
+ unfold decidable; repeat rewrite ge_le_iff;
repeat rewrite le_lt_iff; tauto
- | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl in |- *;
+ | intros t1 t2; elim (H ep e (EqTerm t1 t2)); simpl;
generalize (dec_eq (interp_term e t1) (interp_term e t2));
unfold decidable; tauto ]).
Qed.
Theorem move_right_stable : forall s : step, prop_stable (move_right s).
Proof.
- unfold move_right, prop_stable in |- *; intros s ep e p; split;
- [ Simplify; simpl in |- *; elim (rewrite_stable s e); simpl in |- *;
- [ symmetry in |- *; apply egal_left; assumption
+ unfold move_right, prop_stable; intros s ep e p; split;
+ [ Simplify; simpl; elim (t_rewrite_stable s e); simpl;
+ [ symmetry ; apply egal_left; assumption
| intro; apply le_left; assumption
| intro; apply le_left; rewrite <- ge_le_iff; assumption
| intro; apply lt_left; rewrite <- gt_lt_iff; assumption
| intro; apply lt_left; assumption
| intro; apply ne_left_2; assumption ]
- | case p; simpl in |- *; intros; auto; generalize H; elim (rewrite_stable s);
- simpl in |- *; intro H1;
- [ rewrite (plus_0_r_reverse (interp_term e t0)); rewrite H1;
+ | case p; simpl; intros; auto; generalize H; elim (t_rewrite_stable s);
+ simpl; intro H1;
+ [ rewrite (plus_0_r_reverse (interp_term e t1)); rewrite H1;
rewrite plus_permute; rewrite plus_opp_r;
rewrite plus_0_r; trivial
- | apply (fun a b => plus_le_reg_r a b (- interp_term e t));
+ | apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
rewrite plus_opp_r; assumption
| rewrite ge_le_iff;
- apply (fun a b => plus_le_reg_r a b (- interp_term e t0));
+ apply (fun a b => plus_le_reg_r a b (- interp_term e t1));
rewrite plus_opp_r; assumption
| rewrite gt_lt_iff; apply lt_left_inv; assumption
| apply lt_left_inv; assumption
- | unfold not in |- *; intro H2; apply H1;
+ | unfold not; intro H2; apply H1;
rewrite H2; rewrite plus_opp_r; trivial ] ].
Qed.
@@ -2985,12 +2933,12 @@ Fixpoint p_rewrite (s : p_step) : proposition -> proposition :=
Theorem p_rewrite_stable : forall s : p_step, prop_stable (p_rewrite s).
Proof.
- simple induction s; simpl in |- *;
+ simple induction s; simpl;
[ intros; apply p_apply_left_stable; trivial
| intros; apply p_apply_right_stable; trivial
| intros; apply p_invert_stable; apply move_right_stable
| apply move_right_stable
- | unfold prop_stable in |- *; simpl in |- *; intros; split; auto ].
+ | unfold prop_stable; simpl; intros; split; auto ].
Qed.
Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
@@ -3002,11 +2950,11 @@ Fixpoint normalize_hyps (l : list h_step) (lh : hyps) {struct l} : hyps :=
Theorem normalize_hyps_valid :
forall l : list h_step, valid_hyps (normalize_hyps l).
Proof.
- simple induction l; unfold valid_hyps in |- *; simpl in |- *;
+ simple induction l; unfold valid_hyps; simpl;
[ auto
| intros n_s r; case n_s; intros n s H ep e lp H1; apply H;
apply apply_oper_1_valid;
- [ unfold valid1 in |- *; intros ep1 e1 p1 H2;
+ [ unfold valid1; intros ep1 e1 p1 H2;
elim (p_rewrite_stable s ep1 e1 p1); auto
| assumption ] ].
Qed.
@@ -3073,21 +3021,21 @@ Theorem extract_valid :
forall s : list direction,
valid1 (extract_hyp_pos s) /\ co_valid1 (extract_hyp_neg s).
Proof.
- unfold valid1, co_valid1 in |- *; simple induction s;
+ unfold valid1, co_valid1; simple induction s;
[ split;
- [ simpl in |- *; auto
- | intros ep e p1; case p1; simpl in |- *; auto; intro p;
- pattern (decidability p) in |- *; apply bool_eq_ind;
+ [ simpl; auto
+ | intros ep e p1; case p1; simpl; auto; intro p;
+ pattern (decidability p); apply bool_eq_ind;
[ intro H; generalize (decidable_correct ep e p H);
- unfold decidable in |- *; tauto
- | simpl in |- *; auto ] ]
+ unfold decidable; tauto
+ | simpl; auto ] ]
| intros a s' (H1, H2); simpl in H2; split; intros ep e p; case a; auto;
- case p; auto; simpl in |- *; intros;
+ case p; auto; simpl; intros;
(apply H1; tauto) ||
(apply H2; tauto) ||
- (pattern (decidability p0) in |- *; apply bool_eq_ind;
+ (pattern (decidability p0); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e p0 H3);
- unfold decidable in |- *; intro H4; apply H1;
+ unfold decidable; intro H4; apply H1;
tauto
| intro; tauto ]) ].
Qed.
@@ -3117,29 +3065,29 @@ Fixpoint decompose_solve (s : e_step) (h : hyps) {struct s} : lhyps :=
Theorem decompose_solve_valid :
forall s : e_step, valid_list_goal (decompose_solve s).
Proof.
- intro s; apply goal_valid; unfold valid_list_hyps in |- *; elim s;
- simpl in |- *; intros;
+ intro s; apply goal_valid; unfold valid_list_hyps; elim s;
+ simpl; intros;
[ cut (interp_proposition ep e1 (extract_hyp_pos l (nth_hyps n lp)));
- [ case (extract_hyp_pos l (nth_hyps n lp)); simpl in |- *; auto;
- [ intro p; case p; simpl in |- *; auto; intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ [ case (extract_hyp_pos l (nth_hyps n lp)); simpl; auto;
+ [ intro p; case p; simpl; auto; intros p1 p2 H2;
+ pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ]
- | intros p1 p2 H2; apply append_valid; simpl in |- *; elim H2;
- [ intros H3; left; apply H; simpl in |- *; auto
- | intros H3; right; apply H0; simpl in |- *; auto ]
+ [ right; apply H0; simpl; tauto
+ | left; apply H; simpl; tauto ]
+ | simpl; auto ]
+ | intros p1 p2 H2; apply append_valid; simpl; elim H2;
+ [ intros H3; left; apply H; simpl; auto
+ | intros H3; right; apply H0; simpl; auto ]
| intros p1 p2 H2;
- pattern (decidability p1) in |- *; apply bool_eq_ind;
+ pattern (decidability p1); apply bool_eq_ind;
[ intro H3; generalize (decidable_correct ep e1 p1 H3); intro H4;
apply append_valid; elim H4; intro H5;
- [ right; apply H0; simpl in |- *; tauto
- | left; apply H; simpl in |- *; tauto ]
- | simpl in |- *; auto ] ]
+ [ right; apply H0; simpl; tauto
+ | left; apply H; simpl; tauto ]
+ | simpl; auto ] ]
| elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto ]
- | intros; apply H; simpl in |- *; split;
+ | intros; apply H; simpl; split;
[ elim (extract_valid l); intros H2 H3; apply H2; apply nth_valid; auto
| auto ]
| apply omega_valid with (1 := H) ].
@@ -3160,11 +3108,11 @@ Fixpoint reduce_lhyps (lp : lhyps) : lhyps :=
Theorem reduce_lhyps_valid : valid_lhyps reduce_lhyps.
Proof.
- unfold valid_lhyps in |- *; intros ep e lp; elim lp;
- [ simpl in |- *; auto
+ unfold valid_lhyps; intros ep e lp; elim lp;
+ [ simpl; auto
| intros a l HR; elim a;
- [ simpl in |- *; tauto
- | intros a1 l1; case l1; case a1; simpl in |- *; try tauto ] ].
+ [ simpl; tauto
+ | intros a1 l1; case l1; case a1; simpl; try tauto ] ].
Qed.
Theorem do_reduce_lhyps :
@@ -3184,13 +3132,13 @@ Definition do_concl_to_hyp :
interp_goal envp env (concl_to_hyp c :: l) ->
interp_goal_concl c envp env l.
Proof.
- simpl in |- *; intros envp env c l; induction l as [| a l Hrecl];
- [ simpl in |- *; unfold concl_to_hyp in |- *;
- pattern (decidability c) in |- *; apply bool_eq_ind;
+ simpl; intros envp env c l; induction l as [| a l Hrecl];
+ [ simpl; unfold concl_to_hyp;
+ pattern (decidability c); apply bool_eq_ind;
[ intro H; generalize (decidable_correct envp env c H);
- unfold decidable in |- *; simpl in |- *; tauto
- | simpl in |- *; intros H1 H2; elim H2; trivial ]
- | simpl in |- *; tauto ].
+ unfold decidable; simpl; tauto
+ | simpl; intros H1 H2; elim H2; trivial ]
+ | simpl; tauto ].
Qed.
Definition omega_tactic (t1 : e_step) (t2 : list h_step)
@@ -3203,7 +3151,7 @@ Theorem do_omega :
interp_list_goal envp env (omega_tactic t1 t2 c l) ->
interp_goal_concl c envp env l.
Proof.
- unfold omega_tactic in |- *; intros; apply do_concl_to_hyp;
+ unfold omega_tactic; intros; apply do_concl_to_hyp;
apply (normalize_hyps_goal t2); apply (decompose_solve_valid t1);
apply do_reduce_lhyps; assumption.
Qed.
diff --git a/plugins/romega/const_omega.ml b/plugins/romega/const_omega.ml
index f4368a1b..fb45e816 100644
--- a/plugins/romega/const_omega.ml
+++ b/plugins/romega/const_omega.ml
@@ -15,21 +15,27 @@ type result =
| Kimp of Term.constr * Term.constr
| Kufo;;
+let meaningful_submodule = [ "Z"; "N"; "Pos" ]
+
+let string_of_global r =
+ let dp = Nametab.dirpath_of_global r in
+ let prefix = match Names.repr_dirpath dp with
+ | [] -> ""
+ | m::_ ->
+ let s = Names.string_of_id m in
+ if List.mem s meaningful_submodule then s^"." else ""
+ in
+ prefix^(Names.string_of_id (Nametab.basename_of_global r))
+
let destructurate t =
let c, args = Term.decompose_app t in
match Term.kind_of_term c, args with
| Term.Const sp, args ->
- Kapp (Names.string_of_id
- (Nametab.basename_of_global (Libnames.ConstRef sp)),
- args)
+ Kapp (string_of_global (Libnames.ConstRef sp), args)
| Term.Construct csp , args ->
- Kapp (Names.string_of_id
- (Nametab.basename_of_global (Libnames.ConstructRef csp)),
- args)
+ Kapp (string_of_global (Libnames.ConstructRef csp), args)
| Term.Ind isp, args ->
- Kapp (Names.string_of_id
- (Nametab.basename_of_global (Libnames.IndRef isp)),
- args)
+ Kapp (string_of_global (Libnames.IndRef isp), args)
| Term.Var id,[] -> Kvar(Names.string_of_id id)
| Term.Prod (Names.Anonymous,typ,body), [] -> Kimp(typ,body)
| Term.Prod (Names.Name _,_,_),[] ->
@@ -56,9 +62,13 @@ let coq_modules =
@ [module_refl_path]
@ [module_refl_path@["ZOmega"]]
+let bin_module = [["Coq";"Numbers";"BinNums"]]
+let z_module = [["Coq";"ZArith";"BinInt"]]
let init_constant = Coqlib.gen_constant_in_modules "Omega" Coqlib.init_modules
let constant = Coqlib.gen_constant_in_modules "Omega" coq_modules
+let z_constant = Coqlib.gen_constant_in_modules "Omega" z_module
+let bin_constant = Coqlib.gen_constant_in_modules "Omega" bin_module
(* Logic *)
let coq_eq = lazy(init_constant "eq")
@@ -168,21 +178,21 @@ let coq_do_omega = lazy (constant "do_omega")
(* \subsection{Construction d'expressions} *)
let do_left t =
- if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ if Term.eq_constr t (Lazy.force coq_c_nop) then Lazy.force coq_c_nop
else Term.mkApp (Lazy.force coq_c_do_left, [|t |] )
let do_right t =
- if t = Lazy.force coq_c_nop then Lazy.force coq_c_nop
+ if Term.eq_constr t (Lazy.force coq_c_nop) then Lazy.force coq_c_nop
else Term.mkApp (Lazy.force coq_c_do_right, [|t |])
let do_both t1 t2 =
- if t1 = Lazy.force coq_c_nop then do_right t2
- else if t2 = Lazy.force coq_c_nop then do_left t1
+ if Term.eq_constr t1 (Lazy.force coq_c_nop) then do_right t2
+ else if Term.eq_constr t2 (Lazy.force coq_c_nop) then do_left t1
else Term.mkApp (Lazy.force coq_c_do_both , [|t1; t2 |])
let do_seq t1 t2 =
- if t1 = Lazy.force coq_c_nop then t2
- else if t2 = Lazy.force coq_c_nop then t1
+ if Term.eq_constr t1 (Lazy.force coq_c_nop) then t2
+ else if Term.eq_constr t2 (Lazy.force coq_c_nop) then t1
else Term.mkApp (Lazy.force coq_c_do_seq, [|t1; t2 |])
let rec do_list = function
@@ -271,18 +281,18 @@ end
module Z : Int = struct
-let typ = lazy (constant "Z")
-let plus = lazy (constant "Zplus")
-let mult = lazy (constant "Zmult")
-let opp = lazy (constant "Zopp")
-let minus = lazy (constant "Zminus")
+let typ = lazy (bin_constant "Z")
+let plus = lazy (z_constant "Z.add")
+let mult = lazy (z_constant "Z.mul")
+let opp = lazy (z_constant "Z.opp")
+let minus = lazy (z_constant "Z.sub")
-let coq_xH = lazy (constant "xH")
-let coq_xO = lazy (constant "xO")
-let coq_xI = lazy (constant "xI")
-let coq_Z0 = lazy (constant "Z0")
-let coq_Zpos = lazy (constant "Zpos")
-let coq_Zneg = lazy (constant "Zneg")
+let coq_xH = lazy (bin_constant "xH")
+let coq_xO = lazy (bin_constant "xO")
+let coq_xI = lazy (bin_constant "xI")
+let coq_Z0 = lazy (bin_constant "Z0")
+let coq_Zpos = lazy (bin_constant "Zpos")
+let coq_Zneg = lazy (bin_constant "Zneg")
let recognize t =
let rec loop t =
@@ -318,14 +328,14 @@ let mk = mk_Z
let parse_term t =
try match destructurate t with
- | Kapp("Zplus",[t1;t2]) -> Tplus (t1,t2)
- | Kapp("Zminus",[t1;t2]) -> Tminus (t1,t2)
- | Kapp("Zmult",[t1;t2]) -> Tmult (t1,t2)
- | Kapp("Zopp",[t]) -> Topp t
- | Kapp("Zsucc",[t]) -> Tsucc t
- | Kapp("Zpred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
+ | Kapp("Z.add",[t1;t2]) -> Tplus (t1,t2)
+ | Kapp("Z.sub",[t1;t2]) -> Tminus (t1,t2)
+ | Kapp("Z.mul",[t1;t2]) -> Tmult (t1,t2)
+ | Kapp("Z.opp",[t]) -> Topp t
+ | Kapp("Z.succ",[t]) -> Tsucc t
+ | Kapp("Z.pred",[t]) -> Tplus(t, mk_Z (Bigint.neg Bigint.one))
| Kapp(("Zpos"|"Zneg"|"Z0"),_) ->
- (try Tnum (recognize t) with _ -> Tother)
+ (try Tnum (recognize t) with e when Errors.noncritical e -> Tother)
| _ -> Tother
with e when Logic.catchable_exception e -> Tother
@@ -334,19 +344,19 @@ let parse_rel gl t =
| Kapp("eq",[typ;t1;t2])
when destructurate (Tacmach.pf_nf gl typ) = Kapp("Z",[]) -> Req (t1,t2)
| Kapp("Zne",[t1;t2]) -> Rne (t1,t2)
- | Kapp("Zle",[t1;t2]) -> Rle (t1,t2)
- | Kapp("Zlt",[t1;t2]) -> Rlt (t1,t2)
- | Kapp("Zge",[t1;t2]) -> Rge (t1,t2)
- | Kapp("Zgt",[t1;t2]) -> Rgt (t1,t2)
+ | Kapp("Z.le",[t1;t2]) -> Rle (t1,t2)
+ | Kapp("Z.lt",[t1;t2]) -> Rlt (t1,t2)
+ | Kapp("Z.ge",[t1;t2]) -> Rge (t1,t2)
+ | Kapp("Z.gt",[t1;t2]) -> Rgt (t1,t2)
| _ -> parse_logic_rel t
with e when Logic.catchable_exception e -> Rother
let is_scalar t =
let rec aux t = match destructurate t with
- | Kapp(("Zplus"|"Zminus"|"Zmult"),[t1;t2]) -> aux t1 & aux t2
- | Kapp(("Zopp"|"Zsucc"|"Zpred"),[t]) -> aux t
+ | Kapp(("Z.add"|"Z.sub"|"Z.mul"),[t1;t2]) -> aux t1 & aux t2
+ | Kapp(("Z.opp"|"Z.succ"|"Z.pred"),[t]) -> aux t
| Kapp(("Zpos"|"Zneg"|"Z0"),_) -> let _ = recognize t in true
| _ -> false in
- try aux t with _ -> false
+ try aux t with e when Errors.noncritical e -> false
end
diff --git a/plugins/romega/refl_omega.ml b/plugins/romega/refl_omega.ml
index 570bb187..e57230cb 100644
--- a/plugins/romega/refl_omega.ml
+++ b/plugins/romega/refl_omega.ml
@@ -219,23 +219,26 @@ let unintern_omega env id =
calcul des variables utiles. *)
let add_reified_atom t env =
- try list_index0 t env.terms
+ try list_index0_f Term.eq_constr t env.terms
with Not_found ->
let i = List.length env.terms in
env.terms <- env.terms @ [t]; i
let get_reified_atom env =
- try List.nth env.terms with _ -> failwith "get_reified_atom"
+ try List.nth env.terms
+ with e when Errors.noncritical e -> failwith "get_reified_atom"
(* \subsection{Gestion de l'environnement de proposition pour Omega} *)
(* ajout d'une proposition *)
let add_prop env t =
- try list_index0 t env.props
+ try list_index0_f Term.eq_constr t env.props
with Not_found ->
let i = List.length env.props in env.props <- env.props @ [t]; i
(* accès a une proposition *)
-let get_prop v env = try List.nth v env with _ -> failwith "get_prop"
+let get_prop v env =
+ try List.nth v env
+ with e when Errors.noncritical e -> failwith "get_prop"
(* \subsection{Gestion du nommage des équations} *)
(* Ajout d'une equation dans l'environnement de reification *)
@@ -247,7 +250,8 @@ let add_equation env e =
(* accès a une equation *)
let get_equation env id =
try Hashtbl.find env.equations id
- with e -> Printf.printf "Omega Equation %d non trouvée\n" id; raise e
+ with Not_found as e ->
+ Printf.printf "Omega Equation %d non trouvée\n" id; raise e
(* Affichage des termes réifiés *)
let rec oprint ch = function
@@ -349,7 +353,8 @@ let rec reified_of_formula env = function
app coq_t_minus [| reified_of_formula env t1; reified_of_formula env t2 |]
let reified_of_formula env f =
- begin try reified_of_formula env f with e -> oprint stderr f; raise e end
+ try reified_of_formula env f
+ with reraise -> oprint stderr f; raise reraise
let rec reified_of_proposition env = function
Pequa (_,{ e_comp=Eq; e_left=t1; e_right=t2 }) ->
@@ -380,8 +385,8 @@ let rec reified_of_proposition env = function
| Pprop t -> app coq_p_prop [| mk_nat (add_prop env t) |]
let reified_of_proposition env f =
- begin try reified_of_proposition env f
- with e -> pprint stderr f; raise e end
+ try reified_of_proposition env f
+ with reraise -> pprint stderr f; raise reraise
(* \subsection{Omega vers COQ réifié} *)
@@ -397,11 +402,11 @@ let reified_of_omega env body constant =
List.fold_right mk_coeff body coeff_constant
let reified_of_omega env body c =
- begin try
+ try
reified_of_omega env body c
- with e ->
- display_eq display_omega_var (body,c); raise e
- end
+ with reraise ->
+ display_eq display_omega_var (body,c); raise reraise
+
(* \section{Opérations sur les équations}
Ces fonctions préparent les traces utilisées par la tactique réfléchie
@@ -1000,10 +1005,11 @@ let rec solve_with_constraints all_solutions path =
let weighted = filter_compatible_systems path all_solutions in
let (winner_sol,winner_deps) =
try select_smaller weighted
- with e ->
+ with reraise ->
Printf.printf "%d - %d\n"
(List.length weighted) (List.length all_solutions);
- List.iter display_depend path; raise e in
+ List.iter display_depend path; raise reraise
+ in
build_tree winner_sol (List.rev path) winner_deps
let find_path {o_hyp=id;o_path=p} env =
diff --git a/plugins/rtauto/Bintree.v b/plugins/rtauto/Bintree.v
index 39c29a3d..98dd257d 100644
--- a/plugins/rtauto/Bintree.v
+++ b/plugins/rtauto/Bintree.v
@@ -1,154 +1,32 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Bintree.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export List.
Require Export BinPos.
-
-Unset Boxed Definitions.
+Require Arith.EqNat.
Open Scope positive_scope.
Ltac clean := try (simpl; congruence).
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
-
-Functional Scheme Pcompare_ind := Induction for Pcompare Sort Prop.
-
-Lemma Gt_Eq_Gt : forall p q cmp,
- (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Eq = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Lt_Gt : forall p q cmp,
- (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt.
-apply (Pcompare_ind (fun p q cmp _ => (p ?= q) Lt = Gt -> (p ?= q) cmp = Gt));
-simpl;auto;congruence.
-Qed.
-
-Lemma Gt_Psucc_Eq: forall p q,
- (p ?= Psucc q) Gt = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro;apply Gt_Eq_Gt;auto.
-apply Gt_Lt_Gt.
-Qed.
-
-Lemma Eq_Psucc_Gt: forall p q,
- (p ?= Psucc q) Eq = Eq -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-intro H;elim (Pcompare_not_Eq p (Psucc q));tauto.
-intro H;apply Gt_Eq_Gt;auto.
-intro H;rewrite Pcompare_Eq_eq with p q;auto.
-generalize q;clear q IHq p H;induction q;simpl;auto.
-intro H;elim (Pcompare_not_Eq p q);tauto.
-Qed.
-
-Lemma Gt_Psucc_Gt : forall n p cmp cmp0,
- (n?=p) cmp = Gt -> (Psucc n?=p) cmp0 = Gt.
-induction n;intros [ | p | p];simpl;try congruence.
-intros; apply IHn with cmp;trivial.
-intros; apply IHn with Gt;trivial.
-intros;apply Gt_Lt_Gt;trivial.
-intros [ | | ] _ H.
-apply Gt_Eq_Gt;trivial.
-apply Gt_Lt_Gt;trivial.
-trivial.
-Qed.
Lemma Gt_Psucc: forall p q,
- (p ?= Psucc q) Eq = Gt -> (p ?= q) Eq = Gt.
-intros p q;generalize p;clear p;induction q;destruct p;simpl;auto;try congruence.
-apply Gt_Psucc_Eq.
-intro;apply Gt_Eq_Gt;apply IHq;auto.
-apply Gt_Eq_Gt.
-apply Gt_Lt_Gt.
+ (p ?= Pos.succ q) = Gt -> (p ?= q) = Gt.
+Proof.
+intros. rewrite <- Pos.compare_succ_succ.
+now apply Pos.lt_gt, Pos.lt_lt_succ, Pos.gt_lt.
Qed.
Lemma Psucc_Gt : forall p,
- (Psucc p ?= p) Eq = Gt.
-induction p;simpl.
-apply Gt_Eq_Gt;auto.
-generalize p;clear p IHp.
-induction p;simpl;auto.
-reflexivity.
+ (Pos.succ p ?= p) = Gt.
+Proof.
+intros. apply Pos.lt_gt, Pos.lt_succ_diag_r.
Qed.
-Fixpoint pos_eq (m n:positive) {struct m} :bool :=
-match m, n with
- xI mm, xI nn => pos_eq mm nn
-| xO mm, xO nn => pos_eq mm nn
-| xH, xH => true
-| _, _ => false
-end.
-
-Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
-Defined.
-
-Theorem refl_pos_eq : forall m, pos_eq m m = true.
-induction m;simpl;auto.
-Qed.
-
-Definition pos_eq_dec : forall (m n:positive), {m=n}+{m<>n} .
-fix 1;intros [mm|mm|] [nn|nn|];try (right;congruence).
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xI e).
-intro ne;right;congruence.
-case (pos_eq_dec mm nn).
-intro e;left;apply (f_equal xO e).
-intro ne;right;congruence.
-left;reflexivity.
-Defined.
-
-Theorem pos_eq_dec_refl : forall m, pos_eq_dec m m = left _ (refl_equal m).
-fix 1;intros [mm|mm|].
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-simpl; rewrite pos_eq_dec_refl; reflexivity.
-reflexivity.
-Qed.
-
-Theorem pos_eq_dec_ex : forall m n,
- pos_eq m n =true -> exists h:m=n,
- pos_eq_dec m n = left _ h.
-fix 1;intros [mm|mm|] [nn|nn|];try (simpl;congruence).
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xI x).
-reflexivity.
-simpl;intro e.
-elim (pos_eq_dec_ex _ _ e).
-intros x ex; rewrite ex.
-exists (f_equal xO x).
-reflexivity.
-simpl.
-exists (refl_equal xH).
-reflexivity.
-Qed.
-
-Fixpoint nat_eq (m n:nat) {struct m}: bool:=
-match m, n with
-O,O => true
-| S mm,S nn => nat_eq mm nn
-| _,_ => false
-end.
-
-Theorem nat_eq_refl : forall m n, nat_eq m n = true -> m = n.
-induction m;simpl;intro n;destruct n;congruence ||
-(intro e;apply f_equal with nat;auto).
-Defined.
-
-Theorem refl_nat_eq : forall n, nat_eq n n = true.
-induction n;simpl;trivial.
-Defined.
-
Fixpoint Lget (A:Set) (n:nat) (l:list A) {struct l}:option A :=
match l with nil => None
| x::q =>
@@ -156,21 +34,21 @@ match n with O => Some x
| S m => Lget A m q
end end .
-Implicit Arguments Lget [A].
+Arguments Lget [A] n l.
Lemma map_app : forall (A B:Set) (f:A -> B) l m,
List.map f (l ++ m) = List.map f l ++ List.map f m.
induction l.
reflexivity.
simpl.
-intro m ; apply f_equal with (list B);apply IHl.
+intro m ; apply f_equal;apply IHl.
Qed.
Lemma length_map : forall (A B:Set) (f:A -> B) l,
length (List.map f l) = length l.
induction l.
reflexivity.
-simpl; apply f_equal with nat;apply IHl.
+simpl; apply f_equal;apply IHl.
Qed.
Lemma Lget_map : forall (A B:Set) (f:A -> B) i l,
@@ -182,7 +60,8 @@ simpl;auto.
Qed.
Lemma Lget_app : forall (A:Set) (a:A) l i,
-Lget i (l ++ a :: nil) = if nat_eq i (length l) then Some a else Lget i l.
+Lget i (l ++ a :: nil) = if Arith.EqNat.beq_nat i (length l) then Some a else Lget i l.
+Proof.
induction l;simpl Lget;simpl length.
intros [ | i];simpl;reflexivity.
intros [ | i];simpl.
@@ -278,17 +157,20 @@ Qed.
Theorem Tget_Tadd: forall i j a T,
Tget i (Tadd j a T) =
- match (i ?= j) Eq with
+ match (i ?= j) with
Eq => PSome a
| Lt => Tget i T
| Gt => Tget i T
end.
+Proof.
intros i j.
-caseq ((i ?= j) Eq).
-intro H;rewrite (Pcompare_Eq_eq _ _ H);intros a;clear i H.
+case_eq (i ?= j).
+intro H;rewrite (Pos.compare_eq _ _ H);intros a;clear i H.
induction j;destruct T;simpl;try (apply IHj);congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
+unfold Pos.compare.
generalize i;clear i;induction j;destruct T;simpl in H|-*;
destruct i;simpl;try rewrite (IHj _ H);try (destruct i;simpl;congruence);reflexivity|| congruence.
Qed.
@@ -299,7 +181,7 @@ mkStore {index:positive;contents:Tree}.
Definition empty := mkStore xH Tempty.
Definition push a S :=
-mkStore (Psucc (index S)) (Tadd (index S) a (contents S)).
+mkStore (Pos.succ (index S)) (Tadd (index S) a (contents S)).
Definition get i S := Tget i (contents S).
@@ -312,7 +194,8 @@ Inductive Full : Store -> Type:=
| F_push : forall a S, Full S -> Full (push a S).
Theorem get_Full_Gt : forall S, Full S ->
- forall i, (i ?= index S) Eq = Gt -> get i S = PNone.
+ forall i, (i ?= index S) = Gt -> get i S = PNone.
+Proof.
intros S W;induction W.
unfold empty,index,get,contents;intros;apply Tget_Tempty.
unfold index,get,push;simpl contents.
@@ -331,7 +214,7 @@ intros a S.
rewrite Tget_Tadd.
rewrite Psucc_Gt.
intro W.
-change (get (Psucc (index S)) S =PNone).
+change (get (Pos.succ (index S)) S =PNone).
apply get_Full_Gt; auto.
apply Psucc_Gt.
Qed.
@@ -339,16 +222,17 @@ Qed.
Theorem get_push_Full :
forall i a S, Full S ->
get i (push a S) =
- match (i ?= index S) Eq with
+ match (i ?= index S) with
Eq => PSome a
| Lt => get i S
| Gt => PNone
end.
+Proof.
intros i a S F.
-caseq ((i ?= index S) Eq).
-intro e;rewrite (Pcompare_Eq_eq _ _ e).
+case_eq (i ?= index S).
+intro e;rewrite (Pos.compare_eq _ _ e).
destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
-rewrite Pcompare_refl;reflexivity.
+rewrite Pos.compare_refl;reflexivity.
intros;destruct S;unfold get,push,index;simpl contents;rewrite Tget_Tadd.
simpl index in H;rewrite H;reflexivity.
intro H;generalize H;clear H.
@@ -361,9 +245,10 @@ Qed.
Lemma Full_push_compat : forall i a S, Full S ->
forall x, get i S = PSome x ->
get i (push a S) = PSome x.
+Proof.
intros i a S F x H.
-caseq ((i ?= index S) Eq);intro test.
-rewrite (Pcompare_Eq_eq _ _ test) in H.
+case_eq (i ?= index S);intro test.
+rewrite (Pos.compare_eq _ _ test) in H.
rewrite (get_Full_Eq _ F) in H;congruence.
rewrite <- H.
rewrite (get_push_Full i a).
@@ -375,13 +260,13 @@ Qed.
Lemma Full_index_one_empty : forall S, Full S -> index S = 1 -> S=empty.
intros [ind cont] F one; inversion F.
reflexivity.
-simpl index in one;assert (h:=Psucc_not_one (index S)).
+simpl index in one;assert (h:=Pos.succ_not_1 (index S)).
congruence.
Qed.
Lemma push_not_empty: forall a S, (push a S) <> empty.
intros a [ind cont];unfold push,empty.
-simpl;intro H;injection H; intros _ ; apply Psucc_not_one.
+simpl;intro H;injection H; intros _ ; apply Pos.succ_not_1.
Qed.
Fixpoint In (x:A) (S:Store) (F:Full S) {struct F}: Prop :=
@@ -395,7 +280,7 @@ get i S = PSome x -> In x S F.
induction F.
intro i;rewrite get_empty; congruence.
intro i;rewrite get_push_Full;trivial.
-caseq ((i ?= index S) Eq);simpl.
+case_eq (i ?= index S);simpl.
left;congruence.
right;eauto.
congruence.
@@ -403,34 +288,34 @@ Qed.
End Store.
-Implicit Arguments PNone [A].
-Implicit Arguments PSome [A].
+Arguments PNone [A].
+Arguments PSome [A] _.
-Implicit Arguments Tempty [A].
-Implicit Arguments Branch0 [A].
-Implicit Arguments Branch1 [A].
+Arguments Tempty [A].
+Arguments Branch0 [A] _ _.
+Arguments Branch1 [A] _ _ _.
-Implicit Arguments Tget [A].
-Implicit Arguments Tadd [A].
+Arguments Tget [A] p T.
+Arguments Tadd [A] p a T.
-Implicit Arguments Tget_Tempty [A].
-Implicit Arguments Tget_Tadd [A].
+Arguments Tget_Tempty [A] p.
+Arguments Tget_Tadd [A] i j a T.
-Implicit Arguments mkStore [A].
-Implicit Arguments index [A].
-Implicit Arguments contents [A].
+Arguments mkStore [A] index contents.
+Arguments index [A] s.
+Arguments contents [A] s.
-Implicit Arguments empty [A].
-Implicit Arguments get [A].
-Implicit Arguments push [A].
+Arguments empty [A].
+Arguments get [A] i S.
+Arguments push [A] a S.
-Implicit Arguments get_empty [A].
-Implicit Arguments get_push_Full [A].
+Arguments get_empty [A] i.
+Arguments get_push_Full [A] i a S _.
-Implicit Arguments Full [A].
-Implicit Arguments F_empty [A].
-Implicit Arguments F_push [A].
-Implicit Arguments In [A].
+Arguments Full [A] _.
+Arguments F_empty [A].
+Arguments F_push [A] a S _.
+Arguments In [A] x S F.
Section Map.
@@ -482,8 +367,8 @@ Defined.
End Map.
-Implicit Arguments Tmap [A B].
-Implicit Arguments map [A B].
-Implicit Arguments Full_map [A B f].
+Arguments Tmap [A B] f T.
+Arguments map [A B] f S.
+Arguments Full_map [A B f] S _.
Notation "hyps \ A" := (push A hyps) (at level 72,left associativity).
diff --git a/plugins/rtauto/Rtauto.v b/plugins/rtauto/Rtauto.v
index 3817f98c..3b596238 100644
--- a/plugins/rtauto/Rtauto.v
+++ b/plugins/rtauto/Rtauto.v
@@ -1,22 +1,18 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: Rtauto.v 14641 2011-11-06 11:59:10Z herbelin $ *)
-
Require Export List.
Require Export Bintree.
Require Import Bool.
-Unset Boxed Definitions.
Declare ML Module "rtauto_plugin".
-Ltac caseq t := generalize (refl_equal t); pattern t at -1; case t.
Ltac clean:=try (simpl;congruence).
Inductive form:Set:=
@@ -43,7 +39,7 @@ end.
Theorem pos_eq_refl : forall m n, pos_eq m n = true -> m = n.
induction m;simpl;destruct n;congruence ||
-(intro e;apply f_equal with positive;auto).
+(intro e;apply f_equal;auto).
Qed.
Fixpoint form_eq (p q:form) {struct p} :bool :=
@@ -69,15 +65,15 @@ end.
Theorem form_eq_refl: forall p q, form_eq p q = true -> p = q.
induction p;destruct q;simpl;clean.
intro h;generalize (pos_eq_refl _ _ h);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
-caseq (form_eq p1 q1);clean.
+case_eq (form_eq p1 q1);clean.
intros e1 e2;generalize (IHp1 _ e1) (IHp2 _ e2);congruence.
Qed.
-Implicit Arguments form_eq_refl [p q].
+Arguments form_eq_refl [p q] _.
Section with_env.
@@ -165,7 +161,7 @@ intros hyps F p g e; apply project_In.
apply get_In with p;assumption.
Qed.
-Implicit Arguments project [hyps p g].
+Arguments project [hyps] F [p g] _.
Inductive proof:Set :=
Ax : positive -> proof
@@ -263,7 +259,7 @@ induction p;intros hyps F gl.
(* cas Axiom *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f nth_f e;rewrite <- (form_eq_refl e).
apply project with p;trivial.
@@ -276,10 +272,10 @@ apply IHp;try constructor;trivial.
(* Cas Arrow_Elim *)
Focus 1.
-simpl check_proof;caseq (get p hyps);clean.
-intros f ef;caseq (get p0 hyps);clean.
+simpl check_proof;case_eq (get p hyps);clean.
+intros f ef;case_eq (get p0 hyps);clean.
intros f0 ef0;destruct f0;clean.
-caseq (form_eq f f0_1);clean.
+case_eq (form_eq f f0_1);clean.
simpl;intros e check_p1.
generalize (project F ef) (project F ef0)
(IHp (hyps \ f0_2) (F_push f0_2 hyps F) gl check_p1);
@@ -291,10 +287,10 @@ auto.
(* cas Arrow_Destruct *)
Focus 1.
-simpl;caseq (get p1 hyps);clean.
+simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
-caseq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
+case_eq (check_proof (hyps \ f1_2 =>> f2 \ f1_1) f1_2 p2);clean.
intros check_p1 check_p2.
generalize (project F ef)
(IHp1 (hyps \ f1_2 =>> f2 \ f1_1)
@@ -305,7 +301,7 @@ simpl;apply compose3;auto.
(* Cas False_Elim *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intros _; generalize (project F ef).
apply compose1;apply False_ind.
@@ -313,13 +309,13 @@ apply compose1;apply False_ind.
(* Cas And_Intro *)
Focus 1.
simpl;destruct gl;clean.
-caseq (check_proof hyps gl1 p1);clean.
+case_eq (check_proof hyps gl1 p1);clean.
intros Hp1 Hp2;generalize (IHp1 hyps F gl1 Hp1) (IHp2 hyps F gl2 Hp2).
apply compose2 ;simpl;auto.
(* cas And_Elim *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
intro check_p;generalize (project F ef)
(IHp (hyps \ f1 \ f2) (F_push f2 (hyps \ f1) (F_push f1 hyps F)) gl check_p).
@@ -327,7 +323,7 @@ simpl;apply compose2;intros [h1 h2];auto.
(* cas And_Destruct *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro H;generalize (project F ef)
@@ -349,9 +345,9 @@ apply compose1;simpl;auto.
(* cas Or_elim *)
Focus 1.
-simpl;caseq (get p1 hyps);clean.
+simpl;case_eq (get p1 hyps);clean.
intros f ef;destruct f;clean.
-caseq (check_proof (hyps \ f1) gl p2);clean.
+case_eq (check_proof (hyps \ f1) gl p2);clean.
intros check_p1 check_p2;generalize (project F ef)
(IHp1 (hyps \ f1) (F_push f1 hyps F) gl check_p1)
(IHp2 (hyps \ f2) (F_push f2 hyps F) gl check_p2);
@@ -359,7 +355,7 @@ simpl;apply compose3;simpl;intro h;destruct h;auto.
(* cas Or_Destruct *)
Focus 1.
-simpl;caseq (get p hyps);clean.
+simpl;case_eq (get p hyps);clean.
intros f ef;destruct f;clean.
destruct f1;clean.
intro check_p0;generalize (project F ef)
@@ -370,7 +366,7 @@ apply compose2;auto.
(* cas Cut *)
Focus 1.
-simpl;caseq (check_proof hyps f p1);clean.
+simpl;case_eq (check_proof hyps f p1);clean.
intros check_p1 check_p2;
generalize (IHp1 hyps F f check_p1)
(IHp2 (hyps\f) (F_push f hyps F) gl check_p2);
@@ -378,7 +374,7 @@ simpl; apply compose2;auto.
Qed.
Theorem Reflect: forall gl prf, if check_proof empty gl prf then [[gl]] else True.
-intros gl prf;caseq (check_proof empty gl prf);intro check_prf.
+intros gl prf;case_eq (check_proof empty gl prf);intro check_prf.
change (interp_ctx empty F_empty [[gl]]) ;
apply interp_proof with prf;assumption.
trivial.
diff --git a/plugins/rtauto/g_rtauto.ml4 b/plugins/rtauto/g_rtauto.ml4
index 552f23f6..96277e65 100644
--- a/plugins/rtauto/g_rtauto.ml4
+++ b/plugins/rtauto/g_rtauto.ml4
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: g_rtauto.ml4 14641 2011-11-06 11:59:10Z herbelin $*)
-
(*i camlp4deps: "parsing/grammar.cma" i*)
TACTIC EXTEND rtauto
diff --git a/plugins/rtauto/proof_search.ml b/plugins/rtauto/proof_search.ml
index 500138cf..c1e83004 100644
--- a/plugins/rtauto/proof_search.ml
+++ b/plugins/rtauto/proof_search.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: proof_search.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Term
open Util
open Goptions
@@ -49,6 +47,7 @@ let pruning = ref true
let opt_pruning=
{optsync=true;
+ optdepr=false;
optname="Rtauto Pruning";
optkey=["Rtauto";"Pruning"];
optread=(fun () -> !pruning);
@@ -510,8 +509,8 @@ let pp_gl gl= cut () ++
let pp =
function
- Incomplete(gl,ctx) -> msgnl (pp_gl gl)
- | _ -> msg (str "<complete>")
+ Incomplete(gl,ctx) -> pp_gl gl ++ fnl ()
+ | _ -> str "<complete>"
let pp_info () =
let count_info =
diff --git a/plugins/rtauto/proof_search.mli b/plugins/rtauto/proof_search.mli
index 4d77a057..2adda33f 100644
--- a/plugins/rtauto/proof_search.mli
+++ b/plugins/rtauto/proof_search.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: proof_search.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
type form=
Atom of int
| Arrow of form * form
@@ -40,7 +38,7 @@ val branching: state -> state list
val success: state -> bool
-val pp: state -> unit
+val pp: state -> Pp.std_ppcmds
val pr_form : form -> unit
diff --git a/plugins/rtauto/refl_tauto.ml b/plugins/rtauto/refl_tauto.ml
index 20b4c8f6..e8909f08 100644
--- a/plugins/rtauto/refl_tauto.ml
+++ b/plugins/rtauto/refl_tauto.ml
@@ -1,18 +1,15 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: refl_tauto.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
module Search = Explore.Make(Proof_search)
open Util
open Term
-open Termops
open Names
open Evd
open Tacmach
@@ -35,11 +32,11 @@ let data_constant =
Coqlib.gen_constant "refl_tauto" ["Init";"Datatypes"]
let l_true_equals_true =
- lazy (mkApp(logic_constant "refl_equal",
+ lazy (mkApp(logic_constant "eq_refl",
[|data_constant "bool";data_constant "true"|]))
let pos_constant =
- Coqlib.gen_constant "refl_tauto" ["NArith";"BinPos"]
+ Coqlib.gen_constant "refl_tauto" ["Numbers";"BinNums"]
let l_xI = lazy (pos_constant "xI")
let l_xO = lazy (pos_constant "xO")
@@ -104,7 +101,7 @@ let rec make_form atom_env gls term =
let cciterm=special_whd gls term in
match kind_of_term cciterm with
Prod(_,a,b) ->
- if not (dependent (mkRel 1) b) &&
+ if not (Termops.dependent (mkRel 1) b) &&
Retyping.get_sort_family_of
(pf_env gls) (Tacmach.project gls) a = InProp
then
@@ -144,7 +141,7 @@ let rec make_hyps atom_env gls lenv = function
| (id,None,typ)::rest ->
let hrec=
make_hyps atom_env gls (typ::lenv) rest in
- if List.exists (dependent (mkVar id)) lenv ||
+ if List.exists (Termops.dependent (mkVar id)) lenv ||
(Retyping.get_sort_family_of
(pf_env gls) (Tacmach.project gls) typ <> InProp)
then
@@ -244,6 +241,7 @@ let verbose = ref false
let opt_verbose=
{optsync=true;
+ optdepr=false;
optname="Rtauto Verbose";
optkey=["Rtauto";"Verbose"];
optread=(fun () -> !verbose);
@@ -255,6 +253,7 @@ let check = ref false
let opt_check=
{optsync=true;
+ optdepr=false;
optname="Rtauto Check";
optkey=["Rtauto";"Check"];
optread=(fun () -> !check);
@@ -267,14 +266,13 @@ open Pp
let rtauto_tac gls=
Coqlib.check_required_library ["Coq";"rtauto";"Rtauto"];
let gamma={next=1;env=[]} in
- let gl=gls.it.evar_concl in
+ let gl=pf_concl gls in
let _=
if Retyping.get_sort_family_of
(pf_env gls) (Tacmach.project gls) gl <> InProp
then errorlabstrm "rtauto" (Pp.str "goal should be in Prop") in
let glf=make_form gamma gls gl in
- let hyps=make_hyps gamma gls [gl]
- (Environ.named_context_of_val gls.it.evar_hyps) in
+ let hyps=make_hyps gamma gls [gl] (pf_hyps gls) in
let formula=
List.fold_left (fun gl (_,f)-> Arrow (f,gl)) glf hyps in
let search_fun =
diff --git a/plugins/rtauto/refl_tauto.mli b/plugins/rtauto/refl_tauto.mli
index 085a45a5..e5fb646a 100644
--- a/plugins/rtauto/refl_tauto.mli
+++ b/plugins/rtauto/refl_tauto.mli
@@ -1,12 +1,10 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: refl_tauto.mli 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* raises Not_found if no proof is found *)
type atom_env=
diff --git a/plugins/setoid_ring/Algebra_syntax.v b/plugins/setoid_ring/Algebra_syntax.v
new file mode 100644
index 00000000..e896554e
--- /dev/null
+++ b/plugins/setoid_ring/Algebra_syntax.v
@@ -0,0 +1,25 @@
+
+Class Zero (A : Type) := zero : A.
+Notation "0" := zero.
+Class One (A : Type) := one : A.
+Notation "1" := one.
+Class Addition (A : Type) := addition : A -> A -> A.
+Notation "_+_" := addition.
+Notation "x + y" := (addition x y).
+Class Multiplication {A B : Type} := multiplication : A -> B -> B.
+Notation "_*_" := multiplication.
+Notation "x * y" := (multiplication x y).
+Class Subtraction (A : Type) := subtraction : A -> A -> A.
+Notation "_-_" := subtraction.
+Notation "x - y" := (subtraction x y).
+Class Opposite (A : Type) := opposite : A -> A.
+Notation "-_" := opposite.
+Notation "- x" := (opposite(x)).
+Class Equality {A : Type}:= equality : A -> A -> Prop.
+Notation "_==_" := equality.
+Notation "x == y" := (equality x y) (at level 70, no associativity).
+Class Bracket (A B: Type):= bracket : A -> B.
+Notation "[ x ]" := (bracket(x)).
+Class Power {A B: Type} := power : A -> B -> A.
+Notation "x ^ y" := (power x y).
+
diff --git a/plugins/setoid_ring/ArithRing.v b/plugins/setoid_ring/ArithRing.v
index 6998b656..ed35bb46 100644
--- a/plugins/setoid_ring/ArithRing.v
+++ b/plugins/setoid_ring/ArithRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -21,17 +21,17 @@ Lemma natSRth : semi_ring_theory O (S O) plus mult (@eq nat).
Lemma nat_morph_N :
semi_morph 0 1 plus mult (eq (A:=nat))
- 0%N 1%N Nplus Nmult Neq_bool nat_of_N.
+ 0%N 1%N N.add N.mul N.eqb N.to_nat.
Proof.
constructor;trivial.
- exact nat_of_Nplus.
- exact nat_of_Nmult.
- intros x y H;rewrite (Neq_bool_ok _ _ H);trivial.
+ exact N2Nat.inj_add.
+ exact N2Nat.inj_mul.
+ intros x y H. apply N.eqb_eq in H. now subst.
Qed.
Ltac natcst t :=
match isnatcst t with
- true => constr:(N_of_nat t)
+ true => constr:(N.of_nat t)
| _ => constr:InitialRing.NotConstant
end.
diff --git a/plugins/setoid_ring/BinList.v b/plugins/setoid_ring/BinList.v
index 905625cc..b3c59457 100644
--- a/plugins/setoid_ring/BinList.v
+++ b/plugins/setoid_ring/BinList.v
@@ -1,16 +1,15 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Set Implicit Arguments.
Require Import BinPos.
Require Export List.
-Require Export ListTactics.
-Open Local Scope positive_scope.
+Set Implicit Arguments.
+Local Open Scope positive_scope.
Section MakeBinList.
Variable A : Type.
@@ -18,76 +17,64 @@ Section MakeBinList.
Fixpoint jump (p:positive) (l:list A) {struct p} : list A :=
match p with
- | xH => tail l
+ | xH => tl l
| xO p => jump p (jump p l)
- | xI p => jump p (jump p (tail l))
+ | xI p => jump p (jump p (tl l))
end.
Fixpoint nth (p:positive) (l:list A) {struct p} : A:=
match p with
| xH => hd default l
| xO p => nth p (jump p l)
- | xI p => nth p (jump p (tail l))
+ | xI p => nth p (jump p (tl l))
end.
- Lemma jump_tl : forall j l, tail (jump j l) = jump j (tail l).
+ Lemma jump_tl : forall j l, tl (jump j l) = jump j (tl l).
Proof.
- induction j;simpl;intros.
- repeat rewrite IHj;trivial.
- repeat rewrite IHj;trivial.
- trivial.
+ induction j;simpl;intros; now rewrite ?IHj.
Qed.
- Lemma jump_Psucc : forall j l,
- (jump (Psucc j) l) = (jump 1 (jump j l)).
+ Lemma jump_succ : forall j l,
+ jump (Pos.succ j) l = jump 1 (jump j l).
Proof.
induction j;simpl;intros.
- repeat rewrite IHj;simpl;repeat rewrite jump_tl;trivial.
- repeat rewrite jump_tl;trivial.
- trivial.
+ - rewrite !IHj; simpl; now rewrite !jump_tl.
+ - now rewrite !jump_tl.
+ - trivial.
Qed.
- Lemma jump_Pplus : forall i j l,
- (jump (i + j) l) = (jump i (jump j l)).
+ Lemma jump_add : forall i j l,
+ jump (i + j) l = jump i (jump j l).
Proof.
- induction i;intros.
- rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi.
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial.
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi;trivial.
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite jump_Psucc;trivial.
+ induction i using Pos.peano_ind; intros.
+ - now rewrite Pos.add_1_l, jump_succ.
+ - now rewrite Pos.add_succ_l, !jump_succ, IHi.
Qed.
- Lemma jump_Pdouble_minus_one : forall i l,
- (jump (Pdouble_minus_one i) (tail l)) = (jump i (jump i l)).
+ Lemma jump_pred_double : forall i l,
+ jump (Pos.pred_double i) (tl l) = jump i (jump i l).
Proof.
induction i;intros;simpl.
- repeat rewrite jump_tl;trivial.
- rewrite IHi. do 2 rewrite <- jump_tl;rewrite IHi;trivial.
- trivial.
+ - now rewrite !jump_tl.
+ - now rewrite IHi, <- 2 jump_tl, IHi.
+ - trivial.
Qed.
-
- Lemma nth_jump : forall p l, nth p (tail l) = hd default (jump p l).
+ Lemma nth_jump : forall p l, nth p (tl l) = hd default (jump p l).
Proof.
induction p;simpl;intros.
- rewrite <-jump_tl;rewrite IHp;trivial.
- rewrite <-jump_tl;rewrite IHp;trivial.
- trivial.
+ - now rewrite <-jump_tl, IHp.
+ - now rewrite <-jump_tl, IHp.
+ - trivial.
Qed.
- Lemma nth_Pdouble_minus_one :
- forall p l, nth (Pdouble_minus_one p) (tail l) = nth p (jump p l).
+ Lemma nth_pred_double :
+ forall p l, nth (Pos.pred_double p) (tl l) = nth p (jump p l).
Proof.
induction p;simpl;intros.
- repeat rewrite jump_tl;trivial.
- rewrite jump_Pdouble_minus_one.
- repeat rewrite <- jump_tl;rewrite IHp;trivial.
- trivial.
+ - now rewrite !jump_tl.
+ - now rewrite jump_pred_double, <- !jump_tl, IHp.
+ - trivial.
Qed.
End MakeBinList.
-
-
diff --git a/plugins/setoid_ring/Cring.v b/plugins/setoid_ring/Cring.v
new file mode 100644
index 00000000..02194d4f
--- /dev/null
+++ b/plugins/setoid_ring/Cring.v
@@ -0,0 +1,271 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Export List.
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinList.
+Require Import Znumtheory.
+Require Export Morphisms Setoid Bool.
+Require Import ZArith_base.
+Require Export Algebra_syntax.
+Require Export Ncring.
+Require Export Ncring_initial.
+Require Export Ncring_tac.
+
+Class Cring {R:Type}`{Rr:Ring R} :=
+ cring_mul_comm: forall x y:R, x * y == y * x.
+
+Ltac reify_goal lvar lexpr lterm:=
+ (*idtac lvar; idtac lexpr; idtac lterm;*)
+ match lexpr with
+ nil => idtac
+ | ?e1::?e2::_ =>
+ match goal with
+ |- (?op ?u1 ?u2) =>
+ change (op
+ (@Ring_polynom.PEeval
+ _ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication) lvar e1)
+ (@Ring_polynom.PEeval
+ _ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication) lvar e2))
+ end
+ end.
+
+Section cring.
+Context {R:Type}`{Rr:Cring R}.
+
+Lemma cring_eq_ext: ring_eq_ext _+_ _*_ -_ _==_.
+Proof.
+intros. apply mk_reqe; solve_proper.
+Defined.
+
+Lemma cring_almost_ring_theory:
+ almost_ring_theory (R:=R) zero one _+_ _*_ _-_ -_ _==_.
+intros. apply mk_art ;intros.
+rewrite ring_add_0_l; reflexivity.
+rewrite ring_add_comm; reflexivity.
+rewrite ring_add_assoc; reflexivity.
+rewrite ring_mul_1_l; reflexivity.
+apply ring_mul_0_l.
+rewrite cring_mul_comm; reflexivity.
+rewrite ring_mul_assoc; reflexivity.
+rewrite ring_distr_l; reflexivity.
+rewrite ring_opp_mul_l; reflexivity.
+apply ring_opp_add.
+rewrite ring_sub_def ; reflexivity. Defined.
+
+Lemma cring_morph:
+ ring_morph zero one _+_ _*_ _-_ -_ _==_
+ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
+ Ncring_initial.gen_phiZ.
+intros. apply mkmorph ; intros; simpl; try reflexivity.
+rewrite Ncring_initial.gen_phiZ_add; reflexivity.
+rewrite ring_sub_def. unfold Z.sub. rewrite Ncring_initial.gen_phiZ_add.
+rewrite Ncring_initial.gen_phiZ_opp; reflexivity.
+rewrite Ncring_initial.gen_phiZ_mul; reflexivity.
+rewrite Ncring_initial.gen_phiZ_opp; reflexivity.
+rewrite (Zeqb_ok x y H). reflexivity. Defined.
+
+Lemma cring_power_theory :
+ @Ring_theory.power_theory R one _*_ _==_ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication).
+intros; apply Ring_theory.mkpow_th. reflexivity. Defined.
+
+Lemma cring_div_theory:
+ div_theory _==_ Z.add Z.mul Ncring_initial.gen_phiZ Z.quotrem.
+intros. apply InitialRing.Ztriv_div_th. unfold Setoid_Theory.
+simpl. apply ring_setoid. Defined.
+
+End cring.
+
+Ltac cring_gen :=
+ match goal with
+ |- ?g => let lterm := lterm_goal g in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) =>
+ (*idtac "variables:";idtac fv;
+ idtac "terms:"; idtac lterm;
+ idtac "reifications:"; idtac lexpr; *)
+ reify_goal fv lexpr lterm;
+ match goal with
+ |- ?g =>
+ generalize
+ (@Ring_polynom.ring_correct _ 0 1 _+_ _*_ _-_ -_ _==_
+ ring_setoid
+ cring_eq_ext
+ cring_almost_ring_theory
+ Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
+ Ncring_initial.gen_phiZ
+ cring_morph
+ N
+ (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication)
+ cring_power_theory
+ Z.quotrem
+ cring_div_theory
+ O fv nil);
+ let rc := fresh "rc"in
+ intro rc; apply rc
+ end
+ end
+ end.
+
+Ltac cring_compute:= vm_compute; reflexivity.
+
+Ltac cring:=
+ intros;
+ cring_gen;
+ cring_compute.
+
+Instance Zcri: (Cring (Rr:=Zr)).
+red. exact Z.mul_comm. Defined.
+
+(* Cring_simplify *)
+
+Ltac cring_simplify_aux lterm fv lexpr hyp :=
+ match lterm with
+ | ?t0::?lterm =>
+ match lexpr with
+ | ?e::?le =>
+ let t := constr:(@Ring_polynom.norm_subst
+ Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool Z.quotrem O nil e) in
+ let te :=
+ constr:(@Ring_polynom.Pphi_dev
+ _ 0 1 _+_ _*_ _-_ -_
+
+ Z 0%Z 1%Z Zeq_bool
+ Ncring_initial.gen_phiZ
+ get_signZ fv t) in
+ let eq1 := fresh "ring" in
+ let nft := eval vm_compute in t in
+ let t':= fresh "t" in
+ pose (t' := nft);
+ assert (eq1 : t = t');
+ [vm_cast_no_check (eq_refl t')|
+ let eq2 := fresh "ring" in
+ assert (eq2:(@Ring_polynom.PEeval
+ _ zero _+_ _*_ _-_ -_ Z Ncring_initial.gen_phiZ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
+ [let eq3 := fresh "ring" in
+ generalize (@ring_rw_correct _ 0 1 _+_ _*_ _-_ -_ _==_
+ ring_setoid
+ cring_eq_ext
+ cring_almost_ring_theory
+ Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp Zeq_bool
+ Ncring_initial.gen_phiZ
+ cring_morph
+ N
+ (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication)
+ cring_power_theory
+ Z.quotrem
+ cring_div_theory
+ get_signZ get_signZ_th
+ O nil fv I nil (eq_refl nil) );
+ intro eq3; apply eq3; reflexivity|
+ match hyp with
+ | 1%nat => rewrite eq2
+ | ?H => try rewrite eq2 in H
+ end];
+ let P:= fresh "P" in
+ match hyp with
+ | 1%nat =>
+ rewrite eq1;
+ pattern (@Ring_polynom.Pphi_dev
+ _ 0 1 _+_ _*_ _-_ -_
+
+ Z 0%Z 1%Z Zeq_bool
+ Ncring_initial.gen_phiZ
+ get_signZ fv t');
+ match goal with
+ |- (?p ?t) => set (P:=p)
+ end;
+ unfold t' in *; clear t' eq1 eq2;
+ unfold Pphi_dev, Pphi_avoid; simpl;
+ repeat (unfold mkmult1, mkmultm1, mkmult_c_pos, mkmult_c,
+ mkadd_mult, mkmult_c_pos, mkmult_pow, mkadd_mult,
+ mkpow;simpl)
+ | ?H =>
+ rewrite eq1 in H;
+ pattern (@Ring_polynom.Pphi_dev
+ _ 0 1 _+_ _*_ _-_ -_
+
+ Z 0%Z 1%Z Zeq_bool
+ Ncring_initial.gen_phiZ
+ get_signZ fv t') in H;
+ match type of H with
+ | (?p ?t) => set (P:=p) in H
+ end;
+ unfold t' in *; clear t' eq1 eq2;
+ unfold Pphi_dev, Pphi_avoid in H; simpl in H;
+ repeat (unfold mkmult1, mkmultm1, mkmult_c_pos, mkmult_c,
+ mkadd_mult, mkmult_c_pos, mkmult_pow, mkadd_mult,
+ mkpow in H;simpl in H)
+ end; unfold P in *; clear P
+ ]; cring_simplify_aux lterm fv le hyp
+ | nil => idtac
+ end
+ | nil => idtac
+ end.
+
+Ltac set_variables fv :=
+ match fv with
+ | nil => idtac
+ | ?t::?fv =>
+ let v := fresh "X" in
+ set (v:=t) in *; set_variables fv
+ end.
+
+Ltac deset n:=
+ match n with
+ | 0%nat => idtac
+ | S ?n1 =>
+ match goal with
+ | h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
+ end
+ end.
+
+(* a est soit un terme de l'anneau, soit une liste de termes.
+J'ai pas réussi à un décomposer les Vlists obtenues avec ne_constr_list
+ dans Tactic Notation *)
+
+Ltac cring_simplify_gen a hyp :=
+ let lterm :=
+ match a with
+ | _::_ => a
+ | _ => constr:(a::nil)
+ end in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
+ let n := eval compute in (length fv) in
+ idtac n;
+ let lt:=fresh "lt" in
+ set (lt:= lterm);
+ let lv:=fresh "fv" in
+ set (lv:= fv);
+ (* les termes de fv sont remplacés par des variables
+ pour pouvoir utiliser simpl ensuite sans risquer
+ des simplifications indésirables *)
+ set_variables fv;
+ let lterm1 := eval unfold lt in lt in
+ let lv1 := eval unfold lv in lv in
+ idtac lterm1; idtac lv1;
+ cring_simplify_aux lterm1 lv1 lexpr hyp;
+ clear lt lv;
+ (* on remet les termes de fv *)
+ deset n
+ end.
+
+Tactic Notation "cring_simplify" constr(lterm):=
+ cring_simplify_gen lterm 1%nat.
+
+Tactic Notation "cring_simplify" constr(lterm) "in" ident(H):=
+ cring_simplify_gen lterm H.
+
diff --git a/plugins/setoid_ring/Field.v b/plugins/setoid_ring/Field.v
index 6a755af2..6d454ba8 100644
--- a/plugins/setoid_ring/Field.v
+++ b/plugins/setoid_ring/Field.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/setoid_ring/Field_tac.v b/plugins/setoid_ring/Field_tac.v
index eee89e61..8ac952c0 100644
--- a/plugins/setoid_ring/Field_tac.v
+++ b/plugins/setoid_ring/Field_tac.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -447,7 +447,7 @@ Ltac prove_field_eqn ope FLD fv expr :=
pose (res' := res);
let lemma := get_L1 FLD in
let lemma :=
- constr:(lemma O fv List.nil expr' res' I List.nil (refl_equal _)) in
+ constr:(lemma O fv List.nil expr' res' I List.nil (eq_refl _)) in
let ty := type of lemma in
let lhs := match ty with
forall _, ?lhs=_ -> _ => lhs
@@ -487,7 +487,7 @@ Ltac reduce_field_expr ope kont FLD fv expr :=
kont c.
(* Hack to let a Ltac return a term in the context of a primitive tactic *)
-Ltac return_term x := generalize (refl_equal x).
+Ltac return_term x := generalize (eq_refl x).
Ltac get_term :=
match goal with
| |- ?x = _ -> _ => x
diff --git a/plugins/setoid_ring/Field_theory.v b/plugins/setoid_ring/Field_theory.v
index ccdec656..bc05c252 100644
--- a/plugins/setoid_ring/Field_theory.v
+++ b/plugins/setoid_ring/Field_theory.v
@@ -1,13 +1,13 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Require Ring.
-Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List.
+Import Ring_polynom Ring_tac Ring_theory InitialRing Setoid List Morphisms.
Require Import ZArith_base.
(*Require Import Omega.*)
Set Implicit Arguments.
@@ -27,7 +27,7 @@ Section MakeFieldPol.
Notation "x == y" := (req x y) (at level 70, no associativity).
(* Equality properties *)
- Variable Rsth : Setoid_Theory R req.
+ Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable SRinv_ext : forall p q, p == q -> / p == / q.
@@ -75,7 +75,6 @@ Qed.
(* Useful tactics *)
- Add Setoid R req Rsth as R_set1.
Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
@@ -96,7 +95,7 @@ Hint Resolve (ARadd_0_l ARth) (ARadd_comm ARth) (ARadd_assoc ARth)
(ARsub_def ARth) .
(* Power coefficients *)
- Variable Cpow : Set.
+ Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
@@ -116,16 +115,17 @@ Notation NPphi_pow := (Pphi_pow rO rI radd rmul rsub ropp cO cI ceqb phi Cp_phi
(* add abstract semi-ring to help with some proofs *)
Add Ring Rring : (ARth_SRth ARth).
+Local Hint Extern 2 (_ == _) => f_equiv.
(* additional ring properties *)
Lemma rsub_0_l : forall r, 0 - r == - r.
-intros; rewrite (ARsub_def ARth) in |- *;ring.
+intros; rewrite (ARsub_def ARth);ring.
Qed.
Lemma rsub_0_r : forall r, r - 0 == r.
-intros; rewrite (ARsub_def ARth) in |- *.
-rewrite (ARopp_zero Rsth Reqe ARth) in |- *; ring.
+intros; rewrite (ARsub_def ARth).
+rewrite (ARopp_zero Rsth Reqe ARth); ring.
Qed.
(***************************************************************************
@@ -135,42 +135,40 @@ Qed.
***************************************************************************)
Theorem rdiv_simpl: forall p q, ~ q == 0 -> q * (p / q) == p.
+Proof.
intros p q H.
-rewrite rdiv_def in |- *.
+rewrite rdiv_def.
transitivity (/ q * q * p); [ ring | idtac ].
-rewrite rinv_l in |- *; auto.
+rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv_simpl .
-Theorem SRdiv_ext:
- forall p1 p2, p1 == p2 -> forall q1 q2, q1 == q2 -> p1 / q1 == p2 / q2.
-intros p1 p2 H q1 q2 H0.
+Instance SRdiv_ext: Proper (req ==> req ==> req) rdiv.
+Proof.
+intros p1 p2 Ep q1 q2 Eq.
transitivity (p1 * / q1); auto.
transitivity (p2 * / q2); auto.
Qed.
-Hint Resolve SRdiv_ext .
-
- Add Morphism rdiv : rdiv_ext. exact SRdiv_ext. Qed.
+Hint Resolve SRdiv_ext.
Lemma rmul_reg_l : forall p q1 q2,
~ p == 0 -> p * q1 == p * q2 -> q1 == q2.
-intros.
-rewrite <- (@rdiv_simpl q1 p) in |- *; trivial.
-rewrite <- (@rdiv_simpl q2 p) in |- *; trivial.
-repeat rewrite rdiv_def in |- *.
-repeat rewrite (ARmul_assoc ARth) in |- *.
-auto.
+Proof.
+intros p q1 q2 H EQ.
+rewrite <- (@rdiv_simpl q1 p) by trivial.
+rewrite <- (@rdiv_simpl q2 p) by trivial.
+rewrite !rdiv_def, !(ARmul_assoc ARth).
+now rewrite EQ.
Qed.
Theorem field_is_integral_domain : forall r1 r2,
~ r1 == 0 -> ~ r2 == 0 -> ~ r1 * r2 == 0.
Proof.
-red in |- *; intros.
-apply H0.
+intros r1 r2 H1 H2. contradict H2.
transitivity (1 * r2); auto.
transitivity (/ r1 * r1 * r2); auto.
-rewrite <- (ARmul_assoc ARth) in |- *.
-rewrite H1 in |- *.
+rewrite <- (ARmul_assoc ARth).
+rewrite H2.
apply ARmul_0_r with (1 := Rsth) (2 := ARth).
Qed.
@@ -179,15 +177,15 @@ Theorem ropp_neq_0 : forall r,
intros.
setoid_replace (- r) with (- (1) * r).
apply field_is_integral_domain; trivial.
- rewrite <- (ARopp_mul_l ARth) in |- *.
- rewrite (ARmul_1_l ARth) in |- *.
+ rewrite <- (ARopp_mul_l ARth).
+ rewrite (ARmul_1_l ARth).
reflexivity.
Qed.
Theorem rdiv_r_r : forall r, ~ r == 0 -> r / r == 1.
intros.
-rewrite (AFdiv_def AFth) in |- *.
-rewrite (ARmul_comm ARth) in |- *.
+rewrite (AFdiv_def AFth).
+rewrite (ARmul_comm ARth).
apply (AFinv_l AFth).
trivial.
Qed.
@@ -203,14 +201,14 @@ Theorem rdiv2:
r1 / r2 + r3 / r4 == (r1 * r4 + r3 * r2) / (r2 * r4).
Proof.
intros r1 r2 r3 r4 H H0.
-assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial).
+assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * r4); trivial.
-rewrite rdiv_simpl in |- *; trivial.
-rewrite (ARdistr_r Rsth Reqe ARth) in |- *.
+rewrite rdiv_simpl; trivial.
+rewrite (ARdistr_r Rsth Reqe ARth).
apply (Radd_ext Reqe).
- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ].
- transitivity (r2 * (r4 * (r3 / r4))); auto.
- transitivity (r2 * r3); auto.
+- transitivity (r2 * (r1 / r2) * r4); [ ring | auto ].
+- transitivity (r2 * (r4 * (r3 / r4))); auto.
+ transitivity (r2 * r3); auto.
Qed.
@@ -225,35 +223,36 @@ assert (HH1: ~ r2 == 0) by (intros HH; case H; rewrite HH; ring).
assert (HH2: ~ r5 == 0) by (intros HH; case H; rewrite HH; ring).
assert (HH3: ~ r4 == 0) by (intros HH; case H0; rewrite HH; ring).
assert (HH4: ~ r2 * (r4 * r5) == 0)
- by complete (repeat apply field_is_integral_domain; trivial).
+ by (repeat apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * (r4 * r5)); trivial.
-rewrite rdiv_simpl in |- *; trivial.
-rewrite (ARdistr_r Rsth Reqe ARth) in |- *.
+rewrite rdiv_simpl; trivial.
+rewrite (ARdistr_r Rsth Reqe ARth).
apply (Radd_ext Reqe).
transitivity ((r2 * r5) * (r1 / (r2 * r5)) * r4); [ ring | auto ].
transitivity ((r4 * r5) * (r3 / (r4 * r5)) * r2); [ ring | auto ].
Qed.
Theorem rdiv5: forall r1 r2, - (r1 / r2) == - r1 / r2.
+Proof.
intros r1 r2.
transitivity (- (r1 * / r2)); auto.
transitivity (- r1 * / r2); auto.
Qed.
Hint Resolve rdiv5 .
-Theorem rdiv3:
- forall r1 r2 r3 r4,
+Theorem rdiv3 r1 r2 r3 r4 :
~ r2 == 0 ->
~ r4 == 0 ->
r1 / r2 - r3 / r4 == (r1 * r4 - r3 * r2) / (r2 * r4).
-intros r1 r2 r3 r4 H H0.
+Proof.
+intros H2 H4.
assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
transitivity (r1 / r2 + - (r3 / r4)); auto.
transitivity (r1 / r2 + - r3 / r4); auto.
-transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)); auto.
+transitivity ((r1 * r4 + - r3 * r2) / (r2 * r4)).
apply rdiv2; auto.
-apply SRdiv_ext; auto.
-transitivity (r1 * r4 + - (r3 * r2)); symmetry; auto.
+f_equiv.
+transitivity (r1 * r4 + - (r3 * r2)); auto.
Qed.
@@ -279,13 +278,13 @@ intros r1 r2 H H0.
assert (~ r1 / r2 == 0) as Hk.
intros H1; case H.
transitivity (r2 * (r1 / r2)); auto.
- rewrite H1 in |- *; ring.
+ rewrite H1; ring.
apply rmul_reg_l with (r1 / r2); auto.
transitivity (/ (r1 / r2) * (r1 / r2)); auto.
transitivity 1; auto.
- repeat rewrite rdiv_def in |- *.
+ repeat rewrite rdiv_def.
transitivity (/ r1 * r1 * (/ r2 * r2)); [ idtac | ring ].
- repeat rewrite rinv_l in |- *; auto.
+ repeat rewrite rinv_l; auto.
Qed.
Hint Resolve rdiv6 .
@@ -296,11 +295,11 @@ Hint Resolve rdiv6 .
(r1 / r2) * (r3 / r4) == (r1 * r3) / (r2 * r4).
Proof.
intros r1 r2 r3 r4 H H0.
-assert (~ r2 * r4 == 0) by complete (apply field_is_integral_domain; trivial).
+assert (~ r2 * r4 == 0) by (apply field_is_integral_domain; trivial).
apply rmul_reg_l with (r2 * r4); trivial.
-rewrite rdiv_simpl in |- *; trivial.
+rewrite rdiv_simpl; trivial.
transitivity (r2 * (r1 / r2) * (r4 * (r3 / r4))); [ ring | idtac ].
-repeat rewrite rdiv_simpl in |- *; trivial.
+repeat rewrite rdiv_simpl; trivial.
Qed.
Theorem rdiv4b:
@@ -334,8 +333,8 @@ Theorem rdiv7:
(r1 / r2) / (r3 / r4) == (r1 * r4) / (r2 * r3).
Proof.
intros.
-rewrite (rdiv_def (r1 / r2)) in |- *.
-rewrite rdiv6 in |- *; trivial.
+rewrite (rdiv_def (r1 / r2)).
+rewrite rdiv6; trivial.
apply rdiv4; trivial.
Qed.
@@ -373,14 +372,14 @@ Theorem cross_product_eq : forall r1 r2 r3 r4,
~ r2 == 0 -> ~ r4 == 0 -> r1 * r4 == r3 * r2 -> r1 / r2 == r3 / r4.
intros.
transitivity (r1 / r2 * (r4 / r4)).
- rewrite rdiv_r_r in |- *; trivial.
- symmetry in |- *.
+ rewrite rdiv_r_r; trivial.
+ symmetry .
apply (ARmul_1_r Rsth ARth).
- rewrite rdiv4 in |- *; trivial.
- rewrite H1 in |- *.
- rewrite (ARmul_comm ARth r2 r4) in |- *.
- rewrite <- rdiv4 in |- *; trivial.
- rewrite rdiv_r_r in |- * by trivial.
+ rewrite rdiv4; trivial.
+ rewrite H1.
+ rewrite (ARmul_comm ARth r2 r4).
+ rewrite <- rdiv4; trivial.
+ rewrite rdiv_r_r by trivial.
apply (ARmul_1_r Rsth ARth).
Qed.
@@ -390,52 +389,16 @@ Qed.
***************************************************************************)
-Fixpoint positive_eq (p1 p2 : positive) {struct p1} : bool :=
- match p1, p2 with
- xH, xH => true
- | xO p3, xO p4 => positive_eq p3 p4
- | xI p3, xI p4 => positive_eq p3 p4
- | _, _ => false
- end.
-
-Theorem positive_eq_correct:
- forall p1 p2, if positive_eq p1 p2 then p1 = p2 else p1 <> p2.
-intros p1; elim p1;
- (try (intros p2; case p2; simpl; auto; intros; discriminate)).
-intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
-generalize (rec p4); case (positive_eq p3 p4); auto.
-intros H1; apply f_equal with ( f := xI ); auto.
-intros H1 H2; case H1; injection H2; auto.
-intros p3 rec p2; case p2; simpl; auto; (try (intros; discriminate)); intros p4.
-generalize (rec p4); case (positive_eq p3 p4); auto.
-intros H1; apply f_equal with ( f := xO ); auto.
-intros H1 H2; case H1; injection H2; auto.
-Qed.
-
-Definition N_eq n1 n2 :=
- match n1, n2 with
- | N0, N0 => true
- | Npos p1, Npos p2 => positive_eq p1 p2
- | _, _ => false
- end.
-
-Lemma N_eq_correct : forall n1 n2, if N_eq n1 n2 then n1 = n2 else n1 <> n2.
-Proof.
- intros [ |p1] [ |p2];simpl;trivial;try(intro H;discriminate H;fail).
- assert (H:=positive_eq_correct p1 p2);destruct (positive_eq p1 p2);
- [rewrite H;trivial | intro H1;injection H1;subst;apply H;trivial].
-Qed.
-
(* equality test *)
Fixpoint PExpr_eq (e1 e2 : PExpr C) {struct e1} : bool :=
match e1, e2 with
PEc c1, PEc c2 => ceqb c1 c2
- | PEX p1, PEX p2 => positive_eq p1 p2
+ | PEX p1, PEX p2 => Pos.eqb p1 p2
| PEadd e3 e5, PEadd e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEsub e3 e5, PEsub e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEmul e3 e5, PEmul e4 e6 => if PExpr_eq e3 e4 then PExpr_eq e5 e6 else false
| PEopp e3, PEopp e4 => PExpr_eq e3 e4
- | PEpow e3 n3, PEpow e4 n4 => if N_eq n3 n4 then PExpr_eq e3 e4 else false
+ | PEpow e3 n3, PEpow e4 n4 => if N.eqb n3 n4 then PExpr_eq e3 e4 else false
| _, _ => false
end.
@@ -446,22 +409,14 @@ Qed.
Add Morphism (pow_N rI rmul) with signature req ==> eq ==> req as pow_N_morph.
intros x y H [|p];simpl;auto. apply pow_morph;trivial.
Qed.
-(*
-Lemma rpow_morph : forall x y n, x == y ->rpow x (Cp_phi n) == rpow y (Cp_phi n).
-Proof.
- intros; repeat rewrite pow_th.(rpow_pow_N).
- destruct n;simpl. apply eq_refl.
- induction p;simpl;try rewrite IHp;try rewrite H; apply eq_refl.
-Qed.
-*)
+
Theorem PExpr_eq_semi_correct:
forall l e1 e2, PExpr_eq e1 e2 = true -> NPEeval l e1 == NPEeval l e2.
intros l e1; elim e1.
intros c1; intros e2; elim e2; simpl; (try (intros; discriminate)).
intros c2; apply (morph_eq CRmorph).
intros p1; intros e2; elim e2; simpl; (try (intros; discriminate)).
-intros p2; generalize (positive_eq_correct p1 p2); case (positive_eq p1 p2);
- (try (intros; discriminate)); intros H; rewrite H; auto.
+intros p2; case Pos.eqb_spec; intros; now subst.
intros e3 rec1 e5 rec2 e2; case e2; simpl; (try (intros; discriminate)).
intros e4 e6; generalize (rec1 e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); generalize (rec2 e6); case (PExpr_eq e5 e6);
@@ -478,9 +433,8 @@ intros e3 rec e2; (case e2; simpl; (try (intros; discriminate))).
intros e4; generalize (rec e4); case (PExpr_eq e3 e4);
(try (intros; discriminate)); auto.
intros e3 rec n3 e2;(case e2;simpl;(try (intros;discriminate))).
-intros e4 n4;generalize (N_eq_correct n3 n4);destruct (N_eq n3 n4);
-intros;try discriminate.
-repeat rewrite pow_th.(rpow_pow_N);rewrite H;rewrite (rec _ H0);auto.
+intros e4 n4; case N.eqb_spec; try discriminate; intros EQ H; subst.
+repeat rewrite pow_th.(rpow_pow_N). rewrite (rec _ H);auto.
Qed.
(* add *)
@@ -497,8 +451,8 @@ Theorem NPEadd_correct:
forall l e1 e2, NPEeval l (NPEadd e1 e2) == NPEeval l (PEadd e1 e2).
Proof.
intros l e1 e2.
-destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;try apply eq_refl;
+destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c); simpl;try apply eq_refl;
try (ring [(morph0 CRmorph)]).
apply (morph_add CRmorph).
Qed.
@@ -507,7 +461,7 @@ Definition NPEpow x n :=
match n with
| N0 => PEc cI
| Npos p =>
- if positive_eq p xH then x else
+ if Pos.eqb p xH then x else
match x with
| PEc c =>
if ceqb c cI then PEc cI else if ceqb c cO then PEc cO else PEc (pow_pos cmul c p)
@@ -520,10 +474,10 @@ Theorem NPEpow_correct : forall l e n,
Proof.
destruct n;simpl.
rewrite pow_th.(rpow_pow_N);simpl;auto.
- generalize (positive_eq_correct p xH).
- destruct (positive_eq p 1);intros.
- rewrite H;rewrite pow_th.(rpow_pow_N). trivial.
- clear H;destruct e;simpl;auto.
+ fold (p =? 1)%positive.
+ case Pos.eqb_spec; intros H; (rewrite H || clear H).
+ now rewrite pow_th.(rpow_pow_N).
+ destruct e;simpl;auto.
repeat apply ceqb_rect;simpl;intros;rewrite pow_th.(rpow_pow_N);simpl.
symmetry;induction p;simpl;trivial; ring [IHp H CRmorph.(morph1)].
symmetry; induction p;simpl;trivial;ring [IHp CRmorph.(morph0)].
@@ -539,7 +493,7 @@ Fixpoint NPEmul (x y : PExpr C) {struct x} : PExpr C :=
| _, PEc c =>
if ceqb c cI then x else if ceqb c cO then PEc cO else PEmul x y
| PEpow e1 n1, PEpow e2 n2 =>
- if N_eq n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
+ if N.eqb n1 n2 then NPEpow (NPEmul e1 e2) n1 else PEmul x y
| _, _ => PEmul x y
end.
@@ -549,15 +503,15 @@ Qed.
Theorem NPEmul_correct : forall l e1 e2,
NPEeval l (NPEmul e1 e2) == NPEeval l (PEmul e1 e2).
-induction e1;destruct e2; simpl in |- *;try reflexivity;
+induction e1;destruct e2; simpl;try reflexivity;
repeat apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *; try reflexivity;
+ try (intro eq_c; rewrite eq_c); simpl; try reflexivity;
try ring [(morph0 CRmorph) (morph1 CRmorph)].
apply (morph_mul CRmorph).
-assert (H:=N_eq_correct n n0);destruct (N_eq n n0).
+case N.eqb_spec; intros H; try rewrite <- H; clear H.
rewrite NPEpow_correct. simpl.
repeat rewrite pow_th.(rpow_pow_N).
-rewrite IHe1;rewrite <- H;destruct n;simpl;try ring.
+rewrite IHe1; destruct n;simpl;try ring.
apply pow_pos_mul.
simpl;auto.
Qed.
@@ -575,9 +529,9 @@ Definition NPEsub e1 e2 :=
Theorem NPEsub_correct:
forall l e1 e2, NPEeval l (NPEsub e1 e2) == NPEeval l (PEsub e1 e2).
intros l e1 e2.
-destruct e1; destruct e2; simpl in |- *; try reflexivity; try apply ceqb_rect;
- try (intro eq_c; rewrite eq_c in |- *); simpl in |- *;
- try rewrite (morph0 CRmorph) in |- *; try reflexivity;
+destruct e1; destruct e2; simpl; try reflexivity; try apply ceqb_rect;
+ try (intro eq_c; rewrite eq_c); simpl;
+ try rewrite (morph0 CRmorph); try reflexivity;
try (symmetry; apply rsub_0_l); try (symmetry; apply rsub_0_r).
apply (morph_sub CRmorph).
Qed.
@@ -697,8 +651,8 @@ destruct H; trivial.
Qed.
Theorem PCond_app_inv_l: forall l l1 l2, PCond l (l1 ++ l2) -> PCond l l1.
-intros l l1 l2; elim l1; simpl app in |- *.
- simpl in |- *; auto.
+intros l l1 l2; elim l1; simpl app.
+ simpl; auto.
destruct l0; simpl in *.
destruct l2; firstorder.
firstorder.
@@ -713,8 +667,8 @@ Qed.
Definition absurd_PCond := cons (PEc cO) nil.
Lemma absurd_PCond_bottom : forall l, ~ PCond l absurd_PCond.
-unfold absurd_PCond in |- *; simpl in |- *.
-red in |- *; intros.
+unfold absurd_PCond; simpl.
+red; intros.
apply H.
apply (morph0 CRmorph).
Qed.
@@ -743,10 +697,10 @@ Fixpoint isIn (e1:PExpr C) (p1:positive)
end
end
| PEpow e3 N0 => None
- | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pmult p3 p2)
+ | PEpow e3 (Npos p3) => isIn e1 p1 e3 (Pos.mul p3 p2)
| _ =>
if PExpr_eq e1 e2 then
- match Zminus (Zpos p1) (Zpos p2) with
+ match Z.pos_sub p1 p2 with
| Zpos p => Some (Npos p, PEc cI)
| Z0 => Some (N0, PEc cI)
| Zneg p => Some (N0, NPEpow e2 (Npos p))
@@ -757,13 +711,19 @@ Fixpoint isIn (e1:PExpr C) (p1:positive)
Definition ZtoN z := match z with Zpos p => Npos p | _ => N0 end.
Definition NtoZ n := match n with Npos p => Zpos p | _ => Z0 end.
- Notation pow_pos_plus := (Ring_theory.pow_pos_Pplus _ Rsth Reqe.(Rmul_ext)
- ARth.(ARmul_comm) ARth.(ARmul_assoc)).
+ Notation pow_pos_add :=
+ (Ring_theory.pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
+
+ Lemma Z_pos_sub_gt p q : (p > q)%positive ->
+ Z.pos_sub p q = Zpos (p - q).
+ Proof. intros; now apply Z.pos_sub_gt, Pos.gt_lt. Qed.
+
+ Ltac simpl_pos_sub := rewrite ?Z_pos_sub_gt in * by assumption.
Lemma isIn_correct_aux : forall l e1 e2 p1 p2,
match
(if PExpr_eq e1 e2 then
- match Zminus (Zpos p1) (Zpos p2) with
+ match Z.sub (Zpos p1) (Zpos p2) with
| Zpos p => Some (Npos p, PEc cI)
| Z0 => Some (N0, PEc cI)
| Zneg p => Some (N0, NPEpow e2 (Npos p))
@@ -779,37 +739,29 @@ Fixpoint isIn (e1:PExpr C) (p1:positive)
Proof.
intros l e1 e2 p1 p2; generalize (PExpr_eq_semi_correct l e1 e2);
case (PExpr_eq e1 e2); simpl; auto; intros H.
- case_eq ((p1 ?= p2)%positive Eq);intros;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:refine (refl_equal _).
- rewrite (Pcompare_Eq_eq _ _ H0).
- rewrite H by trivial. ring [ (morph1 CRmorph)].
- fold (NPEpow e2 (Npos (p2 - p1))).
- rewrite NPEpow_correct;simpl.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- rewrite H;trivial. split. 2:refine (refl_equal _).
- rewrite <- pow_pos_plus; rewrite Pplus_minus;auto. apply ZC2;trivial.
- repeat rewrite pow_th.(rpow_pow_N);simpl.
- rewrite H;trivial.
- change (ZtoN
- match (p1 ?= p1 - p2)%positive Eq with
- | Eq => 0
- | Lt => Zneg (p1 - p2 - p1)
- | Gt => Zpos (p1 - (p1 - p2))
- end) with (ZtoN (Zpos p1 - Zpos (p1 -p2))).
- replace (Zpos (p1 - p2)) with (Zpos p1 - Zpos p2)%Z.
- split.
- repeat rewrite Zth.(Rsub_def). rewrite (Ring_theory.Ropp_add Zsth Zeqe Zth).
- rewrite Zplus_assoc. simpl. rewrite Pcompare_refl. simpl.
- ring [ (morph1 CRmorph)].
- assert (Zpos p1 > 0 /\ Zpos p2 > 0)%Z. split;refine (refl_equal _).
- apply Zplus_gt_reg_l with (Zpos p2).
- rewrite Zplus_minus. change (Zpos p2 + Zpos p1 > 0 + Zpos p1)%Z.
- apply Zplus_gt_compat_r. refine (refl_equal _).
- simpl;rewrite H0;trivial.
+ rewrite Z.pos_sub_spec.
+ case Pos.compare_spec;intros;simpl.
+ - repeat rewrite pow_th.(rpow_pow_N);simpl. split. 2:reflexivity.
+ subst. rewrite H by trivial. ring [ (morph1 CRmorph)].
+ - fold (p2 - p1 =? 1)%positive.
+ fold (NPEpow e2 (Npos (p2 - p1))).
+ rewrite NPEpow_correct;simpl.
+ repeat rewrite pow_th.(rpow_pow_N);simpl.
+ rewrite H;trivial. split. 2:reflexivity.
+ rewrite <- pow_pos_add. now rewrite Pos.add_comm, Pos.sub_add.
+ - repeat rewrite pow_th.(rpow_pow_N);simpl.
+ rewrite H;trivial.
+ rewrite Z.pos_sub_gt by now apply Pos.sub_decr.
+ replace (p1 - (p1 - p2))%positive with p2;
+ [| rewrite Pos.sub_sub_distr, Pos.add_comm;
+ auto using Pos.add_sub, Pos.sub_decr ].
+ split.
+ simpl. ring [ (morph1 CRmorph)].
+ now apply Z.lt_gt, Pos.sub_decr.
Qed.
Lemma pow_pos_pow_pos : forall x p1 p2, pow_pos rmul (pow_pos rmul x p1) p2 == pow_pos rmul x (p1*p2).
-induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_plus;simpl.
+induction p1;simpl;intros;repeat rewrite pow_pos_mul;repeat rewrite pow_pos_add;simpl.
ring [(IHp1 p2)]. ring [(IHp1 p2)]. auto.
Qed.
@@ -835,39 +787,39 @@ destruct n.
destruct n;simpl.
rewrite NPEmul_correct;repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2) (H3,H4).
- unfold Zgt in H2, H4;simpl in H2,H4. rewrite H4 in H3;simpl in H3.
+ simpl_pos_sub. simpl in H3.
rewrite pow_pos_mul. rewrite H1;rewrite H3.
assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
(pow_pos rmul (NPEeval l e1) p4 * NPEeval l p5) ==
pow_pos rmul (NPEeval l e1) p4 * pow_pos rmul (NPEeval l e1) (p1 - p4) *
NPEeval l p3 *NPEeval l p5) by ring. rewrite H;clear H.
- rewrite <- pow_pos_plus. rewrite Pplus_minus.
- split. symmetry;apply ARth.(ARmul_assoc). refine (refl_equal _). trivial.
+ rewrite <- pow_pos_add.
+ rewrite Pos.add_comm, Pos.sub_add by (now apply Z.gt_lt in H4).
+ split. symmetry;apply ARth.(ARmul_assoc). reflexivity.
repeat rewrite pow_th.(rpow_pow_N);simpl.
intros (H1,H2) (H3,H4).
- unfold Zgt in H2, H4;simpl in H2,H4. rewrite H4 in H3;simpl in H3.
- rewrite H2 in H1;simpl in H1.
+ simpl_pos_sub. simpl in H1, H3.
assert (Zpos p1 > Zpos p6)%Z.
apply Zgt_trans with (Zpos p4). exact H4. exact H2.
- unfold Zgt in H;simpl in H;rewrite H.
+ simpl_pos_sub.
split. 2:exact H.
rewrite pow_pos_mul. simpl;rewrite H1;rewrite H3.
assert (pow_pos rmul (NPEeval l e1) (p1 - p4) * NPEeval l p3 *
(pow_pos rmul (NPEeval l e1) (p4 - p6) * NPEeval l p5) ==
pow_pos rmul (NPEeval l e1) (p1 - p4) * pow_pos rmul (NPEeval l e1) (p4 - p6) *
NPEeval l p3 * NPEeval l p5) by ring. rewrite H0;clear H0.
- rewrite <- pow_pos_plus.
+ rewrite <- pow_pos_add.
replace (p1 - p4 + (p4 - p6))%positive with (p1 - p6)%positive.
rewrite NPEmul_correct. simpl;ring.
assert
(Zpos p1 - Zpos p6 = Zpos p1 - Zpos p4 + (Zpos p4 - Zpos p6))%Z.
change ((Zpos p1 - Zpos p6)%Z = (Zpos p1 + (- Zpos p4) + (Zpos p4 +(- Zpos p6)))%Z).
- rewrite <- Zplus_assoc. rewrite (Zplus_assoc (- Zpos p4)).
- simpl. rewrite Pcompare_refl. simpl. reflexivity.
- unfold Zminus, Zopp in H0. simpl in H0.
- rewrite H2 in H0;rewrite H4 in H0;rewrite H in H0. inversion H0;trivial.
+ rewrite <- Z.add_assoc. rewrite (Z.add_assoc (- Zpos p4)).
+ simpl. rewrite Z.pos_sub_diag. simpl. reflexivity.
+ unfold Z.sub, Z.opp in H0. simpl in H0.
+ simpl_pos_sub. inversion H0; trivial.
simpl. repeat rewrite pow_th.(rpow_pow_N).
- intros H1 (H2,H3). unfold Zgt in H3;simpl in H3. rewrite H3 in H2;rewrite H3.
+ intros H1 (H2,H3). simpl_pos_sub.
rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
simpl in H2. rewrite pow_th.(rpow_pow_N);simpl.
rewrite pow_pos_mul. split. ring [H2]. exact H3.
@@ -878,8 +830,7 @@ destruct n.
rewrite NPEmul_correct;simpl;rewrite NPEpow_correct;simpl.
repeat rewrite pow_th.(rpow_pow_N);simpl. rewrite pow_pos_mul.
intros (H1, H2);rewrite H1;split.
- unfold Zgt in H2;simpl in H2;rewrite H2;rewrite H2 in H1.
- simpl in H1;ring [H1]. trivial.
+ simpl_pos_sub. simpl in H1;ring [H1]. trivial.
trivial.
destruct n. trivial.
generalize (H p1 (p0*p2)%positive);clear H;destruct (isIn e1 p1 p (p0*p2)). destruct p3.
@@ -910,7 +861,7 @@ Fixpoint split_aux (e1: PExpr C) (p:positive) (e2:PExpr C) {struct e1}: rsplit :
(NPEmul (common r1) (common r2))
(right r2)
| PEpow e3 N0 => mk_rsplit (PEc cI) (PEc cI) e2
- | PEpow e3 (Npos p3) => split_aux e3 (Pmult p3 p) e2
+ | PEpow e3 (Npos p3) => split_aux e3 (Pos.mul p3 p) e2
| _ =>
match isIn e1 p e2 xH with
| Some (N0,e3) => mk_rsplit (PEc cI) (NPEpow e1 (Npos p)) e3
@@ -937,9 +888,9 @@ Proof.
repeat rewrite NPEpow_correct;simpl;
repeat rewrite pow_th.(rpow_pow_N);simpl).
intros (H, Hgt);split;try ring [H CRmorph.(morph1)].
- intros (H, Hgt). unfold Zgt in Hgt;simpl in Hgt;rewrite Hgt in H.
- simpl in H;split;try ring [H].
- rewrite <- pow_pos_plus. rewrite Pplus_minus. reflexivity. trivial.
+ intros (H, Hgt). simpl_pos_sub. simpl in H;split;try ring [H].
+ apply Z.gt_lt in Hgt.
+ now rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add.
simpl;intros. repeat rewrite NPEmul_correct;simpl.
rewrite NPEpow_correct;simpl. split;ring [CRmorph.(morph1)].
Qed.
@@ -1061,13 +1012,13 @@ Theorem Pcond_Fnorm:
forall l e,
PCond l (condition (Fnorm e)) -> ~ NPEeval l (denum (Fnorm e)) == 0.
intros l e; elim e.
- simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
- simpl in |- *; intros _ _; rewrite (morph1 CRmorph) in |- *; exact rI_neq_rO.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
+ simpl; intros _ _; rewrite (morph1 CRmorph); exact rI_neq_rO.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1078,9 +1029,9 @@ intros l e; elim e.
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; case Hrec1; auto.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1091,9 +1042,9 @@ intros l e; elim e.
rewrite (split_correct_r l (denum (Fnorm e1)) (denum (Fnorm e2))); auto.
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
apply PCond_app_inv_l with (1 := Hcond).
@@ -1105,17 +1056,17 @@ intros l e; elim e.
rewrite NPEmul_correct; simpl; rewrite HH; ring.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
+ simpl denum.
auto.
intros e1 Hrec1 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
+ simpl denum.
apply PCond_cons_inv_l with (1:=Hcond).
intros e1 Hrec1 e2 Hrec2 Hcond.
simpl condition in Hcond.
- simpl denum in |- *.
- rewrite NPEmul_correct in |- *.
- simpl in |- *.
+ simpl denum.
+ rewrite NPEmul_correct.
+ simpl.
apply field_is_integral_domain.
intros HH; apply Hrec1.
specialize PCond_cons_inv_r with (1:=Hcond); intro Hcond1.
@@ -1258,9 +1209,9 @@ Theorem Fnorm_crossproduct:
PCond l (condition nfe1 ++ condition nfe2) ->
FEeval l fe1 == FEeval l fe2.
intros l fe1 fe2 nfe1 nfe2 Hcrossprod Hcond; subst nfe1 nfe2.
-rewrite Fnorm_FEeval_PEeval in |- * by
+rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_l with (1 := Hcond).
- rewrite Fnorm_FEeval_PEeval in |- * by
+ rewrite Fnorm_FEeval_PEeval by
apply PCond_app_inv_r with (1 := Hcond).
apply cross_product_eq; trivial.
apply Pcond_Fnorm.
@@ -1355,9 +1306,9 @@ apply Fnorm_crossproduct; trivial.
match goal with
[ |- NPEeval l ?x == NPEeval l ?y] =>
rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
- O nil l I (refl_equal nil) x (refl_equal (Nnorm O nil x)));
+ O nil l I Logic.eq_refl x Logic.eq_refl);
rewrite (ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec
- O nil l I (refl_equal nil) y (refl_equal (Nnorm O nil y)))
+ O nil l I Logic.eq_refl y Logic.eq_refl)
end.
trivial.
Qed.
@@ -1377,28 +1328,28 @@ Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
-simpl in |- *.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite NPEmul_correct in |- *.
-rewrite NPEmul_correct in |- *.
-simpl in |- *.
-repeat rewrite (ARmul_assoc ARth) in |- *.
+simpl.
+rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite NPEmul_correct.
+rewrite NPEmul_correct.
+simpl.
+repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe (refl_equal (Nmk_monpol_list lpe))
- x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod.
+ Hlpe Logic.eq_refl
+ x Logic.eq_refl) in Hcrossprod.
rewrite <-(
let x := (PEmul (num (Fnorm fe2))
(rsplit_left
(split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
ring_rw_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe (refl_equal (Nmk_monpol_list lpe))
- x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod.
+ Hlpe Logic.eq_refl
+ x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
-rewrite Hcrossprod in |- *.
+rewrite Hcrossprod.
reflexivity.
Qed.
@@ -1417,28 +1368,28 @@ Proof.
intros n l lpe fe1 fe2 Hlpe lmp Hlmp nfe1 eq1 nfe2 eq2 den eq3 Hcrossprod Hcond;
subst nfe1 nfe2 den lmp.
apply Fnorm_crossproduct; trivial.
-simpl in |- *.
-rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))) in |- *.
-rewrite NPEmul_correct in |- *.
-rewrite NPEmul_correct in |- *.
-simpl in |- *.
-repeat rewrite (ARmul_assoc ARth) in |- *.
+simpl.
+rewrite (split_correct_l l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite (split_correct_r l (denum (Fnorm fe1)) (denum (Fnorm fe2))).
+rewrite NPEmul_correct.
+rewrite NPEmul_correct.
+simpl.
+repeat rewrite (ARmul_assoc ARth).
rewrite <-(
let x := PEmul (num (Fnorm fe1))
(rsplit_right (split (denum (Fnorm fe1)) (denum (Fnorm fe2)))) in
ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe (refl_equal (Nmk_monpol_list lpe))
- x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod.
+ Hlpe Logic.eq_refl
+ x Logic.eq_refl) in Hcrossprod.
rewrite <-(
let x := (PEmul (num (Fnorm fe2))
(rsplit_left
(split (denum (Fnorm fe1)) (denum (Fnorm fe2))))) in
ring_rw_pow_correct Rsth Reqe ARth CRmorph pow_th cdiv_th get_sign_spec n lpe l
- Hlpe (refl_equal (Nmk_monpol_list lpe))
- x (refl_equal (Nnorm n (Nmk_monpol_list lpe) x))) in Hcrossprod.
+ Hlpe Logic.eq_refl
+ x Logic.eq_refl) in Hcrossprod.
simpl in Hcrossprod.
-rewrite Hcrossprod in |- *.
+rewrite Hcrossprod.
reflexivity.
Qed.
@@ -1558,7 +1509,7 @@ Fixpoint Fapp (l m:list (PExpr C)) {struct l} : list (PExpr C) :=
Lemma fcons_correct : forall l l1,
PCond l (Fapp l1 nil) -> PCond l l1.
-induction l1; simpl in |- *; intros.
+induction l1; simpl; intros.
trivial.
elim PCond_fcons_inv with (1 := H); intros.
destruct l1; auto.
@@ -1639,7 +1590,7 @@ intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
- simpl in |- *.
+ simpl.
apply field_is_integral_domain; trivial.
simpl;intros. rewrite pow_th.(rpow_pow_N).
destruct (H _ H0);split;auto.
@@ -1667,7 +1618,7 @@ generalize (fun h => X (morph_eq CRmorph c1 c2 h)).
generalize (@ceqb_complete c1 c2).
case (c1 ?=! c2); auto; intros.
apply X0.
-red in |- *; intro.
+red; intro.
absurd (false = true); auto; discriminate.
Qed.
@@ -1683,18 +1634,18 @@ Fixpoint Fcons1 (e:PExpr C) (l:list (PExpr C)) {struct e} : list (PExpr C) :=
Theorem PFcons1_fcons_inv:
forall l a l1, PCond l (Fcons1 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
intros l a; elim a; try (intros; apply PFcons0_fcons_inv; auto; fail).
- simpl in |- *; intros c l1.
+ simpl; intros c l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H0).
split; trivial.
- rewrite <- (morph0 CRmorph) in |- *; trivial.
+ rewrite <- (morph0 CRmorph); trivial.
intros p H p0 H0 l1 H1.
simpl in H1.
case (H _ H1); intros H2 H3.
case (H0 _ H3); intros H4 H5; split; auto.
- simpl in |- *.
+ simpl.
apply field_is_integral_domain; trivial.
- simpl in |- *; intros p H l1.
+ simpl; intros p H l1.
apply ceqb_rect_complete; intros.
elim (@absurd_PCond_bottom l H1).
destruct (H _ H1).
@@ -1713,7 +1664,7 @@ Definition Fcons2 e l := Fcons1 (PExpr_simp e) l.
Theorem PFcons2_fcons_inv:
forall l a l1, PCond l (Fcons2 a l1) -> ~ NPEeval l a == 0 /\ PCond l l1.
-unfold Fcons2 in |- *; intros l a l1 H; split;
+unfold Fcons2; intros l a l1 H; split;
case (PFcons1_fcons_inv l (PExpr_simp a) l1); auto.
intros H1 H2 H3; case H1.
transitivity (NPEeval l a); trivial.
@@ -1792,61 +1743,55 @@ Hypothesis gen_phiPOS_not_0 : forall p, ~ gen_phiPOS1 rI radd rmul p == 0.
Lemma add_inj_r : forall p x y,
gen_phiPOS1 rI radd rmul p + x == gen_phiPOS1 rI radd rmul p + y -> x==y.
intros p x y.
-elim p using Pind; simpl in |- *; intros.
+elim p using Pos.peano_ind; simpl; intros.
apply S_inj; trivial.
apply H.
apply S_inj.
- repeat rewrite (ARadd_assoc ARth) in |- *.
- rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth) in |- *; trivial.
+ repeat rewrite (ARadd_assoc ARth).
+ rewrite <- (ARgen_phiPOS_Psucc Rsth Reqe ARth); trivial.
Qed.
Lemma gen_phiPOS_inj : forall x y,
gen_phiPOS rI radd rmul x == gen_phiPOS rI radd rmul y ->
x = y.
intros x y.
-repeat rewrite <- (same_gen Rsth Reqe ARth) in |- *.
-ElimPcompare x y; intro.
+repeat rewrite <- (same_gen Rsth Reqe ARth).
+case (Pos.compare_spec x y).
+ intros.
+ trivial.
intros.
- apply Pcompare_Eq_eq; trivial.
- intro.
elim gen_phiPOS_not_0 with (y - x)%positive.
apply add_inj_r with x.
- symmetry in |- *.
- rewrite (ARadd_0_r Rsth ARth) in |- *.
- rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
- rewrite Pplus_minus in |- *; trivial.
- change Eq with (CompOpp Eq) in |- *.
- rewrite <- Pcompare_antisym in |- *; trivial.
- rewrite H in |- *; trivial.
- intro.
+ symmetry.
+ rewrite (ARadd_0_r Rsth ARth).
+ rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
+ now rewrite Pos.add_comm, Pos.sub_add.
+ intros.
elim gen_phiPOS_not_0 with (x - y)%positive.
apply add_inj_r with y.
- rewrite (ARadd_0_r Rsth ARth) in |- *.
- rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
- rewrite Pplus_minus in |- *; trivial.
+ rewrite (ARadd_0_r Rsth ARth).
+ rewrite <- (ARgen_phiPOS_add Rsth Reqe ARth).
+ now rewrite Pos.add_comm, Pos.sub_add.
Qed.
Lemma gen_phiN_inj : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
x = y.
-destruct x; destruct y; simpl in |- *; intros; trivial.
+destruct x; destruct y; simpl; intros; trivial.
elim gen_phiPOS_not_0 with p.
- symmetry in |- *.
- rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
+ symmetry .
+ rewrite (same_gen Rsth Reqe ARth); trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *; trivial.
- rewrite gen_phiPOS_inj with (1 := H) in |- *; trivial.
+ rewrite (same_gen Rsth Reqe ARth); trivial.
+ rewrite gen_phiPOS_inj with (1 := H); trivial.
Qed.
Lemma gen_phiN_complete : forall x y,
gen_phiN rO rI radd rmul x == gen_phiN rO rI radd rmul y ->
- Neq_bool x y = true.
-intros.
- replace y with x.
- unfold Neq_bool in |- *.
- rewrite Ncompare_refl in |- *; trivial.
- apply gen_phiN_inj; trivial.
+ N.eqb x y = true.
+Proof.
+intros. now apply N.eqb_eq, gen_phiN_inj.
Qed.
End AlmostField.
@@ -1864,17 +1809,17 @@ Section Field.
Lemma ring_S_inj : forall x y, 1+x==1+y -> x==y.
intros.
transitivity (x + (1 + - (1))).
- rewrite (Ropp_def Rth) in |- *.
- symmetry in |- *.
+ rewrite (Ropp_def Rth).
+ symmetry .
apply (ARadd_0_r Rsth ARth).
transitivity (y + (1 + - (1))).
- repeat rewrite <- (ARplus_assoc ARth) in |- *.
- repeat rewrite (ARadd_assoc ARth) in |- *.
+ repeat rewrite <- (ARplus_assoc ARth).
+ repeat rewrite (ARadd_assoc ARth).
apply (Radd_ext Reqe).
- repeat rewrite <- (ARadd_comm ARth 1) in |- *.
+ repeat rewrite <- (ARadd_comm ARth 1).
trivial.
reflexivity.
- rewrite (Ropp_def Rth) in |- *.
+ rewrite (Ropp_def Rth).
apply (ARadd_0_r Rsth ARth).
Qed.
@@ -1886,14 +1831,14 @@ Let gen_phiPOS_inject :=
Lemma gen_phiPOS_discr_sgn : forall x y,
~ gen_phiPOS rI radd rmul x == - gen_phiPOS rI radd rmul y.
-red in |- *; intros.
+red; intros.
apply gen_phiPOS_not_0 with (y + x)%positive.
-rewrite (ARgen_phiPOS_add Rsth Reqe ARth) in |- *.
+rewrite (ARgen_phiPOS_add Rsth Reqe ARth).
transitivity (gen_phiPOS1 1 radd rmul y + - gen_phiPOS1 1 radd rmul y).
apply (Radd_ext Reqe); trivial.
reflexivity.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite (same_gen Rsth Reqe ARth).
trivial.
apply (Ropp_def Rth).
Qed.
@@ -1901,33 +1846,33 @@ Qed.
Lemma gen_phiZ_inj : forall x y,
gen_phiZ rO rI radd rmul ropp x == gen_phiZ rO rI radd rmul ropp y ->
x = y.
-destruct x; destruct y; simpl in |- *; intros.
+destruct x; destruct y; simpl; intros.
trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- symmetry in |- *; trivial.
+ rewrite (same_gen Rsth Reqe ARth).
+ symmetry ; trivial.
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite <- H in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite <- H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
trivial.
- rewrite gen_phiPOS_inject with (1 := H) in |- *; trivial.
+ rewrite gen_phiPOS_inject with (1 := H); trivial.
elim gen_phiPOS_discr_sgn with (1 := H).
elim gen_phiPOS_not_0 with p.
- rewrite (same_gen Rsth Reqe ARth) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite H in |- *.
+ rewrite (same_gen Rsth Reqe ARth).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite H.
apply (ARopp_zero Rsth Reqe ARth).
elim gen_phiPOS_discr_sgn with p0 p.
- symmetry in |- *; trivial.
+ symmetry ; trivial.
replace p0 with p; trivial.
apply gen_phiPOS_inject.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)) in |- *.
- rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)) in |- *.
- rewrite H in |- *; trivial.
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p)).
+ rewrite <- (Ropp_opp Rsth Reqe Rth (gen_phiPOS 1 radd rmul p0)).
+ rewrite H; trivial.
reflexivity.
Qed.
@@ -1936,8 +1881,8 @@ Lemma gen_phiZ_complete : forall x y,
Zeq_bool x y = true.
intros.
replace y with x.
- unfold Zeq_bool in |- *.
- rewrite Zcompare_refl in |- *; trivial.
+ unfold Zeq_bool.
+ rewrite Z.compare_refl; trivial.
apply gen_phiZ_inj; trivial.
Qed.
diff --git a/plugins/setoid_ring/InitialRing.v b/plugins/setoid_ring/InitialRing.v
index 026e70c8..e805151c 100644
--- a/plugins/setoid_ring/InitialRing.v
+++ b/plugins/setoid_ring/InitialRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -13,7 +13,6 @@ Require Import BinNat.
Require Import Setoid.
Require Import Ring_theory.
Require Import Ring_polynom.
-Require Import ZOdiv_def.
Import List.
Set Implicit Arguments.
@@ -28,14 +27,14 @@ Definition NotConstant := false.
Lemma Zsth : Setoid_Theory Z (@eq Z).
Proof (Eqsth Z).
-Lemma Zeqe : ring_eq_ext Zplus Zmult Zopp (@eq Z).
-Proof (Eq_ext Zplus Zmult Zopp).
+Lemma Zeqe : ring_eq_ext Z.add Z.mul Z.opp (@eq Z).
+Proof (Eq_ext Z.add Z.mul Z.opp).
-Lemma Zth : ring_theory Z0 (Zpos xH) Zplus Zmult Zminus Zopp (@eq Z).
+Lemma Zth : ring_theory Z0 (Zpos xH) Z.add Z.mul Z.sub Z.opp (@eq Z).
Proof.
- constructor. exact Zplus_0_l. exact Zplus_comm. exact Zplus_assoc.
- exact Zmult_1_l. exact Zmult_comm. exact Zmult_assoc.
- exact Zmult_plus_distr_l. trivial. exact Zminus_diag.
+ constructor. exact Z.add_0_l. exact Z.add_comm. exact Z.add_assoc.
+ exact Z.mul_1_l. exact Z.mul_comm. exact Z.mul_assoc.
+ exact Z.mul_add_distr_r. trivial. exact Z.sub_diag.
Qed.
(** Two generic morphisms from Z to (abrbitrary) rings, *)
@@ -93,12 +92,12 @@ Section ZMORPHISM.
| _ => None
end.
- Lemma get_signZ_th : sign_theory Zopp Zeq_bool get_signZ.
+ Lemma get_signZ_th : sign_theory Z.opp Zeq_bool get_signZ.
Proof.
constructor.
destruct c;intros;try discriminate.
injection H;clear H;intros H1;subst c'.
- simpl. unfold Zeq_bool. rewrite Zcompare_refl. trivial.
+ simpl. unfold Zeq_bool. rewrite Z.compare_refl. trivial.
Qed.
@@ -117,7 +116,7 @@ Section ZMORPHISM.
Qed.
Lemma ARgen_phiPOS_Psucc : forall x,
- gen_phiPOS1 (Psucc x) == 1 + (gen_phiPOS1 x).
+ gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
Proof.
induction x;simpl;norm.
rewrite IHx;norm.
@@ -128,7 +127,7 @@ Section ZMORPHISM.
gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
Proof.
induction x;destruct y;simpl;norm.
- rewrite Pplus_carry_spec.
+ rewrite Pos.add_carry_spec.
rewrite ARgen_phiPOS_Psucc.
rewrite IHx;norm.
add_push (gen_phiPOS1 y);add_push 1;rrefl.
@@ -170,48 +169,28 @@ Section ZMORPHISM.
rewrite H1;rrefl.
Qed.
- Lemma gen_phiZ1_add_pos_neg : forall x y,
- gen_phiZ1
- match (x ?= y)%positive Eq with
- | Eq => Z0
- | Lt => Zneg (y - x)
- | Gt => Zpos (x - y)
- end
- == gen_phiPOS1 x + -gen_phiPOS1 y.
+ Lemma gen_phiZ1_pos_sub : forall x y,
+ gen_phiZ1 (Z.pos_sub x y) == gen_phiPOS1 x + -gen_phiPOS1 y.
Proof.
intros x y.
- assert (H:= (Pcompare_Eq_eq x y)); assert (H0 := Pminus_mask_Gt x y).
- generalize (Pminus_mask_Gt y x).
- replace Eq with (CompOpp Eq);[intro H1;simpl|trivial].
- rewrite <- Pcompare_antisym in H1.
- destruct ((x ?= y)%positive Eq).
- rewrite H;trivial. rewrite (Ropp_def Rth);rrefl.
- destruct H1 as [h [Heq1 [Heq2 Hor]]];trivial.
- unfold Pminus; rewrite Heq1;rewrite <- Heq2.
+ rewrite Z.pos_sub_spec.
+ case Pos.compare_spec; intros H; simpl.
+ rewrite H. rewrite (Ropp_def Rth);rrefl.
+ rewrite <- (Pos.sub_add y x H) at 2. rewrite Pos.add_comm.
rewrite (ARgen_phiPOS_add ARth);simpl;norm.
rewrite (Ropp_def Rth);norm.
- destruct H0 as [h [Heq1 [Heq2 Hor]]];trivial.
- unfold Pminus; rewrite Heq1;rewrite <- Heq2.
+ rewrite <- (Pos.sub_add x y H) at 2.
rewrite (ARgen_phiPOS_add ARth);simpl;norm.
- add_push (gen_phiPOS1 h);rewrite (Ropp_def Rth); norm.
+ add_push (gen_phiPOS1 (x-y));rewrite (Ropp_def Rth); norm.
Qed.
- Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
- match CompOpp x with Eq => be | Lt => bl | Gt => bg end
- = match x with Eq => be | Lt => bg | Gt => bl end.
- Proof. destruct x;simpl;intros;trivial. Qed.
-
Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
Proof.
intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
- induction x;destruct y;simpl;norm.
+ destruct x, y; simpl; norm.
apply (ARgen_phiPOS_add ARth).
- apply gen_phiZ1_add_pos_neg.
- replace Eq with (CompOpp Eq);trivial.
- rewrite <- Pcompare_antisym;simpl.
- rewrite match_compOpp.
- rewrite (Radd_comm Rth).
- apply gen_phiZ1_add_pos_neg.
+ apply gen_phiZ1_pos_sub.
+ rewrite gen_phiZ1_pos_sub. apply (Radd_comm Rth).
rewrite (ARgen_phiPOS_add ARth); norm.
Qed.
@@ -229,10 +208,10 @@ Section ZMORPHISM.
(*proof that [.] satisfies morphism specifications*)
Lemma gen_phiZ_morph :
ring_morph 0 1 radd rmul rsub ropp req Z0 (Zpos xH)
- Zplus Zmult Zminus Zopp Zeq_bool gen_phiZ.
+ Z.add Z.mul Z.sub Z.opp Zeq_bool gen_phiZ.
Proof.
assert ( SRmorph : semi_morph 0 1 radd rmul req Z0 (Zpos xH)
- Zplus Zmult Zeq_bool gen_phiZ).
+ Z.add Z.mul Zeq_bool gen_phiZ).
apply mkRmorph;simpl;try rrefl.
apply gen_phiZ_add. apply gen_phiZ_mul. apply gen_Zeqb_ok.
apply (Smorph_morph Rsth Reqe Rth Zth SRmorph gen_phiZ_ext).
@@ -244,47 +223,28 @@ End ZMORPHISM.
Lemma Nsth : Setoid_Theory N (@eq N).
Proof (Eqsth N).
-Lemma Nseqe : sring_eq_ext Nplus Nmult (@eq N).
-Proof (Eq_s_ext Nplus Nmult).
+Lemma Nseqe : sring_eq_ext N.add N.mul (@eq N).
+Proof (Eq_s_ext N.add N.mul).
-Lemma Nth : semi_ring_theory N0 (Npos xH) Nplus Nmult (@eq N).
+Lemma Nth : semi_ring_theory 0%N 1%N N.add N.mul (@eq N).
Proof.
- constructor. exact Nplus_0_l. exact Nplus_comm. exact Nplus_assoc.
- exact Nmult_1_l. exact Nmult_0_l. exact Nmult_comm. exact Nmult_assoc.
- exact Nmult_plus_distr_r.
+ constructor. exact N.add_0_l. exact N.add_comm. exact N.add_assoc.
+ exact N.mul_1_l. exact N.mul_0_l. exact N.mul_comm. exact N.mul_assoc.
+ exact N.mul_add_distr_r.
Qed.
-Definition Nsub := SRsub Nplus.
+Definition Nsub := SRsub N.add.
Definition Nopp := (@SRopp N).
-Lemma Neqe : ring_eq_ext Nplus Nmult Nopp (@eq N).
+Lemma Neqe : ring_eq_ext N.add N.mul Nopp (@eq N).
Proof (SReqe_Reqe Nseqe).
Lemma Nath :
- almost_ring_theory N0 (Npos xH) Nplus Nmult Nsub Nopp (@eq N).
+ almost_ring_theory 0%N 1%N N.add N.mul Nsub Nopp (@eq N).
Proof (SRth_ARth Nsth Nth).
-Definition Neq_bool (x y:N) :=
- match Ncompare x y with
- | Eq => true
- | _ => false
- end.
-
-Lemma Neq_bool_ok : forall x y, Neq_bool x y = true -> x = y.
- Proof.
- intros x y;unfold Neq_bool.
- assert (H:=Ncompare_Eq_eq x y);
- destruct (Ncompare x y);intros;try discriminate.
- rewrite H;trivial.
- Qed.
-
-Lemma Neq_bool_complete : forall x y, Neq_bool x y = true -> x = y.
- Proof.
- intros x y;unfold Neq_bool.
- assert (H:=Ncompare_Eq_eq x y);
- destruct (Ncompare x y);intros;try discriminate.
- rewrite H;trivial.
- Qed.
+Lemma Neqb_ok : forall x y, N.eqb x y = true -> x = y.
+Proof. exact (fun x y => proj1 (N.eqb_eq x y)). Qed.
(**Same as above : definition of two,extensionaly equal, generic morphisms *)
(**from N to any semi-ring*)
@@ -307,9 +267,7 @@ Section NMORPHISM.
Notation "x == y" := (req x y).
Add Morphism radd : radd_ext4. exact (Radd_ext Reqe). Qed.
Add Morphism rmul : rmul_ext4. exact (Rmul_ext Reqe). Qed.
- Add Morphism ropp : ropp_ext4. exact (Ropp_ext Reqe). Qed.
- Add Morphism rsub : rsub_ext5. exact (ARsub_ext Rsth Reqe ARth). Qed.
- Ltac norm := gen_srewrite Rsth Reqe ARth.
+ Ltac norm := gen_srewrite_sr Rsth Reqe ARth.
Definition gen_phiN1 x :=
match x with
@@ -326,8 +284,8 @@ Section NMORPHISM.
Lemma same_genN : forall x, [x] == gen_phiN1 x.
Proof.
- destruct x;simpl. rrefl.
- rewrite (same_gen Rsth Reqe ARth);rrefl.
+ destruct x;simpl. reflexivity.
+ now rewrite (same_gen Rsth Reqe ARth).
Qed.
Lemma gen_phiN_add : forall x y, [x + y] == [x] + [y].
@@ -349,11 +307,11 @@ Section NMORPHISM.
(*gen_phiN satisfies morphism specifications*)
Lemma gen_phiN_morph : ring_morph 0 1 radd rmul rsub ropp req
- N0 (Npos xH) Nplus Nmult Nsub Nopp Neq_bool gen_phiN.
+ 0%N 1%N N.add N.mul Nsub Nopp N.eqb gen_phiN.
Proof.
- constructor;intros;simpl; try rrefl.
- apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
- rewrite (Neq_bool_ok x y);trivial. rrefl.
+ constructor; simpl; try reflexivity.
+ apply gen_phiN_add. apply gen_phiN_sub. apply gen_phiN_mult.
+ intros x y EQ. apply N.eqb_eq in EQ. now subst.
Qed.
End NMORPHISM.
@@ -402,7 +360,7 @@ Fixpoint Nw_is0 (w : Nword) : bool :=
Fixpoint Nweq_bool (w1 w2 : Nword) {struct w1} : bool :=
match w1, w2 with
| n1::w1', n2::w2' =>
- if Neq_bool n1 n2 then Nweq_bool w1' w2' else false
+ if N.eqb n1 n2 then Nweq_bool w1' w2' else false
| nil, _ => Nw_is0 w2
| _, nil => Nw_is0 w1
end.
@@ -438,14 +396,14 @@ Section NWORDMORPHISM.
Lemma gen_phiNword0_ok : forall w, Nw_is0 w = true -> gen_phiNword w == 0.
Proof.
-induction w; simpl in |- *; intros; auto.
+induction w; simpl; intros; auto.
reflexivity.
destruct a.
destruct w.
reflexivity.
- rewrite IHw in |- *; trivial.
+ rewrite IHw; trivial.
apply (ARopp_zero Rsth Reqe ARth).
discriminate.
@@ -454,7 +412,7 @@ Qed.
Lemma gen_phiNword_cons : forall w n,
gen_phiNword (n::w) == gen_phiN rO rI radd rmul n - gen_phiNword w.
induction w.
- destruct n; simpl in |- *; norm.
+ destruct n; simpl; norm.
intros.
destruct n; norm.
@@ -465,31 +423,31 @@ Qed.
destruct w; intros.
destruct n; norm.
- unfold Nwcons in |- *.
- rewrite gen_phiNword_cons in |- *.
+ unfold Nwcons.
+ rewrite gen_phiNword_cons.
reflexivity.
Qed.
Lemma gen_phiNword_ok : forall w1 w2,
Nweq_bool w1 w2 = true -> gen_phiNword w1 == gen_phiNword w2.
induction w1; intros.
- simpl in |- *.
- rewrite (gen_phiNword0_ok _ H) in |- *.
+ simpl.
+ rewrite (gen_phiNword0_ok _ H).
reflexivity.
- rewrite gen_phiNword_cons in |- *.
+ rewrite gen_phiNword_cons.
destruct w2.
simpl in H.
destruct a; try discriminate.
- rewrite (gen_phiNword0_ok _ H) in |- *.
+ rewrite (gen_phiNword0_ok _ H).
norm.
simpl in H.
- rewrite gen_phiNword_cons in |- *.
- case_eq (Neq_bool a n); intros.
+ rewrite gen_phiNword_cons.
+ case_eq (N.eqb a n); intros H0.
rewrite H0 in H.
- rewrite <- (Neq_bool_ok _ _ H0) in |- *.
- rewrite (IHw1 _ H) in |- *.
+ apply N.eqb_eq in H0. rewrite <- H0.
+ rewrite (IHw1 _ H).
reflexivity.
rewrite H0 in H; discriminate H.
@@ -499,27 +457,27 @@ Qed.
Lemma Nwadd_ok : forall x y,
gen_phiNword (Nwadd x y) == gen_phiNword x + gen_phiNword y.
induction x; intros.
- simpl in |- *.
+ simpl.
norm.
destruct y.
simpl Nwadd; norm.
- simpl Nwadd in |- *.
- repeat rewrite gen_phiNword_cons in |- *.
- rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) in |- * by
+ simpl Nwadd.
+ repeat rewrite gen_phiNword_cons.
+ rewrite (fun sreq => gen_phiN_add Rsth sreq (ARth_SRth ARth)) by
(destruct Reqe; constructor; trivial).
- rewrite IHx in |- *.
+ rewrite IHx.
norm.
add_push (- gen_phiNword x); reflexivity.
Qed.
Lemma Nwopp_ok : forall x, gen_phiNword (Nwopp x) == - gen_phiNword x.
-simpl in |- *.
-unfold Nwopp in |- *; simpl in |- *.
+simpl.
+unfold Nwopp; simpl.
intros.
-rewrite gen_phiNword_Nwcons in |- *; norm.
+rewrite gen_phiNword_Nwcons; norm.
Qed.
Lemma Nwscal_ok : forall n x,
@@ -527,12 +485,12 @@ Lemma Nwscal_ok : forall n x,
induction x; intros.
norm.
- simpl Nwscal in |- *.
- repeat rewrite gen_phiNword_cons in |- *.
- rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth)) in |- *
+ simpl Nwscal.
+ repeat rewrite gen_phiNword_cons.
+ rewrite (fun sreq => gen_phiN_mult Rsth sreq (ARth_SRth ARth))
by (destruct Reqe; constructor; trivial).
- rewrite IHx in |- *.
+ rewrite IHx.
norm.
Qed.
@@ -542,19 +500,19 @@ induction x; intros.
norm.
destruct a.
- simpl Nwmul in |- *.
- rewrite Nwopp_ok in |- *.
- rewrite IHx in |- *.
- rewrite gen_phiNword_cons in |- *.
+ simpl Nwmul.
+ rewrite Nwopp_ok.
+ rewrite IHx.
+ rewrite gen_phiNword_cons.
norm.
- simpl Nwmul in |- *.
- unfold Nwsub in |- *.
- rewrite Nwadd_ok in |- *.
- rewrite Nwscal_ok in |- *.
- rewrite Nwopp_ok in |- *.
- rewrite IHx in |- *.
- rewrite gen_phiNword_cons in |- *.
+ simpl Nwmul.
+ unfold Nwsub.
+ rewrite Nwadd_ok.
+ rewrite Nwscal_ok.
+ rewrite Nwopp_ok.
+ rewrite IHx.
+ rewrite gen_phiNword_cons.
norm.
Qed.
@@ -570,9 +528,9 @@ constructor.
exact Nwadd_ok.
intros.
- unfold Nwsub in |- *.
- rewrite Nwadd_ok in |- *.
- rewrite Nwopp_ok in |- *.
+ unfold Nwsub.
+ rewrite Nwadd_ok.
+ rewrite Nwopp_ok.
norm.
exact Nwmul_ok.
@@ -632,19 +590,19 @@ Qed.
Variable zphi : Z -> R.
- Lemma Ztriv_div_th : div_theory req Zplus Zmult zphi ZOdiv_eucl.
+ Lemma Ztriv_div_th : div_theory req Z.add Z.mul zphi Z.quotrem.
Proof.
constructor.
- intros; generalize (ZOdiv_eucl_correct a b); case ZOdiv_eucl; intros; subst.
- rewrite Zmult_comm; rsimpl.
+ intros; generalize (Z.quotrem_eq a b); case Z.quotrem; intros; subst.
+ rewrite Z.mul_comm; rsimpl.
Qed.
Variable nphi : N -> R.
- Lemma Ntriv_div_th : div_theory req Nplus Nmult nphi Ndiv_eucl.
+ Lemma Ntriv_div_th : div_theory req N.add N.mul nphi N.div_eucl.
constructor.
- intros; generalize (Ndiv_eucl_correct a b); case Ndiv_eucl; intros; subst.
- rewrite Nmult_comm; rsimpl.
+ intros; generalize (N.div_eucl_spec a b); case N.div_eucl; intros; subst.
+ rewrite N.mul_comm; rsimpl.
Qed.
End GEN_DIV.
@@ -783,10 +741,10 @@ Ltac gen_ring_sign morph sspec :=
Ltac default_div_spec set reqe arth morph :=
match type of morph with
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
- Z ?c0 ?c1 Zplus Zmult ?csub ?copp ?ceq_b ?phi =>
+ Z ?c0 ?c1 Z.add Z.mul ?csub ?copp ?ceq_b ?phi =>
constr:(mkhypo (Ztriv_div_th set phi))
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
- N ?c0 ?c1 Nplus Nmult ?csub ?copp ?ceq_b ?phi =>
+ N ?c0 ?c1 N.add N.mul ?csub ?copp ?ceq_b ?phi =>
constr:(mkhypo (Ntriv_div_th set phi))
| @ring_morph ?R ?r0 ?rI ?radd ?rmul ?rsub ?ropp ?req
?C ?c0 ?c1 ?cadd ?cmul ?csub ?copp ?ceq_b ?phi =>
@@ -878,7 +836,7 @@ Ltac isPcst t :=
| xO ?p => isPcst p
| xH => constr:true
(* nat -> positive *)
- | P_of_succ_nat ?n => isnatcst n
+ | Pos.of_succ_nat ?n => isnatcst n
| _ => constr:false
end.
@@ -895,9 +853,9 @@ Ltac isZcst t :=
| Zpos ?p => isPcst p
| Zneg ?p => isPcst p
(* injection nat -> Z *)
- | Z_of_nat ?n => isnatcst n
+ | Z.of_nat ?n => isnatcst n
(* injection N -> Z *)
- | Z_of_N ?n => isNcst n
+ | Z.of_N ?n => isNcst n
(* *)
| _ => constr:false
end.
diff --git a/plugins/setoid_ring/Integral_domain.v b/plugins/setoid_ring/Integral_domain.v
new file mode 100644
index 00000000..0c16fe1a
--- /dev/null
+++ b/plugins/setoid_ring/Integral_domain.v
@@ -0,0 +1,43 @@
+Require Export Cring.
+
+
+(* Definition of integral domains: commutative ring without zero divisor *)
+
+Class Integral_domain {R : Type}`{Rcr:Cring R} := {
+ integral_domain_product:
+ forall x y, x * y == 0 -> x == 0 \/ y == 0;
+ integral_domain_one_zero: not (1 == 0)}.
+
+Section integral_domain.
+
+Context {R:Type}`{Rid:Integral_domain R}.
+
+Lemma integral_domain_minus_one_zero: ~ - (1:R) == 0.
+red;intro. apply integral_domain_one_zero.
+assert (0 == - (0:R)). cring.
+rewrite H0. rewrite <- H. cring.
+Qed.
+
+
+Definition pow (r : R) (n : nat) := Ring_theory.pow_N 1 mul r (N.of_nat n).
+
+Lemma pow_not_zero: forall p n, pow p n == 0 -> p == 0.
+induction n. unfold pow; simpl. intros. absurd (1 == 0).
+simpl. apply integral_domain_one_zero.
+ trivial. setoid_replace (pow p (S n)) with (p * (pow p n)).
+intros.
+case (integral_domain_product p (pow p n) H). trivial. trivial.
+unfold pow; simpl.
+clear IHn. induction n; simpl; try cring.
+ rewrite Ring_theory.pow_pos_succ. cring. apply ring_setoid.
+apply ring_mult_comp.
+apply ring_mul_assoc.
+Qed.
+
+Lemma Rintegral_domain_pow:
+ forall c p r, ~c == 0 -> c * (pow p r) == ring0 -> p == ring0.
+intros. case (integral_domain_product c (pow p r) H0). intros; absurd (c == ring0); auto.
+intros. apply pow_not_zero with r. trivial. Qed.
+
+End integral_domain.
+
diff --git a/plugins/setoid_ring/NArithRing.v b/plugins/setoid_ring/NArithRing.v
index 8d7cb0ea..fae98d83 100644
--- a/plugins/setoid_ring/NArithRing.v
+++ b/plugins/setoid_ring/NArithRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -18,4 +18,4 @@ Ltac Ncst t :=
| _ => constr:NotConstant
end.
-Add Ring Nr : Nth (decidable Neq_bool_ok, constants [Ncst]).
+Add Ring Nr : Nth (decidable Neqb_ok, constants [Ncst]).
diff --git a/plugins/setoid_ring/Ncring.v b/plugins/setoid_ring/Ncring.v
new file mode 100644
index 00000000..7789ba3e
--- /dev/null
+++ b/plugins/setoid_ring/Ncring.v
@@ -0,0 +1,306 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* non commutative rings *)
+
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinNat.
+Require Export Morphisms Setoid Bool.
+Require Export ZArith_base.
+Require Export Algebra_syntax.
+
+Set Implicit Arguments.
+
+Class Ring_ops(T:Type)
+ {ring0:T}
+ {ring1:T}
+ {add:T->T->T}
+ {mul:T->T->T}
+ {sub:T->T->T}
+ {opp:T->T}
+ {ring_eq:T->T->Prop}.
+
+Instance zero_notation(T:Type)`{Ring_ops T}:Zero T:= ring0.
+Instance one_notation(T:Type)`{Ring_ops T}:One T:= ring1.
+Instance add_notation(T:Type)`{Ring_ops T}:Addition T:= add.
+Instance mul_notation(T:Type)`{Ring_ops T}:@Multiplication T T:= mul.
+Instance sub_notation(T:Type)`{Ring_ops T}:Subtraction T:= sub.
+Instance opp_notation(T:Type)`{Ring_ops T}:Opposite T:= opp.
+Instance eq_notation(T:Type)`{Ring_ops T}:@Equality T:= ring_eq.
+
+Class Ring `{Ro:Ring_ops}:={
+ ring_setoid: Equivalence _==_;
+ ring_plus_comp: Proper (_==_ ==> _==_ ==>_==_) _+_;
+ ring_mult_comp: Proper (_==_ ==> _==_ ==>_==_) _*_;
+ ring_sub_comp: Proper (_==_ ==> _==_ ==>_==_) _-_;
+ ring_opp_comp: Proper (_==_==>_==_) -_;
+ ring_add_0_l : forall x, 0 + x == x;
+ ring_add_comm : forall x y, x + y == y + x;
+ ring_add_assoc : forall x y z, x + (y + z) == (x + y) + z;
+ ring_mul_1_l : forall x, 1 * x == x;
+ ring_mul_1_r : forall x, x * 1 == x;
+ ring_mul_assoc : forall x y z, x * (y * z) == (x * y) * z;
+ ring_distr_l : forall x y z, (x + y) * z == x * z + y * z;
+ ring_distr_r : forall x y z, z * ( x + y) == z * x + z * y;
+ ring_sub_def : forall x y, x - y == x + -y;
+ ring_opp_def : forall x, x + -x == 0
+}.
+(* inutile! je sais plus pourquoi j'ai mis ca...
+Instance ring_Ring_ops(R:Type)`{Ring R}
+ :@Ring_ops R 0 1 addition multiplication subtraction opposite equality.
+*)
+Existing Instance ring_setoid.
+Existing Instance ring_plus_comp.
+Existing Instance ring_mult_comp.
+Existing Instance ring_sub_comp.
+Existing Instance ring_opp_comp.
+
+Section Ring_power.
+
+Context {R:Type}`{Ring R}.
+
+ Fixpoint pow_pos (x:R) (i:positive) {struct i}: R :=
+ match i with
+ | xH => x
+ | xO i => let p := pow_pos x i in p * p
+ | xI i => let p := pow_pos x i in x * (p * p)
+ end.
+
+ Definition pow_N (x:R) (p:N) :=
+ match p with
+ | N0 => 1
+ | Npos p => pow_pos x p
+ end.
+
+End Ring_power.
+
+Definition ZN(x:Z):=
+ match x with
+ Z0 => N0
+ |Zpos p | Zneg p => Npos p
+end.
+
+Instance power_ring {R:Type}`{Ring R} : Power:=
+ {power x y := pow_N x (ZN y)}.
+
+(** Interpretation morphisms definition*)
+
+Class Ring_morphism (C R:Type)`{Cr:Ring C} `{Rr:Ring R}`{Rh:Bracket C R}:= {
+ ring_morphism0 : [0] == 0;
+ ring_morphism1 : [1] == 1;
+ ring_morphism_add : forall x y, [x + y] == [x] + [y];
+ ring_morphism_sub : forall x y, [x - y] == [x] - [y];
+ ring_morphism_mul : forall x y, [x * y] == [x] * [y];
+ ring_morphism_opp : forall x, [-x] == -[x];
+ ring_morphism_eq : forall x y, x == y -> [x] == [y]}.
+
+Section Ring.
+
+Context {R:Type}`{Rr:Ring R}.
+
+(* Powers *)
+
+Lemma pow_pos_comm : forall x j, x * pow_pos x j == pow_pos x j * x.
+Proof.
+induction j; simpl. rewrite <- ring_mul_assoc.
+rewrite <- ring_mul_assoc.
+rewrite <- IHj. rewrite (ring_mul_assoc (pow_pos x j) x (pow_pos x j)).
+rewrite <- IHj. rewrite <- ring_mul_assoc. reflexivity.
+rewrite <- ring_mul_assoc. rewrite <- IHj.
+rewrite ring_mul_assoc. rewrite IHj.
+rewrite <- ring_mul_assoc. rewrite IHj. reflexivity. reflexivity.
+Qed.
+
+Lemma pow_pos_succ : forall x j, pow_pos x (Pos.succ j) == x * pow_pos x j.
+Proof.
+induction j; simpl.
+ rewrite IHj.
+rewrite <- (ring_mul_assoc x (pow_pos x j) (x * pow_pos x j)).
+rewrite (ring_mul_assoc (pow_pos x j) x (pow_pos x j)).
+ rewrite <- pow_pos_comm.
+rewrite <- ring_mul_assoc. reflexivity.
+reflexivity. reflexivity.
+Qed.
+
+Lemma pow_pos_add : forall x i j,
+ pow_pos x (i + j) == pow_pos x i * pow_pos x j.
+Proof.
+ intro x;induction i;intros.
+ rewrite Pos.xI_succ_xO;rewrite <- Pos.add_1_r.
+ rewrite <- Pos.add_diag;repeat rewrite <- Pos.add_assoc.
+ repeat rewrite IHi.
+ rewrite Pos.add_comm;rewrite Pos.add_1_r;
+ rewrite pow_pos_succ.
+ simpl;repeat rewrite ring_mul_assoc. reflexivity.
+ rewrite <- Pos.add_diag;repeat rewrite <- Pos.add_assoc.
+ repeat rewrite IHi. rewrite ring_mul_assoc. reflexivity.
+ rewrite Pos.add_comm;rewrite Pos.add_1_r;rewrite pow_pos_succ.
+ simpl. reflexivity.
+ Qed.
+
+ Definition id_phi_N (x:N) : N := x.
+
+ Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n.
+ Proof.
+ intros; reflexivity.
+ Qed.
+
+ (** Identity is a morphism *)
+ (*
+ Instance IDmorph : Ring_morphism _ _ _ (fun x => x).
+ Proof.
+ apply (Build_Ring_morphism H6 H6 (fun x => x));intros;
+ try reflexivity. trivial.
+ Qed.
+*)
+ (** rings are almost rings*)
+ Lemma ring_mul_0_l : forall x, 0 * x == 0.
+ Proof.
+ intro x. setoid_replace (0*x) with ((0+1)*x + -x).
+ rewrite ring_add_0_l. rewrite ring_mul_1_l .
+ rewrite ring_opp_def . fold zero. reflexivity.
+ rewrite ring_distr_l . rewrite ring_mul_1_l .
+ rewrite <- ring_add_assoc ; rewrite ring_opp_def .
+ rewrite ring_add_comm ; rewrite ring_add_0_l ;reflexivity.
+ Qed.
+
+ Lemma ring_mul_0_r : forall x, x * 0 == 0.
+ Proof.
+ intro x; setoid_replace (x*0) with (x*(0+1) + -x).
+ rewrite ring_add_0_l ; rewrite ring_mul_1_r .
+ rewrite ring_opp_def ; fold zero; reflexivity.
+
+ rewrite ring_distr_r ;rewrite ring_mul_1_r .
+ rewrite <- ring_add_assoc ; rewrite ring_opp_def .
+ rewrite ring_add_comm ; rewrite ring_add_0_l ;reflexivity.
+ Qed.
+
+ Lemma ring_opp_mul_l : forall x y, -(x * y) == -x * y.
+ Proof.
+ intros x y;rewrite <- (ring_add_0_l (- x * y)).
+ rewrite ring_add_comm .
+ rewrite <- (ring_opp_def (x*y)).
+ rewrite ring_add_assoc .
+ rewrite <- ring_distr_l.
+ rewrite (ring_add_comm (-x));rewrite ring_opp_def .
+ rewrite ring_mul_0_l;rewrite ring_add_0_l ;reflexivity.
+ Qed.
+
+Lemma ring_opp_mul_r : forall x y, -(x * y) == x * -y.
+ Proof.
+ intros x y;rewrite <- (ring_add_0_l (x * - y)).
+ rewrite ring_add_comm .
+ rewrite <- (ring_opp_def (x*y)).
+ rewrite ring_add_assoc .
+ rewrite <- ring_distr_r .
+ rewrite (ring_add_comm (-y));rewrite ring_opp_def .
+ rewrite ring_mul_0_r;rewrite ring_add_0_l ;reflexivity.
+ Qed.
+
+ Lemma ring_opp_add : forall x y, -(x + y) == -x + -y.
+ Proof.
+ intros x y;rewrite <- (ring_add_0_l (-(x+y))).
+ rewrite <- (ring_opp_def x).
+ rewrite <- (ring_add_0_l (x + - x + - (x + y))).
+ rewrite <- (ring_opp_def y).
+ rewrite (ring_add_comm x).
+ rewrite (ring_add_comm y).
+ rewrite <- (ring_add_assoc (-y)).
+ rewrite <- (ring_add_assoc (- x)).
+ rewrite (ring_add_assoc y).
+ rewrite (ring_add_comm y).
+ rewrite <- (ring_add_assoc (- x)).
+ rewrite (ring_add_assoc y).
+ rewrite (ring_add_comm y);rewrite ring_opp_def .
+ rewrite (ring_add_comm (-x) 0);rewrite ring_add_0_l .
+ rewrite ring_add_comm; reflexivity.
+ Qed.
+
+ Lemma ring_opp_opp : forall x, - -x == x.
+ Proof.
+ intros x; rewrite <- (ring_add_0_l (- -x)).
+ rewrite <- (ring_opp_def x).
+ rewrite <- ring_add_assoc ; rewrite ring_opp_def .
+ rewrite (ring_add_comm x); rewrite ring_add_0_l . reflexivity.
+ Qed.
+
+ Lemma ring_sub_ext :
+ forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2.
+ Proof.
+ intros.
+ setoid_replace (x1 - y1) with (x1 + -y1).
+ setoid_replace (x2 - y2) with (x2 + -y2).
+ rewrite H;rewrite H0;reflexivity.
+ rewrite ring_sub_def. reflexivity.
+ rewrite ring_sub_def. reflexivity.
+ Qed.
+
+ Ltac mrewrite :=
+ repeat first
+ [ rewrite ring_add_0_l
+ | rewrite <- (ring_add_comm 0)
+ | rewrite ring_mul_1_l
+ | rewrite ring_mul_0_l
+ | rewrite ring_distr_l
+ | reflexivity
+ ].
+
+ Lemma ring_add_0_r : forall x, (x + 0) == x.
+ Proof. intros; mrewrite. Qed.
+
+
+ Lemma ring_add_assoc1 : forall x y z, (x + y) + z == (y + z) + x.
+ Proof.
+ intros;rewrite <- (ring_add_assoc x).
+ rewrite (ring_add_comm x);reflexivity.
+ Qed.
+
+ Lemma ring_add_assoc2 : forall x y z, (y + x) + z == (y + z) + x.
+ Proof.
+ intros; repeat rewrite <- ring_add_assoc.
+ rewrite (ring_add_comm x); reflexivity.
+ Qed.
+
+ Lemma ring_opp_zero : -0 == 0.
+ Proof.
+ rewrite <- (ring_mul_0_r 0). rewrite ring_opp_mul_l.
+ repeat rewrite ring_mul_0_r. reflexivity.
+ Qed.
+
+End Ring.
+
+(** Some simplification tactics*)
+Ltac gen_reflexivity := reflexivity.
+
+Ltac gen_rewrite :=
+ repeat first
+ [ reflexivity
+ | progress rewrite ring_opp_zero
+ | rewrite ring_add_0_l
+ | rewrite ring_add_0_r
+ | rewrite ring_mul_1_l
+ | rewrite ring_mul_1_r
+ | rewrite ring_mul_0_l
+ | rewrite ring_mul_0_r
+ | rewrite ring_distr_l
+ | rewrite ring_distr_r
+ | rewrite ring_add_assoc
+ | rewrite ring_mul_assoc
+ | progress rewrite ring_opp_add
+ | progress rewrite ring_sub_def
+ | progress rewrite <- ring_opp_mul_l
+ | progress rewrite <- ring_opp_mul_r ].
+
+Ltac gen_add_push x :=
+repeat (match goal with
+ | |- context [(?y + x) + ?z] =>
+ progress rewrite (ring_add_assoc2 x y z)
+ | |- context [(x + ?y) + ?z] =>
+ progress rewrite (ring_add_assoc1 x y z)
+ end).
diff --git a/plugins/setoid_ring/Ncring_initial.v b/plugins/setoid_ring/Ncring_initial.v
new file mode 100644
index 00000000..528ad4f1
--- /dev/null
+++ b/plugins/setoid_ring/Ncring_initial.v
@@ -0,0 +1,209 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import ZArith_base.
+Require Import Zpow_def.
+Require Import BinInt.
+Require Import BinNat.
+Require Import Setoid.
+Require Import BinList.
+Require Import BinPos.
+Require Import BinNat.
+Require Import BinInt.
+Require Import Setoid.
+Require Export Ncring.
+Require Export Ncring_polynom.
+Import List.
+
+Set Implicit Arguments.
+
+(* An object to return when an expression is not recognized as a constant *)
+Definition NotConstant := false.
+
+(** Z is a ring and a setoid*)
+
+Lemma Zsth : Equivalence (@eq Z).
+Proof. exact Z.eq_equiv. Qed.
+
+Instance Zops:@Ring_ops Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z).
+
+Instance Zr: (@Ring _ _ _ _ _ _ _ _ Zops).
+Proof.
+constructor; try apply Zsth; try solve_proper.
+ exact Z.add_comm. exact Z.add_assoc.
+ exact Z.mul_1_l. exact Z.mul_1_r. exact Z.mul_assoc.
+ exact Z.mul_add_distr_r. intros; apply Z.mul_add_distr_l. exact Z.sub_diag.
+Defined.
+
+(*Instance ZEquality: @Equality Z:= (@eq Z).*)
+
+(** Two generic morphisms from Z to (abrbitrary) rings, *)
+(**second one is more convenient for proofs but they are ext. equal*)
+Section ZMORPHISM.
+Context {R:Type}`{Ring R}.
+
+ Ltac rrefl := reflexivity.
+
+ Fixpoint gen_phiPOS1 (p:positive) : R :=
+ match p with
+ | xH => 1
+ | xO p => (1 + 1) * (gen_phiPOS1 p)
+ | xI p => 1 + ((1 + 1) * (gen_phiPOS1 p))
+ end.
+
+ Fixpoint gen_phiPOS (p:positive) : R :=
+ match p with
+ | xH => 1
+ | xO xH => (1 + 1)
+ | xO p => (1 + 1) * (gen_phiPOS p)
+ | xI xH => 1 + (1 +1)
+ | xI p => 1 + ((1 + 1) * (gen_phiPOS p))
+ end.
+
+ Definition gen_phiZ1 z :=
+ match z with
+ | Zpos p => gen_phiPOS1 p
+ | Z0 => 0
+ | Zneg p => -(gen_phiPOS1 p)
+ end.
+
+ Definition gen_phiZ z :=
+ match z with
+ | Zpos p => gen_phiPOS p
+ | Z0 => 0
+ | Zneg p => -(gen_phiPOS p)
+ end.
+ Notation "[ x ]" := (gen_phiZ x).
+
+ Definition get_signZ z :=
+ match z with
+ | Zneg p => Some (Zpos p)
+ | _ => None
+ end.
+
+ Ltac norm := gen_rewrite.
+ Ltac add_push := Ncring.gen_add_push.
+Ltac rsimpl := simpl.
+
+ Lemma same_gen : forall x, gen_phiPOS1 x == gen_phiPOS x.
+ Proof.
+ induction x;rsimpl.
+ rewrite IHx. destruct x;simpl;norm.
+ rewrite IHx;destruct x;simpl;norm.
+ reflexivity.
+ Qed.
+
+ Lemma ARgen_phiPOS_Psucc : forall x,
+ gen_phiPOS1 (Pos.succ x) == 1 + (gen_phiPOS1 x).
+ Proof.
+ induction x;rsimpl;norm.
+ rewrite IHx. gen_rewrite. add_push 1. reflexivity.
+ Qed.
+
+ Lemma ARgen_phiPOS_add : forall x y,
+ gen_phiPOS1 (x + y) == (gen_phiPOS1 x) + (gen_phiPOS1 y).
+ Proof.
+ induction x;destruct y;simpl;norm.
+ rewrite Pos.add_carry_spec.
+ rewrite ARgen_phiPOS_Psucc.
+ rewrite IHx;norm.
+ add_push (gen_phiPOS1 y);add_push 1;reflexivity.
+ rewrite IHx;norm;add_push (gen_phiPOS1 y);reflexivity.
+ rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
+ rewrite IHx;norm;add_push(gen_phiPOS1 y); add_push 1;reflexivity.
+ rewrite IHx;norm;add_push(gen_phiPOS1 y);reflexivity.
+ add_push 1;reflexivity.
+ rewrite ARgen_phiPOS_Psucc;norm;add_push 1;reflexivity.
+ Qed.
+
+ Lemma ARgen_phiPOS_mult :
+ forall x y, gen_phiPOS1 (x * y) == gen_phiPOS1 x * gen_phiPOS1 y.
+ Proof.
+ induction x;intros;simpl;norm.
+ rewrite ARgen_phiPOS_add;simpl;rewrite IHx;norm.
+ rewrite IHx;reflexivity.
+ Qed.
+
+
+(*morphisms are extensionaly equal*)
+ Lemma same_genZ : forall x, [x] == gen_phiZ1 x.
+ Proof.
+ destruct x;rsimpl; try rewrite same_gen; reflexivity.
+ Qed.
+
+ Lemma gen_Zeqb_ok : forall x y,
+ Zeq_bool x y = true -> [x] == [y].
+ Proof.
+ intros x y H7.
+ assert (H10 := Zeq_bool_eq x y H7);unfold IDphi in H10.
+ rewrite H10;reflexivity.
+ Qed.
+
+ Lemma gen_phiZ1_add_pos_neg : forall x y,
+ gen_phiZ1 (Z.pos_sub x y)
+ == gen_phiPOS1 x + -gen_phiPOS1 y.
+ Proof.
+ intros x y.
+ generalize (Z.pos_sub_discr x y).
+ destruct (Z.pos_sub x y) as [|p|p]; intros; subst.
+ - now rewrite ring_opp_def.
+ - rewrite ARgen_phiPOS_add;simpl;norm.
+ add_push (gen_phiPOS1 p). rewrite ring_opp_def;norm.
+ - rewrite ARgen_phiPOS_add;simpl;norm.
+ rewrite ring_opp_def;norm.
+ Qed.
+
+ Lemma match_compOpp : forall x (B:Type) (be bl bg:B),
+ match CompOpp x with Eq => be | Lt => bl | Gt => bg end
+ = match x with Eq => be | Lt => bg | Gt => bl end.
+ Proof. destruct x;simpl;intros;trivial. Qed.
+
+ Lemma gen_phiZ_add : forall x y, [x + y] == [x] + [y].
+ Proof.
+ intros x y; repeat rewrite same_genZ; generalize x y;clear x y.
+ induction x;destruct y;simpl;norm.
+ apply ARgen_phiPOS_add.
+ apply gen_phiZ1_add_pos_neg.
+ rewrite gen_phiZ1_add_pos_neg. rewrite ring_add_comm.
+reflexivity.
+ rewrite ARgen_phiPOS_add. rewrite ring_opp_add. reflexivity.
+Qed.
+
+Lemma gen_phiZ_opp : forall x, [- x] == - [x].
+ Proof.
+ intros x. repeat rewrite same_genZ. generalize x ;clear x.
+ induction x;simpl;norm.
+ rewrite ring_opp_opp. reflexivity.
+ Qed.
+
+ Lemma gen_phiZ_mul : forall x y, [x * y] == [x] * [y].
+ Proof.
+ intros x y;repeat rewrite same_genZ.
+ destruct x;destruct y;simpl;norm;
+ rewrite ARgen_phiPOS_mult;try (norm;fail).
+ rewrite ring_opp_opp ;reflexivity.
+ Qed.
+
+ Lemma gen_phiZ_ext : forall x y : Z, x = y -> [x] == [y].
+ Proof. intros;subst;reflexivity. Qed.
+
+(*proof that [.] satisfies morphism specifications*)
+Global Instance gen_phiZ_morph :
+(@Ring_morphism (Z:Type) R _ _ _ _ _ _ _ Zops Zr _ _ _ _ _ _ _ _ _ gen_phiZ) . (* beurk!*)
+ apply Build_Ring_morphism; simpl;try reflexivity.
+ apply gen_phiZ_add. intros. rewrite ring_sub_def.
+replace (x-y)%Z with (x + (-y))%Z.
+now rewrite gen_phiZ_add, gen_phiZ_opp, ring_sub_def.
+reflexivity.
+ apply gen_phiZ_mul. apply gen_phiZ_opp. apply gen_phiZ_ext.
+ Defined.
+
+End ZMORPHISM.
+
+Instance multiplication_phi_ring{R:Type}`{Ring R} : Multiplication :=
+ {multiplication x y := (gen_phiZ x) * y}.
diff --git a/plugins/setoid_ring/Ncring_polynom.v b/plugins/setoid_ring/Ncring_polynom.v
new file mode 100644
index 00000000..8e4b613f
--- /dev/null
+++ b/plugins/setoid_ring/Ncring_polynom.v
@@ -0,0 +1,584 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+(* A <X1,...,Xn>: non commutative polynomials on a commutative ring A *)
+
+Set Implicit Arguments.
+Require Import Setoid.
+Require Import BinList.
+Require Import BinPos.
+Require Import BinNat.
+Require Import BinInt.
+Require Export Ring_polynom. (* n'utilise que PExpr *)
+Require Export Ncring.
+
+Section MakeRingPol.
+
+Context (C R:Type) `{Rh:Ring_morphism C R}.
+
+Variable phiCR_comm: forall (c:C)(x:R), x * [c] == [c] * x.
+
+ Ltac rsimpl := repeat (gen_rewrite || rewrite phiCR_comm).
+ Ltac add_push := gen_add_push .
+
+(* Definition of non commutative multivariable polynomials
+ with coefficients in C :
+ *)
+
+ Inductive Pol : Type :=
+ | Pc : C -> Pol
+ | PX : Pol -> positive -> positive -> Pol -> Pol.
+ (* PX P i n Q represents P * X_i^n + Q *)
+Definition cO:C . exact ring0. Defined.
+Definition cI:C . exact ring1. Defined.
+
+ Definition P0 := Pc 0.
+ Definition P1 := Pc 1.
+
+Variable Ceqb:C->C->bool.
+Class Equalityb (A : Type):= {equalityb : A -> A -> bool}.
+Notation "x =? y" := (equalityb x y) (at level 70, no associativity).
+Variable Ceqb_eq: forall x y:C, Ceqb x y = true -> (x == y).
+
+Instance equalityb_coef : Equalityb C :=
+ {equalityb x y := Ceqb x y}.
+
+ Fixpoint Peq (P P' : Pol) {struct P'} : bool :=
+ match P, P' with
+ | Pc c, Pc c' => c =? c'
+ | PX P i n Q, PX P' i' n' Q' =>
+ match Pos.compare i i', Pos.compare n n' with
+ | Eq, Eq => if Peq P P' then Peq Q Q' else false
+ | _,_ => false
+ end
+ | _, _ => false
+ end.
+
+Instance equalityb_pol : Equalityb Pol :=
+ {equalityb x y := Peq x y}.
+
+(* Q a ses variables de queue < i *)
+ Definition mkPX P i n Q :=
+ match P with
+ | Pc c => if c =? 0 then Q else PX P i n Q
+ | PX P' i' n' Q' =>
+ match Pos.compare i i' with
+ | Eq => if Q' =? P0 then PX P' i (n + n') Q else PX P i n Q
+ | _ => PX P i n Q
+ end
+ end.
+
+ Definition mkXi i n := PX P1 i n P0.
+
+ Definition mkX i := mkXi i 1.
+
+ (** Opposite of addition *)
+
+ Fixpoint Popp (P:Pol) : Pol :=
+ match P with
+ | Pc c => Pc (- c)
+ | PX P i n Q => PX (Popp P) i n (Popp Q)
+ end.
+
+ Notation "-- P" := (Popp P)(at level 30).
+
+ (** Addition et subtraction *)
+
+ Fixpoint PaddCl (c:C)(P:Pol) {struct P} : Pol :=
+ match P with
+ | Pc c1 => Pc (c + c1)
+ | PX P i n Q => PX P i n (PaddCl c Q)
+ end.
+
+(* Q quelconque *)
+
+Section PaddX.
+Variable Padd:Pol->Pol->Pol.
+Variable P:Pol.
+
+(* Xi^n * P + Q
+les variables de tete de Q ne sont pas forcement < i
+mais Q est normalisé : variables de tete decroissantes *)
+
+Fixpoint PaddX (i n:positive)(Q:Pol){struct Q}:=
+ match Q with
+ | Pc c => mkPX P i n Q
+ | PX P' i' n' Q' =>
+ match Pos.compare i i' with
+ | (* i > i' *)
+ Gt => mkPX P i n Q
+ | (* i < i' *)
+ Lt => mkPX P' i' n' (PaddX i n Q')
+ | (* i = i' *)
+ Eq => match Z.pos_sub n n' with
+ | (* n > n' *)
+ Zpos k => mkPX (PaddX i k P') i' n' Q'
+ | (* n = n' *)
+ Z0 => mkPX (Padd P P') i n Q'
+ | (* n < n' *)
+ Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q'
+ end
+ end
+ end.
+
+End PaddX.
+
+Fixpoint Padd (P1 P2: Pol) {struct P1} : Pol :=
+ match P1 with
+ | Pc c => PaddCl c P2
+ | PX P' i' n' Q' =>
+ PaddX Padd P' i' n' (Padd Q' P2)
+ end.
+
+ Notation "P ++ P'" := (Padd P P').
+
+Definition Psub(P P':Pol):= P ++ (--P').
+
+ Notation "P -- P'" := (Psub P P')(at level 50).
+
+ (** Multiplication *)
+
+ Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
+ match P with
+ | Pc c' => Pc (c' * c)
+ | PX P i n Q => mkPX (PmulC_aux P c) i n (PmulC_aux Q c)
+ end.
+
+ Definition PmulC P c :=
+ if c =? 0 then P0 else
+ if c =? 1 then P else PmulC_aux P c.
+
+ Fixpoint Pmul (P1 P2 : Pol) {struct P2} : Pol :=
+ match P2 with
+ | Pc c => PmulC P1 c
+ | PX P i n Q =>
+ PaddX Padd (Pmul P1 P) i n (Pmul P1 Q)
+ end.
+
+ Notation "P ** P'" := (Pmul P P')(at level 40).
+
+ Definition Psquare (P:Pol) : Pol := P ** P.
+
+
+ (** Evaluation of a polynomial towards R *)
+
+ Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R :=
+ match P with
+ | Pc c => [c]
+ | PX P i n Q =>
+ let x := nth 0 i l in
+ let xn := pow_pos x n in
+ (Pphi l P) * xn + (Pphi l Q)
+ end.
+
+ Reserved Notation "P @ l " (at level 10, no associativity).
+ Notation "P @ l " := (Pphi l P).
+
+ (** Proofs *)
+
+ Ltac destr_pos_sub H :=
+ match goal with |- context [Z.pos_sub ?x ?y] =>
+ assert (H := Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
+ end.
+
+ Lemma Peq_ok : forall P P',
+ (P =? P') = true -> forall l, P@l == P'@ l.
+ Proof.
+ induction P;destruct P';simpl;intros ;try easy.
+ - now apply ring_morphism_eq, Ceqb_eq.
+ - specialize (IHP1 P'1). specialize (IHP2 P'2).
+ simpl in IHP1, IHP2.
+ destruct (Pos.compare_spec p p1); try discriminate;
+ destruct (Pos.compare_spec p0 p2); try discriminate.
+ destruct (Peq P2 P'1); try discriminate.
+ subst; now rewrite IHP1, IHP2.
+ Qed.
+
+ Lemma Pphi0 : forall l, P0@l == 0.
+ Proof.
+ intros;simpl.
+ rewrite ring_morphism0. reflexivity.
+ Qed.
+
+ Lemma Pphi1 : forall l, P1@l == 1.
+ Proof.
+ intros;simpl; rewrite ring_morphism1. reflexivity.
+ Qed.
+
+ Lemma mkPX_ok : forall l P i n Q,
+ (mkPX P i n Q)@l == P@l * (pow_pos (nth 0 i l) n) + Q@l.
+ Proof.
+ intros l P i n Q;unfold mkPX.
+ destruct P;try (simpl;reflexivity).
+ assert (Hh := ring_morphism_eq c 0).
+simpl; case_eq (Ceqb c 0);simpl;try reflexivity.
+intros.
+ rewrite Hh. rewrite ring_morphism0.
+ rsimpl. apply Ceqb_eq. trivial.
+ destruct (Pos.compare_spec i p).
+ assert (Hh := @Peq_ok P3 P0). case_eq (P3=? P0). intro. simpl.
+ rewrite Hh.
+ rewrite Pphi0. rsimpl. rewrite Pos.add_comm. rewrite pow_pos_add;rsimpl.
+ subst;trivial. reflexivity. trivial. intros. simpl. reflexivity. simpl. reflexivity.
+ simpl. reflexivity.
+ Qed.
+
+Ltac Esimpl :=
+ repeat (progress (
+ match goal with
+ | |- context [?P@?l] =>
+ match P with
+ | P0 => rewrite (Pphi0 l)
+ | P1 => rewrite (Pphi1 l)
+ | (mkPX ?P ?i ?n ?Q) => rewrite (mkPX_ok l P i n Q)
+ end
+ | |- context [[?c]] =>
+ match c with
+ | 0 => rewrite ring_morphism0
+ | 1 => rewrite ring_morphism1
+ | ?x + ?y => rewrite ring_morphism_add
+ | ?x * ?y => rewrite ring_morphism_mul
+ | ?x - ?y => rewrite ring_morphism_sub
+ | - ?x => rewrite ring_morphism_opp
+ end
+ end));
+ simpl; rsimpl.
+
+ Lemma PaddCl_ok : forall c P l, (PaddCl c P)@l == [c] + P@l .
+ Proof.
+ induction P; simpl; intros; Esimpl; try reflexivity.
+ rewrite IHP2. rsimpl.
+rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0) [c]).
+reflexivity.
+ Qed.
+
+ Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
+ Proof.
+ induction P;simpl;intros. rewrite ring_morphism_mul.
+try reflexivity.
+ simpl. Esimpl. rewrite IHP1;rewrite IHP2;rsimpl.
+ Qed.
+
+ Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
+ Proof.
+ intros c P l; unfold PmulC.
+ assert (Hh:= ring_morphism_eq c 0);case_eq (c =? 0). intros.
+ rewrite Hh;Esimpl. apply Ceqb_eq;trivial.
+ assert (H1h:= ring_morphism_eq c 1);case_eq (c =? 1);intros.
+ rewrite H1h;Esimpl. apply Ceqb_eq;trivial.
+ apply PmulC_aux_ok.
+ Qed.
+
+ Lemma Popp_ok : forall P l, (--P)@l == - P@l.
+ Proof.
+ induction P;simpl;intros.
+ Esimpl.
+ rewrite IHP1;rewrite IHP2;rsimpl.
+ Qed.
+
+ Ltac Esimpl2 :=
+ Esimpl;
+ repeat (progress (
+ match goal with
+ | |- context [(PaddCl ?c ?P)@?l] => rewrite (PaddCl_ok c P l)
+ | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
+ | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
+ end)); Esimpl.
+
+Lemma PaddXPX: forall P i n Q,
+ PaddX Padd P i n Q =
+ match Q with
+ | Pc c => mkPX P i n Q
+ | PX P' i' n' Q' =>
+ match Pos.compare i i' with
+ | (* i > i' *)
+ Gt => mkPX P i n Q
+ | (* i < i' *)
+ Lt => mkPX P' i' n' (PaddX Padd P i n Q')
+ | (* i = i' *)
+ Eq => match Z.pos_sub n n' with
+ | (* n > n' *)
+ Zpos k => mkPX (PaddX Padd P i k P') i' n' Q'
+ | (* n = n' *)
+ Z0 => mkPX (Padd P P') i n Q'
+ | (* n < n' *)
+ Zneg k => mkPX (Padd P (mkPX P' i k P0)) i n Q'
+ end
+ end
+ end.
+induction Q; reflexivity.
+Qed.
+
+Lemma PaddX_ok2 : forall P2,
+ (forall P l, (P2 ++ P) @ l == P2 @ l + P @ l)
+ /\
+ (forall P k n l,
+ (PaddX Padd P2 k n P) @ l ==
+ P2 @ l * pow_pos (nth 0 k l) n + P @ l).
+induction P2;simpl;intros. split. intros. apply PaddCl_ok.
+ induction P. unfold PaddX. intros. rewrite mkPX_ok.
+ simpl. rsimpl.
+intros. simpl.
+ destruct (Pos.compare_spec k p) as [Hh|Hh|Hh].
+ destr_pos_sub H1h. Esimpl2.
+rewrite Hh; trivial. rewrite H1h. reflexivity.
+simpl. rewrite mkPX_ok. rewrite IHP1. Esimpl2.
+ rewrite Pos.add_comm in H1h.
+rewrite H1h.
+rewrite pow_pos_add. Esimpl2.
+rewrite Hh; trivial. reflexivity.
+rewrite mkPX_ok. rewrite PaddCl_ok. Esimpl2. rewrite Pos.add_comm in H1h.
+rewrite H1h. Esimpl2. rewrite pow_pos_add. Esimpl2.
+rewrite Hh; trivial. reflexivity.
+rewrite mkPX_ok. rewrite IHP2. Esimpl2.
+rewrite (ring_add_comm (P2 @ l * pow_pos (nth 0 p l) p0)
+ ([c] * pow_pos (nth 0 k l) n)).
+reflexivity. assert (H1h := ring_morphism_eq c 0);case_eq (Ceqb c 0);
+ intros; simpl.
+rewrite H1h;trivial. Esimpl2. apply Ceqb_eq; trivial. reflexivity.
+decompose [and] IHP2_1. decompose [and] IHP2_2. clear IHP2_1 IHP2_2.
+split. intros. rewrite H0. rewrite H1.
+Esimpl2.
+induction P. unfold PaddX. intros. rewrite mkPX_ok. simpl. reflexivity.
+intros. rewrite PaddXPX.
+destruct (Pos.compare_spec k p1) as [H3h|H3h|H3h].
+destr_pos_sub H4h.
+rewrite mkPX_ok. simpl. rewrite H0. rewrite H1. Esimpl2.
+rewrite H4h. rewrite H3h;trivial. reflexivity.
+rewrite mkPX_ok. rewrite IHP1. Esimpl2. rewrite H3h;trivial.
+rewrite Pos.add_comm in H4h.
+rewrite H4h. rewrite pow_pos_add. Esimpl2.
+rewrite mkPX_ok. simpl. rewrite H0. rewrite H1.
+rewrite mkPX_ok.
+ Esimpl2. rewrite H3h;trivial.
+ rewrite Pos.add_comm in H4h.
+rewrite H4h. rewrite pow_pos_add. Esimpl2.
+rewrite mkPX_ok. simpl. rewrite IHP2. Esimpl2.
+gen_add_push (P2 @ l * pow_pos (nth 0 p1 l) p2). try reflexivity.
+rewrite mkPX_ok. simpl. reflexivity.
+Qed.
+
+Lemma Padd_ok : forall P Q l, (P ++ Q) @ l == P @ l + Q @ l.
+intro P. elim (PaddX_ok2 P); auto.
+Qed.
+
+Lemma PaddX_ok : forall P2 P k n l,
+ (PaddX Padd P2 k n P) @ l == P2 @ l * pow_pos (nth 0 k l) n + P @ l.
+intro P2. elim (PaddX_ok2 P2); auto.
+Qed.
+
+ Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
+unfold Psub. intros. rewrite Padd_ok. rewrite Popp_ok. rsimpl.
+ Qed.
+
+ Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+induction P'; simpl; intros. rewrite PmulC_ok. reflexivity.
+rewrite PaddX_ok. rewrite IHP'1. rewrite IHP'2. Esimpl2.
+Qed.
+
+ Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
+ Proof.
+ intros. unfold Psquare. apply Pmul_ok.
+ Qed.
+
+ (** Definition of polynomial expressions *)
+
+(*
+ Inductive PExpr : Type :=
+ | PEc : C -> PExpr
+ | PEX : positive -> PExpr
+ | PEadd : PExpr -> PExpr -> PExpr
+ | PEsub : PExpr -> PExpr -> PExpr
+ | PEmul : PExpr -> PExpr -> PExpr
+ | PEopp : PExpr -> PExpr
+ | PEpow : PExpr -> N -> PExpr.
+*)
+
+ (** Specification of the power function *)
+ Section POWER.
+ Variable Cpow : Set.
+ Variable Cp_phi : N -> Cpow.
+ Variable rpow : R -> Cpow -> R.
+
+ Record power_theory : Prop := mkpow_th {
+ rpow_pow_N : forall r n, (rpow r (Cp_phi n))== (pow_N r n)
+ }.
+
+ End POWER.
+ Variable Cpow : Set.
+ Variable Cp_phi : N -> Cpow.
+ Variable rpow : R -> Cpow -> R.
+ Variable pow_th : power_theory Cp_phi rpow.
+
+ (** evaluation of polynomial expressions towards R *)
+ Fixpoint PEeval (l:list R) (pe:PExpr C) {struct pe} : R :=
+ match pe with
+ | PEc c => [c]
+ | PEX j => nth 0 j l
+ | PEadd pe1 pe2 => (PEeval l pe1) + (PEeval l pe2)
+ | PEsub pe1 pe2 => (PEeval l pe1) - (PEeval l pe2)
+ | PEmul pe1 pe2 => (PEeval l pe1) * (PEeval l pe2)
+ | PEopp pe1 => - (PEeval l pe1)
+ | PEpow pe1 n => rpow (PEeval l pe1) (Cp_phi n)
+ end.
+
+Strategy expand [PEeval].
+
+ Definition mk_X j := mkX j.
+
+ (** Correctness proofs *)
+
+ Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l.
+ Proof.
+ destruct p;simpl;intros;Esimpl;trivial.
+ Qed.
+
+ Ltac Esimpl3 :=
+ repeat match goal with
+ | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P1 P2 l)
+ | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P1 P2 l)
+ end;try Esimpl2;try reflexivity;try apply ring_add_comm.
+
+(* Power using the chinise algorithm *)
+
+Section POWER2.
+ Variable subst_l : Pol -> Pol.
+ Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
+ match p with
+ | xH => subst_l (Pmul P res)
+ | xO p => Ppow_pos (Ppow_pos res P p) P p
+ | xI p => subst_l (Pmul P (Ppow_pos (Ppow_pos res P p) P p))
+ end.
+
+ Definition Ppow_N P n :=
+ match n with
+ | N0 => P1
+ | Npos p => Ppow_pos P1 P p
+ end.
+
+ Fixpoint pow_pos_gen (R:Type)(m:R->R->R)(x:R) (i:positive) {struct i}: R :=
+ match i with
+ | xH => x
+ | xO i => let p := pow_pos_gen m x i in m p p
+ | xI i => let p := pow_pos_gen m x i in m x (m p p)
+ end.
+
+Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
+ forall res P p, (Ppow_pos res P p)@l == (pow_pos_gen Pmul P p)@l * res@l.
+ Proof.
+ intros l subst_l_ok res P p. generalize res;clear res.
+ induction p;simpl;intros. try rewrite subst_l_ok.
+ repeat rewrite Pmul_ok. repeat rewrite IHp.
+ rsimpl. repeat rewrite Pmul_ok. repeat rewrite IHp. rsimpl.
+ try rewrite subst_l_ok.
+ repeat rewrite Pmul_ok. reflexivity.
+ Qed.
+
+Definition pow_N_gen (R:Type)(x1:R)(m:R->R->R)(x:R) (p:N) :=
+ match p with
+ | N0 => x1
+ | Npos p => pow_pos_gen m x p
+ end.
+
+ Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
+ forall P n, (Ppow_N P n)@l == (pow_N_gen P1 Pmul P n)@l.
+ Proof. destruct n;simpl. reflexivity. rewrite Ppow_pos_ok; trivial. Esimpl. Qed.
+
+ End POWER2.
+
+ (** Normalization and rewriting *)
+
+ Section NORM_SUBST_REC.
+ Let subst_l (P:Pol) := P.
+ Let Pmul_subst P1 P2 := subst_l (Pmul P1 P2).
+ Let Ppow_subst := Ppow_N subst_l.
+
+ Fixpoint norm_aux (pe:PExpr C) : Pol :=
+ match pe with
+ | PEc c => Pc c
+ | PEX j => mk_X j
+ | PEadd pe1 (PEopp pe2) =>
+ Psub (norm_aux pe1) (norm_aux pe2)
+ | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2)
+ | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
+ | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
+ | PEopp pe1 => Popp (norm_aux pe1)
+ | PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
+ end.
+
+ Definition norm_subst pe := subst_l (norm_aux pe).
+
+
+ Lemma norm_aux_spec :
+ forall l pe,
+ PEeval l pe == (norm_aux pe)@l.
+ Proof.
+ intros.
+ induction pe.
+Esimpl3. Esimpl3. simpl.
+ rewrite IHpe1;rewrite IHpe2.
+ destruct pe2; Esimpl3.
+unfold Psub.
+destruct pe1; destruct pe2; rewrite Padd_ok; rewrite Popp_ok; reflexivity.
+simpl. unfold Psub. rewrite IHpe1;rewrite IHpe2.
+destruct pe1. destruct pe2; rewrite Padd_ok; rewrite Popp_ok; try reflexivity.
+Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3.
+ Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3. Esimpl3.
+simpl. rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. reflexivity.
+simpl. rewrite IHpe; Esimpl3.
+simpl.
+ rewrite Ppow_N_ok; (intros;try reflexivity).
+ rewrite rpow_pow_N. Esimpl3.
+ induction n;simpl. Esimpl3. induction p; simpl.
+ try rewrite IHp;try rewrite IHpe;
+ repeat rewrite Pms_ok;
+ repeat rewrite Pmul_ok;reflexivity.
+rewrite Pmul_ok. try rewrite IHp;try rewrite IHpe;
+ repeat rewrite Pms_ok;
+ repeat rewrite Pmul_ok;reflexivity. trivial.
+exact pow_th.
+ Qed.
+
+ Lemma norm_subst_spec :
+ forall l pe,
+ PEeval l pe == (norm_subst pe)@l.
+ Proof.
+ intros;unfold norm_subst.
+ unfold subst_l. apply norm_aux_spec.
+ Qed.
+
+ End NORM_SUBST_REC.
+
+ Fixpoint interp_PElist (l:list R) (lpe:list (PExpr C * PExpr C)) {struct lpe} : Prop :=
+ match lpe with
+ | nil => True
+ | (me,pe)::lpe =>
+ match lpe with
+ | nil => PEeval l me == PEeval l pe
+ | _ => PEeval l me == PEeval l pe /\ interp_PElist l lpe
+ end
+ end.
+
+
+ Lemma norm_subst_ok : forall l pe,
+ PEeval l pe == (norm_subst pe)@l.
+ Proof.
+ intros;apply norm_subst_spec.
+ Qed.
+
+
+ Lemma ring_correct : forall l pe1 pe2,
+ (norm_subst pe1 =? norm_subst pe2) = true ->
+ PEeval l pe1 == PEeval l pe2.
+ Proof.
+ simpl;intros.
+ do 2 (rewrite (norm_subst_ok l);trivial).
+ apply Peq_ok;trivial.
+ Qed.
+
+End MakeRingPol.
diff --git a/plugins/setoid_ring/Ncring_tac.v b/plugins/setoid_ring/Ncring_tac.v
new file mode 100644
index 00000000..44f8e7ff
--- /dev/null
+++ b/plugins/setoid_ring/Ncring_tac.v
@@ -0,0 +1,308 @@
+(************************************************************************)
+(* v * The Coq Proof Assistant / The Coq Development Team *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
+(* \VV/ **************************************************************)
+(* // * This file is distributed under the terms of the *)
+(* * GNU Lesser General Public License Version 2.1 *)
+(************************************************************************)
+
+Require Import List.
+Require Import Setoid.
+Require Import BinPos.
+Require Import BinList.
+Require Import Znumtheory.
+Require Export Morphisms Setoid Bool.
+Require Import ZArith.
+Require Import Algebra_syntax.
+Require Export Ncring.
+Require Import Ncring_polynom.
+Require Import Ncring_initial.
+
+
+Set Implicit Arguments.
+
+Class nth (R:Type) (t:R) (l:list R) (i:nat).
+
+Instance Ifind0 (R:Type) (t:R) l
+ : nth t(t::l) 0.
+
+Instance IfindS (R:Type) (t2 t1:R) l i
+ {_:nth t1 l i}
+ : nth t1 (t2::l) (S i) | 1.
+
+Class closed (T:Type) (l:list T).
+
+Instance Iclosed_nil T
+ : closed (T:=T) nil.
+
+Instance Iclosed_cons T t (l:list T)
+ {_:closed l}
+ : closed (t::l).
+
+Class reify (R:Type)`{Rr:Ring (T:=R)} (e:PExpr Z) (lvar:list R) (t:R).
+
+Instance reify_zero (R:Type) lvar op
+ `{Ring (T:=R)(ring0:=op)}
+ : reify (ring0:=op)(PEc 0%Z) lvar op.
+
+Instance reify_one (R:Type) lvar op
+ `{Ring (T:=R)(ring1:=op)}
+ : reify (ring1:=op) (PEc 1%Z) lvar op.
+
+Instance reifyZ0 (R:Type) lvar
+ `{Ring (T:=R)}
+ : reify (PEc Z0) lvar Z0|11.
+
+Instance reifyZpos (R:Type) lvar (p:positive)
+ `{Ring (T:=R)}
+ : reify (PEc (Zpos p)) lvar (Zpos p)|11.
+
+Instance reifyZneg (R:Type) lvar (p:positive)
+ `{Ring (T:=R)}
+ : reify (PEc (Zneg p)) lvar (Zneg p)|11.
+
+Instance reify_add (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(add:=op)}
+ {_:reify (add:=op) e1 lvar t1}
+ {_:reify (add:=op) e2 lvar t2}
+ : reify (add:=op) (PEadd e1 e2) lvar (op t1 t2).
+
+Instance reify_mul (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(mul:=op)}
+ {_:reify (mul:=op) e1 lvar t1}
+ {_:reify (mul:=op) e2 lvar t2}
+ : reify (mul:=op) (PEmul e1 e2) lvar (op t1 t2)|10.
+
+Instance reify_mul_ext (R:Type) `{Ring R}
+ lvar z e2 t2
+ `{Ring (T:=R)}
+ {_:reify e2 lvar t2}
+ : reify (PEmul (PEc z) e2) lvar
+ (@multiplication Z _ _ z t2)|9.
+
+Instance reify_sub (R:Type)
+ e1 lvar t1 e2 t2 op
+ `{Ring (T:=R)(sub:=op)}
+ {_:reify (sub:=op) e1 lvar t1}
+ {_:reify (sub:=op) e2 lvar t2}
+ : reify (sub:=op) (PEsub e1 e2) lvar (op t1 t2).
+
+Instance reify_opp (R:Type)
+ e1 lvar t1 op
+ `{Ring (T:=R)(opp:=op)}
+ {_:reify (opp:=op) e1 lvar t1}
+ : reify (opp:=op) (PEopp e1) lvar (op t1).
+
+Instance reify_pow (R:Type) `{Ring R}
+ e1 lvar t1 n
+ `{Ring (T:=R)}
+ {_:reify e1 lvar t1}
+ : reify (PEpow e1 n) lvar (pow_N t1 n)|1.
+
+Instance reify_var (R:Type) t lvar i
+ `{nth R t lvar i}
+ `{Rr: Ring (T:=R)}
+ : reify (Rr:= Rr) (PEX Z (Pos.of_succ_nat i))lvar t
+ | 100.
+
+Class reifylist (R:Type)`{Rr:Ring (T:=R)} (lexpr:list (PExpr Z)) (lvar:list R)
+ (lterm:list R).
+
+Instance reify_nil (R:Type) lvar
+ `{Rr: Ring (T:=R)}
+ : reifylist (Rr:= Rr) nil lvar (@nil R).
+
+Instance reify_cons (R:Type) e1 lvar t1 lexpr2 lterm2
+ `{Rr: Ring (T:=R)}
+ {_:reify (Rr:= Rr) e1 lvar t1}
+ {_:reifylist (Rr:= Rr) lexpr2 lvar lterm2}
+ : reifylist (Rr:= Rr) (e1::lexpr2) lvar (t1::lterm2).
+
+Definition list_reifyl (R:Type) lexpr lvar lterm
+ `{Rr: Ring (T:=R)}
+ {_:reifylist (Rr:= Rr) lexpr lvar lterm}
+ `{closed (T:=R) lvar} := (lvar,lexpr).
+
+Unset Implicit Arguments.
+
+
+Ltac lterm_goal g :=
+ match g with
+ | ?t1 == ?t2 => constr:(t1::t2::nil)
+ | ?t1 = ?t2 => constr:(t1::t2::nil)
+ | (_ ?t1 ?t2) => constr:(t1::t2::nil)
+ end.
+
+Lemma Zeqb_ok: forall x y : Z, Zeq_bool x y = true -> x == y.
+ intros x y H. rewrite (Zeq_bool_eq x y H). reflexivity. Qed.
+
+Ltac reify_goal lvar lexpr lterm:=
+ (*idtac lvar; idtac lexpr; idtac lterm;*)
+ match lexpr with
+ nil => idtac
+ | ?e1::?e2::_ =>
+ match goal with
+ |- (?op ?u1 ?u2) =>
+ change (op
+ (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
+ (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
+ lvar e1)
+ (@PEeval Z _ _ _ _ _ _ _ _ _ (@gen_phiZ _ _ _ _ _ _ _ _ _) N
+ (fun n:N => n) (@pow_N _ _ _ _ _ _ _ _ _)
+ lvar e2))
+ end
+ end.
+
+Lemma comm: forall (R:Type)`{Ring R}(c : Z) (x : R),
+ x * (gen_phiZ c) == (gen_phiZ c) * x.
+induction c. intros. simpl. gen_rewrite. simpl. intros.
+rewrite <- same_gen.
+induction p. simpl. gen_rewrite. rewrite IHp. reflexivity.
+simpl. gen_rewrite. rewrite IHp. reflexivity.
+simpl. gen_rewrite.
+simpl. intros. rewrite <- same_gen.
+induction p. simpl. generalize IHp. clear IHp.
+gen_rewrite. intro IHp. rewrite IHp. reflexivity.
+simpl. generalize IHp. clear IHp.
+gen_rewrite. intro IHp. rewrite IHp. reflexivity.
+simpl. gen_rewrite. Qed.
+
+Ltac ring_gen :=
+ match goal with
+ |- ?g => let lterm := lterm_goal g in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) =>
+ (*idtac "variables:";idtac fv;
+ idtac "terms:"; idtac lterm;
+ idtac "reifications:"; idtac lexpr; *)
+ reify_goal fv lexpr lterm;
+ match goal with
+ |- ?g =>
+ apply (@ring_correct Z _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
+ (@gen_phiZ _ _ _ _ _ _ _ _ _) _
+ (@comm _ _ _ _ _ _ _ _ _ _) Zeq_bool Zeqb_ok N (fun n:N => n)
+ (@pow_N _ _ _ _ _ _ _ _ _));
+ [apply mkpow_th; reflexivity
+ |vm_compute; reflexivity]
+ end
+ end
+ end.
+
+Ltac non_commutative_ring:=
+ intros;
+ ring_gen.
+
+(* simplification *)
+
+Ltac ring_simplify_aux lterm fv lexpr hyp :=
+ match lterm with
+ | ?t0::?lterm =>
+ match lexpr with
+ | ?e::?le => (* e:PExpr Z est la réification de t0:R *)
+ let t := constr:(@Ncring_polynom.norm_subst
+ Z 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z) Zops Zeq_bool e) in
+ (* t:Pol Z *)
+ let te :=
+ constr:(@Ncring_polynom.Pphi Z
+ _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ fv t) in
+ let eq1 := fresh "ring" in
+ let nft := eval vm_compute in t in
+ let t':= fresh "t" in
+ pose (t' := nft);
+ assert (eq1 : t = t');
+ [vm_cast_no_check (eq_refl t')|
+ let eq2 := fresh "ring" in
+ assert (eq2:(@Ncring_polynom.PEeval Z
+ _ 0 1 _+_ _*_ _-_ -_ _==_ _ Ncring_initial.gen_phiZ N (fun n:N => n)
+ (@Ring_theory.pow_N _ 1 multiplication) fv e) == te);
+ [apply (@Ncring_polynom.norm_subst_ok
+ Z _ 0%Z 1%Z Z.add Z.mul Z.sub Z.opp (@eq Z)
+ _ _ 0 1 _+_ _*_ _-_ -_ _==_ _ _ Ncring_initial.gen_phiZ _
+ (@comm _ 0 1 _+_ _*_ _-_ -_ _==_ _ _) _ Zeqb_ok);
+ apply mkpow_th; reflexivity
+ | match hyp with
+ | 1%nat => rewrite eq2
+ | ?H => try rewrite eq2 in H
+ end];
+ let P:= fresh "P" in
+ match hyp with
+ | 1%nat => idtac "ok";
+ rewrite eq1;
+ pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
+ _ Ncring_initial.gen_phiZ fv t');
+ match goal with
+ |- (?p ?t) => set (P:=p)
+ end;
+ unfold t' in *; clear t' eq1 eq2; simpl
+ | ?H =>
+ rewrite eq1 in H;
+ pattern (@Ncring_polynom.Pphi Z _ 0 1 _+_ _*_ _-_ -_ _==_
+ _ Ncring_initial.gen_phiZ fv t') in H;
+ match type of H with
+ | (?p ?t) => set (P:=p) in H
+ end;
+ unfold t' in *; clear t' eq1 eq2; simpl in H
+ end; unfold P in *; clear P
+ ]; ring_simplify_aux lterm fv le hyp
+ | nil => idtac
+ end
+ | nil => idtac
+ end.
+
+Ltac set_variables fv :=
+ match fv with
+ | nil => idtac
+ | ?t::?fv =>
+ let v := fresh "X" in
+ set (v:=t) in *; set_variables fv
+ end.
+
+Ltac deset n:=
+ match n with
+ | 0%nat => idtac
+ | S ?n1 =>
+ match goal with
+ | h:= ?v : ?t |- ?g => unfold h in *; clear h; deset n1
+ end
+ end.
+
+(* a est soit un terme de l'anneau, soit une liste de termes.
+J'ai pas réussi à un décomposer les Vlists obtenues avec ne_constr_list
+ dans Tactic Notation *)
+
+Ltac ring_simplify_gen a hyp :=
+ let lterm :=
+ match a with
+ | _::_ => a
+ | _ => constr:(a::nil)
+ end in
+ match eval red in (list_reifyl (lterm:=lterm)) with
+ | (?fv, ?lexpr) => idtac lterm; idtac fv; idtac lexpr;
+ let n := eval compute in (length fv) in
+ idtac n;
+ let lt:=fresh "lt" in
+ set (lt:= lterm);
+ let lv:=fresh "fv" in
+ set (lv:= fv);
+ (* les termes de fv sont remplacés par des variables
+ pour pouvoir utiliser simpl ensuite sans risquer
+ des simplifications indésirables *)
+ set_variables fv;
+ let lterm1 := eval unfold lt in lt in
+ let lv1 := eval unfold lv in lv in
+ idtac lterm1; idtac lv1;
+ ring_simplify_aux lterm1 lv1 lexpr hyp;
+ clear lt lv;
+ (* on remet les termes de fv *)
+ deset n
+ end.
+
+Tactic Notation "non_commutative_ring_simplify" constr(lterm):=
+ ring_simplify_gen lterm 1%nat.
+
+Tactic Notation "non_commutative_ring_simplify" constr(lterm) "in" ident(H):=
+ ring_simplify_gen lterm H.
+
+
diff --git a/plugins/setoid_ring/RealField.v b/plugins/setoid_ring/RealField.v
index 56473adb..29372212 100644
--- a/plugins/setoid_ring/RealField.v
+++ b/plugins/setoid_ring/RealField.v
@@ -5,21 +5,21 @@ Require Import Rdefinitions.
Require Import Rpow_def.
Require Import Raxioms.
-Open Local Scope R_scope.
+Local Open Scope R_scope.
Lemma RTheory : ring_theory 0 1 Rplus Rmult Rminus Ropp (eq (A:=R)).
Proof.
constructor.
intro; apply Rplus_0_l.
exact Rplus_comm.
- symmetry in |- *; apply Rplus_assoc.
+ symmetry ; apply Rplus_assoc.
intro; apply Rmult_1_l.
exact Rmult_comm.
- symmetry in |- *; apply Rmult_assoc.
+ symmetry ; apply Rmult_assoc.
intros m n p.
- rewrite Rmult_comm in |- *.
- rewrite (Rmult_comm n p) in |- *.
- rewrite (Rmult_comm m p) in |- *.
+ rewrite Rmult_comm.
+ rewrite (Rmult_comm n p).
+ rewrite (Rmult_comm m p).
apply Rmult_plus_distr_l.
reflexivity.
exact Rplus_opp_r.
@@ -42,17 +42,17 @@ destruct H0.
apply Rlt_trans with (IZR (up x)); trivial.
replace (IZR (up x)) with (x + (IZR (up x) - x))%R.
apply Rplus_lt_compat_l; trivial.
- unfold Rminus in |- *.
- rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *.
- rewrite <- Rplus_assoc in |- *.
- rewrite Rplus_opp_r in |- *.
+ unfold Rminus.
+ rewrite (Rplus_comm (IZR (up x)) (- x)).
+ rewrite <- Rplus_assoc.
+ rewrite Rplus_opp_r.
apply Rplus_0_l.
elim H0.
- unfold Rminus in |- *.
- rewrite (Rplus_comm (IZR (up x)) (- x)) in |- *.
- rewrite <- Rplus_assoc in |- *.
- rewrite Rplus_opp_r in |- *.
- rewrite Rplus_0_l in |- *; trivial.
+ unfold Rminus.
+ rewrite (Rplus_comm (IZR (up x)) (- x)).
+ rewrite <- Rplus_assoc.
+ rewrite Rplus_opp_r.
+ rewrite Rplus_0_l; trivial.
Qed.
Notation Rset := (Eqsth R).
@@ -61,7 +61,7 @@ Notation Rext := (Eq_ext Rplus Rmult Ropp).
Lemma Rlt_0_2 : 0 < 2.
apply Rlt_trans with (0 + 1).
apply Rlt_n_Sn.
- rewrite Rplus_comm in |- *.
+ rewrite Rplus_comm.
apply Rplus_lt_compat_l.
replace 1 with (0 + 1).
apply Rlt_n_Sn.
@@ -69,19 +69,19 @@ apply Rlt_trans with (0 + 1).
Qed.
Lemma Rgen_phiPOS : forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x > 0.
-unfold Rgt in |- *.
-induction x; simpl in |- *; intros.
+unfold Rgt.
+induction x; simpl; intros.
apply Rlt_trans with (1 + 0).
- rewrite Rplus_comm in |- *.
+ rewrite Rplus_comm.
apply Rlt_n_Sn.
apply Rplus_lt_compat_l.
- rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *.
- rewrite Rmult_comm in |- *.
+ rewrite <- (Rmul_0_l Rset Rext RTheory 2).
+ rewrite Rmult_comm.
apply Rmult_lt_compat_l.
apply Rlt_0_2.
trivial.
- rewrite <- (Rmul_0_l Rset Rext RTheory 2) in |- *.
- rewrite Rmult_comm in |- *.
+ rewrite <- (Rmul_0_l Rset Rext RTheory 2).
+ rewrite Rmult_comm.
apply Rmult_lt_compat_l.
apply Rlt_0_2.
trivial.
@@ -93,9 +93,9 @@ Qed.
Lemma Rgen_phiPOS_not_0 :
forall x, InitialRing.gen_phiPOS1 1 Rplus Rmult x <> 0.
-red in |- *; intros.
+red; intros.
specialize (Rgen_phiPOS x).
-rewrite H in |- *; intro.
+rewrite H; intro.
apply (Rlt_asym 0 0); trivial.
Qed.
@@ -107,23 +107,23 @@ Proof gen_phiZ_complete Rset Rext Rfield Rgen_phiPOS_not_0.
Lemma Rdef_pow_add : forall (x:R) (n m:nat), pow x (n + m) = pow x n * pow x m.
Proof.
- intros x n; elim n; simpl in |- *; auto with real.
+ intros x n; elim n; simpl; auto with real.
intros n0 H' m; rewrite H'; auto with real.
Qed.
-Lemma R_power_theory : power_theory 1%R Rmult (eq (A:=R)) nat_of_N pow.
+Lemma R_power_theory : power_theory 1%R Rmult (@eq R) N.to_nat pow.
Proof.
constructor. destruct n. reflexivity.
- simpl. induction p;simpl.
- rewrite ZL6. rewrite Rdef_pow_add;rewrite IHp. reflexivity.
- unfold nat_of_P;simpl;rewrite ZL6;rewrite Rdef_pow_add;rewrite IHp;trivial.
- rewrite Rmult_comm;apply Rmult_1_l.
+ simpl. induction p.
+ - rewrite Pos2Nat.inj_xI. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp.
+ - rewrite Pos2Nat.inj_xO. simpl. now rewrite plus_0_r, Rdef_pow_add, IHp.
+ - simpl. rewrite Rmult_comm;apply Rmult_1_l.
Qed.
Ltac Rpow_tac t :=
match isnatcst t with
| false => constr:(InitialRing.NotConstant)
- | _ => constr:(N_of_nat t)
+ | _ => constr:(N.of_nat t)
end.
Add Field RField : Rfield
diff --git a/plugins/setoid_ring/Ring.v b/plugins/setoid_ring/Ring.v
index 7b48f590..7c1bf981 100644
--- a/plugins/setoid_ring/Ring.v
+++ b/plugins/setoid_ring/Ring.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -14,7 +14,7 @@ Require Export Ring_tac.
Lemma BoolTheory :
ring_theory false true xorb andb xorb (fun b:bool => b) (eq(A:=bool)).
-split; simpl in |- *.
+split; simpl.
destruct x; reflexivity.
destruct x; destruct y; reflexivity.
destruct x; destruct y; destruct z; reflexivity.
diff --git a/plugins/setoid_ring/Ring_base.v b/plugins/setoid_ring/Ring_base.v
index 9bc95a7f..dc5248b2 100644
--- a/plugins/setoid_ring/Ring_base.v
+++ b/plugins/setoid_ring/Ring_base.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
diff --git a/plugins/setoid_ring/Ring_polynom.v b/plugins/setoid_ring/Ring_polynom.v
index d33a095f..b23ba352 100644
--- a/plugins/setoid_ring/Ring_polynom.v
+++ b/plugins/setoid_ring/Ring_polynom.v
@@ -1,20 +1,16 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Set Implicit Arguments.
-Require Import Setoid.
-Require Import BinList.
-Require Import BinPos.
-Require Import BinNat.
-Require Import BinInt.
+Require Import Setoid Morphisms BinList BinPos BinNat BinInt.
Require Export Ring_theory.
-Open Local Scope positive_scope.
+Local Open Scope positive_scope.
Import RingSyntax.
Section MakeRingPol.
@@ -25,7 +21,7 @@ Section MakeRingPol.
Variable req : R -> R -> Prop.
(* Ring properties *)
- Variable Rsth : Setoid_Theory R req.
+ Variable Rsth : Equivalence req.
Variable Reqe : ring_eq_ext radd rmul ropp req.
Variable ARth : almost_ring_theory rO rI radd rmul rsub ropp req.
@@ -37,8 +33,8 @@ Section MakeRingPol.
Variable CRmorph : ring_morph rO rI radd rmul rsub ropp req
cO cI cadd cmul csub copp ceqb phi.
- (* Power coefficients *)
- Variable Cpow : Set.
+ (* Power coefficients *)
+ Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
Variable pow_th : power_theory rI rmul req Cp_phi rpow.
@@ -50,26 +46,47 @@ Section MakeRingPol.
(* R notations *)
Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Infix "+" := radd. Infix "*" := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
+ Infix "==" := req.
+ Infix "^" := (pow_pos rmul).
(* C notations *)
- Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
- Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
- Notation " x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
+ Infix "+!" := cadd. Infix "*!" := cmul.
+ Infix "-! " := csub. Notation "-! x" := (copp x).
+ Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(* Useful tactics *)
- Add Setoid R req Rsth as R_set1.
- Ltac rrefl := gen_reflexivity Rsth.
- Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
- Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
- Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
- Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
+ Add Morphism radd : radd_ext. exact (Radd_ext Reqe). Qed.
+ Add Morphism rmul : rmul_ext. exact (Rmul_ext Reqe). Qed.
+ Add Morphism ropp : ropp_ext. exact (Ropp_ext Reqe). Qed.
+ Add Morphism rsub : rsub_ext. exact (ARsub_ext Rsth Reqe ARth). Qed.
Ltac rsimpl := gen_srewrite Rsth Reqe ARth.
+
Ltac add_push := gen_add_push radd Rsth Reqe ARth.
Ltac mul_push := gen_mul_push rmul Rsth Reqe ARth.
+ Ltac add_permut_rec t :=
+ match t with
+ | ?x + ?y => add_permut_rec y || add_permut_rec x
+ | _ => add_push t; apply (Radd_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac add_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => add_permut_rec t end).
+
+ Ltac mul_permut_rec t :=
+ match t with
+ | ?x * ?y => mul_permut_rec y || mul_permut_rec x
+ | _ => mul_push t; apply (Rmul_ext Reqe); [|reflexivity]
+ end.
+
+ Ltac mul_permut :=
+ repeat (reflexivity ||
+ match goal with |- ?t == _ => mul_permut_rec t end).
+
+
(* Definition of multivariable polynomials with coefficients in C :
Type [Pol] represents [X1 ... Xn].
The representation is Horner's where a [n] variable polynomial
@@ -104,31 +121,31 @@ Section MakeRingPol.
match P, P' with
| Pc c, Pc c' => c ?=! c'
| Pinj j Q, Pinj j' Q' =>
- match Pcompare j j' Eq with
+ match j ?= j' with
| Eq => Peq Q Q'
| _ => false
end
| PX P i Q, PX P' i' Q' =>
- match Pcompare i i' Eq with
+ match i ?= i' with
| Eq => if Peq P P' then Peq Q Q' else false
| _ => false
end
| _, _ => false
end.
- Notation " P ?== P' " := (Peq P P').
+ Infix "?==" := Peq.
Definition mkPinj j P :=
match P with
| Pc _ => P
- | Pinj j' Q => Pinj ((j + j'):positive) Q
+ | Pinj j' Q => Pinj (j + j') Q
| _ => Pinj j P
end.
Definition mkPinj_pred j P:=
match j with
| xH => P
- | xO j => Pinj (Pdouble_minus_one j) P
+ | xO j => Pinj (Pos.pred_double j) P
| xI j => Pinj (xO j) P
end.
@@ -156,14 +173,14 @@ Section MakeRingPol.
(** Addition et subtraction *)
- Fixpoint PaddC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PaddC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 +! c)
| Pinj j Q => Pinj j (PaddC Q c)
| PX P i Q => PX P i (PaddC Q c)
end.
- Fixpoint PsubC (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PsubC (P:Pol) (c:C) : Pol :=
match P with
| Pc c1 => Pc (c1 -! c)
| Pinj j Q => Pinj j (PsubC Q c)
@@ -175,11 +192,11 @@ Section MakeRingPol.
Variable Pop : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PaddI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PaddI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PaddI k Q')
@@ -187,16 +204,16 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PaddI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PaddI (Pos.pred_double j) Q')
| xI j => PX P i (PaddI (xO j) Q')
end
end.
- Fixpoint PsubI (j:positive) (P:Pol){struct P} : Pol :=
+ Fixpoint PsubI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PaddC (--Q) c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pop (Pinj k Q') Q)
| Z0 => mkPinj j (Pop Q' Q)
| Zneg k => mkPinj j' (PsubI k Q')
@@ -204,41 +221,41 @@ Section MakeRingPol.
| PX P i Q' =>
match j with
| xH => PX P i (Pop Q' Q)
- | xO j => PX P i (PsubI (Pdouble_minus_one j) Q')
+ | xO j => PX P i (PsubI (Pos.pred_double j) Q')
| xI j => PX P i (PsubI (xO j) Q')
end
end.
Variable P' : Pol.
- Fixpoint PaddX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PaddX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX P' i' P
| Pinj j Q' =>
match j with
| xH => PX P' i' Q'
- | xO j => PX P' i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX P' i' (Pinj (Pos.pred_double j) Q')
| xI j => PX P' i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PaddX k P) i Q'
end
end.
- Fixpoint PsubX (i':positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PsubX (i':positive) (P:Pol) : Pol :=
match P with
| Pc c => PX (--P') i' P
| Pinj j Q' =>
match j with
| xH => PX (--P') i' Q'
- | xO j => PX (--P') i' (Pinj (Pdouble_minus_one j) Q')
+ | xO j => PX (--P') i' (Pinj (Pos.pred_double j) Q')
| xI j => PX (--P') i' (Pinj (xO j) Q')
end
| PX P i Q' =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Pop (PX P k P0) P') i' Q'
| Z0 => mkPX (Pop P P') i Q'
| Zneg k => mkPX (PsubX k P) i Q'
@@ -258,18 +275,18 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX P' i' (Padd Q Q')
- | xO j => PX P' i' (Padd (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX P' i' (Padd (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX P' i' (Padd (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Padd (PX P k P0) P') i' (Padd Q Q')
| Z0 => mkPX (Padd P P') i (Padd Q Q')
| Zneg k => mkPX (PaddX Padd P' k P) i (Padd Q Q')
end
end
end.
- Notation "P ++ P'" := (Padd P P').
+ Infix "++" := Padd.
Fixpoint Psub (P P': Pol) {struct P'} : Pol :=
match P' with
@@ -281,22 +298,22 @@ Section MakeRingPol.
| Pinj j Q =>
match j with
| xH => PX (--P') i' (Psub Q Q')
- | xO j => PX (--P') i' (Psub (Pinj (Pdouble_minus_one j) Q) Q')
+ | xO j => PX (--P') i' (Psub (Pinj (Pos.pred_double j) Q) Q')
| xI j => PX (--P') i' (Psub (Pinj (xO j) Q) Q')
end
| PX P i Q =>
- match ZPminus i i' with
+ match Z.pos_sub i i' with
| Zpos k => mkPX (Psub (PX P k P0) P') i' (Psub Q Q')
| Z0 => mkPX (Psub P P') i (Psub Q Q')
| Zneg k => mkPX (PsubX Psub P' k P) i (Psub Q Q')
end
end
end.
- Notation "P -- P'" := (Psub P P').
+ Infix "--" := Psub.
(** Multiplication *)
- Fixpoint PmulC_aux (P:Pol) (c:C) {struct P} : Pol :=
+ Fixpoint PmulC_aux (P:Pol) (c:C) : Pol :=
match P with
| Pc c' => Pc (c' *! c)
| Pinj j Q => mkPinj j (PmulC_aux Q c)
@@ -310,11 +327,11 @@ Section MakeRingPol.
Section PmulI.
Variable Pmul : Pol -> Pol -> Pol.
Variable Q : Pol.
- Fixpoint PmulI (j:positive) (P:Pol) {struct P} : Pol :=
+ Fixpoint PmulI (j:positive) (P:Pol) : Pol :=
match P with
| Pc c => mkPinj j (PmulC Q c)
| Pinj j' Q' =>
- match ZPminus j' j with
+ match Z.pos_sub j' j with
| Zpos k => mkPinj j (Pmul (Pinj k Q') Q)
| Z0 => mkPinj j (Pmul Q' Q)
| Zneg k => mkPinj j' (PmulI k Q')
@@ -322,13 +339,12 @@ Section MakeRingPol.
| PX P' i' Q' =>
match j with
| xH => mkPX (PmulI xH P') i' (Pmul Q' Q)
- | xO j' => mkPX (PmulI j P') i' (PmulI (Pdouble_minus_one j') Q')
+ | xO j' => mkPX (PmulI j P') i' (PmulI (Pos.pred_double j') Q')
| xI j' => mkPX (PmulI j P') i' (PmulI (xO j') Q')
end
end.
End PmulI.
-(* A symmetric version of the multiplication *)
Fixpoint Pmul (P P'' : Pol) {struct P''} : Pol :=
match P'' with
@@ -341,7 +357,7 @@ Section MakeRingPol.
let QQ' :=
match j with
| xH => Pmul Q Q'
- | xO j => Pmul (Pinj (Pdouble_minus_one j) Q) Q'
+ | xO j => Pmul (Pinj (Pos.pred_double j) Q) Q'
| xI j => Pmul (Pinj (xO j) Q) Q'
end in
mkPX (Pmul P P') i' QQ'
@@ -354,25 +370,7 @@ Section MakeRingPol.
end
end.
-(* Non symmetric *)
-(*
- Fixpoint Pmul_aux (P P' : Pol) {struct P'} : Pol :=
- match P' with
- | Pc c' => PmulC P c'
- | Pinj j' Q' => PmulI Pmul_aux Q' j' P
- | PX P' i' Q' =>
- (mkPX (Pmul_aux P P') i' P0) ++ (PmulI Pmul_aux Q' xH P)
- end.
-
- Definition Pmul P P' :=
- match P with
- | Pc c => PmulC P' c
- | Pinj j Q => PmulI Pmul_aux Q j P'
- | PX P i Q =>
- (mkPX (Pmul_aux P P') i P0) ++ (PmulI Pmul_aux Q xH P')
- end.
-*)
- Notation "P ** P'" := (Pmul P P').
+ Infix "**" := Pmul.
Fixpoint Psquare (P:Pol) : Pol :=
match P with
@@ -387,26 +385,26 @@ Section MakeRingPol.
(** Monomial **)
+ (** A monomial is X1^k1...Xi^ki. Its representation
+ is a simplified version of the polynomial representation:
+
+ - [mon0] correspond to the polynom [P1].
+ - [(zmon j M)] corresponds to [(Pinj j ...)],
+ i.e. skip j variable indices.
+ - [(vmon i M)] is X^i*M with X the current variable,
+ its corresponds to (PX P1 i ...)]
+ *)
+
Inductive Mon: Set :=
- mon0: Mon
+ | mon0: Mon
| zmon: positive -> Mon -> Mon
| vmon: positive -> Mon -> Mon.
- Fixpoint Mphi(l:list R) (M: Mon) {struct M} : R :=
- match M with
- mon0 => rI
- | zmon j M1 => Mphi (jump j l) M1
- | vmon i M1 =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Mphi (tail l) M1) * xi
- end.
-
Definition mkZmon j M :=
match M with mon0 => mon0 | _ => zmon j M end.
Definition zmon_pred j M :=
- match j with xH => M | _ => mkZmon (Ppred j) M end.
+ match j with xH => M | _ => mkZmon (Pos.pred j) M end.
Definition mkVmon i M :=
match M with
@@ -421,7 +419,7 @@ Section MakeRingPol.
| Pinj j1 P1 =>
let (R,S) := CFactor P1 c in
(mkPinj j1 R, mkPinj j1 S)
- | PX P1 i Q1 =>
+ | PX P1 i Q1 =>
let (R1, S1) := CFactor P1 c in
let (R2, S2) := CFactor Q1 c in
(mkPX R1 i R2, mkPX S1 i S2)
@@ -429,13 +427,10 @@ Section MakeRingPol.
Fixpoint MFactor (P: Pol) (c: C) (M: Mon) {struct P}: Pol * Pol :=
match P, M with
- _, mon0 =>
- if (ceqb c cI) then (Pc cO, P) else
-(* if (ceqb c (copp cI)) then (Pc cO, Popp P) else Not in almost ring *)
- CFactor P c
+ _, mon0 => if (ceqb c cI) then (Pc cO, P) else CFactor P c
| Pc _, _ => (P, Pc cO)
| Pinj j1 P1, zmon j2 M1 =>
- match (j1 ?= j2) Eq with
+ match j1 ?= j2 with
Eq => let (R,S) := MFactor P1 c M1 in
(mkPinj j1 R, mkPinj j1 S)
| Lt => let (R,S) := MFactor P1 c (zmon (j2 - j1) M1) in
@@ -449,7 +444,7 @@ Section MakeRingPol.
let (R2, S2) := MFactor Q1 c M2 in
(mkPX R1 i R2, mkPX S1 i S2)
| PX P1 i Q1, vmon j M1 =>
- match (i ?= j) Eq with
+ match i ?= j with
Eq => let (R1,S1) := MFactor P1 c (mkZmon xH M1) in
(mkPX R1 i Q1, S1)
| Lt => let (R1,S1) := MFactor P1 c (vmon (j - i) M1) in
@@ -468,7 +463,7 @@ Section MakeRingPol.
| _ => Some (Padd Q1 (Pmul P2 R1))
end.
- Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) {struct n}: Pol :=
+ Fixpoint PNSubst1 (P1: Pol) (cM1: C * Mon) (P2: Pol) (n: nat) : Pol :=
match POneSubst P1 cM1 P2 with
Some P3 => match n with S n1 => PNSubst1 P3 cM1 P2 n1 | _ => P3 end
| _ => P1
@@ -480,14 +475,13 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}:
- Pol :=
+ Fixpoint PSubstL1 (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : Pol :=
match LM1 with
cons (M1,P2) LM2 => PSubstL1 (PNSubst1 P1 M1 P2 n) LM2 n
| _ => P1
end.
- Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) {struct LM1}: option Pol :=
+ Fixpoint PSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (n: nat) : option Pol :=
match LM1 with
cons (M1,P2) LM2 =>
match PNSubst P1 M1 P2 n with
@@ -497,7 +491,7 @@ Section MakeRingPol.
| _ => None
end.
- Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) {struct m}: Pol :=
+ Fixpoint PNSubstL (P1: Pol) (LM1: list ((C * Mon) * Pol)) (m n: nat) : Pol :=
match PSubstL P1 LM1 n with
Some P3 => match m with S m1 => PNSubstL P3 LM1 m1 n | _ => P3 end
| _ => P1
@@ -505,658 +499,409 @@ Section MakeRingPol.
(** Evaluation of a polynomial towards R *)
- Fixpoint Pphi(l:list R) (P:Pol) {struct P} : R :=
+ Local Notation hd := (List.hd 0).
+
+ Fixpoint Pphi(l:list R) (P:Pol) : R :=
match P with
| Pc c => [c]
| Pinj j Q => Pphi (jump j l) Q
- | PX P i Q =>
- let x := hd 0 l in
- let xi := pow_pos rmul x i in
- (Pphi l P) * xi + (Pphi (tail l) Q)
+ | PX P i Q => Pphi l P * (hd l) ^ i + Pphi (tail l) Q
end.
Reserved Notation "P @ l " (at level 10, no associativity).
Notation "P @ l " := (Pphi l P).
+
+ (** Evaluation of a monomial towards R *)
+
+ Fixpoint Mphi(l:list R) (M: Mon) : R :=
+ match M with
+ | mon0 => rI
+ | zmon j M1 => Mphi (jump j l) M1
+ | vmon i M1 => Mphi (tail l) M1 * (hd l) ^ i
+ end.
+
+ Notation "M @@ l" := (Mphi l M) (at level 10, no associativity).
+
(** Proofs *)
- Lemma ZPminus_spec : forall x y,
- match ZPminus x y with
- | Z0 => x = y
- | Zpos k => x = (y + k)%positive
- | Zneg k => y = (x + k)%positive
+
+ Ltac destr_pos_sub :=
+ match goal with |- context [Z.pos_sub ?x ?y] =>
+ generalize (Z.pos_sub_discr x y); destruct (Z.pos_sub x y)
end.
+
+ Lemma jump_add' i j (l:list R) : jump (i + j) l = jump j (jump i l).
+ Proof. rewrite Pos.add_comm. apply jump_add. Qed.
+
+ Lemma Peq_ok P P' : (P ?== P') = true -> forall l, P@l == P'@ l.
Proof.
- induction x;destruct y.
- replace (ZPminus (xI x) (xI y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xI x) (xO y)) with (Zdouble_plus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_plus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- simpl;trivial.
- replace (ZPminus (xO x) (xI y)) with (Zdouble_minus_one (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble_minus_one;rewrite H;trivial.
- apply Pplus_xI_double_minus_one.
- replace (ZPminus (xO x) (xO y)) with (Zdouble (ZPminus x y));trivial.
- assert (H := IHx y);destruct (ZPminus x y);unfold Zdouble;rewrite H;trivial.
- replace (ZPminus (xO x) xH) with (Zpos (Pdouble_minus_one x));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- replace (ZPminus xH (xI y)) with (Zneg (xO y));trivial.
- replace (ZPminus xH (xO y)) with (Zneg (Pdouble_minus_one y));trivial.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO;trivial.
- simpl;trivial.
+ revert P';induction P;destruct P';simpl; intros H l; try easy.
+ - now apply (morph_eq CRmorph).
+ - destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ now rewrite IHP.
+ - specialize (IHP1 P'1); specialize (IHP2 P'2).
+ destruct (Pos.compare_spec p p0); [ subst | easy | easy ].
+ destruct (P2 ?== P'1); [|easy].
+ rewrite H in *.
+ now rewrite IHP1, IHP2.
Qed.
- Lemma Peq_ok : forall P P',
- (P ?== P') = true -> forall l, P@l == P'@ l.
+ Lemma Peq_spec P P' :
+ BoolSpec (forall l, P@l == P'@l) True (P ?== P').
Proof.
- induction P;destruct P';simpl;intros;try discriminate;trivial.
- apply (morph_eq CRmorph);trivial.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
- try discriminate H.
- rewrite (IHP P' H); rewrite H1;trivial;rrefl.
- assert (H1 := Pcompare_Eq_eq p p0); destruct ((p ?= p0)%positive Eq);
- try discriminate H.
- rewrite H1;trivial. clear H1.
- assert (H1 := IHP1 P'1);assert (H2 := IHP2 P'2);
- destruct (P2 ?== P'1);[destruct (P3 ?== P'2); [idtac|discriminate H]
- |discriminate H].
- rewrite (H1 H);rewrite (H2 H);rrefl.
+ generalize (Peq_ok P P'). destruct (P ?== P'); auto.
Qed.
- Lemma Pphi0 : forall l, P0@l == 0.
+ Lemma Pphi0 l : P0@l == 0.
Proof.
- intros;simpl;apply (morph0 CRmorph).
+ simpl;apply (morph0 CRmorph).
Qed.
- Lemma Pphi1 : forall l, P1@l == 1.
+ Lemma Pphi1 l : P1@l == 1.
Proof.
- intros;simpl;apply (morph1 CRmorph).
+ simpl;apply (morph1 CRmorph).
Qed.
- Lemma mkPinj_ok : forall j l P, (mkPinj j P)@l == P@(jump j l).
+ Lemma mkPinj_ok j l P : (mkPinj j P)@l == P@(jump j l).
Proof.
- intros j l p;destruct p;simpl;rsimpl.
- rewrite <-jump_Pplus;rewrite Pplus_comm;rrefl.
+ destruct P;simpl;rsimpl.
+ now rewrite jump_add'.
Qed.
- Let pow_pos_Pplus :=
- pow_pos_Pplus rmul Rsth Reqe.(Rmul_ext) ARth.(ARmul_comm) ARth.(ARmul_assoc).
+ Lemma pow_pos_add x i j : x^(j + i) == x^i * x^j.
+ Proof.
+ rewrite Pos.add_comm.
+ apply (pow_pos_add Rsth Reqe.(Rmul_ext) ARth.(ARmul_assoc)).
+ Qed.
- Lemma mkPX_ok : forall l P i Q,
- (mkPX P i Q)@l == P@l*(pow_pos rmul (hd 0 l) i) + Q@(tail l).
+ Lemma ceqb_spec c c' : BoolSpec ([c] == [c']) True (c ?=! c').
Proof.
- intros l P i Q;unfold mkPX.
- destruct P;try (simpl;rrefl).
- assert (H := morph_eq CRmorph c cO);destruct (c ?=! cO);simpl;try rrefl.
- rewrite (H (refl_equal true));rewrite (morph0 CRmorph).
- rewrite mkPinj_ok;rsimpl;simpl;rrefl.
- assert (H := @Peq_ok P3 P0);destruct (P3 ?== P0);simpl;try rrefl.
- rewrite (H (refl_equal true));trivial.
- rewrite Pphi0. rewrite pow_pos_Pplus;rsimpl.
+ generalize (morph_eq CRmorph c c').
+ destruct (c ?=! c'); auto.
Qed.
- Ltac Esimpl :=
- repeat (progress (
- match goal with
- | |- context [?P@?l] =>
- match P with
- | P0 => rewrite (Pphi0 l)
- | P1 => rewrite (Pphi1 l)
- | (mkPinj ?j ?P) => rewrite (mkPinj_ok j l P)
- | (mkPX ?P ?i ?Q) => rewrite (mkPX_ok l P i Q)
- end
- | |- context [[?c]] =>
- match c with
- | cO => rewrite (morph0 CRmorph)
- | cI => rewrite (morph1 CRmorph)
- | ?x +! ?y => rewrite ((morph_add CRmorph) x y)
- | ?x *! ?y => rewrite ((morph_mul CRmorph) x y)
- | ?x -! ?y => rewrite ((morph_sub CRmorph) x y)
- | -! ?x => rewrite ((morph_opp CRmorph) x)
- end
- end));
- rsimpl; simpl.
-
- Lemma PaddC_ok : forall c P l, (PaddC P c)@l == P@l + [c].
+ Lemma mkPX_ok l P i Q :
+ (mkPX P i Q)@l == P@l * (hd l)^i + Q@(tail l).
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP2;rsimpl.
+ unfold mkPX. destruct P.
+ - case ceqb_spec; intros H; simpl; try reflexivity.
+ rewrite H, (morph0 CRmorph), mkPinj_ok; rsimpl.
+ - reflexivity.
+ - case Peq_spec; intros H; simpl; try reflexivity.
+ rewrite H, Pphi0, Pos.add_comm, pow_pos_add; rsimpl.
Qed.
- Lemma PsubC_ok : forall c P l, (PsubC P c)@l == P@l - [c].
+ Hint Rewrite
+ Pphi0
+ Pphi1
+ mkPinj_ok
+ mkPX_ok
+ (morph0 CRmorph)
+ (morph1 CRmorph)
+ (morph0 CRmorph)
+ (morph_add CRmorph)
+ (morph_mul CRmorph)
+ (morph_sub CRmorph)
+ (morph_opp CRmorph)
+ : Esimpl.
+
+ (* Quicker than autorewrite with Esimpl :-) *)
+ Ltac Esimpl := try rewrite_db Esimpl; rsimpl; simpl.
+
+ Lemma PaddC_ok c P l : (PaddC P c)@l == P@l + [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- rewrite IHP;rsimpl.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_aux_ok : forall c P l, (PmulC_aux P c)@l == P@l * [c].
+ Lemma PsubC_ok c P l : (PsubC P c)@l == P@l - [c].
Proof.
- induction P;simpl;intros;Esimpl;trivial.
- rewrite IHP1;rewrite IHP2;rsimpl.
- mul_push ([c]);rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - rewrite IHP;rsimpl.
+ - rewrite IHP2;rsimpl.
Qed.
- Lemma PmulC_ok : forall c P l, (PmulC P c)@l == P@l * [c].
+ Lemma PmulC_aux_ok c P l : (PmulC_aux P c)@l == P@l * [c].
Proof.
- intros c P l; unfold PmulC.
- assert (H:= morph_eq CRmorph c cO);destruct (c ?=! cO).
- rewrite (H (refl_equal true));Esimpl.
- assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- apply PmulC_aux_ok.
+ revert l;induction P;simpl;intros;Esimpl;trivial.
+ rewrite IHP1, IHP2;rsimpl. add_permut. mul_permut.
Qed.
- Lemma Popp_ok : forall P l, (--P)@l == - P@l.
+ Lemma PmulC_ok c P l : (PmulC P c)@l == P@l * [c].
Proof.
- induction P;simpl;intros.
- Esimpl.
- apply IHP.
- rewrite IHP1;rewrite IHP2;rsimpl.
+ unfold PmulC.
+ case ceqb_spec; intros H.
+ - rewrite H; Esimpl.
+ - case ceqb_spec; intros H'.
+ + rewrite H'; Esimpl.
+ + apply PmulC_aux_ok.
Qed.
- Ltac Esimpl2 :=
- Esimpl;
- repeat (progress (
- match goal with
- | |- context [(PaddC ?P ?c)@?l] => rewrite (PaddC_ok c P l)
- | |- context [(PsubC ?P ?c)@?l] => rewrite (PsubC_ok c P l)
- | |- context [(PmulC ?P ?c)@?l] => rewrite (PmulC_ok c P l)
- | |- context [(--?P)@?l] => rewrite (Popp_ok P l)
- end)); Esimpl.
-
- Lemma Padd_ok : forall P' P l, (P ++ P')@l == P@l + P'@l.
+ Lemma Popp_ok P l : (--P)@l == - P@l.
Proof.
- induction P';simpl;intros;Esimpl2.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rrefl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl;rsimpl.
- rewrite IHP2;simpl.
- rewrite jump_Pdouble_minus_one;rsimpl.
- rewrite IHP';rsimpl.
- destruct P;simpl.
- Esimpl2;add_push [c];rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl.
- rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;simpl.
- rewrite jump_Pdouble_minus_one;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;rsimpl. add_push (P @ (tail l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1;rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1;rewrite IHP'2;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PaddX Padd P'1 k P) @ l == P@l + P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros;try apply (ARadd_comm ARth).
- destruct p2;simpl;try apply (ARadd_comm ARth).
- rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth).
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2.
- rewrite IHP'1;rsimpl; rewrite H1;add_push (P5 @ (tail l0));rrefl.
- rewrite IHP'1;simpl;Esimpl.
- rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite IHP'2;rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
+ revert l;induction P;simpl;intros.
+ - Esimpl.
+ - apply IHP.
+ - rewrite IHP1, IHP2;rsimpl.
Qed.
- Lemma Psub_ok : forall P' P l, (P -- P')@l == P@l - P'@l.
+ Hint Rewrite PaddC_ok PsubC_ok PmulC_ok Popp_ok : Esimpl.
+
+ Lemma PaddX_ok P' P k l :
+ (forall P l, (P++P')@l == P@l + P'@l) ->
+ (PaddX Padd P' k P) @ l == P@l + P'@l * (hd l)^k.
Proof.
- induction P';simpl;intros;Esimpl2;trivial.
- generalize P p l;clear P p l.
- induction P;simpl;intros.
- Esimpl2;apply (ARadd_comm ARth).
- assert (H := ZPminus_spec p p0);destruct (ZPminus p p0).
- rewrite H;Esimpl. rewrite IHP';rsimpl.
- rewrite H;Esimpl. rewrite IHP';Esimpl.
- rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
- rewrite H;Esimpl. rewrite IHP.
- rewrite <- jump_Pplus;rewrite Pplus_comm;rrefl.
- destruct p0;simpl.
- rewrite IHP2;simpl;rsimpl.
- rewrite IHP2;simpl.
- rewrite jump_Pdouble_minus_one;rsimpl.
- rewrite IHP';rsimpl.
- destruct P;simpl.
- repeat rewrite Popp_ok;Esimpl2;rsimpl;add_push [c];try rrefl.
- destruct p0;simpl;Esimpl2.
- rewrite IHP'2;simpl;rsimpl;add_push (P'1@l * (pow_pos rmul (hd 0 l) p));trivial.
- add_push (P @ (jump p0 (jump p0 (tail l))));rrefl.
- rewrite IHP'2;simpl;rewrite jump_Pdouble_minus_one;rsimpl.
- add_push (- (P'1 @ l * pow_pos rmul (hd 0 l) p));rrefl.
- rewrite IHP'2;rsimpl;add_push (P @ (tail l));rrefl.
- assert (H := ZPminus_spec p0 p);destruct (ZPminus p0 p);Esimpl2.
- rewrite IHP'1; rewrite IHP'2;rsimpl.
- add_push (P3 @ (tail l));rewrite H;rrefl.
- rewrite IHP'1; rewrite IHP'2;rsimpl;simpl;Esimpl.
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
- add_push (P3 @ (tail l));rrefl.
- assert (forall P k l,
- (PsubX Psub P'1 k P) @ l == P@l + - P'1@l * pow_pos rmul (hd 0 l) k).
- induction P;simpl;intros.
- rewrite Popp_ok;rsimpl;apply (ARadd_comm ARth);trivial.
- destruct p2;simpl;rewrite Popp_ok;rsimpl.
- apply (ARadd_comm ARth);trivial.
- rewrite jump_Pdouble_minus_one;apply (ARadd_comm ARth);trivial.
- apply (ARadd_comm ARth);trivial.
- assert (H1 := ZPminus_spec p2 k);destruct (ZPminus p2 k);Esimpl2;rsimpl.
- rewrite IHP'1;rsimpl;add_push (P5 @ (tail l0));rewrite H1;rrefl.
- rewrite IHP'1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;Esimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite IHP1;rewrite H1;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;simpl;rsimpl.
- add_push (P5 @ (tail l0));rrefl.
- rewrite H0;rsimpl.
- rewrite IHP'2;rsimpl;add_push (P3 @ (tail l)).
- rewrite H;rewrite Pplus_comm.
- rewrite pow_pos_Pplus;rsimpl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - add_permut.
+ - destruct p; simpl;
+ rewrite ?jump_pred_double; add_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
-(* Proof for the symmetriv version *)
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : list R), (Pmul P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : list R),
- (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma Padd_ok P' P l : (P ++ P')@l == P@l + P'@l.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pplus_comm.
- rewrite jump_Pplus;simpl;rrefl.
- rewrite H1;rewrite Pplus_comm.
- rewrite jump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * now rewrite IHP'.
+ * rewrite IHP';Esimpl. now rewrite jump_add'.
+ * rewrite IHP. now rewrite jump_add'.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl.
+ * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl. add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rsimpl. add_permut.
+ * rewrite jump_pred_double. rsimpl. add_permut.
+ * rsimpl. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PaddX_ok by trivial; rsimpl.
+ rewrite IHP'2, pow_pos_add; rsimpl. add_permut.
Qed.
-(*
- Lemma PmulI_ok :
- forall P',
- (forall (P : Pol) (l : list R), (Pmul_aux P P') @ l == P @ l * P' @ l) ->
- forall (P : Pol) (p : positive) (l : list R),
- (PmulI Pmul_aux P' p P) @ l == P @ l * P' @ (jump p l).
+ Lemma PsubX_ok P' P k l :
+ (forall P l, (P--P')@l == P@l - P'@l) ->
+ (PsubX Psub P' k P) @ l == P@l - P'@l * (hd l)^k.
Proof.
- induction P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- assert (H1 := ZPminus_spec p p0);destruct (ZPminus p p0);Esimpl2.
- rewrite H1; rewrite H;rrefl.
- rewrite H1; rewrite H.
- rewrite Pplus_comm.
- rewrite jump_Pplus;simpl;rrefl.
- rewrite H1;rewrite Pplus_comm.
- rewrite jump_Pplus;rewrite IHP;rrefl.
- destruct p0;Esimpl2.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p);rrefl.
- rewrite IHP1;rewrite IHP2;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p); rewrite jump_Pdouble_minus_one;rrefl.
- rewrite IHP1;simpl;rsimpl.
- mul_push (pow_pos rmul (hd 0 l) p).
- rewrite H;rrefl.
+ intros IHP'.
+ revert k l. induction P;simpl;intros.
+ - rewrite Popp_ok;rsimpl; add_permut.
+ - destruct p; simpl;
+ rewrite Popp_ok;rsimpl;
+ rewrite ?jump_pred_double; add_permut.
+ - destr_pos_sub; intros ->; Esimpl.
+ + rewrite IHP';rsimpl. add_permut.
+ + rewrite IHP', pow_pos_add;simpl;Esimpl. add_permut.
+ + rewrite IHP1, pow_pos_add;rsimpl. add_permut.
Qed.
- Lemma Pmul_aux_ok : forall P' P l,(Pmul_aux P P')@l == P@l * P'@l.
+ Lemma Psub_ok P' P l : (P -- P')@l == P@l - P'@l.
Proof.
- induction P';simpl;intros.
- Esimpl2;trivial.
- apply PmulI_ok;trivial.
- rewrite Padd_ok;Esimpl2.
- rewrite (PmulI_ok P'2 IHP'2). rewrite IHP'1. rrefl.
+ revert P l; induction P';simpl;intros;Esimpl.
+ - revert p l; induction P;simpl;intros.
+ + Esimpl; add_permut.
+ + destr_pos_sub; intros ->;Esimpl.
+ * rewrite IHP';rsimpl.
+ * rewrite IHP';Esimpl. now rewrite jump_add'.
+ * rewrite IHP. now rewrite jump_add'.
+ + destruct p0;simpl.
+ * rewrite IHP2;simpl. rsimpl.
+ * rewrite IHP2;simpl. rewrite jump_pred_double. rsimpl.
+ * rewrite IHP'. rsimpl.
+ - destruct P;simpl.
+ + Esimpl; add_permut.
+ + destruct p0;simpl;Esimpl; rewrite IHP'2; simpl.
+ * rsimpl. add_permut.
+ * rewrite jump_pred_double. rsimpl. add_permut.
+ * rsimpl. add_permut.
+ + destr_pos_sub; intros ->; Esimpl.
+ * rewrite IHP'1, IHP'2;rsimpl. add_permut.
+ * rewrite IHP'1, IHP'2;simpl;Esimpl.
+ rewrite pow_pos_add;rsimpl. add_permut.
+ * rewrite PsubX_ok by trivial;rsimpl.
+ rewrite IHP'2, pow_pos_add;rsimpl. add_permut.
Qed.
-*)
-(* Proof for the symmetric version *)
- Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma PmulI_ok P' :
+ (forall P l, (Pmul P P') @ l == P @ l * P' @ l) ->
+ forall P p l, (PmulI Pmul P' p P) @ l == P @ l * P' @ (jump p l).
Proof.
- intros P P';generalize P;clear P;induction P';simpl;intros.
- apply PmulC_ok. apply PmulI_ok;trivial.
- destruct P.
- rewrite (ARmul_comm ARth);Esimpl2;Esimpl2.
- Esimpl2. rewrite IHP'1;Esimpl2.
- assert (match p0 with
- | xI j => Pinj (xO j) P ** P'2
- | xO j => Pinj (Pdouble_minus_one j) P ** P'2
- | 1 => P ** P'2
- end @ (tail l) == P @ (jump p0 l) * P'2 @ (tail l)).
- destruct p0;simpl;rewrite IHP'2;Esimpl.
- rewrite jump_Pdouble_minus_one;Esimpl.
- rewrite H;Esimpl.
- rewrite Padd_ok; Esimpl2. rewrite Padd_ok; Esimpl2.
- repeat (rewrite IHP'1 || rewrite IHP'2);simpl.
- rewrite PmulI_ok;trivial.
- mul_push (P'1@l). simpl. mul_push (P'2 @ (tail l)). Esimpl.
+ intros IHP'.
+ induction P;simpl;intros.
+ - Esimpl; mul_permut.
+ - destr_pos_sub; intros ->;Esimpl.
+ + now rewrite IHP'.
+ + now rewrite IHP', jump_add'.
+ + now rewrite IHP, jump_add'.
+ - destruct p0;Esimpl; rewrite ?IHP1, ?IHP2; rsimpl.
+ + f_equiv. mul_permut.
+ + rewrite jump_pred_double. f_equiv. mul_permut.
+ + rewrite IHP'. f_equiv. mul_permut.
Qed.
-(*
-Lemma Pmul_ok : forall P P' l, (P**P')@l == P@l * P'@l.
+ Lemma Pmul_ok P P' l : (P**P')@l == P@l * P'@l.
Proof.
- destruct P;simpl;intros.
- Esimpl2;apply (ARmul_comm ARth).
- rewrite (PmulI_ok P (Pmul_aux_ok P)).
- apply (ARmul_comm ARth).
- rewrite Padd_ok; Esimpl2.
- rewrite (PmulI_ok P3 (Pmul_aux_ok P3));trivial.
- rewrite Pmul_aux_ok;mul_push (P' @ l).
- rewrite (ARmul_comm ARth (P' @ l));rrefl.
+ revert P l;induction P';simpl;intros.
+ - apply PmulC_ok.
+ - apply PmulI_ok;trivial.
+ - destruct P.
+ + rewrite (ARmul_comm ARth). Esimpl.
+ + Esimpl. f_equiv. rewrite IHP'1; Esimpl.
+ destruct p0;rewrite IHP'2;Esimpl.
+ rewrite jump_pred_double; Esimpl.
+ + rewrite Padd_ok, !mkPX_ok, Padd_ok, !mkPX_ok,
+ !IHP'1, !IHP'2, PmulI_ok; trivial. simpl. Esimpl.
+ add_permut; f_equiv; mul_permut.
Qed.
-*)
- Lemma Psquare_ok : forall P l, (Psquare P)@l == P@l * P@l.
+ Lemma Psquare_ok P l : (Psquare P)@l == P@l * P@l.
Proof.
- induction P;simpl;intros;Esimpl2.
- apply IHP. rewrite Padd_ok. rewrite Pmul_ok;Esimpl2.
- rewrite IHP1;rewrite IHP2.
- mul_push (pow_pos rmul (hd 0 l) p). mul_push (P2@l).
- rrefl.
+ revert l;induction P;simpl;intros;Esimpl.
+ - apply IHP.
+ - rewrite Padd_ok, Pmul_ok;Esimpl.
+ rewrite IHP1, IHP2.
+ mul_push ((hd l)^p). now mul_push (P2@l).
Qed.
-
- Lemma mkZmon_ok: forall M j l,
- Mphi l (mkZmon j M) == Mphi l (zmon j M).
- intros M j l; case M; simpl; intros; rsimpl.
+ Lemma mkZmon_ok M j l :
+ (mkZmon j M) @@ l == (zmon j M) @@ l.
+ Proof.
+ destruct M; simpl; rsimpl.
Qed.
- Lemma zmon_pred_ok : forall M j l,
- Mphi (tail l) (zmon_pred j M) == Mphi l (zmon j M).
+ Lemma zmon_pred_ok M j l :
+ (zmon_pred j M) @@ (tail l) == (zmon j M) @@ l.
Proof.
- destruct j; simpl;intros auto; rsimpl.
- rewrite mkZmon_ok;rsimpl.
- rewrite mkZmon_ok;simpl. rewrite jump_Pdouble_minus_one; rsimpl.
+ destruct j; simpl; rewrite ?mkZmon_ok; simpl; rsimpl.
+ rewrite jump_pred_double; rsimpl.
Qed.
- Lemma mkVmon_ok : forall M i l, Mphi l (mkVmon i M) == Mphi l M*pow_pos rmul (hd 0 l) i.
+ Lemma mkVmon_ok M i l :
+ (mkVmon i M)@@l == M@@l * (hd l)^i.
Proof.
destruct M;simpl;intros;rsimpl.
- rewrite zmon_pred_ok;simpl;rsimpl.
- rewrite Pplus_comm;rewrite pow_pos_Pplus;rsimpl.
+ - rewrite zmon_pred_ok;simpl;rsimpl.
+ - rewrite pow_pos_add;rsimpl.
Qed.
- Lemma Mcphi_ok: forall P c l,
- let (Q,R) := CFactor P c in
- P@l == Q@l + (phi c) * (R@l).
+ Ltac destr_factor := match goal with
+ | H : context [CFactor ?P _] |- context [CFactor ?P ?c] =>
+ destruct (CFactor P c); destr_factor; rewrite H; clear H
+ | H : context [MFactor ?P _ _] |- context [MFactor ?P ?c ?M] =>
+ specialize (H M); destruct (MFactor P c M); destr_factor; rewrite H; clear H
+ | _ => idtac
+ end.
+
+ Lemma Mcphi_ok P c l :
+ let (Q,R) := CFactor P c in
+ P@l == Q@l + [c] * R@l.
Proof.
- intros P; elim P; simpl; auto; clear P.
- intros c c1 l; generalize (div_th.(div_eucl_th) c c1); case cdiv.
- intros q r H; rewrite H.
- Esimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- intros i P Hrec c l.
- generalize (Hrec c (jump i l)); case CFactor.
- intros R1 S1; Esimpl; auto.
- intros Q1 Qrec i R1 Rrec c l.
- generalize (Qrec c l); case CFactor; intros S1 S2 HS.
- generalize (Rrec c (tail l)); case CFactor; intros S3 S4 HS1.
- rewrite HS; rewrite HS1; Esimpl.
- apply (Radd_ext Reqe); rsimpl.
- repeat rewrite <- (ARadd_assoc ARth).
- apply (Radd_ext Reqe); rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
+ revert l.
+ induction P as [c0 | j P IH | P1 IH1 i P2 IH2]; intros l; Esimpl.
+ - assert (H := div_th.(div_eucl_th) c0 c).
+ destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
+ - destr_factor. Esimpl.
+ - destr_factor. Esimpl. add_permut.
Qed.
- Lemma Mphi_ok: forall P (cM: C * Mon) l,
- let (c,M) := cM in
- let (Q,R) := MFactor P c M in
- P@l == Q@l + (phi c) * (Mphi l M) * (R@l).
+ Lemma Mphi_ok P (cM: C * Mon) l :
+ let (c,M) := cM in
+ let (Q,R) := MFactor P c M in
+ P@l == Q@l + [c] * M@@l * R@l.
Proof.
- intros P; elim P; simpl; auto; clear P.
- intros c (c1, M) l; case M; simpl; auto.
- assert (H1:= morph_eq CRmorph c1 cI);destruct (c1 ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- try rewrite (morph0 CRmorph); rsimpl.
- generalize (div_th.(div_eucl_th) c c1); case (cdiv c c1).
- intros q r H; rewrite H; clear H H1.
- Esimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- intros p m; Esimpl.
- intros p m; Esimpl.
- intros i P Hrec (c,M) l; case M; simpl; clear M.
- assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- Esimpl.
- generalize (Mcphi_ok P c (jump i l)); case CFactor.
- intros R1 Q1 HH; rewrite HH; Esimpl.
- intros j M.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
- generalize (Hrec (c, M) (jump j l)); case (MFactor P c M);
- simpl; intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- generalize (Hrec (c, (zmon (j -i) M)) (jump i l));
- case (MFactor P c (zmon (j -i) M)); simpl.
- intros P2 Q2 H; repeat rewrite mkPinj_ok; auto.
- rewrite <- (Pplus_minus _ _ (ZC2 _ _ He)).
- rewrite Pplus_comm; rewrite jump_Pplus; auto.
- rewrite (morph0 CRmorph); rsimpl.
- intros P2 m; rewrite (morph0 CRmorph); rsimpl.
-
- intros P2 Hrec1 i Q2 Hrec2 (c, M) l; case M; simpl; auto.
- assert (H1:= morph_eq CRmorph c cI);destruct (c ?=! cI).
- rewrite (H1 (refl_equal true));Esimpl.
- Esimpl.
- generalize (Mcphi_ok P2 c l); case CFactor.
- intros S1 S2 HS.
- generalize (Mcphi_ok Q2 c (tail l)); case CFactor.
- intros S3 S4 HS1; Esimpl; rewrite HS; rewrite HS1.
- rsimpl.
- apply (Radd_ext Reqe); rsimpl.
- repeat rewrite <- (ARadd_assoc ARth).
- apply (Radd_ext Reqe); rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- intros j M1.
- generalize (Hrec1 (c,zmon j M1) l);
- case (MFactor P2 c (zmon j M1)).
- intros R1 S1 H1.
- generalize (Hrec2 (c, zmon_pred j M1) (List.tail l));
- case (MFactor Q2 c (zmon_pred j M1)); simpl.
- intros R2 S2 H2; rewrite H1; rewrite H2.
- repeat rewrite mkPX_ok; simpl.
- rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- rewrite zmon_pred_ok;rsimpl.
- intros j M1.
- case_eq ((i ?= j) Eq); intros He; simpl.
- rewrite (Pcompare_Eq_eq _ _ He).
- generalize (Hrec1 (c, mkZmon xH M1) l); case (MFactor P2 c (mkZmon xH M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite mkZmon_ok.
- apply rmul_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- generalize (Hrec1 (c, vmon (j - i) M1) l);
- case (MFactor P2 c (vmon (j - i) M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl; repeat rewrite mkPinj_ok; auto.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite <- (ARmul_comm ARth (Mphi (tail l) M1)); rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ (ZC2 _ _ He)); rsimpl.
- generalize (Hrec1 (c, mkZmon 1 M1) l);
- case (MFactor P2 c (mkZmon 1 M1));
- simpl; intros P3 Q3 H; repeat rewrite mkPinj_ok; auto.
- rewrite H; rsimpl.
- rewrite mkPX_ok; rsimpl.
- repeat (rewrite <-(ARadd_assoc ARth)).
- apply radd_ext; rsimpl.
- rewrite (ARadd_comm ARth); rsimpl.
- apply radd_ext; rsimpl.
- rewrite mkZmon_ok.
- repeat (rewrite <-(ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- rewrite mkPX_ok; simpl; rsimpl.
- rewrite (morph0 CRmorph); rsimpl.
- repeat (rewrite <-(ARmul_assoc ARth)).
- rewrite (ARmul_comm ARth (Q3@l)); rsimpl.
- apply rmul_ext; rsimpl.
- rewrite (ARmul_comm ARth); rsimpl.
- repeat (rewrite <- (ARmul_assoc ARth)).
- apply rmul_ext; rsimpl.
- rewrite <- pow_pos_Pplus.
- rewrite (Pplus_minus _ _ He); rsimpl.
+ destruct cM as (c,M). revert M l.
+ induction P; destruct M; intros l; simpl; auto;
+ try (case ceqb_spec; intro He);
+ try (case Pos.compare_spec; intros He); rewrite ?He;
+ destr_factor; simpl; Esimpl.
+ - assert (H := div_th.(div_eucl_th) c0 c).
+ destruct cdiv as (q,r). rewrite H; Esimpl. add_permut.
+ - assert (H := Mcphi_ok P c). destr_factor. Esimpl.
+ - now rewrite <- jump_add, Pos.sub_add.
+ - assert (H2 := Mcphi_ok P2 c). assert (H3 := Mcphi_ok P3 c).
+ destr_factor. Esimpl. add_permut.
+ - rewrite zmon_pred_ok. simpl. add_permut.
+ - rewrite mkZmon_ok. simpl. add_permut. mul_permut.
+ - add_permut. mul_permut.
+ rewrite <- pow_pos_add, Pos.add_comm, Pos.sub_add by trivial; rsimpl.
+ - rewrite mkZmon_ok. simpl. Esimpl. add_permut. mul_permut.
+ rewrite <- pow_pos_add, Pos.sub_add by trivial; rsimpl.
Qed.
-(* Proof for the symmetric version *)
-
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> phi (fst M1) * Mphi l (snd M1) == P2@l -> P1@l == P3@l.
+ Lemma POneSubst_ok P1 cM1 P2 P3 l :
+ POneSubst P1 cM1 P2 = Some P3 ->
+ [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
- intros P2 (cc,M1) P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 (cc, M1) l); case (MFactor P2 cc M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- (* new version *)
- rewrite Padd_ok; rewrite PmulC_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite PmulI_ok by (intros;apply Pmul_ok). rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- assert (P4 = Q1 ++ P3 ** PX i P5 P6).
- injection H2; intros; subst;trivial.
- rewrite H;rewrite Padd_ok;rewrite Pmul_ok;rsimpl.
- Qed.
-(*
- Lemma POneSubst_ok: forall P1 M1 P2 P3 l,
- POneSubst P1 M1 P2 = Some P3 -> Mphi l M1 == P2@l -> P1@l == P3@l.
-Proof.
- intros P2 M1 P3 P4 l; unfold POneSubst.
- generalize (Mphi_ok P2 M1 l); case (MFactor P2 M1); simpl; auto.
- intros Q1 R1; case R1.
- intros c H; rewrite H.
- generalize (morph_eq CRmorph c cO);
- case (c ?=! cO); simpl; auto.
- intros H1 H2; rewrite H1; auto; rsimpl.
- discriminate.
- intros _ H1 H2; injection H1; intros; subst.
- rewrite H2; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok; rsimpl.
- intros i P5 H; rewrite H.
- intros HH H1; injection HH; intros; subst; rsimpl.
- rewrite Padd_ok; rewrite Pmul_ok. rewrite H1; rsimpl.
- intros i P5 P6 H1 H2 H3; rewrite H1; rewrite H3.
- injection H2; intros; subst; rsimpl.
- rewrite Padd_ok.
- rewrite Pmul_ok; rsimpl.
+ destruct cM1 as (cc,M1).
+ unfold POneSubst.
+ assert (H := Mphi_ok P1 (cc, M1) l). simpl in H.
+ destruct MFactor as (R1,S1); simpl. rewrite H. clear H.
+ intros EQ EQ'. replace P3 with (R1 ++ P2 ** S1).
+ - rewrite EQ', Padd_ok, Pmul_ok; rsimpl.
+ - revert EQ. destruct S1; try now injection 1.
+ case ceqb_spec; now inversion 2.
Qed.
-*)
- Lemma PNSubst1_ok: forall n P1 M1 P2 l,
- [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == (PNSubst1 P1 M1 P2 n)@l.
+
+ Lemma PNSubst1_ok n P1 cM1 P2 l :
+ [fst cM1] * (snd cM1)@@l == P2@l ->
+ P1@l == (PNSubst1 P1 cM1 P2 n)@l.
Proof.
- intros n; elim n; simpl; auto.
- intros P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec; rewrite (Hrec P4); auto; rsimpl.
- intros n1 Hrec P2 M1 P3 l H.
- generalize (fun P4 => @POneSubst_ok P2 M1 P3 P4 l);
- case (POneSubst P2 M1 P3); [idtac | intros; rsimpl].
- intros P4 Hrec1; rewrite (Hrec1 P4); auto; rsimpl.
+ revert P1. induction n; simpl; intros P1;
+ generalize (POneSubst_ok P1 cM1 P2); destruct POneSubst;
+ intros; rewrite <- ?IHn; auto; reflexivity.
Qed.
- Lemma PNSubst_ok: forall n P1 M1 P2 l P3,
- PNSubst P1 M1 P2 n = Some P3 -> [fst M1] * Mphi l (snd M1) == P2@l -> P1@l == P3@l.
+ Lemma PNSubst_ok n P1 cM1 P2 l P3 :
+ PNSubst P1 cM1 P2 n = Some P3 ->
+ [fst cM1] * (snd cM1)@@l == P2@l -> P1@l == P3@l.
Proof.
- intros n P2 (cc, M1) P3 l P4; unfold PNSubst.
- generalize (fun P4 => @POneSubst_ok P2 (cc,M1) P3 P4 l);
- case (POneSubst P2 (cc,M1) P3); [idtac | intros; discriminate].
- intros P5 H1; case n; try (intros; discriminate).
- intros n1 H2; injection H2; intros; subst.
- rewrite <- PNSubst1_ok; auto.
+ unfold PNSubst.
+ assert (H := POneSubst_ok P1 cM1 P2); destruct POneSubst; try discriminate.
+ destruct n; inversion_clear 1.
+ intros. rewrite <- PNSubst1_ok; auto.
Qed.
- Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) {struct LM1} : Prop :=
- match LM1 with
- cons (M1,P2) LM2 => ([fst M1] * Mphi l (snd M1) == P2@l) /\ (MPcond LM2 l)
- | _ => True
- end.
+ Fixpoint MPcond (LM1: list (C * Mon * Pol)) (l: list R) : Prop :=
+ match LM1 with
+ | (M1,P2) :: LM2 => ([fst M1] * (snd M1)@@l == P2@l) /\ MPcond LM2 l
+ | _ => True
+ end.
- Lemma PSubstL1_ok: forall n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
+ Lemma PSubstL1_ok n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PSubstL1 P1 LM1 n)@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; rsimpl.
- intros (M2,P2) LM2 Hrec P3 l [H H1].
- rewrite <- Hrec; auto.
- apply PNSubst1_ok; auto.
+ revert P1; induction LM1 as [|(M2,P2) LM2 IH]; simpl; intros.
+ - reflexivity.
+ - rewrite <- IH by intuition. now apply PNSubst1_ok.
Qed.
- Lemma PSubstL_ok: forall n LM1 P1 P2 l,
- PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
+ Lemma PSubstL_ok n LM1 P1 P2 l :
+ PSubstL P1 LM1 n = Some P2 -> MPcond LM1 l -> P1@l == P2@l.
Proof.
- intros n LM1; elim LM1; simpl; auto.
- intros; discriminate.
- intros (M2,P2) LM2 Hrec P3 P4 l.
- generalize (PNSubst_ok n P3 M2 P2); case (PNSubst P3 M2 P2 n).
- intros P5 H0 H1 [H2 H3]; injection H1; intros; subst.
- rewrite <- PSubstL1_ok; auto.
- intros l1 H [H1 H2]; auto.
+ revert P1. induction LM1 as [|(M2,P2') LM2 IH]; simpl; intros.
+ - discriminate.
+ - assert (H':=PNSubst_ok n P3 M2 P2'). destruct PNSubst.
+ * injection H; intros <-. rewrite <- PSubstL1_ok; intuition.
+ * now apply IH.
Qed.
- Lemma PNSubstL_ok: forall m n LM1 P1 l,
- MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
+ Lemma PNSubstL_ok m n LM1 P1 l :
+ MPcond LM1 l -> P1@l == (PNSubstL P1 LM1 m n)@l.
Proof.
- intros m; elim m; simpl; auto.
- intros n LM1 P2 l H; generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- intros m1 Hrec n LM1 P2 l H.
- generalize (fun P3 => @PSubstL_ok n LM1 P2 P3 l);
- case (PSubstL P2 LM1 n); intros; rsimpl; auto.
- rewrite <- Hrec; auto.
+ revert LM1 P1. induction m; simpl; intros;
+ assert (H' := PSubstL_ok n LM1 P2); destruct PSubstL;
+ auto; try reflexivity.
+ rewrite <- IHm; auto.
Qed.
(** Definition of polynomial expressions *)
@@ -1190,58 +935,22 @@ Strategy expand [PEeval].
(** Correctness proofs *)
- Lemma mkX_ok : forall p l, nth 0 p l == (mk_X p) @ l.
+ Lemma mkX_ok p l : nth 0 p l == (mk_X p) @ l.
Proof.
destruct p;simpl;intros;Esimpl;trivial.
- rewrite <-jump_tl;rewrite nth_jump;rrefl.
- rewrite <- nth_jump.
- rewrite nth_Pdouble_minus_one;rrefl.
+ - now rewrite <-jump_tl, nth_jump.
+ - now rewrite <- nth_jump, nth_pred_double.
Qed.
- Ltac Esimpl3 :=
- repeat match goal with
- | |- context [(?P1 ++ ?P2)@?l] => rewrite (Padd_ok P2 P1 l)
- | |- context [(?P1 -- ?P2)@?l] => rewrite (Psub_ok P2 P1 l)
- end;Esimpl2;try rrefl;try apply (ARadd_comm ARth).
-
-(* Power using the chinise algorithm *)
-(*Section POWER.
- Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (P:Pol) (p:positive){struct p} : Pol :=
- match p with
- | xH => P
- | xO p => subst_l (Psquare (Ppow_pos P p))
- | xI p => subst_l (Pmul P (Psquare (Ppow_pos P p)))
- end.
-
- Definition Ppow_N P n :=
- match n with
- | N0 => P1
- | Npos p => Ppow_pos P p
- end.
-
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P p, (Ppow_pos P p)@l == (pow_pos Pmul P p)@l.
- Proof.
- intros l subst_l_ok P.
- induction p;simpl;intros;try rrefl;try rewrite subst_l_ok.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- repeat rewrite Pmul_ok;rewrite Psquare_ok;rewrite IHp;rrefl.
- Qed.
-
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. apply Ppow_pos_ok. trivial. Qed.
-
- End POWER. *)
+ Hint Rewrite Padd_ok Psub_ok : Esimpl.
Section POWER.
Variable subst_l : Pol -> Pol.
- Fixpoint Ppow_pos (res P:Pol) (p:positive){struct p} : Pol :=
+ Fixpoint Ppow_pos (res P:Pol) (p:positive) : Pol :=
match p with
- | xH => subst_l (Pmul res P)
+ | xH => subst_l (res ** P)
| xO p => Ppow_pos (Ppow_pos res P p) P p
- | xI p => subst_l (Pmul (Ppow_pos (Ppow_pos res P p) P p) P)
+ | xI p => subst_l ((Ppow_pos (Ppow_pos res P p) P p) ** P)
end.
Definition Ppow_N P n :=
@@ -1250,17 +959,23 @@ Section POWER.
| Npos p => Ppow_pos P1 P p
end.
- Lemma Ppow_pos_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
+ Lemma Ppow_pos_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall res P p, (Ppow_pos res P p)@l == res@l * (pow_pos Pmul P p)@l.
Proof.
- intros l subst_l_ok res P p. generalize res;clear res.
- induction p;simpl;intros;try rewrite subst_l_ok; repeat rewrite Pmul_ok;repeat rewrite IHp.
- rsimpl. mul_push (P@l);rsimpl. rsimpl. rrefl.
+ intros subst_l_ok res P p. revert res.
+ induction p;simpl;intros; rewrite ?subst_l_ok, ?Pmul_ok, ?IHp;
+ mul_permut.
Qed.
- Lemma Ppow_N_ok : forall l, (forall P, subst_l P@l == P@l) ->
- forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
- Proof. destruct n;simpl. rrefl. rewrite Ppow_pos_ok by trivial. Esimpl. Qed.
+ Lemma Ppow_N_ok l :
+ (forall P, subst_l P@l == P@l) ->
+ forall P n, (Ppow_N P n)@l == (pow_N P1 Pmul P n)@l.
+ Proof.
+ destruct n;simpl.
+ - reflexivity.
+ - rewrite Ppow_pos_ok by trivial. Esimpl.
+ Qed.
End POWER.
@@ -1277,69 +992,66 @@ Section POWER.
match pe with
| PEc c => Pc c
| PEX j => mk_X j
- | PEadd (PEopp pe1) pe2 => Psub (norm_aux pe2) (norm_aux pe1)
- | PEadd pe1 (PEopp pe2) =>
- Psub (norm_aux pe1) (norm_aux pe2)
- | PEadd pe1 pe2 => Padd (norm_aux pe1) (norm_aux pe2)
- | PEsub pe1 pe2 => Psub (norm_aux pe1) (norm_aux pe2)
- | PEmul pe1 pe2 => Pmul (norm_aux pe1) (norm_aux pe2)
- | PEopp pe1 => Popp (norm_aux pe1)
+ | PEadd (PEopp pe1) pe2 => (norm_aux pe2) -- (norm_aux pe1)
+ | PEadd pe1 (PEopp pe2) => (norm_aux pe1) -- (norm_aux pe2)
+ | PEadd pe1 pe2 => (norm_aux pe1) ++ (norm_aux pe2)
+ | PEsub pe1 pe2 => (norm_aux pe1) -- (norm_aux pe2)
+ | PEmul pe1 pe2 => (norm_aux pe1) ** (norm_aux pe2)
+ | PEopp pe1 => -- (norm_aux pe1)
| PEpow pe1 n => Ppow_N (fun p => p) (norm_aux pe1) n
end.
Definition norm_subst pe := subst_l (norm_aux pe).
- (*
- Fixpoint norm_subst (pe:PExpr) : Pol :=
+ (** Internally, [norm_aux] is expanded in a large number of cases.
+ To speed-up proofs, we use an alternative definition. *)
+
+ Definition get_PEopp pe :=
match pe with
- | PEc c => Pc c
- | PEX j => subst_l (mk_X j)
- | PEadd (PEopp pe1) pe2 => Psub (norm_subst pe2) (norm_subst pe1)
- | PEadd pe1 (PEopp pe2) =>
- Psub (norm_subst pe1) (norm_subst pe2)
- | PEadd pe1 pe2 => Padd (norm_subst pe1) (norm_subst pe2)
- | PEsub pe1 pe2 => Psub (norm_subst pe1) (norm_subst pe2)
- | PEmul pe1 pe2 => Pmul_subst (norm_subst pe1) (norm_subst pe2)
- | PEopp pe1 => Popp (norm_subst pe1)
- | PEpow pe1 n => Ppow_subst (norm_subst pe1) n
+ | PEopp pe' => Some pe'
+ | _ => None
end.
- Lemma norm_subst_spec :
- forall l pe, MPcond lmp l ->
- PEeval l pe == (norm_subst pe)@l.
+ Lemma norm_aux_PEadd pe1 pe2 :
+ norm_aux (PEadd pe1 pe2) =
+ match get_PEopp pe1, get_PEopp pe2 with
+ | Some pe1', _ => (norm_aux pe2) -- (norm_aux pe1')
+ | None, Some pe2' => (norm_aux pe1) -- (norm_aux pe2')
+ | None, None => (norm_aux pe1) ++ (norm_aux pe2)
+ end.
Proof.
- intros;assert (subst_l_ok:forall P, (subst_l P)@l == P@l).
- unfold subst_l;intros.
- rewrite <- PNSubstL_ok;trivial. rrefl.
- assert (Pms_ok:forall P1 P2, (Pmul_subst P1 P2)@l == P1@l*P2@l).
- intros;unfold Pmul_subst;rewrite subst_l_ok;rewrite Pmul_ok;rrefl.
- induction pe;simpl;Esimpl3.
- rewrite subst_l_ok;apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite Pms_ok;rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe;rrefl.
- unfold Ppow_subst. rewrite Ppow_N_ok. trivial.
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ simpl (norm_aux (PEadd _ _)).
+ destruct pe1; [ | | | | | reflexivity | ];
+ destruct pe2; simpl get_PEopp; reflexivity.
Qed.
-*)
- Lemma norm_aux_spec :
- forall l pe, MPcond lmp l ->
- PEeval l pe == (norm_aux pe)@l.
+
+ Lemma norm_aux_PEopp pe :
+ match get_PEopp pe with
+ | Some pe' => norm_aux pe = -- (norm_aux pe')
+ | None => True
+ end.
+ Proof.
+ now destruct pe.
+ Qed.
+
+ Lemma norm_aux_spec l pe :
+ PEeval l pe == (norm_aux pe)@l.
Proof.
intros.
- induction pe;simpl;Esimpl3.
- apply mkX_ok.
- rewrite IHpe1;rewrite IHpe2;destruct pe1;destruct pe2;Esimpl3.
- rewrite IHpe1;rewrite IHpe2;rrefl.
- rewrite IHpe1;rewrite IHpe2. rewrite Pmul_ok. rrefl.
- rewrite IHpe;rrefl.
- rewrite Ppow_N_ok by (intros;rrefl).
- rewrite pow_th.(rpow_pow_N). destruct n0;Esimpl3.
- induction p;simpl;try rewrite IHp;try rewrite IHpe;repeat rewrite Pms_ok;
- repeat rewrite Pmul_ok;rrefl.
+ induction pe.
+ - reflexivity.
+ - apply mkX_ok.
+ - simpl PEeval. rewrite IHpe1, IHpe2.
+ assert (H1 := norm_aux_PEopp pe1).
+ assert (H2 := norm_aux_PEopp pe2).
+ rewrite norm_aux_PEadd.
+ do 2 destruct get_PEopp; rewrite ?H1, ?H2; Esimpl; add_permut.
+ - simpl. rewrite IHpe1, IHpe2. Esimpl.
+ - simpl. rewrite IHpe1, IHpe2. now rewrite Pmul_ok.
+ - simpl. rewrite IHpe. Esimpl.
+ - simpl. rewrite Ppow_N_ok by reflexivity.
+ rewrite pow_th.(rpow_pow_N). destruct n0; simpl; Esimpl.
+ induction p;simpl; now rewrite ?IHp, ?IHpe, ?Pms_ok, ?Pmul_ok.
Qed.
Lemma norm_subst_spec :
@@ -1347,7 +1059,7 @@ Section POWER.
PEeval l pe == (norm_subst pe)@l.
Proof.
intros;unfold norm_subst.
- unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec. trivial.
+ unfold subst_l;rewrite <- PNSubstL_ok;trivial. apply norm_aux_spec.
Qed.
End NORM_SUBST_REC.
@@ -1514,27 +1226,27 @@ Section POWER.
(rP:R) (P:Pol) (fv:list R) (n:N) (lm:list (R*positive)) {struct P} : R :=
match P with
| Pc c =>
- let lm := add_pow_list (hd 0 fv) n lm in
+ let lm := add_pow_list (hd fv) n lm in
mkadd_mult rP c lm
| Pinj j Q =>
- add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm)
+ add_mult_dev rP Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
- let rP := add_mult_dev rP P fv (Nplus (Npos i) n) lm in
+ let rP := add_mult_dev rP P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
- else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd 0 fv) n lm)
+ else add_mult_dev rP Q (tail fv) N0 (add_pow_list (hd fv) n lm)
end.
Fixpoint mult_dev (P:Pol) (fv : list R) (n:N)
(lm:list (R*positive)) {struct P} : R :=
(* P@l * (hd 0 l)^n * lm *)
match P with
- | Pc c => mkmult_c c (add_pow_list (hd 0 fv) n lm)
- | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd 0 fv) n lm)
+ | Pc c => mkmult_c c (add_pow_list (hd fv) n lm)
+ | Pinj j Q => mult_dev Q (jump j fv) N0 (add_pow_list (hd fv) n lm)
| PX P i Q =>
- let rP := mult_dev P fv (Nplus (Npos i) n) lm in
+ let rP := mult_dev P fv (N.add (Npos i) n) lm in
if Q ?== P0 then rP
else
- let lmq := add_pow_list (hd 0 fv) n lm in
+ let lmq := add_pow_list (hd fv) n lm in
add_mult_dev rP Q (tail fv) N0 lmq
end.
@@ -1575,7 +1287,7 @@ Section POWER.
(forall l lr : list (R * positive), r_list_pow (rev_append l lr) == r_list_pow lr * r_list_pow l).
induction l;intros;simpl;Esimpl.
destruct a;rewrite IHl;Esimpl.
- rewrite (ARmul_comm ARth (pow_pos rmul r p)). rrefl.
+ rewrite (ARmul_comm ARth (pow_pos rmul r p)). reflexivity.
intros;unfold rev'. rewrite H;simpl;Esimpl.
Qed.
@@ -1617,11 +1329,11 @@ Qed.
Qed.
Lemma add_mult_dev_ok : forall P rP fv n lm,
- add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd 0 fv) n * r_list_pow lm.
+ add_mult_dev rP P fv n lm == rP + P@fv*pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros.
- rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl.
- rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl.
+ rewrite mkadd_mult_ok. rewrite add_pow_list_ok; Esimpl.
+ rewrite IHP. simpl. rewrite add_pow_list_ok; Esimpl.
change (match P3 with
| Pc c => c ?=! cO
| Pinj _ _ => false
@@ -1630,17 +1342,19 @@ Qed.
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
- end with (Nplus (Npos p) n);trivial.
+ end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
- rewrite (H (refl_equal true)).
- rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
- rewrite IHP2.
- rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
+ rewrite (H eq_refl).
+ rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
+ add_permut. mul_permut.
+ rewrite IHP2.
+ rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
+ add_permut. mul_permut.
Qed.
Lemma mult_dev_ok : forall P fv n lm,
- mult_dev P fv n lm == P@fv * pow_N rI rmul (hd 0 fv) n * r_list_pow lm.
+ mult_dev P fv n lm == P@fv * pow_N rI rmul (hd fv) n * r_list_pow lm.
Proof.
induction P;simpl;intros;Esimpl.
rewrite mkmult_c_ok;rewrite add_pow_list_ok;Esimpl.
@@ -1653,13 +1367,15 @@ Qed.
change match n with
| N0 => Npos p
| Npos q => Npos (p + q)
- end with (Nplus (Npos p) n);trivial.
+ end with (N.add (Npos p) n);trivial.
assert (H := Peq_ok P3 P0).
destruct (P3 ?== P0).
- rewrite (H (refl_equal true)).
- rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
+ rewrite (H eq_refl).
+ rewrite IHP1. destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
+ mul_permut.
rewrite add_mult_dev_ok. rewrite IHP1; rewrite add_pow_list_ok.
- destruct n;simpl;Esimpl;rewrite pow_pos_Pplus;Esimpl.
+ destruct n;simpl;Esimpl;rewrite pow_pos_add;Esimpl.
+ add_permut; mul_permut.
Qed.
Lemma Pphi_avoid_ok : forall P fv, Pphi_avoid fv P == P@fv.
@@ -1676,18 +1392,18 @@ Qed.
let mkmult_pow r x p := rmul r (mkpow x p) in
Pphi_avoid mkpow mkopp_pow mkmult_pow.
- Lemma local_mkpow_ok :
- forall (r : R) (p : positive),
+ Lemma local_mkpow_ok r p :
match p with
| xI _ => rpow r (Cp_phi (Npos p))
| xO _ => rpow r (Cp_phi (Npos p))
| 1 => r
end == pow_pos rmul r p.
- Proof. intros r p;destruct p;try rewrite pow_th.(rpow_pow_N);reflexivity. Qed.
+ Proof. destruct p; now rewrite ?pow_th.(rpow_pow_N). Qed.
Lemma Pphi_pow_ok : forall P fv, Pphi_pow fv P == P@fv.
Proof.
- unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;try rewrite local_mkpow_ok;rrefl.
+ unfold Pphi_pow;intros;apply Pphi_avoid_ok;intros;
+ now rewrite ?local_mkpow_ok.
Qed.
Lemma ring_rw_pow_correct : forall n lH l,
@@ -1697,7 +1413,7 @@ Qed.
PEeval l pe == Pphi_pow l npe.
Proof.
intros n lH l H1 lmp Heq1 pe npe Heq2.
- rewrite Pphi_pow_ok. rewrite <- Heq2;rewrite <- Heq1.
+ rewrite Pphi_pow_ok, <- Heq2, <- Heq1.
apply norm_subst_ok. trivial.
Qed.
@@ -1711,58 +1427,48 @@ Qed.
Definition mkpow x p :=
match p with
| xH => x
- | xO p => mkmult_pow x x (Pdouble_minus_one p)
+ | xO p => mkmult_pow x x (Pos.pred_double p)
| xI p => mkmult_pow x x (xO p)
end.
Definition mkopp_pow x p :=
match p with
| xH => -x
- | xO p => mkmult_pow (-x) x (Pdouble_minus_one p)
+ | xO p => mkmult_pow (-x) x (Pos.pred_double p)
| xI p => mkmult_pow (-x) x (xO p)
end.
Definition Pphi_dev := Pphi_avoid mkpow mkopp_pow mkmult_pow.
- Lemma mkmult_pow_ok : forall p r x, mkmult_pow r x p == r*pow_pos rmul x p.
+ Lemma mkmult_pow_ok p r x : mkmult_pow r x p == r * x^p.
Proof.
- induction p;intros;simpl;Esimpl.
- repeat rewrite IHp;Esimpl.
- repeat rewrite IHp;Esimpl.
+ revert r; induction p;intros;simpl;Esimpl;rewrite !IHp;Esimpl.
Qed.
- Lemma mkpow_ok : forall p x, mkpow x p == pow_pos rmul x p.
+ Lemma mkpow_ok p x : mkpow x p == x^p.
Proof.
destruct p;simpl;intros;Esimpl.
- repeat rewrite mkmult_pow_ok;Esimpl.
- rewrite mkmult_pow_ok;Esimpl.
- pattern x at 1;replace x with (pow_pos rmul x 1).
- rewrite <- pow_pos_Pplus.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO.
- simpl;Esimpl.
- trivial.
+ - rewrite !mkmult_pow_ok;Esimpl.
+ - rewrite mkmult_pow_ok;Esimpl.
+ change x with (x^1) at 1.
+ now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
- Lemma mkopp_pow_ok : forall p x, mkopp_pow x p == - pow_pos rmul x p.
+ Lemma mkopp_pow_ok p x : mkopp_pow x p == - x^p.
Proof.
destruct p;simpl;intros;Esimpl.
- repeat rewrite mkmult_pow_ok;Esimpl.
- rewrite mkmult_pow_ok;Esimpl.
- pattern x at 1;replace x with (pow_pos rmul x 1).
- rewrite <- pow_pos_Pplus.
- rewrite <- Pplus_one_succ_l.
- rewrite Psucc_o_double_minus_one_eq_xO.
- simpl;Esimpl.
- trivial.
+ - rewrite !mkmult_pow_ok;Esimpl.
+ - rewrite mkmult_pow_ok;Esimpl.
+ change x with (x^1) at 1.
+ now rewrite <- pow_pos_add, Pos.add_1_r, Pos.succ_pred_double.
Qed.
Lemma Pphi_dev_ok : forall P fv, Pphi_dev fv P == P@fv.
Proof.
unfold Pphi_dev;intros;apply Pphi_avoid_ok.
- intros;apply mkpow_ok.
- intros;apply mkopp_pow_ok.
- intros;apply mkmult_pow_ok.
+ - intros;apply mkpow_ok.
+ - intros;apply mkopp_pow_ok.
+ - intros;apply mkmult_pow_ok.
Qed.
Lemma ring_rw_correct : forall n lH l,
@@ -1776,6 +1482,4 @@ Qed.
apply norm_subst_ok. trivial.
Qed.
-
End MakeRingPol.
-
diff --git a/plugins/setoid_ring/Ring_tac.v b/plugins/setoid_ring/Ring_tac.v
index d33e9a82..7a7ffcfd 100644
--- a/plugins/setoid_ring/Ring_tac.v
+++ b/plugins/setoid_ring/Ring_tac.v
@@ -3,6 +3,7 @@ Require Import Setoid.
Require Import BinPos.
Require Import Ring_polynom.
Require Import BinList.
+Require Export ListTactics.
Require Import InitialRing.
Require Import Quote.
Declare ML Module "newring_plugin".
@@ -14,7 +15,7 @@ Ltac compute_assertion eqn t' t :=
let nft := eval vm_compute in t in
pose (t' := nft);
assert (eqn : t = t');
- [vm_cast_no_check (refl_equal t')|idtac].
+ [vm_cast_no_check (eq_refl t')|idtac].
Ltac relation_carrier req :=
let ty := type of req in
@@ -340,7 +341,7 @@ Ltac Ring RNG lemma lH :=
|| idtac "can not automatically proof hypothesis :";
idtac " maybe a left member of a hypothesis is not a monomial")
| vm_compute;
- (exact (refl_equal true) || fail "not a valid ring equation")]).
+ (exact (eq_refl true) || fail "not a valid ring equation")]).
Ltac Ring_norm_gen f RNG lemma lH rl :=
let mkFV := get_RingFV RNG in
@@ -385,7 +386,7 @@ Ltac Ring_simplify_gen f RNG lH rl :=
let lemma := get_SimplifyLemma RNG in
let l := fresh "to_rewrite" in
pose (l:= rl);
- generalize (refl_equal l);
+ generalize (eq_refl l);
unfold l at 2;
get_Pre RNG ();
let rl :=
diff --git a/plugins/setoid_ring/Ring_theory.v b/plugins/setoid_ring/Ring_theory.v
index 4fbdcbaa..42ce4edc 100644
--- a/plugins/setoid_ring/Ring_theory.v
+++ b/plugins/setoid_ring/Ring_theory.v
@@ -1,14 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-Require Import Setoid.
-Require Import BinPos.
-Require Import BinNat.
+Require Import Setoid Morphisms BinPos BinNat.
Set Implicit Arguments.
@@ -35,48 +33,42 @@ Section Power.
Variable rI : R.
Variable rmul : R -> R -> R.
Variable req : R -> R -> Prop.
- Variable Rsth : Setoid_Theory R req.
- Notation "x * y " := (rmul x y).
- Notation "x == y" := (req x y).
+ Variable Rsth : Equivalence req.
+ Infix "*" := rmul.
+ Infix "==" := req.
- Hypothesis mul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2.
- Hypothesis mul_comm : forall x y, x * y == y * x.
+ Hypothesis mul_ext : Proper (req ==> req ==> req) rmul.
Hypothesis mul_assoc : forall x y z, x * (y * z) == (x * y) * z.
- Add Setoid R req Rsth as R_set_Power.
- Add Morphism rmul : rmul_ext_Power. exact mul_ext. Qed.
-
- Fixpoint pow_pos (x:R) (i:positive) {struct i}: R :=
+ Fixpoint pow_pos (x:R) (i:positive) : R :=
match i with
| xH => x
- | xO i => let p := pow_pos x i in rmul p p
- | xI i => let p := pow_pos x i in rmul x (rmul p p)
+ | xO i => let p := pow_pos x i in p * p
+ | xI i => let p := pow_pos x i in x * (p * p)
end.
- Lemma pow_pos_Psucc : forall x j, pow_pos x (Psucc j) == x * pow_pos x j.
+ Lemma pow_pos_swap x j : pow_pos x j * x == x * pow_pos x j.
+ Proof.
+ induction j; simpl; rewrite <- ?mul_assoc.
+ - f_equiv. now do 2 (rewrite IHj, mul_assoc).
+ - now do 2 (rewrite IHj, mul_assoc).
+ - reflexivity.
+ Qed.
+
+ Lemma pow_pos_succ x j :
+ pow_pos x (Pos.succ j) == x * pow_pos x j.
Proof.
- induction j;simpl.
- rewrite IHj.
- rewrite (mul_comm x (pow_pos x j *pow_pos x j)).
- setoid_rewrite (mul_comm x (pow_pos x j)) at 2.
- repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- apply (Seq_refl _ _ Rsth).
+ induction j; simpl; try reflexivity.
+ rewrite IHj, <- mul_assoc; f_equiv.
+ now rewrite mul_assoc, pow_pos_swap, mul_assoc.
Qed.
- Lemma pow_pos_Pplus : forall x i j, pow_pos x (i + j) == pow_pos x i * pow_pos x j.
+ Lemma pow_pos_add x i j :
+ pow_pos x (i + j) == pow_pos x i * pow_pos x j.
Proof.
- intro x;induction i;intros.
- rewrite xI_succ_xO;rewrite Pplus_one_succ_r.
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi.
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc.
- simpl;repeat rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- rewrite <- Pplus_diag;repeat rewrite <- Pplus_assoc.
- repeat rewrite IHi;rewrite mul_assoc. apply (Seq_refl _ _ Rsth).
- rewrite Pplus_comm;rewrite <- Pplus_one_succ_r;rewrite pow_pos_Psucc;
- simpl. apply (Seq_refl _ _ Rsth).
+ induction i using Pos.peano_ind.
+ - now rewrite Pos.add_1_l, pow_pos_succ.
+ - now rewrite Pos.add_succ_l, !pow_pos_succ, IHi, mul_assoc.
Qed.
Definition pow_N (x:R) (p:N) :=
@@ -87,9 +79,9 @@ Section Power.
Definition id_phi_N (x:N) : N := x.
- Lemma pow_N_pow_N : forall x n, pow_N x (id_phi_N n) == pow_N x n.
+ Lemma pow_N_pow_N x n : pow_N x (id_phi_N n) == pow_N x n.
Proof.
- intros; apply (Seq_refl _ _ Rsth).
+ reflexivity.
Qed.
End Power.
@@ -98,19 +90,18 @@ Section DEFINITIONS.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
- Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Notation "0" := rO. Notation "1" := rI.
+ Infix "==" := req. Infix "+" := radd. Infix "*" := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
(** Semi Ring *)
Record semi_ring_theory : Prop := mk_srt {
SRadd_0_l : forall n, 0 + n == n;
- SRadd_comm : forall n m, n + m == m + n ;
+ SRadd_comm : forall n m, n + m == m + n ;
SRadd_assoc : forall n m p, n + (m + p) == (n + m) + p;
SRmul_1_l : forall n, 1*n == n;
SRmul_0_l : forall n, 0*n == 0;
- SRmul_comm : forall n m, n*m == m*n;
+ SRmul_comm : forall n m, n*m == m*n;
SRmul_assoc : forall n m p, n*(m*p) == (n*m)*p;
SRdistr_l : forall n m p, (n + m)*p == n*p + m*p
}.
@@ -119,11 +110,11 @@ Section DEFINITIONS.
(*Almost ring are no ring : Ropp_def is missing **)
Record almost_ring_theory : Prop := mk_art {
ARadd_0_l : forall x, 0 + x == x;
- ARadd_comm : forall x y, x + y == y + x;
+ ARadd_comm : forall x y, x + y == y + x;
ARadd_assoc : forall x y z, x + (y + z) == (x + y) + z;
ARmul_1_l : forall x, 1 * x == x;
ARmul_0_l : forall x, 0 * x == 0;
- ARmul_comm : forall x y, x * y == y * x;
+ ARmul_comm : forall x y, x * y == y * x;
ARmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
ARdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
ARopp_mul_l : forall x y, -(x * y) == -x * y;
@@ -134,10 +125,10 @@ Section DEFINITIONS.
(** Ring *)
Record ring_theory : Prop := mk_rt {
Radd_0_l : forall x, 0 + x == x;
- Radd_comm : forall x y, x + y == y + x;
+ Radd_comm : forall x y, x + y == y + x;
Radd_assoc : forall x y z, x + (y + z) == (x + y) + z;
Rmul_1_l : forall x, 1 * x == x;
- Rmul_comm : forall x y, x * y == y * x;
+ Rmul_comm : forall x y, x * y == y * x;
Rmul_assoc : forall x y z, x * (y * z) == (x * y) * z;
Rdistr_l : forall x y z, (x + y) * z == (x * z) + (y * z);
Rsub_def : forall x y, x - y == x + -y;
@@ -148,19 +139,15 @@ Section DEFINITIONS.
Record sring_eq_ext : Prop := mk_seqe {
(* SRing operators are compatible with equality *)
- SRadd_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
- SRmul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2
+ SRadd_ext : Proper (req ==> req ==> req) radd;
+ SRmul_ext : Proper (req ==> req ==> req) rmul
}.
Record ring_eq_ext : Prop := mk_reqe {
(* Ring operators are compatible with equality *)
- Radd_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 + y1 == x2 + y2;
- Rmul_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 * y1 == x2 * y2;
- Ropp_ext : forall x1 x2, x1 == x2 -> -x1 == -x2
+ Radd_ext : Proper (req ==> req ==> req) radd;
+ Rmul_ext : Proper (req ==> req ==> req) rmul;
+ Ropp_ext : Proper (req ==> req) ropp
}.
(** Interpretation morphisms definition*)
@@ -170,9 +157,9 @@ Section DEFINITIONS.
Variable ceqb : C->C->bool.
(* [phi] est un morphisme de [C] dans [R] *)
Variable phi : C -> R.
- Notation "x +! y" := (cadd x y). Notation "x -! y " := (csub x y).
- Notation "x *! y " := (cmul x y). Notation "-! x" := (copp x).
- Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
+ Infix "+!" := cadd. Infix "-!" := csub.
+ Infix "*!" := cmul. Notation "-! x" := (copp x).
+ Infix "?=!" := ceqb. Notation "[ x ]" := (phi x).
(*for semi rings*)
Record semi_morph : Prop := mkRmorph {
@@ -216,20 +203,18 @@ Section DEFINITIONS.
End MORPHISM.
(** Identity is a morphism *)
- Variable Rsth : Setoid_Theory R req.
- Add Setoid R req Rsth as R_setoid1.
+ Variable Rsth : Equivalence req.
Variable reqb : R->R->bool.
Hypothesis morph_req : forall x y, (reqb x y) = true -> x == y.
Definition IDphi (x:R) := x.
Lemma IDmorph : ring_morph rO rI radd rmul rsub ropp reqb IDphi.
Proof.
- apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi);intros;unfold IDphi;
- try apply (Seq_refl _ _ Rsth);auto.
+ now apply (mkmorph rO rI radd rmul rsub ropp reqb IDphi).
Qed.
(** Specification of the power function *)
Section POWER.
- Variable Cpow : Set.
+ Variable Cpow : Type.
Variable Cp_phi : N -> Cpow.
Variable rpow : R -> Cpow -> R.
@@ -239,35 +224,31 @@ Section DEFINITIONS.
End POWER.
- Definition pow_N_th := mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
+ Definition pow_N_th :=
+ mkpow_th id_phi_N (pow_N rI rmul) (pow_N_pow_N rI rmul Rsth).
End DEFINITIONS.
-
-
Section ALMOST_RING.
Variable R : Type.
Variable (rO rI : R) (radd rmul rsub: R->R->R) (ropp : R -> R).
Variable req : R -> R -> Prop.
- Notation "0" := rO. Notation "1" := rI.
- Notation "x + y" := (radd x y). Notation "x * y " := (rmul x y).
- Notation "x - y " := (rsub x y). Notation "- x" := (ropp x).
- Notation "x == y" := (req x y).
+ Notation "0" := rO. Notation "1" := rI.
+ Infix "==" := req. Infix "+" := radd. Infix "* " := rmul.
+ Infix "-" := rsub. Notation "- x" := (ropp x).
(** Leibniz equality leads to a setoid theory and is extensional*)
- Lemma Eqsth : Setoid_Theory R (@eq R).
- Proof. constructor;red;intros;subst;trivial. Qed.
+ Lemma Eqsth : Equivalence (@eq R).
+ Proof. exact eq_equivalence. Qed.
Lemma Eq_s_ext : sring_eq_ext radd rmul (@eq R).
- Proof. constructor;intros;subst;trivial. Qed.
+ Proof. constructor;solve_proper. Qed.
Lemma Eq_ext : ring_eq_ext radd rmul ropp (@eq R).
- Proof. constructor;intros;subst;trivial. Qed.
+ Proof. constructor;solve_proper. Qed.
- Variable Rsth : Setoid_Theory R req.
- Add Setoid R req Rsth as R_setoid2.
- Ltac sreflexivity := apply (Seq_refl _ _ Rsth).
+ Variable Rsth : Equivalence req.
Section SEMI_RING.
Variable SReqe : sring_eq_ext radd rmul req.
@@ -282,23 +263,24 @@ Section ALMOST_RING.
Definition SRsub x y := x + -y. Notation "x - y " := (SRsub x y).
Lemma SRopp_ext : forall x y, x == y -> -x == -y.
- Proof. intros x y H;exact H. Qed.
+ Proof. intros x y H; exact H. Qed.
Lemma SReqe_Reqe : ring_eq_ext radd rmul SRopp req.
Proof.
- constructor. exact (SRadd_ext SReqe). exact (SRmul_ext SReqe).
- exact SRopp_ext.
+ constructor.
+ - exact (SRadd_ext SReqe).
+ - exact (SRmul_ext SReqe).
+ - exact SRopp_ext.
Qed.
Lemma SRopp_mul_l : forall x y, -(x * y) == -x * y.
- Proof. intros;sreflexivity. Qed.
+ Proof. reflexivity. Qed.
Lemma SRopp_add : forall x y, -(x + y) == -x + -y.
- Proof. intros;sreflexivity. Qed.
-
+ Proof. reflexivity. Qed.
Lemma SRsub_def : forall x y, x - y == x + -y.
- Proof. intros;sreflexivity. Qed.
+ Proof. reflexivity. Qed.
Lemma SRth_ARth : almost_ring_theory 0 1 radd rmul SRsub SRopp req.
Proof (mk_art 0 1 radd rmul SRsub SRopp req
@@ -315,7 +297,7 @@ Section ALMOST_RING.
Definition SRIDmorph : ring_morph 0 1 radd rmul SRsub SRopp req
0 1 radd rmul SRsub SRopp reqb (@IDphi R).
Proof.
- apply mkmorph;intros;try sreflexivity. unfold IDphi;auto.
+ now apply mkmorph.
Qed.
(* a semi_morph can be extended to a ring_morph for the almost_ring derived
@@ -331,9 +313,7 @@ Section ALMOST_RING.
ring_morph rO rI radd rmul SRsub SRopp req
cO cI cadd cmul cadd (fun x => x) ceqb phi.
Proof.
- case Smorph; intros; constructor; auto.
- unfold SRopp in |- *; intros.
- setoid_reflexivity.
+ case Smorph; now constructor.
Qed.
End SEMI_RING.
@@ -347,31 +327,28 @@ Section ALMOST_RING.
Variable Rth : ring_theory 0 1 radd rmul rsub ropp req.
(** Rings are almost rings*)
- Lemma Rmul_0_l : forall x, 0 * x == 0.
+ Lemma Rmul_0_l x : 0 * x == 0.
Proof.
- intro x; setoid_replace (0*x) with ((0+1)*x + -x).
- rewrite (Radd_0_l Rth); rewrite (Rmul_1_l Rth).
- rewrite (Ropp_def Rth);sreflexivity.
+ setoid_replace (0*x) with ((0+1)*x + -x).
+ now rewrite (Radd_0_l Rth), (Rmul_1_l Rth), (Ropp_def Rth).
- rewrite (Rdistr_l Rth);rewrite (Rmul_1_l Rth).
- rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
- rewrite (Radd_comm Rth); rewrite (Radd_0_l Rth);sreflexivity.
+ rewrite (Rdistr_l Rth), (Rmul_1_l Rth).
+ rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
+ now rewrite (Radd_comm Rth), (Radd_0_l Rth).
Qed.
- Lemma Ropp_mul_l : forall x y, -(x * y) == -x * y.
+ Lemma Ropp_mul_l x y : -(x * y) == -x * y.
Proof.
- intros x y;rewrite <-(Radd_0_l Rth (- x * y)).
- rewrite (Radd_comm Rth).
- rewrite <-(Ropp_def Rth (x*y)).
- rewrite (Radd_assoc Rth).
- rewrite <- (Rdistr_l Rth).
- rewrite (Rth.(Radd_comm) (-x));rewrite (Ropp_def Rth).
- rewrite Rmul_0_l;rewrite (Radd_0_l Rth);sreflexivity.
+ rewrite <-(Radd_0_l Rth (- x * y)).
+ rewrite (Radd_comm Rth), <-(Ropp_def Rth (x*y)).
+ rewrite (Radd_assoc Rth), <- (Rdistr_l Rth).
+ rewrite (Rth.(Radd_comm) (-x)), (Ropp_def Rth).
+ now rewrite Rmul_0_l, (Radd_0_l Rth).
Qed.
- Lemma Ropp_add : forall x y, -(x + y) == -x + -y.
+ Lemma Ropp_add x y : -(x + y) == -x + -y.
Proof.
- intros x y;rewrite <- ((Radd_0_l Rth) (-(x+y))).
+ rewrite <- ((Radd_0_l Rth) (-(x+y))).
rewrite <- ((Ropp_def Rth) x).
rewrite <- ((Radd_0_l Rth) (x + - x + - (x + y))).
rewrite <- ((Ropp_def Rth) y).
@@ -383,17 +360,17 @@ Section ALMOST_RING.
rewrite ((Radd_comm Rth) y).
rewrite <- ((Radd_assoc Rth) (- x)).
rewrite ((Radd_assoc Rth) y).
- rewrite ((Radd_comm Rth) y);rewrite (Ropp_def Rth).
- rewrite ((Radd_comm Rth) (-x) 0);rewrite (Radd_0_l Rth).
- apply (Radd_comm Rth).
+ rewrite ((Radd_comm Rth) y), (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) (-x) 0), (Radd_0_l Rth).
+ now apply (Radd_comm Rth).
Qed.
- Lemma Ropp_opp : forall x, - -x == x.
+ Lemma Ropp_opp x : - -x == x.
Proof.
- intros x; rewrite <- (Radd_0_l Rth (- -x)).
+ rewrite <- (Radd_0_l Rth (- -x)).
rewrite <- (Ropp_def Rth x).
- rewrite <- (Radd_assoc Rth); rewrite (Ropp_def Rth).
- rewrite ((Radd_comm Rth) x);apply (Radd_0_l Rth).
+ rewrite <- (Radd_assoc Rth), (Ropp_def Rth).
+ rewrite ((Radd_comm Rth) x); now apply (Radd_0_l Rth).
Qed.
Lemma Rth_ARth : almost_ring_theory 0 1 radd rmul rsub ropp req.
@@ -407,10 +384,10 @@ Section ALMOST_RING.
Variable (cO cI : C) (cadd cmul csub: C->C->C) (copp : C -> C).
Variable (ceq : C -> C -> Prop) (ceqb : C -> C -> bool).
Variable phi : C -> R.
- Notation "x +! y" := (cadd x y). Notation "x *! y " := (cmul x y).
- Notation "x -! y " := (csub x y). Notation "-! x" := (copp x).
- Notation "x ?=! y" := (ceqb x y). Notation "[ x ]" := (phi x).
- Variable Csth : Setoid_Theory C ceq.
+ Infix "+!" := cadd. Infix "*!" := cmul.
+ Infix "-!" := csub. Notation "-! x" := (copp x).
+ Notation "?=!" := ceqb. Notation "[ x ]" := (phi x).
+ Variable Csth : Equivalence ceq.
Variable Ceqe : ring_eq_ext cadd cmul copp ceq.
Add Setoid C ceq Csth as C_setoid.
Add Morphism cadd : cadd_ext. exact (Radd_ext Ceqe). Qed.
@@ -420,9 +397,9 @@ Section ALMOST_RING.
Variable Smorph : semi_morph 0 1 radd rmul req cO cI cadd cmul ceqb phi.
Variable phi_ext : forall x y, ceq x y -> [x] == [y].
Add Morphism phi : phi_ext1. exact phi_ext. Qed.
- Lemma Smorph_opp : forall x, [-!x] == -[x].
+ Lemma Smorph_opp x : [-!x] == -[x].
Proof.
- intros x;rewrite <- (Rth.(Radd_0_l) [-!x]).
+ rewrite <- (Rth.(Radd_0_l) [-!x]).
rewrite <- ((Ropp_def Rth) [x]).
rewrite ((Radd_comm Rth) [x]).
rewrite <- (Radd_assoc Rth).
@@ -430,17 +407,18 @@ Section ALMOST_RING.
rewrite (Ropp_def Cth).
rewrite (Smorph0 Smorph).
rewrite (Radd_comm Rth (-[x])).
- apply (Radd_0_l Rth);sreflexivity.
+ now apply (Radd_0_l Rth).
Qed.
- Lemma Smorph_sub : forall x y, [x -! y] == [x] - [y].
+ Lemma Smorph_sub x y : [x -! y] == [x] - [y].
Proof.
- intros x y; rewrite (Rsub_def Cth);rewrite (Rsub_def Rth).
- rewrite (Smorph_add Smorph);rewrite Smorph_opp;sreflexivity.
+ rewrite (Rsub_def Cth), (Rsub_def Rth).
+ now rewrite (Smorph_add Smorph), Smorph_opp.
Qed.
- Lemma Smorph_morph : ring_morph 0 1 radd rmul rsub ropp req
- cO cI cadd cmul csub copp ceqb phi.
+ Lemma Smorph_morph :
+ ring_morph 0 1 radd rmul rsub ropp req
+ cO cI cadd cmul csub copp ceqb phi.
Proof
(mkmorph 0 1 radd rmul rsub ropp req cO cI cadd cmul csub copp ceqb phi
(Smorph0 Smorph) (Smorph1 Smorph)
@@ -458,17 +436,11 @@ elim ARth; intros.
constructor; trivial.
Qed.
- Lemma ARsub_ext :
- forall x1 x2, x1 == x2 -> forall y1 y2, y1 == y2 -> x1 - y1 == x2 - y2.
+ Instance ARsub_ext : Proper (req ==> req ==> req) rsub.
Proof.
- intros.
- setoid_replace (x1 - y1) with (x1 + -y1).
- setoid_replace (x2 - y2) with (x2 + -y2).
- rewrite H;rewrite H0;sreflexivity.
- apply (ARsub_def ARth).
- apply (ARsub_def ARth).
+ intros x1 x2 Ex y1 y2 Ey.
+ now rewrite !(ARsub_def ARth), Ex, Ey.
Qed.
- Add Morphism rsub : rsub_ext. exact ARsub_ext. Qed.
Ltac mrewrite :=
repeat first
@@ -479,64 +451,56 @@ Qed.
| rewrite (ARmul_0_l ARth)
| rewrite <- ((ARmul_comm ARth) 0)
| rewrite (ARdistr_l ARth)
- | sreflexivity
+ | reflexivity
| match goal with
| |- context [?z * (?x + ?y)] => rewrite ((ARmul_comm ARth) z (x+y))
end].
- Lemma ARadd_0_r : forall x, (x + 0) == x.
- Proof. intros; mrewrite. Qed.
+ Lemma ARadd_0_r x : x + 0 == x.
+ Proof. mrewrite. Qed.
- Lemma ARmul_1_r : forall x, x * 1 == x.
- Proof. intros;mrewrite. Qed.
+ Lemma ARmul_1_r x : x * 1 == x.
+ Proof. mrewrite. Qed.
- Lemma ARmul_0_r : forall x, x * 0 == 0.
- Proof. intros;mrewrite. Qed.
+ Lemma ARmul_0_r x : x * 0 == 0.
+ Proof. mrewrite. Qed.
- Lemma ARdistr_r : forall x y z, z * (x + y) == z*x + z*y.
+ Lemma ARdistr_r x y z : z * (x + y) == z*x + z*y.
Proof.
- intros;mrewrite.
- repeat rewrite (ARth.(ARmul_comm) z);sreflexivity.
+ mrewrite. now rewrite !(ARth.(ARmul_comm) z).
Qed.
- Lemma ARadd_assoc1 : forall x y z, (x + y) + z == (y + z) + x.
+ Lemma ARadd_assoc1 x y z : (x + y) + z == (y + z) + x.
Proof.
- intros;rewrite <-(ARth.(ARadd_assoc) x).
- rewrite (ARth.(ARadd_comm) x);sreflexivity.
+ now rewrite <-(ARth.(ARadd_assoc) x), (ARth.(ARadd_comm) x).
Qed.
- Lemma ARadd_assoc2 : forall x y z, (y + x) + z == (y + z) + x.
+ Lemma ARadd_assoc2 x y z : (y + x) + z == (y + z) + x.
Proof.
- intros; repeat rewrite <- (ARadd_assoc ARth);
- rewrite ((ARadd_comm ARth) x); sreflexivity.
+ now rewrite <- !(ARadd_assoc ARth), ((ARadd_comm ARth) x).
Qed.
- Lemma ARmul_assoc1 : forall x y z, (x * y) * z == (y * z) * x.
+ Lemma ARmul_assoc1 x y z : (x * y) * z == (y * z) * x.
Proof.
- intros;rewrite <-((ARmul_assoc ARth) x).
- rewrite ((ARmul_comm ARth) x);sreflexivity.
+ now rewrite <- ((ARmul_assoc ARth) x), ((ARmul_comm ARth) x).
Qed.
- Lemma ARmul_assoc2 : forall x y z, (y * x) * z == (y * z) * x.
+ Lemma ARmul_assoc2 x y z : (y * x) * z == (y * z) * x.
Proof.
- intros; repeat rewrite <- (ARmul_assoc ARth);
- rewrite ((ARmul_comm ARth) x); sreflexivity.
+ now rewrite <- !(ARmul_assoc ARth), ((ARmul_comm ARth) x).
Qed.
- Lemma ARopp_mul_r : forall x y, - (x * y) == x * -y.
+ Lemma ARopp_mul_r x y : - (x * y) == x * -y.
Proof.
- intros;rewrite ((ARmul_comm ARth) x y);
- rewrite (ARopp_mul_l ARth); apply (ARmul_comm ARth).
+ rewrite ((ARmul_comm ARth) x y), (ARopp_mul_l ARth).
+ now apply (ARmul_comm ARth).
Qed.
Lemma ARopp_zero : -0 == 0.
Proof.
- rewrite <- (ARmul_0_r 0); rewrite (ARopp_mul_l ARth).
- repeat rewrite ARmul_0_r; sreflexivity.
+ now rewrite <- (ARmul_0_r 0), (ARopp_mul_l ARth), !ARmul_0_r.
Qed.
-
-
End ALMOST_RING.
@@ -590,12 +554,29 @@ Ltac gen_srewrite Rsth Reqe ARth :=
| progress rewrite <- (ARopp_mul_l ARth)
| progress rewrite <- (ARopp_mul_r Rsth Reqe ARth) ].
+Ltac gen_srewrite_sr Rsth Reqe ARth :=
+ repeat first
+ [ gen_reflexivity Rsth
+ | progress rewrite (ARopp_zero Rsth Reqe ARth)
+ | rewrite (ARadd_0_l ARth)
+ | rewrite (ARadd_0_r Rsth ARth)
+ | rewrite (ARmul_1_l ARth)
+ | rewrite (ARmul_1_r Rsth ARth)
+ | rewrite (ARmul_0_l ARth)
+ | rewrite (ARmul_0_r Rsth ARth)
+ | rewrite (ARdistr_l ARth)
+ | rewrite (ARdistr_r Rsth Reqe ARth)
+ | rewrite (ARadd_assoc ARth)
+ | rewrite (ARmul_assoc ARth) ].
+
Ltac gen_add_push add Rsth Reqe ARth x :=
repeat (match goal with
| |- context [add (add ?y x) ?z] =>
progress rewrite (ARadd_assoc2 Rsth Reqe ARth x y z)
| |- context [add (add x ?y) ?z] =>
progress rewrite (ARadd_assoc1 Rsth ARth x y z)
+ | |- context [(add x ?y)] =>
+ progress rewrite (ARadd_comm ARth x y)
end).
Ltac gen_mul_push mul Rsth Reqe ARth x :=
@@ -604,5 +585,6 @@ Ltac gen_mul_push mul Rsth Reqe ARth x :=
progress rewrite (ARmul_assoc2 Rsth Reqe ARth x y z)
| |- context [mul (mul x ?y) ?z] =>
progress rewrite (ARmul_assoc1 Rsth ARth x y z)
+ | |- context [(mul x ?y)] =>
+ progress rewrite (ARmul_comm ARth x y)
end).
-
diff --git a/plugins/setoid_ring/Rings_Q.v b/plugins/setoid_ring/Rings_Q.v
new file mode 100644
index 00000000..fd765471
--- /dev/null
+++ b/plugins/setoid_ring/Rings_Q.v
@@ -0,0 +1,30 @@
+Require Export Cring.
+Require Export Integral_domain.
+
+(* Rational numbers *)
+Require Import QArith.
+
+Instance Qops: (@Ring_ops Q 0%Q 1%Q Qplus Qmult Qminus Qopp Qeq).
+
+Instance Qri : (Ring (Ro:=Qops)).
+constructor.
+try apply Q_Setoid.
+apply Qplus_comp.
+apply Qmult_comp.
+apply Qminus_comp.
+apply Qopp_comp.
+ exact Qplus_0_l. exact Qplus_comm. apply Qplus_assoc.
+ exact Qmult_1_l. exact Qmult_1_r. apply Qmult_assoc.
+ apply Qmult_plus_distr_l. intros. apply Qmult_plus_distr_r.
+reflexivity. exact Qplus_opp_r.
+Defined.
+
+Instance Qcri: (Cring (Rr:=Qri)).
+red. exact Qmult_comm. Defined.
+
+Lemma Q_one_zero: not (Qeq 1%Q 0%Q).
+unfold Qeq. simpl. auto with *. Qed.
+
+Instance Qdi : (Integral_domain (Rcr:=Qcri)).
+constructor.
+exact Qmult_integral. exact Q_one_zero. Defined.
diff --git a/plugins/setoid_ring/Rings_R.v b/plugins/setoid_ring/Rings_R.v
new file mode 100644
index 00000000..fd219c23
--- /dev/null
+++ b/plugins/setoid_ring/Rings_R.v
@@ -0,0 +1,34 @@
+Require Export Cring.
+Require Export Integral_domain.
+
+(* Real numbers *)
+Require Import Reals.
+Require Import RealField.
+
+Lemma Rsth : Setoid_Theory R (@eq R).
+constructor;red;intros;subst;trivial.
+Qed.
+
+Instance Rops: (@Ring_ops R 0%R 1%R Rplus Rmult Rminus Ropp (@eq R)).
+
+Instance Rri : (Ring (Ro:=Rops)).
+constructor;
+try (try apply Rsth;
+ try (unfold respectful, Proper; unfold equality; unfold eq_notation in *;
+ intros; try rewrite H; try rewrite H0; reflexivity)).
+ exact Rplus_0_l. exact Rplus_comm. symmetry. apply Rplus_assoc.
+ exact Rmult_1_l. exact Rmult_1_r. symmetry. apply Rmult_assoc.
+ exact Rmult_plus_distr_r. intros; apply Rmult_plus_distr_l.
+exact Rplus_opp_r.
+Defined.
+
+Instance Rcri: (Cring (Rr:=Rri)).
+red. exact Rmult_comm. Defined.
+
+Lemma R_one_zero: 1%R <> 0%R.
+discrR.
+Qed.
+
+Instance Rdi : (Integral_domain (Rcr:=Rcri)).
+constructor.
+exact Rmult_integral. exact R_one_zero. Defined.
diff --git a/plugins/setoid_ring/Rings_Z.v b/plugins/setoid_ring/Rings_Z.v
new file mode 100644
index 00000000..58a4d7ea
--- /dev/null
+++ b/plugins/setoid_ring/Rings_Z.v
@@ -0,0 +1,14 @@
+Require Export Cring.
+Require Export Integral_domain.
+Require Export Ncring_initial.
+
+Instance Zcri: (Cring (Rr:=Zr)).
+red. exact Z.mul_comm. Defined.
+
+Lemma Z_one_zero: 1%Z <> 0%Z.
+omega.
+Qed.
+
+Instance Zdi : (Integral_domain (Rcr:=Zcri)).
+constructor.
+exact Zmult_integral. exact Z_one_zero. Defined.
diff --git a/plugins/setoid_ring/ZArithRing.v b/plugins/setoid_ring/ZArithRing.v
index 362542b9..3c4f6b86 100644
--- a/plugins/setoid_ring/ZArithRing.v
+++ b/plugins/setoid_ring/ZArithRing.v
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -27,11 +27,7 @@ Ltac isZpow_coef t :=
| _ => constr:false
end.
-Definition N_of_Z x :=
- match x with
- | Zpos p => Npos p
- | _ => N0
- end.
+Notation N_of_Z := Z.to_N (only parsing).
Ltac Zpow_tac t :=
match isZpow_coef t with
@@ -43,14 +39,14 @@ Ltac Zpower_neg :=
repeat match goal with
| [|- ?G] =>
match G with
- | context c [Zpower _ (Zneg _)] =>
+ | context c [Z.pow _ (Zneg _)] =>
let t := context c [Z0] in
change t
end
end.
Add Ring Zr : Zth
- (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Zsucc],
+ (decidable Zeq_bool_eq, constants [Zcst], preprocess [Zpower_neg;unfold Z.succ],
power_tac Zpower_theory [Zpow_tac],
(* The two following option are not needed, it is the default chose when the set of
coefficiant is usual ring Z *)
diff --git a/plugins/setoid_ring/newring.ml4 b/plugins/setoid_ring/newring.ml4
index 820246af..580e78f6 100644
--- a/plugins/setoid_ring/newring.ml4
+++ b/plugins/setoid_ring/newring.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -8,8 +8,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(*i $Id: newring.ml4 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Pp
open Util
open Names
@@ -18,8 +16,7 @@ open Closure
open Environ
open Libnames
open Tactics
-open Rawterm
-open Termops
+open Glob_term
open Tacticals
open Tacexpr
open Pcoq
@@ -87,7 +84,7 @@ let interp_map l c =
with Not_found -> None
let interp_map l t =
- try Some(List.assoc t l) with Not_found -> None
+ try Some(list_assoc_f eq_constr t l) with Not_found -> None
let protect_maps = ref Stringmap.empty
let add_map s m = protect_maps := Stringmap.add s m !protect_maps
@@ -98,13 +95,13 @@ let lookup_map map =
let protect_red map env sigma c =
kl (create_clos_infos betadeltaiota env)
- (mk_clos_but (lookup_map map c) (Esubst.ESID 0) c);;
+ (mk_clos_but (lookup_map map c) (Esubst.subs_id 0) c);;
let protect_tac map =
Tactics.reduct_option (protect_red map,DEFAULTcast) None ;;
let protect_tac_in map id =
- Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id,InHyp));;
+ Tactics.reduct_option (protect_red map,DEFAULTcast) (Some(id, Termops.InHyp));;
TACTIC EXTEND protect_fv
@@ -144,7 +141,7 @@ let closed_term_ast l =
let l = List.map (fun gr -> ArgArg(dummy_loc,gr)) l in
TacFun([Some(id_of_string"t")],
TacAtom(dummy_loc,TacExtend(dummy_loc,"closed_term",
- [Genarg.in_gen Genarg.globwit_constr (RVar(dummy_loc,id_of_string"t"),None);
+ [Genarg.in_gen Genarg.globwit_constr (GVar(dummy_loc,id_of_string"t"),None);
Genarg.in_gen (Genarg.wit_list1 Genarg.globwit_ref) l])))
(*
let _ = add_tacdef false ((dummy_loc,id_of_string"ring_closed_term"
@@ -161,18 +158,18 @@ let ty c = Typing.type_of (Global.env()) Evd.empty c
let decl_constant na c =
mkConst(declare_constant (id_of_string na) (DefinitionEntry
{ const_entry_body = c;
+ const_entry_secctx = None;
const_entry_type = None;
- const_entry_opaque = true;
- const_entry_boxed = true},
+ const_entry_opaque = true },
IsProof Lemma))
(* Calling a global tactic *)
let ltac_call tac (args:glob_tactic_arg list) =
- TacArg(TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args))
+ TacArg(dummy_loc,TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force tac),args))
(* Calling a locally bound tactic *)
let ltac_lcall tac args =
- TacArg(TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args))
+ TacArg(dummy_loc,TacCall(dummy_loc, ArgVar(dummy_loc, id_of_string tac),args))
let ltac_letin (x, e1) e2 =
TacLetIn(false,[(dummy_loc,id_of_string x),e1],e2)
@@ -188,8 +185,10 @@ let ltac_record flds =
let carg c = TacDynamic(dummy_loc,Pretyping.constr_in c)
let dummy_goal env =
- {Evd.it = Evd.make_evar (named_context_val env) mkProp;
- Evd.sigma = Evd.empty}
+ let (gl,_,sigma) =
+ Goal.V82.mk_goal Evd.empty (named_context_val env) mkProp Store.empty in
+ {Evd.it = gl;
+ Evd.sigma = sigma}
let exec_tactic env n f args =
let lid = list_tabulate(fun i -> id_of_string("x"^string_of_int i)) n in
@@ -344,7 +343,7 @@ type ring_info =
ring_pre_tac : glob_tactic_expr;
ring_post_tac : glob_tactic_expr }
-module Cmap = Map.Make(struct type t = constr let compare = compare end)
+module Cmap = Map.Make(struct type t = constr let compare = constr_ord end)
let from_carrier = ref Cmap.empty
let from_relation = ref Cmap.empty
@@ -415,7 +414,7 @@ let subst_th (subst,th) =
let posttac'= subst_tactic subst th.ring_post_tac in
if c' == th.ring_carrier &&
eq' == th.ring_req &&
- set' = th.ring_setoid &&
+ eq_constr set' th.ring_setoid &&
ext' == th.ring_ext &&
morph' == th.ring_morph &&
th' == th.ring_th &&
@@ -440,7 +439,7 @@ let subst_th (subst,th) =
ring_post_tac = posttac' }
-let (theory_to_obj, obj_to_theory) =
+let theory_to_obj : ring_info -> obj =
let cache_th (name,th) = add_entry name th in
declare_object
{(default_object "tactic-new-ring-theory") with
@@ -576,13 +575,13 @@ let dest_ring env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req|])
- when f = Lazy.force coq_almost_ring_theory ->
+ when eq_constr f (Lazy.force coq_almost_ring_theory) ->
(None,r,zero,one,add,mul,Some sub,Some opp,req)
| App(f,[|r;zero;one;add;mul;req|])
- when f = Lazy.force coq_semi_ring_theory ->
+ when eq_constr f (Lazy.force coq_semi_ring_theory) ->
(Some true,r,zero,one,add,mul,None,None,req)
| App(f,[|r;zero;one;add;mul;sub;opp;req|])
- when f = Lazy.force coq_ring_theory ->
+ when eq_constr f (Lazy.force coq_ring_theory) ->
(Some false,r,zero,one,add,mul,Some sub,Some opp,req)
| _ -> error "bad ring structure"
@@ -592,10 +591,10 @@ let dest_morph env sigma m_spec =
match kind_of_term m_typ with
App(f,[|r;zero;one;add;mul;sub;opp;req;
c;czero;cone;cadd;cmul;csub;copp;ceqb;phi|])
- when f = Lazy.force coq_ring_morph ->
+ when eq_constr f (Lazy.force coq_ring_morph) ->
(c,czero,cone,cadd,cmul,Some csub,Some copp,ceqb,phi)
| App(f,[|r;zero;one;add;mul;req;c;czero;cone;cadd;cmul;ceqb;phi|])
- when f = Lazy.force coq_semi_morph ->
+ when eq_constr f (Lazy.force coq_semi_morph) ->
(c,czero,cone,cadd,cmul,None,None,ceqb,phi)
| _ -> error "bad morphism structure"
@@ -626,23 +625,23 @@ let interp_cst_tac env sigma rk kind (zero,one,add,mul,opp) cst_tac =
(match rk, opp, kind with
Abstract, None, _ ->
let t = ArgArg(dummy_loc,Lazy.force ltac_inv_morphN) in
- TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul]))
+ TacArg(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul]))
| Abstract, Some opp, Some _ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphZ) in
- TacArg(TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
+ TacArg(dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Abstract, Some opp, None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morphNword) in
TacArg
- (TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
+ (dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;add;mul;opp]))
| Computational _,_,_ ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
- (TacCall(dummy_loc,t,List.map carg [zero;one;zero;one]))
+ (dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;zero;one]))
| Morphism mth,_,_ ->
let (_,czero,cone,_,_,_,_,_,_) = dest_morph env sigma mth in
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_gen) in
TacArg
- (TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone])))
+ (dummy_loc,TacCall(dummy_loc,t,List.map carg [zero;one;czero;cone])))
let make_hyp env c =
let t = Retyping.get_type_of env Evd.empty c in
@@ -659,7 +658,7 @@ let interp_power env pow =
match pow with
| None ->
let t = ArgArg(dummy_loc, Lazy.force ltac_inv_morph_nothing) in
- (TacArg(TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|])
+ (TacArg(dummy_loc,TacCall(dummy_loc,t,[])), lapp coq_None [|carrier|])
| Some (tac, spec) ->
let tac =
match tac with
@@ -832,7 +831,7 @@ let ring_lookup (f:glob_tactic_expr) lH rl t gl =
TACTIC EXTEND ring_lookup
| [ "ring_lookup" tactic0(f) "[" constr_list(lH) "]" ne_constr_list(lrt) ] ->
- [ let (t,lr) = list_sep_last lrt in ring_lookup (fst f) lH lr t]
+ [ let (t,lr) = list_sep_last lrt in ring_lookup f lH lr t]
END
@@ -893,18 +892,18 @@ let dest_field env sigma th_spec =
let th_typ = Retyping.get_type_of env sigma th_spec in
match kind_of_term th_typ with
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
- when f = Lazy.force afield_theory ->
+ when eq_constr f (Lazy.force afield_theory) ->
let rth = lapp af_ar
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(None,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;sub;opp;div;inv;req|])
- when f = Lazy.force field_theory ->
+ when eq_constr f (Lazy.force field_theory) ->
let rth =
lapp f_r
[|r;zero;one;add;mul;sub;opp;div;inv;req;th_spec|] in
(Some false,r,zero,one,add,mul,Some sub,Some opp,div,inv,req,rth)
| App(f,[|r;zero;one;add;mul;div;inv;req|])
- when f = Lazy.force sfield_theory ->
+ when eq_constr f (Lazy.force sfield_theory) ->
let rth = lapp sf_sr
[|r;zero;one;add;mul;div;inv;req;th_spec|] in
(Some true,r,zero,one,add,mul,None,None,div,inv,req,rth)
@@ -1016,7 +1015,7 @@ let subst_th (subst,th) =
field_pre_tac = pretac';
field_post_tac = posttac' }
-let (ftheory_to_obj, obj_to_ftheory) =
+let ftheory_to_obj : field_info -> obj =
let cache_th (name,th) = add_field_entry name th in
declare_object
{(default_object "tactic-new-field-theory") with
@@ -1160,5 +1159,5 @@ let field_lookup (f:glob_tactic_expr) lH rl t gl =
TACTIC EXTEND field_lookup
| [ "field_lookup" tactic(f) "[" constr_list(lH) "]" ne_constr_list(lt) ] ->
- [ let (t,l) = list_sep_last lt in field_lookup (fst f) lH l t ]
+ [ let (t,l) = list_sep_last lt in field_lookup f lH l t ]
END
diff --git a/plugins/setoid_ring/vo.itarget b/plugins/setoid_ring/vo.itarget
index 6934375b..580df9b5 100644
--- a/plugins/setoid_ring/vo.itarget
+++ b/plugins/setoid_ring/vo.itarget
@@ -13,3 +13,13 @@ Ring_tac.vo
Ring_theory.vo
Ring.vo
ZArithRing.vo
+Algebra_syntax.vo
+Cring.vo
+Ncring.vo
+Ncring_polynom.vo
+Ncring_initial.vo
+Ncring_tac.vo
+Rings_Z.vo
+Rings_R.vo
+Rings_Q.vo
+Integral_domain.vo \ No newline at end of file
diff --git a/plugins/subtac/eterm.ml b/plugins/subtac/eterm.ml
index 3fb6824b..f4d8b769 100644
--- a/plugins/subtac/eterm.ml
+++ b/plugins/subtac/eterm.ml
@@ -1,4 +1,3 @@
-(* -*- compile-command: "make -C ../.. plugins/subtac/subtac_plugin.cma" -*- *)
(**
- Get types of existentials ;
- Flatten dependency tree (prefix order) ;
@@ -28,11 +27,15 @@ type oblinfo =
ev_hyps: named_context;
ev_status: obligation_definition_status;
ev_chop: int option;
- ev_source: hole_kind located;
+ ev_src: hole_kind located;
ev_typ: types;
ev_tac: tactic option;
ev_deps: Intset.t }
+(* spiwack: Store field for internalizing ev_tac in evar_infos' evar_extra. *)
+open Store.Field
+let evar_tactic = Store.field ()
+
(** Substitute evar references in t using De Bruijn indices,
where n binders were passed through. *)
@@ -129,18 +132,29 @@ let rec chop_product n t =
| Prod (_, _, b) -> if noccurn 1 b then chop_product (pred n) (Termops.pop b) else None
| _ -> None
-let evar_dependencies evm ev =
+let evars_of_evar_info evi =
+ Intset.union (Evarutil.evars_of_term evi.evar_concl)
+ (Intset.union
+ (match evi.evar_body with
+ | Evar_empty -> Intset.empty
+ | Evar_defined b -> Evarutil.evars_of_term b)
+ (Evarutil.evars_of_named_context (evar_filtered_context evi)))
+
+let evar_dependencies evm oev =
let one_step deps =
Intset.fold (fun ev s ->
let evi = Evd.find evm ev in
- Intset.union (Evarutil.evars_of_evar_info evi) s)
+ let deps' = evars_of_evar_info evi in
+ if Intset.mem oev deps' then
+ raise (Invalid_argument ("Ill-formed evar map: cycle detected for evar " ^ string_of_int oev))
+ else Intset.union deps' s)
deps deps
in
let rec aux deps =
let deps' = one_step deps in
if Intset.equal deps deps' then deps
else aux deps'
- in aux (Intset.singleton ev)
+ in aux (Intset.singleton oev)
let move_after (id, ev, deps as obl) l =
let rec aux restdeps = function
@@ -210,7 +224,7 @@ let eterm_obligations env name isevars evm fs ?status t ty =
| Some s -> s, None
| None -> Define true, None
in
- let tac = match ev.evar_extra with
+ let tac = match evar_tactic.get ev.evar_extra with
| Some t ->
if Dyn.tag t = "tactic" then
Some (Tacinterp.interp
@@ -218,9 +232,9 @@ let eterm_obligations env name isevars evm fs ?status t ty =
else None
| None -> None
in
- let info = { ev_name = (n, nstr); ev_hyps = hyps;
- ev_status = status; ev_chop = chop;
- ev_source = (loc, k); ev_typ = evtyp ; ev_deps = deps; ev_tac = tac }
+ let info = { ev_name = (n, nstr);
+ ev_hyps = hyps; ev_status = status; ev_chop = chop;
+ ev_src = loc, k; ev_typ = evtyp ; ev_deps = deps; ev_tac = tac }
in (id, info) :: l)
evn []
in
@@ -231,12 +245,12 @@ let eterm_obligations env name isevars evm fs ?status t ty =
let evars =
List.map (fun (ev, info) ->
let { ev_name = (_, name); ev_status = status;
- ev_source = source; ev_typ = typ; ev_deps = deps; ev_tac = tac } = info
+ ev_src = src; ev_typ = typ; ev_deps = deps; ev_tac = tac } = info
in
let status = match status with
| Define true when Idset.mem name transparent -> Define false
| _ -> status
- in name, typ, source, status, deps, tac) evts
+ in name, typ, src, status, deps, tac) evts
in
let evnames = List.map (fun (ev, info) -> ev, snd info.ev_name) evts in
let evmap f c = pi1 (subst_evar_constr evts 0 f c) in
diff --git a/plugins/subtac/eterm.mli b/plugins/subtac/eterm.mli
index b4bbe3d5..a0b693de 100644
--- a/plugins/subtac/eterm.mli
+++ b/plugins/subtac/eterm.mli
@@ -1,12 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: eterm.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
open Environ
open Tacmach
open Term
diff --git a/plugins/subtac/g_subtac.ml4 b/plugins/subtac/g_subtac.ml4
index ce6d12be..6e7a8d32 100644
--- a/plugins/subtac/g_subtac.ml4
+++ b/plugins/subtac/g_subtac.ml4
@@ -1,21 +1,17 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
-(*i camlp4use: "pa_extend.cmo" i*)
-
(*
Syntax for the subtac terms and types.
Elaborated from correctness/psyntax.ml4 by Jean-Christophe Filliâtre *)
-(* $Id: g_subtac.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Flags
open Util
@@ -37,14 +33,14 @@ module Tactic = Pcoq.Tactic
module SubtacGram =
struct
- let gec s = Gram.Entry.create ("Subtac."^s)
+ let gec s = Gram.entry_create ("Subtac."^s)
(* types *)
- let subtac_gallina_loc : Vernacexpr.vernac_expr located Gram.Entry.e = gec "subtac_gallina_loc"
+ let subtac_gallina_loc : Vernacexpr.vernac_expr located Gram.entry = gec "subtac_gallina_loc"
- let subtac_withtac : Tacexpr.raw_tactic_expr option Gram.Entry.e = gec "subtac_withtac"
+ let subtac_withtac : Tacexpr.raw_tactic_expr option Gram.entry = gec "subtac_withtac"
end
-open Rawterm
+open Glob_term
open SubtacGram
open Util
open Pcoq
@@ -79,14 +75,14 @@ type 'a gallina_loc_argtype = (Vernacexpr.vernac_expr located, 'a) Genarg.abstra
let (wit_subtac_gallina_loc : Genarg.tlevel gallina_loc_argtype),
(globwit_subtac_gallina_loc : Genarg.glevel gallina_loc_argtype),
(rawwit_subtac_gallina_loc : Genarg.rlevel gallina_loc_argtype) =
- Genarg.create_arg "subtac_gallina_loc"
+ Genarg.create_arg None "subtac_gallina_loc"
type 'a withtac_argtype = (Tacexpr.raw_tactic_expr option, 'a) Genarg.abstract_argument_type
let (wit_subtac_withtac : Genarg.tlevel withtac_argtype),
(globwit_subtac_withtac : Genarg.glevel withtac_argtype),
(rawwit_subtac_withtac : Genarg.rlevel withtac_argtype) =
- Genarg.create_arg "subtac_withtac"
+ Genarg.create_arg None "subtac_withtac"
VERNAC COMMAND EXTEND Subtac
[ "Program" subtac_gallina_loc(g) ] -> [ Subtac.subtac g ]
@@ -94,7 +90,8 @@ VERNAC COMMAND EXTEND Subtac
let try_catch_exn f e =
try f e
- with exn -> errorlabstrm "Program" (Cerrors.explain_exn exn)
+ with exn when Errors.noncritical exn ->
+ errorlabstrm "Program" (Errors.print exn)
let subtac_obligation e = try_catch_exn Subtac_obligations.subtac_obligation e
let next_obligation e = try_catch_exn Subtac_obligations.next_obligation e
diff --git a/plugins/subtac/subtac.ml b/plugins/subtac/subtac.ml
index 95cacc38..ad248bfb 100644
--- a/plugins/subtac/subtac.ml
+++ b/plugins/subtac/subtac.ml
@@ -1,13 +1,12 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: subtac.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
+open Compat
open Global
open Pp
open Util
@@ -27,7 +26,7 @@ open List
open Recordops
open Evarutil
open Pretype_errors
-open Rawterm
+open Glob_term
open Evarconv
open Pattern
open Vernacexpr
@@ -50,7 +49,7 @@ open Tacinterp
open Tacexpr
let solve_tccs_in_type env id isevars evm c typ =
- if not (evm = Evd.empty) then
+ if not (Evd.is_empty evm) then
let stmt_id = Nameops.add_suffix id "_stmt" in
let obls, _, c', t' = eterm_obligations env stmt_id !isevars evm 0 ~status:Expand c typ in
match Subtac_obligations.add_definition stmt_id ~term:c' typ obls with
@@ -83,13 +82,11 @@ let start_proof_com env isevars sopt kind (bl,t) hook =
Impargs.declare_manual_implicits (loc = Local) gr ~enriching:true [imps];
hook loc gr)
-let print_subgoals () = Flags.if_verbose (fun () -> msg (Printer.pr_open_subgoals ())) ()
-
let start_proof_and_print env isevars idopt k t hook =
start_proof_com env isevars idopt k t hook;
- print_subgoals ()
+ Vernacentries.print_subgoals ()
-let _ = Detyping.set_detype_anonymous (fun loc n -> RVar (loc, id_of_string ("Anonymous_REL_" ^ string_of_int n)))
+let _ = Detyping.set_detype_anonymous (fun loc n -> GVar (loc, id_of_string ("Anonymous_REL_" ^ string_of_int n)))
let assumption_message id =
Flags.if_verbose message ((string_of_id id) ^ " is assumed")
@@ -142,12 +139,12 @@ let subtac (loc, command) =
(fun _ _ -> ())
| DefineBody (bl, _, c, tycon) ->
ignore(Subtac_pretyping.subtac_proof defkind hook env isevars id bl c tycon))
- | VernacFixpoint (l, b) ->
+ | VernacFixpoint l ->
List.iter (fun ((lid, _, _, _, _), _) ->
check_fresh lid;
Dumpglob.dump_definition lid false "fix") l;
let _ = trace (str "Building fixpoint") in
- ignore(Subtac_command.build_recursive l b)
+ ignore(Subtac_command.build_recursive l)
| VernacStartTheoremProof (thkind, [Some id, (bl,t,guard)], lettop, hook) ->
if guard <> None then
@@ -172,10 +169,10 @@ let subtac (loc, command) =
error "Declare Instance not supported here.";
ignore(Subtac_classes.new_instance ~global:glob sup is props pri)
- | VernacCoFixpoint (l, b) ->
+ | VernacCoFixpoint l ->
if Dumpglob.dump () then
List.iter (fun ((lid, _, _, _), _) -> Dumpglob.dump_definition lid false "cofix") l;
- ignore(Subtac_command.build_corecursive l b)
+ ignore(Subtac_command.build_corecursive l)
(*| VernacEndProof e ->
subtac_end_proof e*)
@@ -219,6 +216,11 @@ let subtac (loc, command) =
| Type_errors.TypeError (env, exn) as e -> raise e
- | Pretype_errors.PretypeError (env, exn) as e -> raise e
+ | Pretype_errors.PretypeError (env, _, exn) as e -> raise e
+
+ | (Loc.Exc_located (loc, Proof_type.LtacLocated (_,e')) |
+ Loc.Exc_located (loc, e') as e) -> raise e
- | e -> raise e
+ | reraise ->
+ (* msg_warning (str "Uncaught exception: " ++ Errors.print e); *)
+ raise reraise
diff --git a/plugins/subtac/subtac_cases.ml b/plugins/subtac/subtac_cases.ml
index 25aec39c..0b1ed9bb 100644
--- a/plugins/subtac/subtac_cases.ml
+++ b/plugins/subtac/subtac_cases.ml
@@ -1,14 +1,11 @@
-(* -*- compile-command: "make -C ../.. plugins/subtac/subtac_plugin.cma" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: subtac_cases.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Cases
open Util
open Names
@@ -23,7 +20,7 @@ open Sign
open Reductionops
open Typeops
open Type_errors
-open Rawterm
+open Glob_term
open Retyping
open Pretype_errors
open Evarutil
@@ -89,7 +86,7 @@ let mkSpecialLetInJudge j (na,(deppat,nondeppat,d,t)) =
type rhs =
{ rhs_env : env;
avoid_ids : identifier list;
- it : rawconstr;
+ it : glob_constr;
}
type equation =
@@ -158,22 +155,22 @@ let feed_history arg = function
(* This is for non exhaustive error message *)
-let rec rawpattern_of_partial_history args2 = function
+let rec glob_pattern_of_partial_history args2 = function
| Continuation (n, args1, h) ->
let args3 = make_anonymous_patvars (n - (List.length args2)) in
- build_rawpattern (List.rev_append args1 (args2@args3)) h
+ build_glob_pattern (List.rev_append args1 (args2@args3)) h
| Result pl -> pl
-and build_rawpattern args = function
+and build_glob_pattern args = function
| Top -> args
| MakeAlias (AliasLeaf, rh) ->
assert (args = []);
- rawpattern_of_partial_history [PatVar (dummy_loc, Anonymous)] rh
+ glob_pattern_of_partial_history [PatVar (dummy_loc, Anonymous)] rh
| MakeAlias (AliasConstructor pci, rh) ->
- rawpattern_of_partial_history
+ glob_pattern_of_partial_history
[PatCstr (dummy_loc, pci, args, Anonymous)] rh
-let complete_history = rawpattern_of_partial_history []
+let complete_history = glob_pattern_of_partial_history []
(* This is to build glued pattern-matching history and alias bodies *)
@@ -237,7 +234,7 @@ type pattern_matching_problem =
mat : matrix;
caseloc : loc;
casestyle: case_style;
- typing_function: type_constraint -> env -> rawconstr -> unsafe_judgment }
+ typing_function: type_constraint -> env -> glob_constr -> unsafe_judgment }
(*--------------------------------------------------------------------------*
* A few functions to infer the inductive type from the patterns instead of *
@@ -345,7 +342,7 @@ let prepare_predicate_from_arsign_tycon loc env evm tomatchs arsign c =
let pred = predicate 0 c in
let env' = push_rel_context (context_of_arsign arsign) env in
ignore(Typing.sort_of env' evm pred); pred
- with _ -> lift nar c
+ with e when Errors.noncritical e -> lift nar c
module Cases_F(Coercion : Coercion.S) : S = struct
@@ -369,10 +366,10 @@ let find_tomatch_tycon isevars env loc = function
| None -> empty_tycon
let coerce_row typing_fun isevars env pats (tomatch,(_,indopt)) =
- let loc = Some (loc_of_rawconstr tomatch) in
+ let loc = Some (loc_of_glob_constr tomatch) in
let tycon = find_tomatch_tycon isevars env loc indopt in
let j = typing_fun tycon env tomatch in
- let evd, j = Coercion.inh_coerce_to_base (loc_of_rawconstr tomatch) env !isevars j in
+ let evd, j = Coercion.inh_coerce_to_base (loc_of_glob_constr tomatch) env !isevars j in
isevars := evd;
let typ = nf_evar ( !isevars) j.uj_type in
let t =
@@ -530,7 +527,7 @@ let extract_rhs pb =
let occur_in_rhs na rhs =
match na with
| Anonymous -> false
- | Name id -> occur_rawconstr id rhs.it
+ | Name id -> occur_glob_constr id rhs.it
let is_dep_patt eqn = function
| PatVar (_,name) -> occur_in_rhs name eqn.rhs
@@ -604,7 +601,7 @@ let regeneralize_index_tomatch n =
genrec 0
let rec replace_term n c k t =
- if t = mkRel (n+k) then lift k c
+ if isRel t && destRel t = n+k then lift k c
else map_constr_with_binders succ (replace_term n c) k t
let replace_tomatch n c =
@@ -1468,7 +1465,8 @@ let extract_arity_signatures env0 tomatchl tmsign =
| None -> list_tabulate (fun _ -> Anonymous) nrealargs in
let arsign = fst (get_arity env0 indf) in
(na,None,build_dependent_inductive env0 indf)
- ::(try List.map2 (fun x (_,c,t) ->(x,c,t)) realnal arsign with _ -> assert false) in
+ ::(try List.map2 (fun x (_,c,t) ->(x,c,t)) realnal arsign
+ with e when Errors.noncritical e -> assert false) in
let rec buildrec = function
| [],[] -> []
| (_,tm)::ltm, x::tmsign ->
@@ -1518,7 +1516,7 @@ let mk_JMeq typ x typ' y =
mkApp (delayed_force Subtac_utils.jmeq_ind, [| typ; x ; typ'; y |])
let mk_JMeq_refl typ x = mkApp (delayed_force Subtac_utils.jmeq_refl, [| typ; x |])
-let hole = RHole (dummy_loc, Evd.QuestionMark (Evd.Define true))
+let hole = GHole (dummy_loc, Evd.QuestionMark (Evd.Define true))
let constr_of_pat env isevars arsign pat avoid =
let rec typ env (ty, realargs) pat avoid =
@@ -1534,7 +1532,7 @@ let constr_of_pat env isevars arsign pat avoid =
| PatCstr (l,((_, i) as cstr),args,alias) ->
let cind = inductive_of_constructor cstr in
let IndType (indf, _) =
- try find_rectype env ( !isevars) (lift (-(List.length realargs)) ty)
+ try find_rectype env ( !isevars) (lift (-(List.length realargs)) ty)
with Not_found -> error_case_not_inductive env
{uj_val = ty; uj_type = Typing.type_of env !isevars ty}
in
@@ -1548,7 +1546,7 @@ let constr_of_pat env isevars arsign pat avoid =
List.fold_right2
(fun (na, c, t) ua (patargs, args, sign, env, n, m, avoid) ->
let pat', sign', arg', typ', argtypargs, n', avoid =
- typ env (lift (n - m) t, []) ua avoid
+ typ env (substl args (liftn (List.length sign) (succ (List.length args)) t), []) ua avoid
in
let args' = arg' :: List.map (lift n') args in
let env' = push_rels sign' env in
@@ -1607,12 +1605,12 @@ let vars_of_ctx ctx =
match b with
| Some t' when kind_of_term t' = Rel 0 ->
prev,
- (RApp (dummy_loc,
- (RRef (dummy_loc, delayed_force refl_ref)), [hole; RVar (dummy_loc, prev)])) :: vars
+ (GApp (dummy_loc,
+ (GRef (dummy_loc, delayed_force refl_ref)), [hole; GVar (dummy_loc, prev)])) :: vars
| _ ->
match na with
Anonymous -> raise (Invalid_argument "vars_of_ctx")
- | Name n -> n, RVar (dummy_loc, n) :: vars)
+ | Name n -> n, GVar (dummy_loc, n) :: vars)
ctx (id_of_string "vars_of_ctx_error", [])
in List.rev y
@@ -1744,13 +1742,13 @@ let constrs_of_pats typing_fun env isevars eqns tomatchs sign neqs arity =
let branch_name = id_of_string ("program_branch_" ^ (string_of_int !i)) in
let branch_decl = (Name branch_name, Some (lift !i bbody), (lift !i btype)) in
let branch =
- let bref = RVar (dummy_loc, branch_name) in
+ let bref = GVar (dummy_loc, branch_name) in
match vars_of_ctx rhs_rels with
[] -> bref
- | l -> RApp (dummy_loc, bref, l)
+ | l -> GApp (dummy_loc, bref, l)
in
let branch = match ineqs with
- Some _ -> RApp (dummy_loc, branch, [ hole ])
+ Some _ -> GApp (dummy_loc, branch, [ hole ])
| None -> branch
in
incr i;
@@ -1786,7 +1784,7 @@ let abstract_tomatch env tomatchs tycon =
Rel n -> (lift lenctx c, lift_tomatch_type lenctx t) :: prev, ctx, names, tycon
| _ ->
let tycon = Option.map
- (fun t -> subst_term_occ all_occurrences (lift 1 c) (lift 1 t)) tycon in
+ (fun t -> subst_term (lift 1 c) (lift 1 t)) tycon in
let name = next_ident_away (id_of_string "filtered_var") names in
(mkRel 1, lift_tomatch_type (succ lenctx) t) :: lift_ctx 1 prev,
(Name name, Some (lift lenctx c), lift lenctx $ type_of_tomatch t) :: ctx,
@@ -1848,7 +1846,7 @@ let build_dependent_signature env evars avoid tomatchs arsign =
refl_arg :: refl_args,
pred slift,
(Name id, b, t) :: argsign'))
- (env, 0, [], [], slift, []) args argsign
+ (env, neqs, [], [], slift, []) args argsign
in
let eq = mk_JMeq
(lift (nargeqs + slift) appt)
diff --git a/plugins/subtac/subtac_cases.mli b/plugins/subtac/subtac_cases.mli
index bc2b2bb7..91142067 100644
--- a/plugins/subtac/subtac_cases.mli
+++ b/plugins/subtac/subtac_cases.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: subtac_cases.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*i*)
open Util
open Names
@@ -15,7 +13,7 @@ open Term
open Evd
open Environ
open Inductiveops
-open Rawterm
+open Glob_term
open Evarutil
(*i*)
diff --git a/plugins/subtac/subtac_classes.ml b/plugins/subtac/subtac_classes.ml
index 960bf162..f11f611f 100644
--- a/plugins/subtac/subtac_classes.ml
+++ b/plugins/subtac/subtac_classes.ml
@@ -1,19 +1,16 @@
-(* -*- compile-command: "make -C ../.. plugins/subtac/subtac_plugin.cma" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: subtac_classes.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Pretyping
open Evd
open Environ
open Term
-open Rawterm
+open Glob_term
open Topconstr
open Names
open Libnames
@@ -23,24 +20,28 @@ open Constrintern
open Subtac_command
open Typeclasses
open Typeclasses_errors
-open Termops
open Decl_kinds
open Entries
open Util
module SPretyping = Subtac_pretyping.Pretyping
-let interp_constr_evars_gen evdref env ?(impls=[]) kind c =
+let interp_constr_evars_gen evdref env ?(impls=Constrintern.empty_internalization_env) kind c =
SPretyping.understand_tcc_evars evdref env kind
- (intern_gen (kind=IsType) ~impls ( !evdref) env c)
+ (intern_gen (kind=IsType) ~impls !evdref env c)
-let interp_casted_constr_evars evdref env ?(impls=[]) c typ =
+let interp_casted_constr_evars evdref env ?(impls=Constrintern.empty_internalization_env) c typ =
interp_constr_evars_gen evdref env ~impls (OfType (Some typ)) c
let interp_context_evars evdref env params =
- Constrintern.interp_context_gen
+ let impls_env, bl = Constrintern.interp_context_gen
(fun env t -> SPretyping.understand_tcc_evars evdref env IsType t)
- (SPretyping.understand_judgment_tcc evdref) !evdref env params
+ (SPretyping.understand_judgment_tcc evdref) !evdref env params in bl
+
+let interp_type_evars_impls ~evdref ?(impls=empty_internalization_env) env c =
+ let c = intern_gen true ~impls !evdref env c in
+ let imps = Implicit_quantifiers.implicits_of_glob_constr ~with_products:true c in
+ SPretyping.understand_tcc_evars ~fail_evar:false evdref env IsType c, imps
let type_ctx_instance evars env ctx inst subst =
let rec aux (subst, instctx) l = function
@@ -51,7 +52,7 @@ let type_ctx_instance evars env ctx inst subst =
| None -> interp_casted_constr_evars evars env (List.hd l) t', List.tl l
| Some b -> substl subst b, l
in
- evars := resolve_typeclasses ~onlyargs:true ~fail:true env !evars;
+ evars := resolve_typeclasses ~filter:Subtac_utils.no_goals_or_obligations ~fail:true env !evars;
let d = na, Some c', t' in
aux (c' :: subst, d :: instctx) l ctx
| [] -> subst
@@ -106,18 +107,20 @@ let new_instance ?(global=false) ctx (instid, bk, cl) props ?(generalize=true) p
let i = Nameops.add_suffix (Classes.id_of_class k) "_instance_0" in
Namegen.next_global_ident_away i (Termops.ids_of_context env)
in
+ evars := resolve_typeclasses ~filter:Subtac_utils.no_goals_or_obligations ~fail:true env !evars;
+ let ctx = Evarutil.nf_rel_context_evar !evars ctx
+ and ctx' = Evarutil.nf_rel_context_evar !evars ctx' in
let env' = push_rel_context ctx env in
- evars := Evarutil.nf_evar_map !evars;
- evars := resolve_typeclasses ~onlyargs:false ~fail:true env !evars;
let sigma = !evars in
let subst = List.map (Evarutil.nf_evar sigma) subst in
let props =
match props with
- | CRecord (loc, _, fs) ->
+ | Some (CRecord (loc, _, fs)) ->
if List.length fs > List.length k.cl_props then
Classes.mismatched_props env' (List.map snd fs) k.cl_props;
Inl fs
- | _ -> Inr props
+ | Some p -> Inr p
+ | None -> Inl []
in
let subst =
match props with
@@ -138,7 +141,11 @@ let new_instance ?(global=false) ctx (instid, bk, cl) props ?(generalize=true) p
let (loc_mid, c) = List.find (fun (id', _) -> Name (snd (get_id id')) = id) rest in
let rest' = List.filter (fun (id', _) -> Name (snd (get_id id')) <> id) rest in
let (loc, mid) = get_id loc_mid in
- Option.iter (fun x -> Dumpglob.add_glob loc (ConstRef x)) (List.assoc mid k.cl_projs);
+ List.iter
+ (fun (n, _, x) ->
+ if n = Name mid then
+ Option.iter (fun x -> Dumpglob.add_glob loc (ConstRef x)) x)
+ k.cl_projs;
c :: props, rest'
with Not_found ->
(CHole (Util.dummy_loc, None) :: props), rest
@@ -151,6 +158,8 @@ let new_instance ?(global=false) ctx (instid, bk, cl) props ?(generalize=true) p
Inl (type_ctx_instance evars (push_rel_context ctx' env') k.cl_props props subst)
in
evars := Evarutil.nf_evar_map !evars;
+ evars := resolve_typeclasses ~filter:Subtac_utils.no_goals_or_obligations ~fail:true env !evars;
+ evars := resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:false env !evars;
let term, termtype =
match subst with
| Inl subst ->
@@ -173,10 +182,9 @@ let new_instance ?(global=false) ctx (instid, bk, cl) props ?(generalize=true) p
Evarutil.check_evars env Evd.empty !evars termtype;
let hook vis gr =
let cst = match gr with ConstRef kn -> kn | _ -> assert false in
- let inst = Typeclasses.new_instance k pri global (ConstRef cst) in
Impargs.declare_manual_implicits false gr ~enriching:false [imps];
- Typeclasses.add_instance inst
+ Typeclasses.declare_instance pri (not global) (ConstRef cst)
in
let evm = Subtac_utils.evars_of_term !evars Evd.empty term in
let obls, _, constr, typ = Eterm.eterm_obligations env id !evars evm 0 term termtype in
- id, Subtac_obligations.add_definition id ~term:constr typ ~kind:(Global,false,Instance) ~hook obls
+ id, Subtac_obligations.add_definition id ~term:constr typ ~kind:(Global,Instance) ~hook obls
diff --git a/plugins/subtac/subtac_classes.mli b/plugins/subtac/subtac_classes.mli
index 73ca5581..2c9fbaf5 100644
--- a/plugins/subtac/subtac_classes.mli
+++ b/plugins/subtac/subtac_classes.mli
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: subtac_classes.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(*i*)
open Names
open Decl_kinds
@@ -35,7 +33,7 @@ val new_instance :
?global:bool ->
local_binder list ->
typeclass_constraint ->
- constr_expr ->
+ constr_expr option ->
?generalize:bool ->
int option ->
identifier * Subtac_obligations.progress
diff --git a/plugins/subtac/subtac_coercion.ml b/plugins/subtac/subtac_coercion.ml
index bdebdf85..0c03fb4c 100644
--- a/plugins/subtac/subtac_coercion.ml
+++ b/plugins/subtac/subtac_coercion.ml
@@ -1,13 +1,10 @@
-(* -*- compile-command: "make -C ../.. bin/coqtop.byte" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: subtac_coercion.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util
open Names
open Term
@@ -30,6 +27,9 @@ open Subtac_errors
open Eterm
open Pp
+let app_opt env evars f t =
+ whd_betaiota !evars (app_opt f t)
+
let pair_of_array a = (a.(0), a.(1))
let make_name s = Name (id_of_string s)
@@ -83,7 +83,8 @@ module Coercion = struct
| Type _, Prop Null -> Prop Null
| _, Type _ -> s2
- let hnf env isevars c = whd_betadeltaiota env ( !isevars) c
+ let hnf env isevars c = whd_betadeltaiota env isevars c
+ let hnf_nodelta env evars c = whd_betaiota evars c
let lift_args n sign =
let rec liftrec k = function
@@ -93,15 +94,16 @@ module Coercion = struct
liftrec (List.length sign) sign
let rec mu env isevars t =
- let isevars = ref isevars in
let rec aux v =
- let v = hnf env isevars v in
+ let v = hnf env !isevars v in
match disc_subset v with
Some (u, p) ->
let f, ct = aux u in
+ let p = hnf env !isevars p in
(Some (fun x ->
- app_opt f (mkApp ((delayed_force sig_).proj1,
- [| u; p; x |]))),
+ app_opt env isevars
+ f (mkApp ((delayed_force sig_).proj1,
+ [| u; p; x |]))),
ct)
| None -> (None, v)
in aux t
@@ -109,9 +111,8 @@ module Coercion = struct
and coerce loc env isevars (x : Term.constr) (y : Term.constr)
: (Term.constr -> Term.constr) option
=
- let x = nf_evar ( !isevars) x and y = nf_evar ( !isevars) y in
let rec coerce_unify env x y =
- let x = hnf env isevars x and y = hnf env isevars y in
+ let x = hnf env !isevars x and y = hnf env !isevars y in
try
isevars := the_conv_x_leq env x y !isevars;
None
@@ -144,7 +145,7 @@ module Coercion = struct
let restargs = lift_args 1
(List.rev (Array.to_list (Array.sub l (succ i) (len - (succ i)))))
in
- let args = List.rev (restargs @ mkRel 1 :: lift_args 1 tele) in
+ let args = List.rev (restargs @ mkRel 1 :: List.map (lift 1) tele) in
let pred = mkLambda (n, eqT, applistc (lift 1 c) args) in
let eq = mkApp (delayed_force eq_ind, [| eqT; hdx; hdy |]) in
let evar = make_existential loc env isevars eq in
@@ -170,7 +171,7 @@ module Coercion = struct
let env' = push_rel (name', None, a') env in
let c1 = coerce_unify env' (lift 1 a') (lift 1 a) in
(* env, x : a' |- c1 : lift 1 a' > lift 1 a *)
- let coec1 = app_opt c1 (mkRel 1) in
+ let coec1 = app_opt env' isevars c1 (mkRel 1) in
(* env, x : a' |- c1[x] : lift 1 a *)
let c2 = coerce_unify env' (subst1 coec1 (liftn 1 2 b)) b' in
(* env, x : a' |- c2 : b[c1[x]/x]] > b' *)
@@ -180,7 +181,7 @@ module Coercion = struct
Some
(fun f ->
mkLambda (name', a',
- app_opt c2
+ app_opt env' isevars c2
(mkApp (Term.lift 1 f, [| coec1 |])))))
| App (c, l), App (c', l') ->
@@ -205,7 +206,7 @@ module Coercion = struct
| Lambda (n, t, t') -> c, t'
(*| Prod (n, t, t') -> t'*)
| Evar (k, args) ->
- let (evs, t) = Evarutil.define_evar_as_lambda !isevars (k,args) in
+ let (evs, t) = Evarutil.define_evar_as_lambda env !isevars (k,args) in
isevars := evs;
let (n, dom, rng) = destLambda t in
let (domk, args) = destEvar dom in
@@ -223,9 +224,9 @@ module Coercion = struct
Some
(fun x ->
let x, y =
- app_opt c1 (mkApp (existS.proj1,
+ app_opt env' isevars c1 (mkApp (existS.proj1,
[| a; pb; x |])),
- app_opt c2 (mkApp (existS.proj2,
+ app_opt env' isevars c2 (mkApp (existS.proj2,
[| a; pb; x |]))
in
mkApp (existS.intro, [| a'; pb'; x ; y |]))
@@ -243,9 +244,9 @@ module Coercion = struct
Some
(fun x ->
let x, y =
- app_opt c1 (mkApp (prod.proj1,
+ app_opt env isevars c1 (mkApp (prod.proj1,
[| a; b; x |])),
- app_opt c2 (mkApp (prod.proj2,
+ app_opt env isevars c2 (mkApp (prod.proj2,
[| a; b; x |]))
in
mkApp (prod.intro, [| a'; b'; x ; y |]))
@@ -279,7 +280,7 @@ module Coercion = struct
Some (u, p) ->
let c = coerce_unify env u y in
let f x =
- app_opt c (mkApp ((delayed_force sig_).proj1,
+ app_opt env isevars c (mkApp ((delayed_force sig_).proj1,
[| u; p; x |]))
in Some f
| None ->
@@ -288,7 +289,7 @@ module Coercion = struct
let c = coerce_unify env x u in
Some
(fun x ->
- let cx = app_opt c x in
+ let cx = app_opt env isevars c x in
let evar = make_existential loc env isevars (mkApp (p, [| cx |]))
in
(mkApp
@@ -303,7 +304,8 @@ module Coercion = struct
let coerce_itf loc env isevars v t c1 =
let evars = ref isevars in
let coercion = coerce loc env evars t c1 in
- !evars, Option.map (app_opt coercion) v
+ let t = Option.map (app_opt env evars coercion) v in
+ !evars, t
(* Taken from pretyping/coercion.ml *)
@@ -330,8 +332,8 @@ module Coercion = struct
let apply_pattern_coercion loc pat p =
List.fold_left
(fun pat (co,n) ->
- let f i = if i<n then Rawterm.PatVar (loc, Anonymous) else pat in
- Rawterm.PatCstr (loc, co, list_tabulate f (n+1), Anonymous))
+ let f i = if i<n then Glob_term.PatVar (loc, Anonymous) else pat in
+ Glob_term.PatCstr (loc, co, list_tabulate f (n+1), Anonymous))
pat p
(* raise Not_found if no coercion found *)
@@ -354,37 +356,39 @@ module Coercion = struct
jres),
jres.uj_type)
(hj,typ_cl) p)
- with _ -> anomaly "apply_coercion"
+ with e when Errors.noncritical e -> anomaly "apply_coercion"
let inh_app_fun env isevars j =
- let t = whd_betadeltaiota env ( isevars) j.uj_type in
+ let isevars = ref isevars in
+ let t = hnf env !isevars j.uj_type in
match kind_of_term t with
- | Prod (_,_,_) -> (isevars,j)
- | Evar ev when not (is_defined_evar isevars ev) ->
- let (isevars',t) = define_evar_as_product isevars ev in
+ | Prod (_,_,_) -> (!isevars,j)
+ | Evar ev when not (is_defined_evar !isevars ev) ->
+ let (isevars',t) = define_evar_as_product !isevars ev in
(isevars',{ uj_val = j.uj_val; uj_type = t })
| _ ->
(try
let t,p =
- lookup_path_to_fun_from env ( isevars) j.uj_type in
- (isevars,apply_coercion env ( isevars) p j t)
+ lookup_path_to_fun_from env !isevars j.uj_type in
+ (!isevars,apply_coercion env !isevars p j t)
with Not_found ->
try
let coercef, t = mu env isevars t in
- (isevars, { uj_val = app_opt coercef j.uj_val; uj_type = t })
+ let res = { uj_val = app_opt env isevars coercef j.uj_val; uj_type = t } in
+ (!isevars, res)
with NoSubtacCoercion | NoCoercion ->
- (isevars,j))
+ (!isevars,j))
let inh_tosort_force loc env isevars j =
try
let t,p = lookup_path_to_sort_from env ( isevars) j.uj_type in
let j1 = apply_coercion env ( isevars) p j t in
- (isevars,type_judgment env (j_nf_evar ( isevars) j1))
+ (isevars, type_judgment env (j_nf_evar ( isevars) j1))
with Not_found ->
error_not_a_type_loc loc env ( isevars) j
let inh_coerce_to_sort loc env isevars j =
- let typ = whd_betadeltaiota env ( isevars) j.uj_type in
+ let typ = hnf env isevars j.uj_type in
match kind_of_term typ with
| Sort s -> (isevars,{ utj_val = j.uj_val; utj_type = s })
| Evar ev when not (is_defined_evar isevars ev) ->
@@ -394,15 +398,19 @@ module Coercion = struct
inh_tosort_force loc env isevars j
let inh_coerce_to_base loc env isevars j =
- let typ = whd_betadeltaiota env ( isevars) j.uj_type in
+ let isevars = ref isevars in
+ let typ = hnf env !isevars j.uj_type in
let ct, typ' = mu env isevars typ in
- isevars, { uj_val = app_opt ct j.uj_val;
- uj_type = typ' }
+ let res =
+ { uj_val = app_opt env isevars ct j.uj_val;
+ uj_type = typ' }
+ in !isevars, res
let inh_coerce_to_prod loc env isevars t =
- let typ = whd_betadeltaiota env ( isevars) (snd t) in
+ let isevars = ref isevars in
+ let typ = hnf env !isevars (snd t) in
let _, typ' = mu env isevars typ in
- isevars, (fst t, typ')
+ !isevars, (fst t, typ')
let inh_coerce_to_fail env evd rigidonly v t c1 =
if rigidonly & not (Heads.is_rigid env c1 && Heads.is_rigid env t)
@@ -411,10 +419,10 @@ module Coercion = struct
else
let v', t' =
try
- let t2,t1,p = lookup_path_between env ( evd) (t,c1) in
+ let t2,t1,p = lookup_path_between env evd (t,c1) in
match v with
Some v ->
- let j = apply_coercion env ( evd) p
+ let j = apply_coercion env evd p
{uj_val = v; uj_type = t} t2 in
Some j.uj_val, j.uj_type
| None -> None, t
@@ -430,8 +438,8 @@ module Coercion = struct
try inh_coerce_to_fail env evd rigidonly v t c1
with NoCoercion ->
match
- kind_of_term (whd_betadeltaiota env ( evd) t),
- kind_of_term (whd_betadeltaiota env ( evd) c1)
+ kind_of_term (whd_betadeltaiota env evd t),
+ kind_of_term (whd_betadeltaiota env evd c1)
with
| Prod (name,t1,t2), Prod (_,u1,u2) ->
(* Conversion did not work, we may succeed with a coercion. *)
@@ -455,23 +463,23 @@ module Coercion = struct
(* Look for cj' obtained from cj by inserting coercions, s.t. cj'.typ = t *)
let inh_conv_coerce_to_gen rigidonly loc env evd cj ((n, t) as _tycon) =
match n with
- None ->
- let (evd', val') =
- try
- inh_conv_coerce_to_fail loc env evd rigidonly
- (Some (nf_evar evd cj.uj_val))
- (nf_evar evd cj.uj_type) (nf_evar evd t)
- with NoCoercion ->
- let sigma = evd in
- try
- coerce_itf loc env evd (Some cj.uj_val) cj.uj_type t
- with NoSubtacCoercion ->
- error_actual_type_loc loc env sigma cj t
- in
- let val' = match val' with Some v -> v | None -> assert(false) in
- (evd',{ uj_val = val'; uj_type = t })
- | Some (init, cur) ->
- (evd, cj)
+ | None ->
+ let cj = { cj with uj_type = hnf_nodelta env evd cj.uj_type }
+ and t = hnf_nodelta env evd t in
+ let (evd', val') =
+ try
+ inh_conv_coerce_to_fail loc env evd rigidonly
+ (Some cj.uj_val) cj.uj_type t
+ with NoCoercion ->
+ (try
+ coerce_itf loc env evd (Some cj.uj_val) cj.uj_type t
+ with NoSubtacCoercion ->
+ error_actual_type_loc loc env evd cj t)
+ in
+ let val' = match val' with Some v -> v | None -> assert(false) in
+ (evd',{ uj_val = val'; uj_type = t })
+ | Some (init, cur) ->
+ (evd, cj)
let inh_conv_coerce_to = inh_conv_coerce_to_gen false
let inh_conv_coerce_rigid_to = inh_conv_coerce_to_gen true
@@ -498,5 +506,5 @@ module Coercion = struct
with NoSubtacCoercion ->
error_cannot_coerce env' isevars (t, t'))
else isevars
- with _ -> isevars
+ with e when Errors.noncritical e -> isevars
end
diff --git a/plugins/subtac/subtac_command.ml b/plugins/subtac/subtac_command.ml
index a83611a4..537a8301 100644
--- a/plugins/subtac/subtac_command.ml
+++ b/plugins/subtac/subtac_command.ml
@@ -6,7 +6,7 @@ open Libobject
open Pattern
open Matching
open Pp
-open Rawterm
+open Glob_term
open Sign
open Tacred
open Util
@@ -21,7 +21,6 @@ open Tacmach
open Tactic_debug
open Topconstr
open Term
-open Termops
open Tacexpr
open Safe_typing
open Typing
@@ -53,7 +52,7 @@ let evar_nf isevars c =
Evarutil.nf_evar !isevars c
let interp_gen kind isevars env
- ?(impls=[]) ?(allow_patvar=false) ?(ltacvars=([],[]))
+ ?(impls=Constrintern.empty_internalization_env) ?(allow_patvar=false) ?(ltacvars=([],[]))
c =
let c' = Constrintern.intern_gen (kind=IsType) ~impls ~allow_patvar ~ltacvars ( !isevars) env c in
let c' = SPretyping.understand_tcc_evars isevars env kind c' in
@@ -62,13 +61,13 @@ let interp_gen kind isevars env
let interp_constr isevars env c =
interp_gen (OfType None) isevars env c
-let interp_type_evars isevars env ?(impls=[]) c =
+let interp_type_evars isevars env ?(impls=Constrintern.empty_internalization_env) c =
interp_gen IsType isevars env ~impls c
-let interp_casted_constr isevars env ?(impls=[]) c typ =
+let interp_casted_constr isevars env ?(impls=Constrintern.empty_internalization_env) c typ =
interp_gen (OfType (Some typ)) isevars env ~impls c
-let interp_casted_constr_evars isevars env ?(impls=[]) c typ =
+let interp_casted_constr_evars isevars env ?(impls=Constrintern.empty_internalization_env) c typ =
interp_gen (OfType (Some typ)) isevars env ~impls c
let interp_open_constr isevars env c =
@@ -85,25 +84,25 @@ let interp_constr_judgment isevars env c =
{ uj_val = evar_nf isevars j.uj_val; uj_type = evar_nf isevars j.uj_type }
let locate_if_isevar loc na = function
- | RHole _ ->
+ | GHole _ ->
(try match na with
- | Name id -> Reserve.find_reserved_type id
+ | Name id -> glob_constr_of_aconstr loc (Reserve.find_reserved_type id)
| Anonymous -> raise Not_found
- with Not_found -> RHole (loc, Evd.BinderType na))
+ with Not_found -> GHole (loc, Evd.BinderType na))
| x -> x
let interp_binder sigma env na t =
let t = Constrintern.intern_gen true ( !sigma) env t in
- SPretyping.understand_tcc_evars sigma env IsType (locate_if_isevar (loc_of_rawconstr t) na t)
+ SPretyping.understand_tcc_evars sigma env IsType (locate_if_isevar (loc_of_glob_constr t) na t)
let interp_context_evars evdref env params =
- let bl = Constrintern.intern_context false ( !evdref) env params in
+ let int_env, bl = Constrintern.intern_context false !evdref env Constrintern.empty_internalization_env params in
let (env, par, _, impls) =
List.fold_left
(fun (env,params,n,impls) (na, k, b, t) ->
match b with
None ->
- let t' = locate_if_isevar (loc_of_rawconstr t) na t in
+ let t' = locate_if_isevar (loc_of_glob_constr t) na t in
let t = SPretyping.understand_tcc_evars evdref env IsType t' in
let d = (na,None,t) in
let impls =
@@ -133,7 +132,7 @@ let collect_non_rec env =
let i =
list_try_find_i
(fun i f ->
- if List.for_all (fun (_, def) -> not (occur_var env f def)) ldefrec
+ if List.for_all (fun (_, def) -> not (Termops.occur_var env f def)) ldefrec
then i else failwith "try_find_i")
0 lnamerec
in
@@ -184,11 +183,11 @@ let sigT = Lazy.lazy_from_fun build_sigma_type
let sigT_info = lazy
{ ci_ind = destInd (Lazy.force sigT).typ;
ci_npar = 2;
- ci_cstr_nargs = [|2|];
+ ci_cstr_ndecls = [|2|];
ci_pp_info = { ind_nargs = 0; style = LetStyle }
}
-let telescope = function
+let rec telescope = function
| [] -> assert false
| [(n, None, t)] -> t, [n, Some (mkRel 1), t], mkRel 1
| (n, None, t) :: tl ->
@@ -209,13 +208,14 @@ let telescope = function
(List.rev tys) tl (mkRel 1, [])
in ty, ((n, Some last, t) :: subst), constr
- | _ -> raise (Invalid_argument "telescope")
+ | (n, Some b, t) :: tl -> let ty, subst, term = telescope tl in
+ ty, ((n, Some b, t) :: subst), lift 1 term
let nf_evar_context isevars ctx =
List.map (fun (n, b, t) ->
(n, Option.map (Evarutil.nf_evar isevars) b, Evarutil.nf_evar isevars t)) ctx
-let build_wellfounded (recname,n,bl,arityc,body) r measure notation boxed =
+let build_wellfounded (recname,n,bl,arityc,body) r measure notation =
Coqlib.check_required_library ["Coq";"Program";"Wf"];
let sigma = Evd.empty in
let isevars = ref (Evd.create_evar_defs sigma) in
@@ -248,7 +248,7 @@ let build_wellfounded (recname,n,bl,arityc,body) r measure notation boxed =
| [(_, None, t); (_, None, u)], Sort (Prop Null)
when Reductionops.is_conv env !isevars t u -> t
| _, _ -> error ()
- with _ -> error ()
+ with e when Errors.noncritical e -> error ()
in
let measure = interp_casted_constr isevars binders_env measure relargty in
let wf_rel, wf_rel_fun, measure_fn =
@@ -300,11 +300,11 @@ let build_wellfounded (recname,n,bl,arityc,body) r measure notation boxed =
Constrintern.compute_internalization_data env
Constrintern.Recursive full_arity impls
in
- let newimpls = [(recname, (r, l, impls @
- [Some (id_of_string "recproof", Impargs.Manual, (true, false))],
- scopes @ [None]))] in
- interp_casted_constr isevars ~impls:newimpls
- (push_rel_context ctx env) body (lift 1 top_arity)
+ let newimpls = Idmap.singleton recname
+ (r, l, impls @ [(Some (id_of_string "recproof", Impargs.Manual, (true, false)))],
+ scopes @ [None]) in
+ interp_casted_constr isevars ~impls:newimpls
+ (push_rel_context ctx env) body (lift 1 top_arity)
in
let intern_body_lam = it_mkLambda_or_LetIn intern_body (curry_fun :: lift_lets @ fun_bl) in
let prop = mkLambda (Name argname, argtyp, top_arity_let) in
@@ -325,10 +325,10 @@ let build_wellfounded (recname,n,bl,arityc,body) r measure notation boxed =
let body = it_mkLambda_or_LetIn (mkApp (constr_of_global gr, [|make|])) binders_rel in
let ty = it_mkProd_or_LetIn top_arity binders_rel in
let ce =
- { const_entry_body = Evarutil.nf_evar !isevars body;
+ { const_entry_body = Evarutil.nf_evar !isevars body;
+ const_entry_secctx = None;
const_entry_type = Some ty;
- const_entry_opaque = false;
- const_entry_boxed = false}
+ const_entry_opaque = false }
in
let c = Declare.declare_constant recname (DefinitionEntry ce, IsDefinition Definition) in
let gr = ConstRef c in
@@ -380,9 +380,16 @@ let rec unfold f b =
| Some (x, b') -> x :: unfold f b'
| None -> []
+
+let find_annot loc id ctx =
+ try rel_index id ctx
+ with Not_found ->
+ user_err_loc(loc,"",
+ str "No parameter named " ++ Nameops.pr_id id ++ str".")
+
let compute_possible_guardness_evidences (n,_) (_, fixctx) fixtype =
match n with
- | Some (loc, n) -> [rel_index n fixctx]
+ | Some (loc, id) -> [find_annot loc id fixctx]
| None ->
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
@@ -417,7 +424,7 @@ let out_def = function
| Some def -> def
| None -> error "Program Fixpoint needs defined bodies."
-let interp_recursive fixkind l boxed =
+let interp_recursive fixkind l =
let env = Global.env() in
let fixl, ntnl = List.split l in
let kind = fixkind <> IsCoFixpoint in
@@ -433,7 +440,7 @@ let interp_recursive fixkind l boxed =
let sort = Retyping.get_type_of env !evdref t in
let fixprot =
try mkApp (delayed_force Subtac_utils.fix_proto, [|sort; t|])
- with e -> t
+ with e when Errors.noncritical e -> t
in
(id,None,fixprot) :: env')
[] fixnames fixtypes
@@ -458,7 +465,7 @@ let interp_recursive fixkind l boxed =
(* Instantiate evars and check all are resolved *)
let evd = Evarconv.consider_remaining_unif_problems env_rec !evdref in
let evd = Typeclasses.resolve_typeclasses
- ~onlyargs:true ~split:true ~fail:false env_rec evd
+ ~filter:Typeclasses.no_goals ~split:true ~fail:false env_rec evd
in
let evd = Evarutil.nf_evar_map evd in
let fixdefs = List.map (nf_evar evd) fixdefs in
@@ -506,7 +513,7 @@ let out_n = function
Some n -> n
| None -> raise Not_found
-let build_recursive l b =
+let build_recursive l =
let g = List.map (fun ((_,wf,_,_,_),_) -> wf) l in
match g, l with
[(n, CWfRec r)], [(((_,id),_,bl,typ,def),ntn)] ->
@@ -514,24 +521,24 @@ let build_recursive l b =
(match n with Some n -> mkIdentC (snd n) | None ->
errorlabstrm "Subtac_command.build_recursive"
(str "Recursive argument required for well-founded fixpoints"))
- ntn false)
+ ntn)
| [(n, CMeasureRec (m, r))], [(((_,id),_,bl,typ,def),ntn)] ->
ignore(build_wellfounded (id, n, bl, typ, out_def def) (Option.default (CRef lt_ref) r)
- m ntn false)
+ m ntn)
| _, _ when List.for_all (fun (n, ro) -> ro = CStructRec) g ->
let fixl = List.map (fun (((_,id),(n,ro),bl,typ,def),ntn) ->
({Command.fix_name = id; Command.fix_binders = bl; Command.fix_annot = n;
Command.fix_body = def; Command.fix_type = typ},ntn)) l
- in interp_recursive (IsFixpoint g) fixl b
+ in interp_recursive (IsFixpoint g) fixl
| _, _ ->
errorlabstrm "Subtac_command.build_recursive"
(str "Well-founded fixpoints not allowed in mutually recursive blocks")
-let build_corecursive l b =
+let build_corecursive l =
let fixl = List.map (fun (((_,id),bl,typ,def),ntn) ->
({Command.fix_name = id; Command.fix_binders = bl; Command.fix_annot = None;
Command.fix_body = def; Command.fix_type = typ},ntn))
l in
- interp_recursive IsCoFixpoint fixl b
+ interp_recursive IsCoFixpoint fixl
diff --git a/plugins/subtac/subtac_command.mli b/plugins/subtac/subtac_command.mli
index 0f24915e..72549a01 100644
--- a/plugins/subtac/subtac_command.mli
+++ b/plugins/subtac/subtac_command.mli
@@ -43,7 +43,7 @@ val interp_binder : Evd.evar_map ref ->
val telescope :
- (Names.name * 'a option * Term.types) list ->
+ (Names.name * Term.types option * Term.types) list ->
Term.types * (Names.name * Term.types option * Term.types) list *
Term.constr
@@ -51,10 +51,10 @@ val build_wellfounded :
Names.identifier * 'a * Topconstr.local_binder list *
Topconstr.constr_expr * Topconstr.constr_expr ->
Topconstr.constr_expr ->
- Topconstr.constr_expr -> 'b -> 'c -> Subtac_obligations.progress
+ Topconstr.constr_expr -> 'b -> Subtac_obligations.progress
val build_recursive :
- (fixpoint_expr * decl_notation list) list -> bool -> unit
+ (fixpoint_expr * decl_notation list) list -> unit
val build_corecursive :
- (cofixpoint_expr * decl_notation list) list -> bool -> unit
+ (cofixpoint_expr * decl_notation list) list -> unit
diff --git a/plugins/subtac/subtac_obligations.ml b/plugins/subtac/subtac_obligations.ml
index 80e712e5..d8f46098 100644
--- a/plugins/subtac/subtac_obligations.ml
+++ b/plugins/subtac/subtac_obligations.ml
@@ -1,4 +1,3 @@
-(* -*- compile-command: "make -C ../.. plugins/subtac/subtac_plugin.cma" -*- *)
open Printf
open Pp
open Subtac_utils
@@ -16,6 +15,7 @@ open Util
open Evd
open Declare
open Proof_type
+open Compat
let ppwarn cmd = Pp.warn (str"Program:" ++ cmd)
let pperror cmd = Util.errorlabstrm "Program" cmd
@@ -30,13 +30,13 @@ let explain_no_obligations = function
Some ident -> str "No obligations for program " ++ str (string_of_id ident)
| None -> str "No obligations remaining"
-type obligation_info = (Names.identifier * Term.types * hole_kind located *
+type obligation_info = (Names.identifier * Term.types * hole_kind located *
obligation_definition_status * Intset.t * tactic option) array
type obligation =
{ obl_name : identifier;
obl_type : types;
- obl_source : hole_kind located;
+ obl_location : hole_kind located;
obl_body : constr option;
obl_status : obligation_definition_status;
obl_deps : Intset.t;
@@ -82,11 +82,29 @@ open Goptions
let _ =
declare_bool_option
{ optsync = true;
+ optdepr = false;
optname = "transparency of Program obligations";
optkey = ["Transparent";"Obligations"];
optread = get_proofs_transparency;
optwrite = set_proofs_transparency; }
+(* true = hide obligations *)
+let hide_obligations = ref false
+
+let set_hide_obligations = (:=) hide_obligations
+let get_hide_obligations () = !hide_obligations
+
+open Goptions
+
+let _ =
+ declare_bool_option
+ { optsync = true;
+ optdepr = false;
+ optname = "Hidding of Program obligations";
+ optkey = ["Hide";"Obligations"];
+ optread = get_hide_obligations;
+ optwrite = set_hide_obligations; }
+
let evar_of_obligation o = make_evar (Global.named_context_val ()) o.obl_type
let get_obligation_body expand obl =
@@ -97,18 +115,54 @@ let get_obligation_body expand obl =
| _ -> c
else c
+let obl_substitution expand obls deps =
+ Intset.fold
+ (fun x acc ->
+ let xobl = obls.(x) in
+ let oblb =
+ try get_obligation_body expand xobl
+ with e when Errors.noncritical e -> assert(false)
+ in (xobl.obl_name, (xobl.obl_type, oblb)) :: acc)
+ deps []
+
let subst_deps expand obls deps t =
- let subst =
- Intset.fold
- (fun x acc ->
- let xobl = obls.(x) in
- let oblb =
- try get_obligation_body expand xobl
- with _ -> assert(false)
- in (xobl.obl_name, oblb) :: acc)
- deps []
- in(* Termops.it_mkNamedProd_or_LetIn t subst *)
- Term.replace_vars subst t
+ let subst = obl_substitution expand obls deps in
+ Term.replace_vars (List.map (fun (n, (_, b)) -> n, b) subst) t
+
+let rec prod_app t n =
+ match kind_of_term (strip_outer_cast t) with
+ | Prod (_,_,b) -> subst1 n b
+ | LetIn (_, b, t, b') -> prod_app (subst1 b b') n
+ | _ ->
+ errorlabstrm "prod_app"
+ (str"Needed a product, but didn't find one" ++ fnl ())
+
+
+(* prod_appvect T [| a1 ; ... ; an |] -> (T a1 ... an) *)
+let prod_applist t nL = List.fold_left prod_app t nL
+
+let replace_appvars subst =
+ let rec aux c =
+ let f, l = decompose_app c in
+ if isVar f then
+ try
+ let c' = List.map (map_constr aux) l in
+ let (t, b) = List.assoc (destVar f) subst in
+ mkApp (delayed_force hide_obligation,
+ [| prod_applist t c'; applistc b c' |])
+ with Not_found -> map_constr aux c
+ else map_constr aux c
+ in map_constr aux
+
+let subst_prog expand obls ints prg =
+ let subst = obl_substitution expand obls ints in
+ if get_hide_obligations () then
+ (replace_appvars subst prg.prg_body,
+ replace_appvars subst (Termops.refresh_universes prg.prg_type))
+ else
+ let subst' = List.map (fun (n, (_, b)) -> n, b) subst in
+ (Term.replace_vars subst' prg.prg_body,
+ Term.replace_vars subst' (Termops.refresh_universes prg.prg_type))
let subst_deps_obl obls obl =
let t' = subst_deps true obls obl.obl_deps obl.obl_type in
@@ -153,20 +207,32 @@ let _ =
let progmap_union = ProgMap.fold ProgMap.add
-let (input,output) =
+let close sec =
+ if not (ProgMap.is_empty !from_prg) then
+ let keys = map_keys !from_prg in
+ errorlabstrm "Program" (str "Unsolved obligations when closing " ++ str sec ++ str":" ++ spc () ++
+ prlist_with_sep spc (fun x -> Nameops.pr_id x) keys ++
+ (str (if List.length keys = 1 then " has " else "have ") ++
+ str "unsolved obligations"))
+
+let input : program_info ProgMap.t -> obj =
declare_object
{ (default_object "Program state") with
- classify_function = (fun () ->
- if not (ProgMap.is_empty !from_prg) then
- errorlabstrm "Program" (str "Unsolved obligations when closing module:" ++ spc () ++
- prlist_with_sep spc (fun x -> Nameops.pr_id x)
- (map_keys !from_prg));
- Dispose) }
+ cache_function = (fun (na, pi) -> from_prg := pi);
+ load_function = (fun _ (_, pi) -> from_prg := pi);
+ discharge_function = (fun _ -> close "section"; None);
+ classify_function = (fun _ -> close "module"; Dispose) }
open Evd
let progmap_remove prg =
- from_prg := ProgMap.remove prg.prg_name !from_prg
+ Lib.add_anonymous_leaf (input (ProgMap.remove prg.prg_name !from_prg))
+
+let progmap_add n prg =
+ Lib.add_anonymous_leaf (input (ProgMap.add n prg !from_prg))
+
+let progmap_replace prg' =
+ Lib.add_anonymous_leaf (input (map_replace prg'.prg_name prg' !from_prg))
let rec intset_to = function
-1 -> Intset.empty
@@ -175,21 +241,16 @@ let rec intset_to = function
let subst_body expand prg =
let obls, _ = prg.prg_obligations in
let ints = intset_to (pred (Array.length obls)) in
- subst_deps expand obls ints prg.prg_body,
- subst_deps expand obls ints (Termops.refresh_universes prg.prg_type)
+ subst_prog expand obls ints prg
let declare_definition prg =
let body, typ = subst_body true prg in
- (try trace (str "Declaring: " ++ Ppconstr.pr_id prg.prg_name ++ spc () ++
- my_print_constr (Global.env()) body ++ str " : " ++
- my_print_constr (Global.env()) prg.prg_type);
- with _ -> ());
- let (local, boxed, kind) = prg.prg_kind in
+ let (local, kind) = prg.prg_kind in
let ce =
{ const_entry_body = body;
+ const_entry_secctx = None;
const_entry_type = Some typ;
- const_entry_opaque = false;
- const_entry_boxed = boxed}
+ const_entry_opaque = false }
in
(Command.get_declare_definition_hook ()) ce;
match local with
@@ -207,7 +268,7 @@ let declare_definition prg =
| (Global|Local) ->
let c =
Declare.declare_constant
- prg.prg_name (DefinitionEntry ce,IsDefinition (pi3 prg.prg_kind))
+ prg.prg_name (DefinitionEntry ce,IsDefinition (snd prg.prg_kind))
in
let gr = ConstRef c in
if Impargs.is_implicit_args () || prg.prg_implicits <> [] then
@@ -255,7 +316,7 @@ let declare_mutual_definition l =
let fixkind = Option.get first.prg_fixkind in
let arrrec, recvec = Array.of_list fixtypes, Array.of_list fixdefs in
let fixdecls = (Array.of_list (List.map (fun x -> Name x.prg_name) l), arrrec, recvec) in
- let (local,boxed,kind) = first.prg_kind in
+ let (local,kind) = first.prg_kind in
let fixnames = first.prg_deps in
let kind = if fixkind <> IsCoFixpoint then Fixpoint else CoFixpoint in
let indexes, fixdecls =
@@ -269,7 +330,7 @@ let declare_mutual_definition l =
None, list_map_i (fun i _ -> mkCoFix (i,fixdecls)) 0 l
in
(* Declare the recursive definitions *)
- let kns = list_map4 (declare_fix boxed kind) fixnames fixdecls fixtypes fiximps in
+ let kns = list_map4 (declare_fix kind) fixnames fixdecls fixtypes fiximps in
(* Declare notations *)
List.iter Metasyntax.add_notation_interpretation first.prg_notations;
Declare.recursive_message (fixkind<>IsCoFixpoint) indexes fixnames;
@@ -287,9 +348,9 @@ let declare_obligation prg obl body =
let opaque = if get_proofs_transparency () then false else opaque in
let ce =
{ const_entry_body = body;
+ const_entry_secctx = None;
const_entry_type = Some ty;
- const_entry_opaque = opaque;
- const_entry_boxed = false}
+ const_entry_opaque = opaque }
in
let constant = Declare.declare_constant obl.obl_name
(DefinitionEntry ce,IsProof Property)
@@ -307,14 +368,14 @@ let init_prog_info n b t deps fixkind notations obls impls kind reduce hook =
assert(obls = [||]);
let n = Nameops.add_suffix n "_obligation" in
[| { obl_name = n; obl_body = None;
- obl_source = (dummy_loc, QuestionMark Expand); obl_type = t;
+ obl_location = dummy_loc, InternalHole; obl_type = t;
obl_status = Expand; obl_deps = Intset.empty; obl_tac = None } |],
mkVar n
| Some b ->
Array.mapi
(fun i (n, t, l, o, d, tac) ->
{ obl_name = n ; obl_body = None;
- obl_source = l; obl_type = reduce t; obl_status = o;
+ obl_location = l; obl_type = reduce t; obl_status = o;
obl_deps = d; obl_tac = tac })
obls, b
in
@@ -359,7 +420,7 @@ let obligations_message rem =
let update_obls prg obls rem =
let prg' = { prg with prg_obligations = (obls, rem) } in
- from_prg := map_replace prg.prg_name prg' !from_prg;
+ progmap_replace prg';
obligations_message rem;
if rem > 0 then Remain rem
else (
@@ -384,12 +445,12 @@ let deps_remaining obls deps =
else x :: acc)
deps []
-let has_dependencies obls n =
- let res = ref false in
+let dependencies obls n =
+ let res = ref Intset.empty in
Array.iteri
(fun i obl ->
if i <> n && Intset.mem n obl.obl_deps then
- res := true)
+ res := Intset.add i !res)
obls;
!res
@@ -437,12 +498,14 @@ let rec solve_obligation prg num tac =
let obls = Array.copy obls in
let _ = obls.(num) <- obl in
let res = try update_obls prg obls (pred rem)
- with e -> pperror (Cerrors.explain_exn e)
+ with e when Errors.noncritical e ->
+ pperror (Errors.print (Cerrors.process_vernac_interp_error e))
in
match res with
| Remain n when n > 0 ->
- if has_dependencies obls num then
- ignore(auto_solve_obligations (Some prg.prg_name) None)
+ let deps = dependencies obls num in
+ if deps <> Intset.empty then
+ ignore(auto_solve_obligations (Some prg.prg_name) None ~oblset:deps)
| _ -> ());
trace (str "Started obligation " ++ int user_num ++ str " proof: " ++
Subtac_utils.my_print_constr (Global.env ()) obl.obl_type);
@@ -485,20 +548,25 @@ and solve_obligation_by_tac prg obls i tac =
true
else false
with
- | Compat.Exc_located(_, Proof_type.LtacLocated (_, Refiner.FailError (_, s)))
- | Compat.Exc_located(_, Refiner.FailError (_, s))
+ | Loc.Exc_located(_, Proof_type.LtacLocated (_, Refiner.FailError (_, s)))
+ | Loc.Exc_located(_, Refiner.FailError (_, s))
| Refiner.FailError (_, s) ->
- user_err_loc (fst obl.obl_source, "solve_obligation", Lazy.force s)
- | e -> false
+ user_err_loc (fst obl.obl_location, "solve_obligation", Lazy.force s)
+ | Util.Anomaly _ as e -> raise e
+ | e when Errors.noncritical e -> false
-and solve_prg_obligations prg tac =
+and solve_prg_obligations prg ?oblset tac =
let obls, rem = prg.prg_obligations in
let rem = ref rem in
let obls' = Array.copy obls in
+ let p = match oblset with
+ | None -> (fun _ -> true)
+ | Some s -> (fun i -> Intset.mem i s)
+ in
let _ =
Array.iteri (fun i x ->
- if solve_obligation_by_tac prg obls' i tac then
- decr rem)
+ if p i && solve_obligation_by_tac prg obls' i tac then
+ decr rem)
obls'
in
update_obls prg obls' !rem
@@ -520,9 +588,9 @@ and try_solve_obligation n prg tac =
and try_solve_obligations n tac =
try ignore (solve_obligations n tac) with NoObligations _ -> ()
-and auto_solve_obligations n tac : progress =
+and auto_solve_obligations n ?oblset tac : progress =
Flags.if_verbose msgnl (str "Solving obligations automatically...");
- try solve_prg_obligations (get_prog_err n) tac with NoObligations _ -> Dependent
+ try solve_prg_obligations (get_prog_err n) ?oblset tac with NoObligations _ -> Dependent
open Pp
let show_obligations_of_prg ?(msg=true) prg =
@@ -556,7 +624,7 @@ let show_term n =
my_print_constr (Global.env ()) prg.prg_type ++ spc () ++ str ":=" ++ fnl ()
++ my_print_constr (Global.env ()) prg.prg_body)
-let add_definition n ?term t ?(implicits=[]) ?(kind=Global,false,Definition) ?tactic
+let add_definition n ?term t ?(implicits=[]) ?(kind=Global,Definition) ?tactic
?(reduce=reduce) ?(hook=fun _ _ -> ()) obls =
Flags.if_verbose pp (str (string_of_id n) ++ str " has type-checked");
let prg = init_prog_info n term t [] None [] obls implicits kind reduce hook in
@@ -568,23 +636,20 @@ let add_definition n ?term t ?(implicits=[]) ?(kind=Global,false,Definition) ?ta
else (
let len = Array.length obls in
let _ = Flags.if_verbose ppnl (str ", generating " ++ int len ++ str " obligation(s)") in
- from_prg := ProgMap.add n prg !from_prg;
+ progmap_add n prg;
let res = auto_solve_obligations (Some n) tactic in
match res with
| Remain rem -> Flags.if_verbose (fun () -> show_obligations ~msg:false (Some n)) (); res
| _ -> res)
-let add_mutual_definitions l ?tactic ?(kind=Global,false,Definition) ?(reduce=reduce)
+let add_mutual_definitions l ?tactic ?(kind=Global,Definition) ?(reduce=reduce)
?(hook=fun _ _ -> ()) notations fixkind =
let deps = List.map (fun (n, b, t, imps, obls) -> n) l in
- let upd = List.fold_left
- (fun acc (n, b, t, imps, obls) ->
- let prg = init_prog_info n (Some b) t deps (Some fixkind)
- notations obls imps kind reduce hook
- in ProgMap.add n prg acc)
- !from_prg l
- in
- from_prg := upd;
+ List.iter
+ (fun (n, b, t, imps, obls) ->
+ let prg = init_prog_info n (Some b) t deps (Some fixkind)
+ notations obls imps kind reduce hook
+ in progmap_add n prg) l;
let _defined =
List.fold_left (fun finished x ->
if finished then finished
@@ -599,13 +664,14 @@ let add_mutual_definitions l ?tactic ?(kind=Global,false,Definition) ?(reduce=re
let admit_obligations n =
let prg = get_prog_err n in
let obls, rem = prg.prg_obligations in
+ let obls = Array.copy obls in
Array.iteri
(fun i x ->
match x.obl_body with
| None ->
let x = subst_deps_obl obls x in
- let kn = Declare.declare_constant x.obl_name (ParameterEntry (x.obl_type,false),
- IsAssumption Conjectural)
+ let kn = Declare.declare_constant x.obl_name
+ (ParameterEntry (None, x.obl_type,None), IsAssumption Conjectural)
in
assumption_message x.obl_name;
obls.(i) <- { x with obl_body = Some (mkConst kn) }
diff --git a/plugins/subtac/subtac_obligations.mli b/plugins/subtac/subtac_obligations.mli
index 5f6d1a2e..c1d665aa 100644
--- a/plugins/subtac/subtac_obligations.mli
+++ b/plugins/subtac/subtac_obligations.mli
@@ -8,7 +8,7 @@ open Vernacexpr
type obligation_info =
(identifier * Term.types * hole_kind located *
obligation_definition_status * Intset.t * tactic option) array
- (* ident, type, source, (opaque or transparent, expand or define),
+ (* ident, type, location, (opaque or transparent, expand or define),
dependencies, tactic to solve it *)
type progress = (* Resolution status of a program *)
diff --git a/plugins/subtac/subtac_pretyping.ml b/plugins/subtac/subtac_pretyping.ml
index 9de7ddf2..fac6b567 100644
--- a/plugins/subtac/subtac_pretyping.ml
+++ b/plugins/subtac/subtac_pretyping.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: subtac_pretyping.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Global
open Pp
open Util
@@ -26,7 +24,7 @@ open List
open Recordops
open Evarutil
open Pretype_errors
-open Rawterm
+open Glob_term
open Evarconv
open Pattern
@@ -60,20 +58,17 @@ let my_print_rec_info env t =
str "Wf proof: " ++ my_print_constr env t.wf_proof ++ spc () ++
str "Abbreviated Type: " ++ my_print_constr env t.f_type ++ spc () ++
str "Full type: " ++ my_print_constr env t.f_fulltype
-(* trace (str "pretype for " ++ (my_print_rawconstr env c) ++ *)
+(* trace (str "pretype for " ++ (my_print_glob_constr env c) ++ *)
(* str " and tycon "++ my_print_tycon env tycon ++ *)
(* str " in environment: " ++ my_print_env env); *)
-let merge_evms x y =
- Evd.fold (fun ev evi evm -> Evd.add evm ev evi) x y
-
let interp env isevars c tycon =
let j = pretype tycon env isevars ([],[]) c in
let _ = isevars := Evarutil.nf_evar_map !isevars in
let evd = consider_remaining_unif_problems env !isevars in
(* let unevd = undefined_evars evd in *)
- let unevd' = Typeclasses.resolve_typeclasses ~onlyargs:true ~split:true ~fail:true env evd in
- let unevd' = Typeclasses.resolve_typeclasses ~onlyargs:false ~split:true ~fail:false env unevd' in
+ let unevd' = Typeclasses.resolve_typeclasses ~filter:Subtac_utils.no_goals_or_obligations ~split:true ~fail:true env evd in
+ let unevd' = Typeclasses.resolve_typeclasses ~filter:Typeclasses.all_evars ~split:true ~fail:false env unevd' in
let evm = unevd' in
isevars := unevd';
nf_evar evm j.uj_val, nf_evar evm j.uj_type
@@ -86,9 +81,9 @@ let find_with_index x l =
open Vernacexpr
-let coqintern_constr evd env : Topconstr.constr_expr -> Rawterm.rawconstr =
+let coqintern_constr evd env : Topconstr.constr_expr -> Glob_term.glob_constr =
Constrintern.intern_constr evd env
-let coqintern_type evd env : Topconstr.constr_expr -> Rawterm.rawconstr =
+let coqintern_type evd env : Topconstr.constr_expr -> Glob_term.glob_constr =
Constrintern.intern_type evd env
let env_with_binders env isevars l =
@@ -119,14 +114,14 @@ let subtac_process ?(is_type=false) env isevars id bl c tycon =
| Some t ->
let t = Topconstr.prod_constr_expr t bl in
let t = coqintern_type !isevars env t in
- let imps = Implicit_quantifiers.implicits_of_rawterm t in
+ let imps = Implicit_quantifiers.implicits_of_glob_constr t in
let coqt, ttyp = interp env isevars t empty_tycon in
mk_tycon coqt, Some imps
in
let c = coqintern_constr !isevars env c in
let imps = match imps with
| Some i -> i
- | None -> Implicit_quantifiers.implicits_of_rawterm ~with_products:is_type c
+ | None -> Implicit_quantifiers.implicits_of_glob_constr ~with_products:is_type c
in
let coqc, ctyp = interp env isevars c tycon in
let evm = non_instanciated_map env isevars !isevars in
diff --git a/plugins/subtac/subtac_pretyping.mli b/plugins/subtac/subtac_pretyping.mli
index 48906b23..fa767790 100644
--- a/plugins/subtac/subtac_pretyping.mli
+++ b/plugins/subtac/subtac_pretyping.mli
@@ -13,7 +13,7 @@ module Pretyping : Pretyping.S
val interp :
Environ.env ->
Evd.evar_map ref ->
- Rawterm.rawconstr ->
+ Glob_term.glob_constr ->
Evarutil.type_constraint -> Term.constr * Term.constr
val subtac_process : ?is_type:bool -> env -> evar_map ref -> identifier -> local_binder list ->
diff --git a/plugins/subtac/subtac_pretyping_F.ml b/plugins/subtac/subtac_pretyping_F.ml
index 4f4ae92e..f0579711 100644
--- a/plugins/subtac/subtac_pretyping_F.ml
+++ b/plugins/subtac/subtac_pretyping_F.ml
@@ -1,21 +1,18 @@
-(* -*- compile-command: "make -C ../.. plugins/subtac/subtac_plugin.cma" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: subtac_pretyping_F.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Pp
+open Compat
open Util
open Names
open Sign
open Evd
open Term
-open Termops
open Reductionops
open Environ
open Type_errors
@@ -27,7 +24,7 @@ open List
open Recordops
open Evarutil
open Pretype_errors
-open Rawterm
+open Glob_term
open Evarconv
open Pattern
open Pretyping
@@ -78,20 +75,20 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
for i = 0 to lt-1 do
if not (e_cumul env evdref (vdefj.(i)).uj_type
(lift lt lar.(i))) then
- error_ill_typed_rec_body_loc loc env ( !evdref)
+ error_ill_typed_rec_body_loc loc env !evdref
i lna vdefj lar
done
- let check_branches_message loc env evdref c (explft,lft) =
+ let check_branches_message loc env evdref ind c (explft,lft) =
for i = 0 to Array.length explft - 1 do
if not (e_cumul env evdref lft.(i) explft.(i)) then
let sigma = !evdref in
- error_ill_formed_branch_loc loc env sigma c i lft.(i) explft.(i)
+ error_ill_formed_branch_loc loc env sigma c (ind,i) lft.(i) explft.(i)
done
(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon loc env evdref j = function
- | None -> j_nf_evar !evdref j
+ | None -> j
| Some t -> evd_comb2 (Coercion.inh_conv_coerce_to loc env) evdref j t
let push_rels vars env = List.fold_right push_rel vars env
@@ -99,7 +96,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
(*
let evar_type_case evdref env ct pt lft p c =
let (mind,bty,rslty) = type_case_branches env ( evdref) ct pt p c
- in check_branches_message evdref env (c,ct) (bty,lft); (mind,rslty)
+ in check_branches_message evdref env mind (c,ct) (bty,lft); (mind,rslty)
*)
let strip_meta id = (* For Grammar v7 compatibility *)
@@ -108,7 +105,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
else id
let invert_ltac_bound_name env id0 id =
- try mkRel (pi1 (lookup_rel_id id (rel_context env)))
+ try mkRel (pi1 (Termops.lookup_rel_id id (rel_context env)))
with Not_found ->
errorlabstrm "" (str "Ltac variable " ++ pr_id id0 ++
str " depends on pattern variable name " ++ pr_id id ++
@@ -117,7 +114,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let pretype_id loc env sigma (lvar,unbndltacvars) id =
let id = strip_meta id in (* May happen in tactics defined by Grammar *)
try
- let (n,_,typ) = lookup_rel_id id (rel_context env) in
+ let (n,_,typ) = Termops.lookup_rel_id id (rel_context env) in
{ uj_val = mkRel n; uj_type = lift n typ }
with Not_found ->
try
@@ -153,7 +150,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let s' = mkProd (Anonymous, ind, s) in
let ccl = lift 1 (decomp n pj.uj_val) in
let ccl' = mkLambda (Anonymous, ind, ccl) in
- {uj_val=it_mkLambda ccl' sign; uj_type=it_mkProd s' sign}
+ {uj_val=Termops.it_mkLambda ccl' sign; uj_type=Termops.it_mkProd s' sign}
(*************************************************************************)
(* Main pretyping function *)
@@ -162,9 +159,9 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let c = constr_of_global ref in
make_judge c (Retyping.get_type_of env Evd.empty c)
- let pretype_sort = function
- | RProp c -> judge_of_prop_contents c
- | RType _ -> judge_of_new_Type ()
+ let pretype_sort evdref = function
+ | GProp c -> judge_of_prop_contents c
+ | GType _ -> evd_comb0 judge_of_new_Type evdref
let split_tycon_lam loc env evd tycon =
let rec real_split evd c =
@@ -192,44 +189,44 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
(* in environment [env], with existential variables [( evdref)] and *)
(* the type constraint tycon *)
let rec pretype (tycon : type_constraint) env evdref lvar c =
-(* let _ = try Subtac_utils.trace (str "pretype " ++ Subtac_utils.my_print_rawconstr env c ++ *)
+(* let _ = try Subtac_utils.trace (str "pretype " ++ Subtac_utils.my_print_glob_constr env c ++ *)
(* str " with tycon " ++ Evarutil.pr_tycon env tycon) *)
(* with _ -> () *)
(* in *)
match c with
- | RRef (loc,ref) ->
+ | GRef (loc,ref) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_ref evdref env ref)
tycon
- | RVar (loc, id) ->
+ | GVar (loc, id) ->
inh_conv_coerce_to_tycon loc env evdref
(pretype_id loc env !evdref lvar id)
tycon
- | REvar (loc, ev, instopt) ->
+ | GEvar (loc, ev, instopt) ->
(* Ne faudrait-il pas s'assurer que hyps est bien un
sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
- let hyps = evar_context (Evd.find ( !evdref) ev) in
+ let hyps = evar_context (Evd.find !evdref ev) in
let args = match instopt with
| None -> instance_from_named_context hyps
| Some inst -> failwith "Evar subtitutions not implemented" in
let c = mkEvar (ev, args) in
- let j = (Retyping.get_judgment_of env ( !evdref) c) in
+ let j = (Retyping.get_judgment_of env !evdref c) in
inh_conv_coerce_to_tycon loc env evdref j tycon
- | RPatVar (loc,(someta,n)) ->
- anomaly "Found a pattern variable in a rawterm to type"
+ | GPatVar (loc,(someta,n)) ->
+ anomaly "Found a pattern variable in a glob_constr to type"
- | RHole (loc,k) ->
+ | GHole (loc,k) ->
let ty =
match tycon with
| Some (None, ty) -> ty
| None | Some _ ->
- e_new_evar evdref env ~src:(loc,InternalHole) (new_Type ()) in
+ e_new_evar evdref env ~src:(loc, InternalHole) (Termops.new_Type ()) in
{ uj_val = e_new_evar evdref env ~src:(loc,k) ty; uj_type = ty }
- | RRec (loc,fixkind,names,bl,lar,vdef) ->
+ | GRec (loc,fixkind,names,bl,lar,vdef) ->
let rec type_bl env ctxt = function
[] -> ctxt
| (na,k,None,ty)::bl ->
@@ -260,7 +257,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
in
push_rec_types (names,marked_ftys,[||]) env
in
- let fixi = match fixkind with RFix (vn, i) -> i | RCoFix i -> i in
+ let fixi = match fixkind with GFix (vn, i) -> i | GCoFix i -> i in
let vdefj =
array_map2_i
(fun i ctxt def ->
@@ -284,10 +281,10 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
ctxtv vdef in
evar_type_fixpoint loc env evdref names ftys vdefj;
- let ftys = Array.map (nf_evar ( !evdref)) ftys in
- let fdefs = Array.map (fun x -> nf_evar ( !evdref) (j_val x)) vdefj in
+ let ftys = Array.map (nf_evar !evdref) ftys in
+ let fdefs = Array.map (fun x -> nf_evar !evdref (j_val x)) vdefj in
let fixj = match fixkind with
- | RFix (vn,i) ->
+ | GFix (vn,i) ->
(* First, let's find the guard indexes. *)
(* If recursive argument was not given by user, we try all args.
An earlier approach was to look only for inductive arguments,
@@ -303,16 +300,18 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let fixdecls = (names,ftys,fdefs) in
let indexes = search_guard loc env possible_indexes fixdecls in
make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
- | RCoFix i ->
+ | GCoFix i ->
let cofix = (i,(names,ftys,fdefs)) in
- (try check_cofix env cofix with e -> Stdpp.raise_with_loc loc e);
+ (try check_cofix env cofix
+ with e when Errors.noncritical e -> Loc.raise loc e);
make_judge (mkCoFix cofix) ftys.(i) in
inh_conv_coerce_to_tycon loc env evdref fixj tycon
- | RSort (loc,s) ->
- inh_conv_coerce_to_tycon loc env evdref (pretype_sort s) tycon
+ | GSort (loc,s) ->
+ let s' = pretype_sort evdref s in
+ inh_conv_coerce_to_tycon loc env evdref s' tycon
- | RApp (loc,f,args) ->
+ | GApp (loc,f,args) ->
let length = List.length args in
let ftycon =
let ty =
@@ -325,40 +324,41 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
else tycon
in
match ty with
- | Some (_, t) when Subtac_coercion.disc_subset t = None -> ty
+ | Some (_, t) ->
+ if Subtac_coercion.disc_subset (whd_betadeltaiota env !evdref t) = None then ty
+ else None
| _ -> None
in
let fj = pretype ftycon env evdref lvar f in
- let floc = loc_of_rawconstr f in
+ let floc = loc_of_glob_constr f in
let rec apply_rec env n resj tycon = function
| [] -> resj
| c::rest ->
- let argloc = loc_of_rawconstr c in
+ let argloc = loc_of_glob_constr c in
let resj = evd_comb1 (Coercion.inh_app_fun env) evdref resj in
- let resty = whd_betadeltaiota env ( !evdref) resj.uj_type in
+ let resty = whd_betadeltaiota env !evdref resj.uj_type in
match kind_of_term resty with
| Prod (na,c1,c2) ->
Option.iter (fun ty -> evdref :=
Coercion.inh_conv_coerces_to loc env !evdref resty ty) tycon;
let evd, (_, _, tycon) = split_tycon loc env !evdref tycon in
evdref := evd;
- let hj = pretype (mk_tycon (nf_evar !evdref c1)) env evdref lvar c in
+ let hj = pretype (mk_tycon c1) env evdref lvar c in
let value, typ = applist (j_val resj, [j_val hj]), subst1 hj.uj_val c2 in
- let typ' = nf_evar !evdref typ in
apply_rec env (n+1)
- { uj_val = nf_evar !evdref value;
- uj_type = nf_evar !evdref typ' }
- (Option.map (fun (abs, c) -> abs, nf_evar !evdref c) tycon) rest
+ { uj_val = value;
+ uj_type = typ }
+ (Option.map (fun (abs, c) -> abs, c) tycon) rest
| _ ->
let hj = pretype empty_tycon env evdref lvar c in
error_cant_apply_not_functional_loc
- (join_loc floc argloc) env ( !evdref)
+ (join_loc floc argloc) env !evdref
resj [hj]
in
- let resj = j_nf_evar ( !evdref) (apply_rec env 1 fj ftycon args) in
+ let resj = apply_rec env 1 fj ftycon args in
let resj =
- match kind_of_term resj.uj_val with
+ match kind_of_term (whd_evar !evdref resj.uj_val) with
| App (f,args) when isInd f or isConst f ->
let sigma = !evdref in
let c = mkApp (f,Array.map (whd_evar sigma) args) in
@@ -367,7 +367,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
| _ -> resj in
inh_conv_coerce_to_tycon loc env evdref resj tycon
- | RLambda(loc,name,k,c1,c2) ->
+ | GLambda(loc,name,k,c1,c2) ->
let tycon' = evd_comb1
(fun evd tycon ->
match tycon with
@@ -385,32 +385,32 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let resj = judge_of_abstraction env name j j' in
inh_conv_coerce_to_tycon loc env evdref resj tycon
- | RProd(loc,name,k,c1,c2) ->
+ | GProd(loc,name,k,c1,c2) ->
let j = pretype_type empty_valcon env evdref lvar c1 in
let var = (name,j.utj_val) in
- let env' = push_rel_assum var env in
+ let env' = Termops.push_rel_assum var env in
let j' = pretype_type empty_valcon env' evdref lvar c2 in
let resj =
try judge_of_product env name j j'
- with TypeError _ as e -> Stdpp.raise_with_loc loc e in
+ with TypeError _ as e -> Loc.raise loc e in
inh_conv_coerce_to_tycon loc env evdref resj tycon
- | RLetIn(loc,name,c1,c2) ->
+ | GLetIn(loc,name,c1,c2) ->
let j = pretype empty_tycon env evdref lvar c1 in
- let t = refresh_universes j.uj_type in
+ let t = Termops.refresh_universes j.uj_type in
let var = (name,Some j.uj_val,t) in
let tycon = lift_tycon 1 tycon in
let j' = pretype tycon (push_rel var env) evdref lvar c2 in
{ uj_val = mkLetIn (name, j.uj_val, t, j'.uj_val) ;
uj_type = subst1 j.uj_val j'.uj_type }
- | RLetTuple (loc,nal,(na,po),c,d) ->
+ | GLetTuple (loc,nal,(na,po),c,d) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
- try find_rectype env ( !evdref) cj.uj_type
+ try find_rectype env !evdref cj.uj_type
with Not_found ->
- let cloc = loc_of_rawconstr c in
- error_case_not_inductive_loc cloc env ( !evdref) cj
+ let cloc = loc_of_glob_constr c in
+ error_case_not_inductive_loc cloc env !evdref cj
in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 1 then
@@ -434,14 +434,14 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
- let ccl = nf_evar ( !evdref) pj.utj_val in
+ let ccl = nf_evar !evdref pj.utj_val in
let psign = make_arity_signature env true indf in (* with names *)
let p = it_mkLambda_or_LetIn ccl psign in
let inst =
(Array.to_list cs.cs_concl_realargs)
@[build_dependent_constructor cs] in
let lp = lift cs.cs_nargs p in
- let fty = hnf_lam_applist env ( !evdref) lp inst in
+ let fty = hnf_lam_applist env !evdref lp inst in
let fj = pretype (mk_tycon fty) env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
let v =
@@ -454,12 +454,12 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let tycon = lift_tycon cs.cs_nargs tycon in
let fj = pretype tycon env_f evdref lvar d in
let f = it_mkLambda_or_LetIn fj.uj_val fsign in
- let ccl = nf_evar ( !evdref) fj.uj_type in
+ let ccl = nf_evar !evdref fj.uj_type in
let ccl =
if noccur_between 1 cs.cs_nargs ccl then
lift (- cs.cs_nargs) ccl
else
- error_cant_find_case_type_loc loc env ( !evdref)
+ error_cant_find_case_type_loc loc env !evdref
cj.uj_val in
let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign in
let v =
@@ -469,13 +469,13 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
in
{ uj_val = v; uj_type = ccl })
- | RIf (loc,c,(na,po),b1,b2) ->
+ | GIf (loc,c,(na,po),b1,b2) ->
let cj = pretype empty_tycon env evdref lvar c in
let (IndType (indf,realargs)) =
- try find_rectype env ( !evdref) cj.uj_type
+ try find_rectype env !evdref cj.uj_type
with Not_found ->
- let cloc = loc_of_rawconstr c in
- error_case_not_inductive_loc cloc env ( !evdref) cj in
+ let cloc = loc_of_glob_constr c in
+ error_case_not_inductive_loc cloc env !evdref cj in
let cstrs = get_constructors env indf in
if Array.length cstrs <> 2 then
user_err_loc (loc,"",
@@ -494,7 +494,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
| Some p ->
let env_p = push_rels psign env in
let pj = pretype_type empty_valcon env_p evdref lvar p in
- let ccl = nf_evar ( !evdref) pj.utj_val in
+ let ccl = nf_evar !evdref pj.utj_val in
let pred = it_mkLambda_or_LetIn ccl psign in
let typ = lift (- nar) (beta_applist (pred,[cj.uj_val])) in
let jtyp = inh_conv_coerce_to_tycon loc env evdref {uj_val = pred;
@@ -505,15 +505,14 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let p = match tycon with
| Some (None, ty) -> ty
| None | Some _ ->
- e_new_evar evdref env ~src:(loc,InternalHole) (new_Type ())
+ e_new_evar evdref env ~src:(loc,InternalHole) (Termops.new_Type ())
in
it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
- let pred = nf_evar ( !evdref) pred in
- let p = nf_evar ( !evdref) p in
- (* msgnl (str "Pred is: " ++ Termops.print_constr_env env pred);*)
+ let pred = nf_evar !evdref pred in
+ let p = nf_evar !evdref p in
let f cs b =
let n = rel_context_length cs.cs_args in
- let pi = lift n pred in (* liftn n 2 pred ? *)
+ let pi = lift n pred in
let pi = beta_applist (pi, [build_dependent_constructor cs]) in
let csgn =
if not !allow_anonymous_refs then
@@ -527,7 +526,6 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
cs.cs_args
in
let env_c = push_rels csgn env in
-(* msgnl (str "Pi is: " ++ Termops.print_constr_env env_c pi); *)
let bj = pretype (mk_tycon pi) env_c evdref lvar b in
it_mkLambda_or_LetIn bj.uj_val cs.cs_args in
let b1 = f cstrs.(0) b1 in
@@ -539,12 +537,12 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
in
{ uj_val = v; uj_type = p }
- | RCases (loc,sty,po,tml,eqns) ->
+ | GCases (loc,sty,po,tml,eqns) ->
Cases.compile_cases loc sty
((fun vtyc env evdref -> pretype vtyc env evdref lvar),evdref)
tycon env (* loc *) (po,tml,eqns)
- | RCast (loc,c,k) ->
+ | GCast (loc,c,k) ->
let cj =
match k with
CastCoerce ->
@@ -553,25 +551,14 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
| CastConv (k,t) ->
let tj = pretype_type empty_valcon env evdref lvar t in
let cj = pretype (mk_tycon tj.utj_val) env evdref lvar c in
- (* User Casts are for helping pretyping, experimentally not to be kept*)
- (* ... except for Correctness *)
let v = mkCast (cj.uj_val, k, tj.utj_val) in
{ uj_val = v; uj_type = tj.utj_val }
in
inh_conv_coerce_to_tycon loc env evdref cj tycon
- | RDynamic (loc,d) ->
- if (Dyn.tag d) = "constr" then
- let c = constr_out d in
- let j = (Retyping.get_judgment_of env ( !evdref) c) in
- j
- (*inh_conv_coerce_to_tycon loc env evdref j tycon*)
- else
- user_err_loc (loc,"pretype",(str "Not a constr tagged Dynamic."))
-
(* [pretype_type valcon env evdref lvar c] coerces [c] into a type *)
and pretype_type valcon env evdref lvar = function
- | RHole loc ->
+ | GHole loc ->
(match valcon with
| Some v ->
let s =
@@ -586,12 +573,12 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
{ utj_val = v;
utj_type = s }
| None ->
- let s = new_Type_sort () in
+ let s = Termops.new_Type_sort () in
{ utj_val = e_new_evar evdref env ~src:loc (mkSort s);
utj_type = s})
| c ->
let j = pretype empty_tycon env evdref lvar c in
- let loc = loc_of_rawconstr c in
+ let loc = loc_of_glob_constr c in
let tj = evd_comb1 (Coercion.inh_coerce_to_sort loc env) evdref j in
match valcon with
| None -> tj
@@ -599,7 +586,7 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
if e_cumul env evdref v tj.utj_val then tj
else
error_unexpected_type_loc
- (loc_of_rawconstr c) env ( !evdref) tj.utj_val v
+ (loc_of_glob_constr c) env !evdref tj.utj_val v
let pretype_gen expand_evar fail_evar resolve_classes evdref env lvar kind c =
let c' = match kind with
@@ -607,15 +594,20 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let tycon = match exptyp with None -> empty_tycon | Some t -> mk_tycon t in
(pretype tycon env evdref lvar c).uj_val
| IsType ->
- (pretype_type empty_valcon env evdref lvar c).utj_val in
- evdref := consider_remaining_unif_problems env !evdref;
- if resolve_classes then
- (evdref := Typeclasses.resolve_typeclasses ~onlyargs:false
- ~split:true ~fail:fail_evar env !evdref;
- evdref := consider_remaining_unif_problems env !evdref);
- let c = if expand_evar then nf_evar !evdref c' else c' in
- if fail_evar then check_evars env Evd.empty !evdref c;
- c
+ (pretype_type empty_valcon env evdref lvar c).utj_val
+ in
+ if resolve_classes then
+ (try
+ evdref := Typeclasses.resolve_typeclasses ~filter:Subtac_utils.no_goals_or_obligations
+ ~split:true ~fail:true env !evdref;
+ evdref := Typeclasses.resolve_typeclasses ~filter:Typeclasses.all_evars
+ ~split:true ~fail:false env !evdref
+ with e when Errors.noncritical e ->
+ if fail_evar then raise e else ());
+ evdref := consider_remaining_unif_problems env !evdref;
+ let c = if expand_evar then nf_evar !evdref c' else c' in
+ if fail_evar then check_evars env Evd.empty !evdref c;
+ c
(* TODO: comment faire remonter l'information si le typage a resolu des
variables du sigma original. il faudrait que la fonction de typage
@@ -654,8 +646,8 @@ module SubtacPretyping_F (Coercion : Coercion.S) = struct
let understand_type sigma env c =
snd (ise_pretype_gen true false true sigma env ([],[]) IsType c)
- let understand_ltac expand_evar sigma env lvar kind c =
- ise_pretype_gen expand_evar false true sigma env lvar kind c
+ let understand_ltac ?(resolve_classes=false) expand_evar sigma env lvar kind c =
+ ise_pretype_gen expand_evar false resolve_classes sigma env lvar kind c
let understand_tcc ?(resolve_classes=true) sigma env ?expected_type:exptyp c =
ise_pretype_gen true false resolve_classes sigma env ([],[]) (OfType exptyp) c
diff --git a/plugins/subtac/subtac_utils.ml b/plugins/subtac/subtac_utils.ml
index 362c4ddc..e32bb9e0 100644
--- a/plugins/subtac/subtac_utils.ml
+++ b/plugins/subtac/subtac_utils.ml
@@ -15,10 +15,8 @@ let ($) f x = f x
let contrib_name = "Program"
let subtac_dir = [contrib_name]
-let fix_sub_module = "Wf"
-let utils_module = "Utils"
-let fixsub_module = subtac_dir @ [fix_sub_module]
-let utils_module = subtac_dir @ [utils_module]
+let fixsub_module = subtac_dir @ ["Wf"]
+let utils_module = subtac_dir @ ["Utils"]
let tactics_module = subtac_dir @ ["Tactics"]
let init_constant dir s () = gen_constant contrib_name dir s
let init_reference dir s () = gen_reference contrib_name dir s
@@ -27,7 +25,6 @@ let safe_init_constant md name () =
check_required_library ("Coq"::md);
init_constant md name ()
-let fixsub = init_constant fixsub_module "Fix_sub"
let ex_pi1 = init_constant utils_module "ex_pi1"
let ex_pi2 = init_constant utils_module "ex_pi2"
@@ -55,11 +52,9 @@ let build_sig () =
let sig_ = build_sig
-let fix_proto = init_constant tactics_module "fix_proto"
-let fix_proto_ref () =
- match Nametab.global (make_ref "Program.Tactics.fix_proto") with
- | ConstRef c -> c
- | _ -> assert false
+let fix_proto = safe_init_constant tactics_module "fix_proto"
+
+let hide_obligation = safe_init_constant tactics_module "obligation"
let eq_ind = init_constant ["Init"; "Logic"] "eq"
let eq_rec = init_constant ["Init"; "Logic"] "eq_rec"
@@ -92,12 +87,6 @@ let ex_intro = init_reference ["Init"; "Logic"] "ex_intro"
let proj1 = init_constant ["Init"; "Logic"] "proj1"
let proj2 = init_constant ["Init"; "Logic"] "proj2"
-let boolind = init_constant ["Init"; "Datatypes"] "bool"
-let sumboolind = init_constant ["Init"; "Specif"] "sumbool"
-let natind = init_constant ["Init"; "Datatypes"] "nat"
-let intind = init_constant ["ZArith"; "binint"] "Z"
-let existSind = init_constant ["Init"; "Specif"] "sigS"
-
let existS = build_sigma_type
let prod = build_prod
@@ -120,8 +109,8 @@ let my_print_rel_context env ctx = Printer.pr_rel_context env ctx
let my_print_context = Termops.print_rel_context
let my_print_named_context = Termops.print_named_context
let my_print_env = Termops.print_env
-let my_print_rawconstr = Printer.pr_rawconstr_env
-let my_print_evardefs = Evd.pr_evar_map
+let my_print_glob_constr = Printer.pr_glob_constr_env
+let my_print_evardefs = Evd.pr_evar_map None
let my_print_tycon_type = Evarutil.pr_tycon_type
@@ -172,12 +161,11 @@ let print_args env args =
Array.fold_right (fun a acc -> my_print_constr env a ++ spc () ++ acc) args (str "")
let make_existential loc ?(opaque = Define true) env isevars c =
- let evar = Evarutil.e_new_evar isevars env ~src:(loc, QuestionMark opaque) c in
- let (key, args) = destEvar evar in
- (try trace (str "Constructed evar " ++ int key ++ str " applied to args: " ++
- print_args env args ++ str " for type: "++
- my_print_constr env c) with _ -> ());
- evar
+ Evarutil.e_new_evar isevars env ~src:(loc, QuestionMark opaque) c
+
+let no_goals_or_obligations = function
+ | GoalEvar | QuestionMark _ -> false
+ | _ -> true
let make_existential_expr loc env c =
let key = Evarutil.new_untyped_evar () in
@@ -244,7 +232,7 @@ let build_dependent_sum l =
let hyptype = substl names t in
trace (spc () ++ str ("treating evar " ^ string_of_id n));
(try trace (str " assert: " ++ my_print_constr (Global.env ()) hyptype)
- with _ -> ());
+ with e when Errors.noncritical e -> ());
let tac = assert_tac (Name n) hyptype in
let conttac =
(fun cont ->
@@ -253,7 +241,7 @@ let build_dependent_sum l =
([intros;
(tclTHENSEQ
[constructor_tac false (Some 1) 1
- (Rawterm.ImplicitBindings [mkVar n]);
+ (Glob_term.ImplicitBindings [mkVar n]);
cont]);
])))
in
@@ -343,7 +331,7 @@ let destruct_ex ext ex =
Ind i when i = Term.destInd (delayed_force ex_ind) && Array.length args = 2 ->
let (dom, rng) =
try (args.(0), args.(1))
- with _ -> assert(false)
+ with e when Errors.noncritical e -> assert(false)
in
let pi1 = (mk_ex_pi1 dom rng acc) in
let rng_body =
@@ -356,7 +344,7 @@ let destruct_ex ext ex =
| _ -> [acc]
in aux ex ext
-open Rawterm
+open Glob_term
let id_of_name = function
Name n -> n
@@ -387,9 +375,9 @@ let solve_by_tac evi t =
Inductiveops.control_only_guard (Global.env ())
const.Entries.const_entry_body;
const.Entries.const_entry_body
- with e ->
+ with reraise ->
Pfedit.delete_current_proof();
- raise e
+ raise reraise
(* let apply_tac t goal = t goal *)
@@ -418,7 +406,6 @@ let string_of_intset d =
open Printer
open Ppconstr
open Nameops
-open Termops
open Evd
let pr_meta_map evd =
@@ -430,11 +417,11 @@ let pr_meta_map evd =
| (mv,Cltyp (na,b)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " : " ++
- print_constr b.rebus ++ fnl ())
+ Termops.print_constr b.rebus ++ fnl ())
| (mv,Clval(na,b,_)) ->
hov 0
(pr_meta mv ++ pr_name na ++ str " := " ++
- print_constr (fst b).rebus ++ fnl ())
+ Termops.print_constr (fst b).rebus ++ fnl ())
in
prlist pr_meta_binding ml
@@ -445,11 +432,11 @@ let pr_evar_info evi =
(*pr_idl (List.rev (ids_of_named_context (evar_context evi))) *)
Printer.pr_named_context (Global.env()) (evar_context evi)
in
- let pty = print_constr evi.evar_concl in
+ let pty = Termops.print_constr evi.evar_concl in
let pb =
match evi.evar_body with
| Evar_empty -> mt ()
- | Evar_defined c -> spc() ++ str"=> " ++ print_constr c
+ | Evar_defined c -> spc() ++ str"=> " ++ Termops.print_constr c
in
hov 2 (str"[" ++ phyps ++ spc () ++ str"|- " ++ pty ++ pb ++ str"]")
@@ -463,11 +450,11 @@ let pr_evar_map sigma =
let pr_constraints pbs =
h 0
(prlist_with_sep pr_fnl (fun (pbty,t1,t2) ->
- print_constr t1 ++ spc() ++
+ Termops.print_constr t1 ++ spc() ++
str (match pbty with
| Reduction.CONV -> "=="
| Reduction.CUMUL -> "<=") ++
- spc() ++ print_constr t2) pbs)
+ spc() ++ Termops.print_constr t2) pbs)
let pr_evar_map evd =
let pp_evm =
@@ -486,4 +473,4 @@ let tactics_tac s =
lazy(make_kn (MPfile contrib_tactics_path) (make_dirpath []) (mk_label s))
let tactics_call tac args =
- TacArg(TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force (tactics_tac tac)),args))
+ TacArg(dummy_loc,TacCall(dummy_loc, ArgArg(dummy_loc, Lazy.force (tactics_tac tac)),args))
diff --git a/plugins/subtac/subtac_utils.mli b/plugins/subtac/subtac_utils.mli
index f56c2932..112b1795 100644
--- a/plugins/subtac/subtac_utils.mli
+++ b/plugins/subtac/subtac_utils.mli
@@ -6,7 +6,7 @@ open Pp
open Evd
open Decl_kinds
open Topconstr
-open Rawterm
+open Glob_term
open Util
open Evarutil
open Names
@@ -15,11 +15,9 @@ open Sign
val ($) : ('a -> 'b) -> 'a -> 'b
val contrib_name : string
val subtac_dir : string list
-val fix_sub_module : string
val fixsub_module : string list
val init_constant : string list -> string -> constr delayed
val init_reference : string list -> string -> global_reference delayed
-val fixsub : constr delayed
val well_founded_ref : global_reference delayed
val acc_ref : global_reference delayed
val acc_inv_ref : global_reference delayed
@@ -35,7 +33,8 @@ val build_sig : unit -> coq_sigma_data
val sig_ : coq_sigma_data delayed
val fix_proto : constr delayed
-val fix_proto_ref : unit -> constant
+
+val hide_obligation : constr delayed
val eq_ind : constr delayed
val eq_rec : constr delayed
@@ -52,11 +51,6 @@ val jmeq_ind : constr delayed
val jmeq_rec : constr delayed
val jmeq_refl : constr delayed
-val boolind : constr delayed
-val sumboolind : constr delayed
-val natind : constr delayed
-val intind : constr delayed
-val existSind : constr delayed
val existS : coq_sigma_data delayed
val prod : coq_sigma_data delayed
@@ -74,7 +68,7 @@ val my_print_context : env -> std_ppcmds
val my_print_rel_context : env -> rel_context -> std_ppcmds
val my_print_named_context : env -> std_ppcmds
val my_print_env : env -> std_ppcmds
-val my_print_rawconstr : env -> rawconstr -> std_ppcmds
+val my_print_glob_constr : env -> glob_constr -> std_ppcmds
val my_print_tycon_type : env -> type_constraint_type -> std_ppcmds
@@ -88,6 +82,7 @@ val app_opt : ('a -> 'a) option -> 'a -> 'a
val print_args : env -> constr array -> std_ppcmds
val make_existential : loc -> ?opaque:obligation_definition_status ->
env -> evar_map ref -> types -> constr
+val no_goals_or_obligations : Typeclasses.evar_filter
val make_existential_expr : loc -> 'a -> 'b -> constr_expr
val string_of_hole_kind : hole_kind -> string
val evars_of_term : evar_map -> evar_map -> constr -> evar_map
diff --git a/plugins/syntax/ascii_syntax.ml b/plugins/syntax/ascii_syntax.ml
index ae3afff4..bd2285bb 100644
--- a/plugins/syntax/ascii_syntax.ml
+++ b/plugins/syntax/ascii_syntax.ml
@@ -6,13 +6,11 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(*i $Id: ascii_syntax.ml 12406 2009-10-21 15:12:52Z soubiran $ i*)
-
open Pp
open Util
open Names
open Pcoq
-open Rawterm
+open Glob_term
open Topconstr
open Libnames
open Coqlib
@@ -41,9 +39,9 @@ let interp_ascii dloc p =
let rec aux n p =
if n = 0 then [] else
let mp = p mod 2 in
- RRef (dloc,if mp = 0 then glob_false else glob_true)
+ GRef (dloc,if mp = 0 then glob_false else glob_true)
:: (aux (n-1) (p/2)) in
- RApp (dloc,RRef(dloc,force glob_Ascii), aux 8 p)
+ GApp (dloc,GRef(dloc,force glob_Ascii), aux 8 p)
let interp_ascii_string dloc s =
let p =
@@ -59,12 +57,12 @@ let interp_ascii_string dloc s =
let uninterp_ascii r =
let rec uninterp_bool_list n = function
| [] when n = 0 -> 0
- | RRef (_,k)::l when k = glob_true -> 1+2*(uninterp_bool_list (n-1) l)
- | RRef (_,k)::l when k = glob_false -> 2*(uninterp_bool_list (n-1) l)
+ | GRef (_,k)::l when k = glob_true -> 1+2*(uninterp_bool_list (n-1) l)
+ | GRef (_,k)::l when k = glob_false -> 2*(uninterp_bool_list (n-1) l)
| _ -> raise Non_closed_ascii in
try
let rec aux = function
- | RApp (_,RRef (_,k),l) when k = force glob_Ascii -> uninterp_bool_list 8 l
+ | GApp (_,GRef (_,k),l) when k = force glob_Ascii -> uninterp_bool_list 8 l
| _ -> raise Non_closed_ascii in
Some (aux r)
with
@@ -80,4 +78,4 @@ let _ =
Notation.declare_string_interpreter "char_scope"
(ascii_path,ascii_module)
interp_ascii_string
- ([RRef (dummy_loc,static_glob_Ascii)], uninterp_ascii_string, true)
+ ([GRef (dummy_loc,static_glob_Ascii)], uninterp_ascii_string, true)
diff --git a/plugins/syntax/nat_syntax.ml b/plugins/syntax/nat_syntax.ml
index 7b92a92f..63b44008 100644
--- a/plugins/syntax/nat_syntax.ml
+++ b/plugins/syntax/nat_syntax.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: nat_syntax.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
(* This file defines the printer for natural numbers in [nat] *)
(*i*)
@@ -16,7 +14,7 @@ open Pp
open Util
open Names
open Coqlib
-open Rawterm
+open Glob_term
open Libnames
open Bigint
open Coqlib
@@ -30,19 +28,21 @@ open Names
(* Parsing via scopes *)
(* For example, (nat_of_string "3") is <<(S (S (S O)))>> *)
+let threshold = of_int 5000
+
let nat_of_int dloc n =
if is_pos_or_zero n then begin
- if less_than (of_string "5000") n then
+ if less_than threshold n then
Flags.if_warn msg_warning
(strbrk "Stack overflow or segmentation fault happens when " ++
strbrk "working with large numbers in nat (observed threshold " ++
strbrk "may vary from 5000 to 70000 depending on your system " ++
strbrk "limits and on the command executed).");
- let ref_O = RRef (dloc, glob_O) in
- let ref_S = RRef (dloc, glob_S) in
+ let ref_O = GRef (dloc, glob_O) in
+ let ref_S = GRef (dloc, glob_S) in
let rec mk_nat acc n =
if n <> zero then
- mk_nat (RApp (dloc,ref_S, [acc])) (sub_1 n)
+ mk_nat (GApp (dloc,ref_S, [acc])) (sub_1 n)
else
acc
in
@@ -58,8 +58,8 @@ let nat_of_int dloc n =
exception Non_closed_number
let rec int_of_nat = function
- | RApp (_,RRef (_,s),[a]) when s = glob_S -> add_1 (int_of_nat a)
- | RRef (_,z) when z = glob_O -> zero
+ | GApp (_,GRef (_,s),[a]) when s = glob_S -> add_1 (int_of_nat a)
+ | GRef (_,z) when z = glob_O -> zero
| _ -> raise Non_closed_number
let uninterp_nat p =
@@ -75,4 +75,4 @@ let _ =
Notation.declare_numeral_interpreter "nat_scope"
(nat_path,["Coq";"Init";"Datatypes"])
nat_of_int
- ([RRef (dummy_loc,glob_S); RRef (dummy_loc,glob_O)], uninterp_nat, true)
+ ([GRef (dummy_loc,glob_S); GRef (dummy_loc,glob_O)], uninterp_nat, true)
diff --git a/plugins/syntax/numbers_syntax.ml b/plugins/syntax/numbers_syntax.ml
index a540a7d0..b8636a74 100644
--- a/plugins/syntax/numbers_syntax.ml
+++ b/plugins/syntax/numbers_syntax.ml
@@ -1,18 +1,16 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: numbers_syntax.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(* digit-based syntax for int31, bigN bigZ and bigQ *)
open Bigint
open Libnames
-open Rawterm
+open Glob_term
(*** Constants for locating int31 / bigN / bigZ / bigQ constructors ***)
@@ -48,30 +46,14 @@ let zn2z_WW = ConstructRef ((zn2z_id "zn2z",0),2)
let bigN_module = ["Coq"; "Numbers"; "Natural"; "BigN"; "BigN" ]
let bigN_path = make_path (bigN_module@["BigN"]) "t"
-let bigN_t = make_mind_mpdot bigN_module "BigN" "t_"
+let bigN_t = make_mind_mpdot bigN_module "BigN" "t'"
let bigN_scope = "bigN_scope"
(* number of inlined level of bigN (actually the level 0 to n_inlined-1 are inlined) *)
-let n_inlined = of_string "7"
-let bigN_constructor =
- (* converts a bigint into an int the ugly way *)
- let rec to_int i =
- if equal i zero then
- 0
- else
- let (quo,rem) = div2_with_rest i in
- if rem then
- 2*(to_int quo)+1
- else
- 2*(to_int quo)
- in
- fun i ->
- ConstructRef ((bigN_t,0),
- if less_than i n_inlined then
- (to_int i)+1
- else
- (to_int n_inlined)+1
- )
+let n_inlined = 7
+
+let bigN_constructor i =
+ ConstructRef ((bigN_t,0),(min i n_inlined)+1)
(*bigZ stuff*)
let bigZ_module = ["Coq"; "Numbers"; "Integer"; "BigZ"; "BigZ" ]
@@ -100,9 +82,9 @@ exception Non_closed
(* parses a *non-negative* integer (from bigint.ml) into an int31
wraps modulo 2^31 *)
let int31_of_pos_bigint dloc n =
- let ref_construct = RRef (dloc, int31_construct) in
- let ref_0 = RRef (dloc, int31_0) in
- let ref_1 = RRef (dloc, int31_1) in
+ let ref_construct = GRef (dloc, int31_construct) in
+ let ref_0 = GRef (dloc, int31_0) in
+ let ref_1 = GRef (dloc, int31_1) in
let rec args counter n =
if counter <= 0 then
[]
@@ -110,7 +92,7 @@ let int31_of_pos_bigint dloc n =
let (q,r) = div2_with_rest n in
(if r then ref_1 else ref_0)::(args (counter-1) q)
in
- RApp (dloc, ref_construct, List.rev (args 31 n))
+ GApp (dloc, ref_construct, List.rev (args 31 n))
let error_negative dloc =
Util.user_err_loc (dloc, "interp_int31", Pp.str "int31 are only non-negative numbers.")
@@ -127,12 +109,12 @@ let bigint_of_int31 =
let rec args_parsing args cur =
match args with
| [] -> cur
- | (RRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
- | (RRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
+ | (GRef (_,b))::l when b = int31_0 -> args_parsing l (mult_2 cur)
+ | (GRef (_,b))::l when b = int31_1 -> args_parsing l (add_1 (mult_2 cur))
| _ -> raise Non_closed
in
function
- | RApp (_, RRef (_, c), args) when c=int31_construct -> args_parsing args zero
+ | GApp (_, GRef (_, c), args) when c=int31_construct -> args_parsing args zero
| _ -> raise Non_closed
let uninterp_int31 i =
@@ -145,62 +127,61 @@ let uninterp_int31 i =
let _ = Notation.declare_numeral_interpreter int31_scope
(int31_path, int31_module)
interp_int31
- ([RRef (Util.dummy_loc, int31_construct)],
+ ([GRef (Util.dummy_loc, int31_construct)],
uninterp_int31,
true)
(*** Parsing for bigN in digital notation ***)
(* the base for bigN (in Coq) that is 2^31 in our case *)
-let base = pow two (of_string "31")
+let base = pow two 31
-(* base of the bigN of height N : *)
-let rank n = pow base (pow two n)
+(* base of the bigN of height N : (2^31)^(2^n) *)
+let rank n =
+ let rec rk n pow2 =
+ if n <= 0 then pow2
+ else rk (n-1) (mult pow2 pow2)
+ in rk n base
(* splits a number bi at height n, that is the rest needs 2^n int31 to be stored
it is expected to be used only when the quotient would also need 2^n int31 to be
stored *)
let split_at n bi =
- euclid bi (rank (sub_1 n))
+ euclid bi (rank (n-1))
(* search the height of the Coq bigint needed to represent the integer bi *)
let height bi =
- let rec height_aux n =
- if less_than bi (rank n) then
- n
- else
- height_aux (add_1 n)
- in
- height_aux zero
-
+ let rec hght n pow2 =
+ if less_than bi pow2 then n
+ else hght (n+1) (mult pow2 pow2)
+ in hght 0 base
(* n must be a non-negative integer (from bigint.ml) *)
let word_of_pos_bigint dloc hght n =
- let ref_W0 = RRef (dloc, zn2z_W0) in
- let ref_WW = RRef (dloc, zn2z_WW) in
+ let ref_W0 = GRef (dloc, zn2z_W0) in
+ let ref_WW = GRef (dloc, zn2z_WW) in
let rec decomp hgt n =
- if is_neg_or_zero hgt then
+ if hgt <= 0 then
int31_of_pos_bigint dloc n
else if equal n zero then
- RApp (dloc, ref_W0, [RHole (dloc, Evd.InternalHole)])
+ GApp (dloc, ref_W0, [GHole (dloc, Evd.InternalHole)])
else
let (h,l) = split_at hgt n in
- RApp (dloc, ref_WW, [RHole (dloc, Evd.InternalHole);
- decomp (sub_1 hgt) h;
- decomp (sub_1 hgt) l])
+ GApp (dloc, ref_WW, [GHole (dloc, Evd.InternalHole);
+ decomp (hgt-1) h;
+ decomp (hgt-1) l])
in
decomp hght n
let bigN_of_pos_bigint dloc n =
- let ref_constructor i = RRef (dloc, bigN_constructor i) in
- let result h word = RApp (dloc, ref_constructor h, if less_than h n_inlined then
- [word]
- else
- [Nat_syntax.nat_of_int dloc (sub h n_inlined);
- word])
+ let h = height n in
+ let ref_constructor = GRef (dloc, bigN_constructor h) in
+ let word = word_of_pos_bigint dloc h n in
+ let args =
+ if h < n_inlined then [word]
+ else [Nat_syntax.nat_of_int dloc (of_int (h-n_inlined));word]
in
- let hght = height n in
- result hght (word_of_pos_bigint dloc hght n)
+ GApp (dloc, ref_constructor, args)
let bigN_error_negative dloc =
Util.user_err_loc (dloc, "interp_bigN", Pp.str "bigN are only non-negative numbers.")
@@ -217,23 +198,18 @@ let interp_bigN dloc n =
let bigint_of_word =
let rec get_height rc =
match rc with
- | RApp (_,RRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
- let hleft = get_height lft in
- let hright = get_height rght in
- add_1
- (if less_than hleft hright then
- hright
- else
- hleft)
- | _ -> zero
+ | GApp (_,GRef(_,c), [_;lft;rght]) when c = zn2z_WW ->
+ 1+max (get_height lft) (get_height rght)
+ | _ -> 0
in
let rec transform hght rc =
match rc with
- | RApp (_,RRef(_,c),_) when c = zn2z_W0-> zero
- | RApp (_,RRef(_,c), [_;lft;rght]) when c=zn2z_WW-> let new_hght = sub_1 hght in
- add (mult (rank new_hght)
- (transform (new_hght) lft))
- (transform (new_hght) rght)
+ | GApp (_,GRef(_,c),_) when c = zn2z_W0-> zero
+ | GApp (_,GRef(_,c), [_;lft;rght]) when c=zn2z_WW->
+ let new_hght = hght-1 in
+ add (mult (rank new_hght)
+ (transform new_hght lft))
+ (transform new_hght rght)
| _ -> bigint_of_int31 rc
in
fun rc ->
@@ -242,8 +218,8 @@ let bigint_of_word =
let bigint_of_bigN rc =
match rc with
- | RApp (_,_,[one_arg]) -> bigint_of_word one_arg
- | RApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
+ | GApp (_,_,[one_arg]) -> bigint_of_word one_arg
+ | GApp (_,_,[_;second_arg]) -> bigint_of_word second_arg
| _ -> raise Non_closed
let uninterp_bigN rc =
@@ -258,12 +234,12 @@ let uninterp_bigN rc =
let bigN_list_of_constructors =
let rec build i =
- if less_than i (add_1 n_inlined) then
- RRef (Util.dummy_loc, bigN_constructor i)::(build (add_1 i))
+ if i < n_inlined+1 then
+ GRef (Util.dummy_loc, bigN_constructor i)::(build (i+1))
else
[]
in
- build zero
+ build 0
(* Actually declares the interpreter for bigN *)
let _ = Notation.declare_numeral_interpreter bigN_scope
@@ -276,17 +252,17 @@ let _ = Notation.declare_numeral_interpreter bigN_scope
(*** Parsing for bigZ in digital notation ***)
let interp_bigZ dloc n =
- let ref_pos = RRef (dloc, bigZ_pos) in
- let ref_neg = RRef (dloc, bigZ_neg) in
+ let ref_pos = GRef (dloc, bigZ_pos) in
+ let ref_neg = GRef (dloc, bigZ_neg) in
if is_pos_or_zero n then
- RApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
+ GApp (dloc, ref_pos, [bigN_of_pos_bigint dloc n])
else
- RApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
+ GApp (dloc, ref_neg, [bigN_of_pos_bigint dloc (neg n)])
(* pretty printing functions for bigZ *)
let bigint_of_bigZ = function
- | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
- | RApp (_, RRef(_,c), [one_arg]) when c = bigZ_neg ->
+ | GApp (_, GRef(_,c), [one_arg]) when c = bigZ_pos -> bigint_of_bigN one_arg
+ | GApp (_, GRef(_,c), [one_arg]) when c = bigZ_neg ->
let opp_val = bigint_of_bigN one_arg in
if equal opp_val zero then
raise Non_closed
@@ -305,19 +281,19 @@ let uninterp_bigZ rc =
let _ = Notation.declare_numeral_interpreter bigZ_scope
(bigZ_path, bigZ_module)
interp_bigZ
- ([RRef (Util.dummy_loc, bigZ_pos);
- RRef (Util.dummy_loc, bigZ_neg)],
+ ([GRef (Util.dummy_loc, bigZ_pos);
+ GRef (Util.dummy_loc, bigZ_neg)],
uninterp_bigZ,
true)
(*** Parsing for bigQ in digital notation ***)
let interp_bigQ dloc n =
- let ref_z = RRef (dloc, bigQ_z) in
- RApp (dloc, ref_z, [interp_bigZ dloc n])
+ let ref_z = GRef (dloc, bigQ_z) in
+ GApp (dloc, ref_z, [interp_bigZ dloc n])
let uninterp_bigQ rc =
try match rc with
- | RApp (_, RRef(_,c), [one_arg]) when c = bigQ_z ->
+ | GApp (_, GRef(_,c), [one_arg]) when c = bigQ_z ->
Some (bigint_of_bigZ one_arg)
| _ -> None (* we don't pretty-print yet fractions *)
with Non_closed -> None
@@ -326,5 +302,5 @@ let uninterp_bigQ rc =
let _ = Notation.declare_numeral_interpreter bigQ_scope
(bigQ_path, bigQ_module)
interp_bigQ
- ([RRef (Util.dummy_loc, bigQ_z)], uninterp_bigQ,
+ ([GRef (Util.dummy_loc, bigQ_z)], uninterp_bigQ,
true)
diff --git a/plugins/syntax/r_syntax.ml b/plugins/syntax/r_syntax.ml
index 43e79c82..401c23f7 100644
--- a/plugins/syntax/r_syntax.ml
+++ b/plugins/syntax/r_syntax.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(*i $Id: r_syntax.ml 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
open Pp
open Util
open Names
@@ -22,7 +20,7 @@ exception Non_closed_number
(**********************************************************************)
open Libnames
-open Rawterm
+open Glob_term
open Bigint
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
@@ -48,24 +46,24 @@ let four = mult_2 two
(* Unary representation of strictly positive numbers *)
let rec small_r dloc n =
- if equal one n then RRef (dloc, glob_R1)
- else RApp(dloc,RRef (dloc,glob_Rplus),
- [RRef (dloc, glob_R1);small_r dloc (sub_1 n)])
+ if equal one n then GRef (dloc, glob_R1)
+ else GApp(dloc,GRef (dloc,glob_Rplus),
+ [GRef (dloc, glob_R1);small_r dloc (sub_1 n)])
let r_of_posint dloc n =
- let r1 = RRef (dloc, glob_R1) in
+ let r1 = GRef (dloc, glob_R1) in
let r2 = small_r dloc two in
let rec r_of_pos n =
if less_than n four then small_r dloc n
else
let (q,r) = div2_with_rest n in
- let b = RApp(dloc,RRef(dloc,glob_Rmult),[r2;r_of_pos q]) in
- if r then RApp(dloc,RRef(dloc,glob_Rplus),[r1;b]) else b in
- if n <> zero then r_of_pos n else RRef(dloc,glob_R0)
+ let b = GApp(dloc,GRef(dloc,glob_Rmult),[r2;r_of_pos q]) in
+ if r then GApp(dloc,GRef(dloc,glob_Rplus),[r1;b]) else b in
+ if n <> zero then r_of_pos n else GRef(dloc,glob_R0)
let r_of_int dloc z =
if is_strictly_neg z then
- RApp (dloc, RRef(dloc,glob_Ropp), [r_of_posint dloc (neg z)])
+ GApp (dloc, GRef(dloc,glob_Ropp), [r_of_posint dloc (neg z)])
else
r_of_posint dloc z
@@ -77,33 +75,33 @@ let bignat_of_r =
(* for numbers > 1 *)
let rec bignat_of_pos = function
(* 1+1 *)
- | RApp (_,RRef (_,p), [RRef (_,o1); RRef (_,o2)])
+ | GApp (_,GRef (_,p), [GRef (_,o1); GRef (_,o2)])
when p = glob_Rplus & o1 = glob_R1 & o2 = glob_R1 -> two
(* 1+(1+1) *)
- | RApp (_,RRef (_,p1), [RRef (_,o1);
- RApp(_,RRef (_,p2),[RRef(_,o2);RRef(_,o3)])])
+ | GApp (_,GRef (_,p1), [GRef (_,o1);
+ GApp(_,GRef (_,p2),[GRef(_,o2);GRef(_,o3)])])
when p1 = glob_Rplus & p2 = glob_Rplus &
o1 = glob_R1 & o2 = glob_R1 & o3 = glob_R1 -> three
(* (1+1)*b *)
- | RApp (_,RRef (_,p), [a; b]) when p = glob_Rmult ->
+ | GApp (_,GRef (_,p), [a; b]) when p = glob_Rmult ->
if bignat_of_pos a <> two then raise Non_closed_number;
mult_2 (bignat_of_pos b)
(* 1+(1+1)*b *)
- | RApp (_,RRef (_,p1), [RRef (_,o); RApp (_,RRef (_,p2),[a;b])])
+ | GApp (_,GRef (_,p1), [GRef (_,o); GApp (_,GRef (_,p2),[a;b])])
when p1 = glob_Rplus & p2 = glob_Rmult & o = glob_R1 ->
if bignat_of_pos a <> two then raise Non_closed_number;
add_1 (mult_2 (bignat_of_pos b))
| _ -> raise Non_closed_number
in
let bignat_of_r = function
- | RRef (_,a) when a = glob_R0 -> zero
- | RRef (_,a) when a = glob_R1 -> one
+ | GRef (_,a) when a = glob_R0 -> zero
+ | GRef (_,a) when a = glob_R1 -> one
| r -> bignat_of_pos r
in
bignat_of_r
let bigint_of_r = function
- | RApp (_,RRef (_,o), [a]) when o = glob_Ropp ->
+ | GApp (_,GRef (_,o), [a]) when o = glob_Ropp ->
let n = bignat_of_r a in
if n = zero then raise Non_closed_number;
neg n
@@ -118,8 +116,8 @@ let uninterp_r p =
let _ = Notation.declare_numeral_interpreter "R_scope"
(r_path,["Coq";"Reals";"Rdefinitions"])
r_of_int
- ([RRef(dummy_loc,glob_Ropp);RRef(dummy_loc,glob_R0);
- RRef(dummy_loc,glob_Rplus);RRef(dummy_loc,glob_Rmult);
- RRef(dummy_loc,glob_R1)],
+ ([GRef(dummy_loc,glob_Ropp);GRef(dummy_loc,glob_R0);
+ GRef(dummy_loc,glob_Rplus);GRef(dummy_loc,glob_Rmult);
+ GRef(dummy_loc,glob_R1)],
uninterp_r,
false)
diff --git a/plugins/syntax/string_syntax.ml b/plugins/syntax/string_syntax.ml
index 534605c8..d670f602 100644
--- a/plugins/syntax/string_syntax.ml
+++ b/plugins/syntax/string_syntax.ml
@@ -6,8 +6,6 @@
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
-(*i $Id: string_syntax.ml 12337 2009-09-17 15:58:14Z glondu $ i*)
-
open Pp
open Util
open Names
@@ -15,7 +13,7 @@ open Pcoq
open Libnames
open Topconstr
open Ascii_syntax
-open Rawterm
+open Glob_term
open Coqlib
exception Non_closed_string
@@ -39,8 +37,8 @@ open Lazy
let interp_string dloc s =
let le = String.length s in
let rec aux n =
- if n = le then RRef (dloc, force glob_EmptyString) else
- RApp (dloc,RRef (dloc, force glob_String),
+ if n = le then GRef (dloc, force glob_EmptyString) else
+ GApp (dloc,GRef (dloc, force glob_String),
[interp_ascii dloc (int_of_char s.[n]); aux (n+1)])
in aux 0
@@ -48,11 +46,11 @@ let uninterp_string r =
try
let b = Buffer.create 16 in
let rec aux = function
- | RApp (_,RRef (_,k),[a;s]) when k = force glob_String ->
+ | GApp (_,GRef (_,k),[a;s]) when k = force glob_String ->
(match uninterp_ascii a with
| Some c -> Buffer.add_char b (Char.chr c); aux s
| _ -> raise Non_closed_string)
- | RRef (_,z) when z = force glob_EmptyString ->
+ | GRef (_,z) when z = force glob_EmptyString ->
Some (Buffer.contents b)
| _ ->
raise Non_closed_string
@@ -64,6 +62,6 @@ let _ =
Notation.declare_string_interpreter "string_scope"
(string_path,["Coq";"Strings";"String"])
interp_string
- ([RRef (dummy_loc,static_glob_String);
- RRef (dummy_loc,static_glob_EmptyString)],
+ ([GRef (dummy_loc,static_glob_String);
+ GRef (dummy_loc,static_glob_EmptyString)],
uninterp_string, true)
diff --git a/plugins/syntax/z_syntax.ml b/plugins/syntax/z_syntax.ml
index e6dcc35e..032e0036 100644
--- a/plugins/syntax/z_syntax.ml
+++ b/plugins/syntax/z_syntax.ml
@@ -1,13 +1,11 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
-(* $Id: z_syntax.ml 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Pcoq
open Pp
open Util
@@ -23,18 +21,19 @@ exception Non_closed_number
(**********************************************************************)
open Libnames
-open Rawterm
+open Glob_term
+
+let binnums = ["Coq";"Numbers";"BinNums"]
+
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
-let positive_module = ["Coq";"NArith";"BinPos"]
let make_path dir id = Libnames.make_path (make_dir dir) (id_of_string id)
-let positive_path = make_path positive_module "positive"
+let positive_path = make_path binnums "positive"
(* TODO: temporary hack *)
let make_kn dir id = Libnames.encode_mind dir id
-let positive_kn =
- make_kn (make_dir positive_module) (id_of_string "positive")
+let positive_kn = make_kn (make_dir binnums) (id_of_string "positive")
let glob_positive = IndRef (positive_kn,0)
let path_of_xI = ((positive_kn,0),1)
let path_of_xO = ((positive_kn,0),2)
@@ -44,13 +43,13 @@ let glob_xO = ConstructRef path_of_xO
let glob_xH = ConstructRef path_of_xH
let pos_of_bignat dloc x =
- let ref_xI = RRef (dloc, glob_xI) in
- let ref_xH = RRef (dloc, glob_xH) in
- let ref_xO = RRef (dloc, glob_xO) in
+ let ref_xI = GRef (dloc, glob_xI) in
+ let ref_xH = GRef (dloc, glob_xH) in
+ let ref_xO = GRef (dloc, glob_xO) in
let rec pos_of x =
match div2_with_rest x with
- | (q,false) -> RApp (dloc, ref_xO,[pos_of q])
- | (q,true) when q <> zero -> RApp (dloc,ref_xI,[pos_of q])
+ | (q,false) -> GApp (dloc, ref_xO,[pos_of q])
+ | (q,true) when q <> zero -> GApp (dloc,ref_xI,[pos_of q])
| (q,true) -> ref_xH
in
pos_of x
@@ -68,9 +67,9 @@ let interp_positive dloc n =
(**********************************************************************)
let rec bignat_of_pos = function
- | RApp (_, RRef (_,b),[a]) when b = glob_xO -> mult_2(bignat_of_pos a)
- | RApp (_, RRef (_,b),[a]) when b = glob_xI -> add_1(mult_2(bignat_of_pos a))
- | RRef (_, a) when a = glob_xH -> Bigint.one
+ | GApp (_, GRef (_,b),[a]) when b = glob_xO -> mult_2(bignat_of_pos a)
+ | GApp (_, GRef (_,b),[a]) when b = glob_xI -> add_1(mult_2(bignat_of_pos a))
+ | GRef (_, a) when a = glob_xH -> Bigint.one
| _ -> raise Non_closed_number
let uninterp_positive p =
@@ -84,11 +83,11 @@ let uninterp_positive p =
(************************************************************************)
let _ = Notation.declare_numeral_interpreter "positive_scope"
- (positive_path,positive_module)
+ (positive_path,binnums)
interp_positive
- ([RRef (dummy_loc, glob_xI);
- RRef (dummy_loc, glob_xO);
- RRef (dummy_loc, glob_xH)],
+ ([GRef (dummy_loc, glob_xI);
+ GRef (dummy_loc, glob_xO);
+ GRef (dummy_loc, glob_xH)],
uninterp_positive,
true)
@@ -96,21 +95,20 @@ let _ = Notation.declare_numeral_interpreter "positive_scope"
(* Parsing N via scopes *)
(**********************************************************************)
-let binnat_module = ["Coq";"NArith";"BinNat"]
-let n_kn = make_kn (make_dir binnat_module) (id_of_string "N")
+let n_kn = make_kn (make_dir binnums) (id_of_string "N")
let glob_n = IndRef (n_kn,0)
let path_of_N0 = ((n_kn,0),1)
let path_of_Npos = ((n_kn,0),2)
let glob_N0 = ConstructRef path_of_N0
let glob_Npos = ConstructRef path_of_Npos
-let n_path = make_path binnat_module "N"
+let n_path = make_path binnums "N"
let n_of_binnat dloc pos_or_neg n =
if n <> zero then
- RApp(dloc, RRef (dloc,glob_Npos), [pos_of_bignat dloc n])
+ GApp(dloc, GRef (dloc,glob_Npos), [pos_of_bignat dloc n])
else
- RRef (dloc, glob_N0)
+ GRef (dloc, glob_N0)
let error_negative dloc =
user_err_loc (dloc, "interp_N", str "No negative numbers in type \"N\".")
@@ -124,8 +122,8 @@ let n_of_int dloc n =
(**********************************************************************)
let bignat_of_n = function
- | RApp (_, RRef (_,b),[a]) when b = glob_Npos -> bignat_of_pos a
- | RRef (_, a) when a = glob_N0 -> Bigint.zero
+ | GApp (_, GRef (_,b),[a]) when b = glob_Npos -> bignat_of_pos a
+ | GRef (_, a) when a = glob_N0 -> Bigint.zero
| _ -> raise Non_closed_number
let uninterp_n p =
@@ -136,10 +134,10 @@ let uninterp_n p =
(* Declaring interpreters and uninterpreters for N *)
let _ = Notation.declare_numeral_interpreter "N_scope"
- (n_path,binnat_module)
+ (n_path,binnums)
n_of_int
- ([RRef (dummy_loc, glob_N0);
- RRef (dummy_loc, glob_Npos)],
+ ([GRef (dummy_loc, glob_N0);
+ GRef (dummy_loc, glob_Npos)],
uninterp_n,
true)
@@ -147,9 +145,8 @@ let _ = Notation.declare_numeral_interpreter "N_scope"
(* Parsing Z via scopes *)
(**********************************************************************)
-let binint_module = ["Coq";"ZArith";"BinInt"]
-let z_path = make_path binint_module "Z"
-let z_kn = make_kn (make_dir binint_module) (id_of_string "Z")
+let z_path = make_path binnums "Z"
+let z_kn = make_kn (make_dir binnums) (id_of_string "Z")
let glob_z = IndRef (z_kn,0)
let path_of_ZERO = ((z_kn,0),1)
let path_of_POS = ((z_kn,0),2)
@@ -162,18 +159,18 @@ let z_of_int dloc n =
if n <> zero then
let sgn, n =
if is_pos_or_zero n then glob_POS, n else glob_NEG, Bigint.neg n in
- RApp(dloc, RRef (dloc,sgn), [pos_of_bignat dloc n])
+ GApp(dloc, GRef (dloc,sgn), [pos_of_bignat dloc n])
else
- RRef (dloc, glob_ZERO)
+ GRef (dloc, glob_ZERO)
(**********************************************************************)
(* Printing Z via scopes *)
(**********************************************************************)
let bigint_of_z = function
- | RApp (_, RRef (_,b),[a]) when b = glob_POS -> bignat_of_pos a
- | RApp (_, RRef (_,b),[a]) when b = glob_NEG -> Bigint.neg (bignat_of_pos a)
- | RRef (_, a) when a = glob_ZERO -> Bigint.zero
+ | GApp (_, GRef (_,b),[a]) when b = glob_POS -> bignat_of_pos a
+ | GApp (_, GRef (_,b),[a]) when b = glob_NEG -> Bigint.neg (bignat_of_pos a)
+ | GRef (_, a) when a = glob_ZERO -> Bigint.zero
| _ -> raise Non_closed_number
let uninterp_z p =
@@ -185,10 +182,10 @@ let uninterp_z p =
(* Declaring interpreters and uninterpreters for Z *)
let _ = Notation.declare_numeral_interpreter "Z_scope"
- (z_path,binint_module)
+ (z_path,binnums)
z_of_int
- ([RRef (dummy_loc, glob_ZERO);
- RRef (dummy_loc, glob_POS);
- RRef (dummy_loc, glob_NEG)],
+ ([GRef (dummy_loc, glob_ZERO);
+ GRef (dummy_loc, glob_POS);
+ GRef (dummy_loc, glob_NEG)],
uninterp_z,
true)
diff --git a/plugins/xml/acic.ml b/plugins/xml/acic.ml
index 97287d18..653c2b7b 100644
--- a/plugins/xml/acic.ml
+++ b/plugins/xml/acic.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/acic2Xml.ml4 b/plugins/xml/acic2Xml.ml4
index 631af9f0..97f7e2bd 100644
--- a/plugins/xml/acic2Xml.ml4
+++ b/plugins/xml/acic2Xml.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/cic2acic.ml b/plugins/xml/cic2acic.ml
index 0b98acd2..a14eda60 100644
--- a/plugins/xml/cic2acic.ml
+++ b/plugins/xml/cic2acic.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -349,7 +349,7 @@ let acic_of_cic_context' computeinnertypes seed ids_to_terms constr_to_ids
if computeinnertypes then
try
Acic.CicHash.find terms_to_types tt
-with _ ->
+with e when e <> Sys.Break ->
(*CSC: Warning: it really happens, for example in Ring_theory!!! *)
Pp.ppnl (Pp.(++) (Pp.str "BUG: this subterm was not visited during the double-type-inference: ") (Printer.pr_lconstr tt)) ; assert false
else
diff --git a/plugins/xml/doubleTypeInference.ml b/plugins/xml/doubleTypeInference.ml
index d67c114e..c22c16f0 100644
--- a/plugins/xml/doubleTypeInference.ml
+++ b/plugins/xml/doubleTypeInference.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -27,7 +27,7 @@ let cprop =
;;
let whd_betadeltaiotacprop env _evar_map ty =
- let module R = Rawterm in
+ let module R = Glob_term in
let module C = Closure in
let module CR = C.RedFlags in
(*** CProp is made Opaque ***)
@@ -147,7 +147,8 @@ let double_type_of env sigma cstr expectedty subterms_to_types =
(*CSC: universes. *)
(try
Typeops.judge_of_type u
- with _ -> (* Successor of a non universe-variable universe anomaly *)
+ with e when e <> Sys.Break ->
+ (* Successor of a non universe-variable universe anomaly *)
(Pp.ppnl (Pp.str "Warning: universe refresh performed!!!") ; flush stdout ) ;
Typeops.judge_of_type (Termops.new_univ ())
)
diff --git a/plugins/xml/doubleTypeInference.mli b/plugins/xml/doubleTypeInference.mli
index 3858b906..5c00bdc6 100644
--- a/plugins/xml/doubleTypeInference.mli
+++ b/plugins/xml/doubleTypeInference.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/dumptree.ml4 b/plugins/xml/dumptree.ml4
index 3cfc52b7..cbc52c5f 100644
--- a/plugins/xml/dumptree.ml4
+++ b/plugins/xml/dumptree.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
@@ -42,7 +42,7 @@ let thin_sign osign sign =
;;
let pr_tactic_xml = function
- | TacArg (Tacexp t) -> str "<tactic cmd=\"" ++ xmlstream (Pptactic.pr_glob_tactic (Global.env()) t) ++ str "\"/>"
+ | TacArg (_,Tacexp t) -> str "<tactic cmd=\"" ++ xmlstream (Pptactic.pr_glob_tactic (Global.env()) t) ++ str "\"/>"
| t -> str "<tactic cmd=\"" ++ xmlstream (Pptactic.pr_tactic (Global.env()) t) ++ str "\"/>"
;;
@@ -56,13 +56,11 @@ let pr_rule_xml pr = function
hov 2 (str "<cmpdrule>" ++ fnl () ++
begin match cmpd with
Tactic (texp, _) -> pr_tactic_xml texp
- | Proof_instr (_,instr) -> pr_proof_instr_xml instr
end ++ fnl ()
++ pr subtree
) ++ fnl () ++ str "</cmpdrule>"
| Daimon -> str "<daimon/>"
| Decl_proof _ -> str "<proof/>"
-(* | Change_evars -> str "<chgevars/>"*)
;;
let pr_var_decl_xml env (id,c,typ) =
@@ -109,17 +107,17 @@ let pr_context_xml env =
let pr_subgoal_metas_xml metas env=
let pr_one (meta, typ) =
- fnl () ++ str "<meta index=\"" ++ int meta ++ str " type=\"" ++ xmlstream (pr_ltype_env_at_top env typ) ++
+ fnl () ++ str "<meta index=\"" ++ int meta ++ str " type=\"" ++ xmlstream (pr_goal_concl_style_env env typ) ++
str "\"/>"
in
List.fold_left (++) (mt ()) (List.map pr_one metas)
;;
-let pr_goal_xml g =
- let env = try evar_unfiltered_env g with _ -> empty_env in
- if g.evar_extra = None then
+let pr_goal_xml sigma g =
+ let env = try Goal.V82.unfiltered_env sigma g with _ -> empty_env in
+ if Decl_mode.try_get_info sigma g = None then
(hov 2 (str "<goal>" ++ fnl () ++ str "<concl type=\"" ++
- xmlstream (pr_ltype_env_at_top env g.evar_concl) ++
+ xmlstream (pr_goal_concl_style_env env (Goal.V82.concl sigma g)) ++
str "\"/>" ++
(pr_context_xml env)) ++
fnl () ++ str "</goal>")
@@ -129,23 +127,9 @@ let pr_goal_xml g =
fnl () ++ str "</goal>")
;;
-let rec print_proof_xml sigma osign pf =
- let hyps = Environ.named_context_of_val pf.goal.evar_hyps in
- let hyps' = thin_sign osign hyps in
- match pf.ref with
- | None -> hov 2 (str "<tree>" ++ fnl () ++ (pr_goal_xml {pf.goal with evar_hyps=hyps'})) ++ fnl () ++ str "</tree>"
- | Some(r,spfl) ->
- hov 2 (str "<tree>" ++ fnl () ++
- (pr_goal_xml {pf.goal with evar_hyps=hyps'}) ++ fnl () ++ (pr_rule_xml (print_proof_xml sigma osign) r) ++
- (List.fold_left (fun x y -> x ++ fnl () ++ y) (mt ()) (List.map (print_proof_xml sigma hyps) spfl))) ++ fnl () ++ str "</tree>"
-;;
-
let print_proof_xml () =
- let pp = print_proof_xml Evd.empty Sign.empty_named_context
- (Tacmach.proof_of_pftreestate (Refiner.top_of_tree (Pfedit.get_pftreestate ())))
- in
- msgnl pp
-;;
+ Util.anomaly "Dump Tree command not supported in this version."
+
VERNAC COMMAND EXTEND DumpTree
[ "Dump" "Tree" ] -> [ print_proof_xml () ]
diff --git a/plugins/xml/proof2aproof.ml b/plugins/xml/proof2aproof.ml
index d871935b..2d16190b 100644
--- a/plugins/xml/proof2aproof.ml
+++ b/plugins/xml/proof2aproof.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -59,30 +59,6 @@ let nf_evar sigma ~preserve =
aux
;;
-(* Unshares a proof-tree. *)
-(* Warning: statuses, goals, prim_rules and tactic_exprs are not unshared! *)
-let rec unshare_proof_tree =
- let module PT = Proof_type in
- function {PT.open_subgoals = status ;
- PT.goal = goal ;
- PT.ref = ref} ->
- let unshared_ref =
- match ref with
- None -> None
- | Some (rule,pfs) ->
- let unshared_rule =
- match rule with
- PT.Nested (cmpd, pf) ->
- PT.Nested (cmpd, unshare_proof_tree pf)
- | other -> other
- in
- Some (unshared_rule, List.map unshare_proof_tree pfs)
- in
- {PT.open_subgoals = status ;
- PT.goal = goal ;
- PT.ref = unshared_ref}
-;;
-
module ProofTreeHash =
Hashtbl.Make
(struct
@@ -94,83 +70,9 @@ module ProofTreeHash =
let extract_open_proof sigma pf =
- let module PT = Proof_type in
- let module L = Logic in
- let evd = ref (Evd.create_evar_defs sigma) in
- let proof_tree_to_constr = ProofTreeHash.create 503 in
- let proof_tree_to_flattened_proof_tree = ProofTreeHash.create 503 in
- let unshared_constrs = ref S.empty in
- let rec proof_extractor vl node =
- let constr =
- match node with
- {PT.ref=Some(PT.Prim _,_)} as pf ->
- L.prim_extractor proof_extractor vl pf
-
- | {PT.ref=Some(PT.Nested (_,hidden_proof),spfl)} ->
- let sgl,v = Refiner.frontier hidden_proof in
- let flat_proof = v spfl in
- ProofTreeHash.add proof_tree_to_flattened_proof_tree node flat_proof ;
- proof_extractor vl flat_proof
-
- | {PT.ref=None;PT.goal=goal} ->
- let visible_rels =
- Util.map_succeed
- (fun id ->
- (* Section variables are in the [id] list but are not *)
- (* lambda abstracted in the term [vl] *)
- try let n = Logic.proof_variable_index id vl in (n,id)
- with Not_found -> failwith "caught")
-(*CSC: the above function must be modified such that when it is found *)
-(*CSC: it becomes a Rel; otherwise a Var. Then it can be already used *)
-(*CSC: as the evar_instance. Ordering the instance becomes useless (it *)
-(*CSC: will already be ordered. *)
- (Termops.ids_of_named_context
- (Environ.named_context_of_val goal.Evd.evar_hyps)) in
- let sorted_rels =
- Sort.list (fun (n1,_) (n2,_) -> n1 < n2 ) visible_rels in
- let context =
- let l =
- List.map
- (fun (_,id) -> Sign.lookup_named id
- (Environ.named_context_of_val goal.Evd.evar_hyps))
- sorted_rels in
- Environ.val_of_named_context l
- in
-(*CSC: the section variables in the right order must be added too *)
- let evar_instance = List.map (fun (n,_) -> Term.mkRel n) sorted_rels in
- (* let env = Global.env_of_context context in *)
- let evd',evar =
- Evarutil.new_evar_instance context !evd goal.Evd.evar_concl
- evar_instance in
- evd := evd' ;
- evar
-
- | _ -> Util.anomaly "Bug : a case has been forgotten in proof_extractor"
- in
- let unsharedconstr =
- let evar_nf_constr =
- nf_evar ( !evd)
- ~preserve:(function e -> S.mem e !unshared_constrs) constr
- in
- Unshare.unshare
- ~already_unshared:(function e -> S.mem e !unshared_constrs)
- evar_nf_constr
- in
-(*CSC: debugging stuff to be removed *)
-if ProofTreeHash.mem proof_tree_to_constr node then
- Pp.ppnl (Pp.(++) (Pp.str "#DUPLICATE INSERTION: ")
- (Tactic_printer.print_proof ( !evd) [] node)) ;
- ProofTreeHash.add proof_tree_to_constr node unsharedconstr ;
- unshared_constrs := S.add unsharedconstr !unshared_constrs ;
- unsharedconstr
- in
- let unshared_pf = unshare_proof_tree pf in
- let pfterm = proof_extractor [] unshared_pf in
- (pfterm, !evd, proof_tree_to_constr, proof_tree_to_flattened_proof_tree,
- unshared_pf)
-;;
+ (* Deactivated and candidate for removal. (Apr. 2010) *)
+ ()
let extract_open_pftreestate pts =
- extract_open_proof (Refiner.evc_of_pftreestate pts)
- (Tacmach.proof_of_pftreestate pts)
-;;
+ (* Deactivated and candidate for removal. (Apr. 2010) *)
+ ()
diff --git a/plugins/xml/proofTree2Xml.ml4 b/plugins/xml/proofTree2Xml.ml4
index 21c86c79..2f5eb6ac 100644
--- a/plugins/xml/proofTree2Xml.ml4
+++ b/plugins/xml/proofTree2Xml.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -14,11 +14,6 @@
let prooftreedtdname = "http://mowgli.cs.unibo.it/dtd/prooftree.dtd";;
-let std_ppcmds_to_string s =
- Pp.msg_with Format.str_formatter s;
- Format.flush_str_formatter ()
-;;
-
let idref_of_id id = "v" ^ id;;
(* Transform a constr to an Xml.token Stream.t *)
@@ -149,22 +144,24 @@ Pp.ppnl (Pp.(++) (Pp.str
Proof2aproof.ProofTreeHash.find proof_tree_to_flattened_proof_tree node
in begin
match tactic_expr with
- | T.TacArg (T.Tacexp _) ->
+ | T.TacArg (_,T.Tacexp _) ->
(* We don't need to keep the level of abstraction introduced at *)
(* user-level invocation of tactic... (see Tacinterp.hide_interp)*)
aux flat_proof old_hyps
| _ ->
(****** la tactique employee *)
let prtac = Pptactic.pr_tactic (Global.env()) in
- let tac = std_ppcmds_to_string (prtac tactic_expr) in
+ let tac = Pp.string_of_ppcmds (prtac tactic_expr) in
let tacname= first_word tac in
let of_attribute = ("name",tacname)::("script",tac)::of_attribute in
(****** le but *)
- let {Evd.evar_concl=concl;
- Evd.evar_hyps=hyps}=goal in
+
+ let concl = Goal.V82.concl sigma goal in
+ let hyps = Goal.V82.hyps sigma goal in
let env = Global.env_of_context hyps in
+
let xgoal =
X.xml_nempty "Goal" [] (constr_to_xml concl sigma env) in
@@ -188,14 +185,12 @@ Pp.ppnl (Pp.(++) (Pp.str
[<(build_hyps new_hyps) ; (aux flat_proof nhyps)>]
end
- | {PT.ref=Some((PT.Nested(PT.Proof_instr (_,_),_)|PT.Decl_proof _),nodes)} ->
- Util.anomaly "Not Implemented"
-
| {PT.ref=Some(PT.Daimon,_)} ->
X.xml_empty "Hidden_open_goal" of_attribute
| {PT.ref=None;PT.goal=goal} ->
X.xml_empty "Open_goal" of_attribute
+ | {PT.ref=Some(PT.Decl_proof _, _)} -> failwith "TODO: xml and decl_proof"
in
[< X.xml_cdata "<?xml version=\"1.0\" encoding=\"ISO-8859-1\"?>\n" ;
X.xml_cdata ("<!DOCTYPE ProofTree SYSTEM \""^prooftreedtdname ^"\">\n\n");
diff --git a/plugins/xml/unshare.ml b/plugins/xml/unshare.ml
index 344a1581..c854427d 100644
--- a/plugins/xml/unshare.ml
+++ b/plugins/xml/unshare.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/unshare.mli b/plugins/xml/unshare.mli
index 4b96b22e..cace2de6 100644
--- a/plugins/xml/unshare.mli
+++ b/plugins/xml/unshare.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/xml.ml4 b/plugins/xml/xml.ml4
index 2d73074b..8a4eb39a 100644
--- a/plugins/xml/xml.ml4
+++ b/plugins/xml/xml.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
diff --git a/plugins/xml/xml.mli b/plugins/xml/xml.mli
index ffaad957..0b6d5198 100644
--- a/plugins/xml/xml.mli
+++ b/plugins/xml/xml.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -12,8 +12,6 @@
(* http://helm.cs.unibo.it *)
(************************************************************************)
-(*i $Id: xml.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(* Tokens for XML cdata, empty elements and not-empty elements *)
(* Usage: *)
(* Str cdata *)
diff --git a/plugins/xml/xmlcommand.ml b/plugins/xml/xmlcommand.ml
index 7e7f890f..867aac71 100644
--- a/plugins/xml/xmlcommand.ml
+++ b/plugins/xml/xmlcommand.ml
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -143,7 +143,7 @@ let rec join_dirs cwd =
| he::tail ->
(try
Unix.mkdir cwd 0o775
- with _ -> () (* Let's ignore the errors on mkdir *)
+ with e when e <> Sys.Break -> () (* Let's ignore the errors on mkdir *)
) ;
let newcwd = cwd ^ "/" ^ he in
join_dirs newcwd tail
@@ -527,8 +527,10 @@ let print internal glob_ref kind xml_library_root =
Cic2acic.Variable kn,mk_variable_obj id body typ
| Ln.ConstRef kn ->
let id = N.id_of_label (N.con_label kn) in
- let {D.const_body=val0 ; D.const_type = typ ; D.const_hyps = hyps} =
- G.lookup_constant kn in
+ let cb = G.lookup_constant kn in
+ let val0 = D.body_of_constant cb in
+ let typ = cb.D.const_type in
+ let hyps = cb.D.const_hyps in
let typ = Typeops.type_of_constant_type (Global.env()) typ in
Cic2acic.Constant kn,mk_constant_obj id val0 typ variables hyps
| Ln.IndRef (kn,_) ->
@@ -557,43 +559,13 @@ let print_ref qid fn =
(* where dest is either None (for stdout) or (Some filename) *)
(* pretty prints via Xml.pp the proof in progress on dest *)
let show_pftreestate internal fn (kind,pftst) id =
- let pf = Tacmach.proof_of_pftreestate pftst in
- let typ = (Proof_trees.goal_of_proof pf).Evd.evar_concl in
- let val0,evar_map,proof_tree_to_constr,proof_tree_to_flattened_proof_tree,
- unshared_pf
- =
- Proof2aproof.extract_open_pftreestate pftst in
- let env = Global.env () in
- let obj =
- mk_current_proof_obj (fst kind = Decl_kinds.Local) id val0 typ evar_map env in
- let uri =
- match kind with
- Decl_kinds.Local, _ ->
- let uri =
- "cic:/" ^ String.concat "/"
- (Cic2acic.token_list_of_path (Lib.cwd ()) id Cic2acic.TVariable)
- in
- let kind_of_var = "VARIABLE","LocalFact" in
- (match internal with
- | Declare.KernelSilent -> ()
- | _ -> print_object_kind uri kind_of_var
- ); uri
- | Decl_kinds.Global, _ ->
- let uri = Cic2acic.uri_of_declaration id Cic2acic.TConstant in
- (match internal with
- | Declare.KernelSilent -> ()
- | _ -> print_object_kind uri (kind_of_global_goal kind)
- ); uri
- in
- print_object uri obj evar_map
- (Some (Tacmach.evc_of_pftreestate pftst,unshared_pf,proof_tree_to_constr,
- proof_tree_to_flattened_proof_tree)) fn
-;;
+ if true then
+ Util.anomaly "Xmlcommand.show_pftreestate is not supported in this version."
let show fn =
let pftst = Pfedit.get_pftreestate () in
let (id,kind,_,_) = Pfedit.current_proof_statement () in
- show_pftreestate Declare.KernelVerbose fn (kind,pftst) id
+ show_pftreestate false fn (kind,pftst) id
;;
@@ -680,7 +652,7 @@ let _ =
end ;
Option.iter
(fun fn ->
- let coqdoc = Filename.concat (Envars.coqbin ()) ("coqdoc" ^ Coq_config.exec_extension) in
+ let coqdoc = Filename.concat Envars.coqbin ("coqdoc" ^ Coq_config.exec_extension) in
let options = " --html -s --body-only --no-index --latin1 --raw-comments" in
let command cmd =
if Sys.command cmd <> 0 then
diff --git a/plugins/xml/xmlcommand.mli b/plugins/xml/xmlcommand.mli
index eadf3cfd..ec50d623 100644
--- a/plugins/xml/xmlcommand.mli
+++ b/plugins/xml/xmlcommand.mli
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -12,8 +12,6 @@
(* http://helm.cs.unibo.it *)
(************************************************************************)
-(*i $Id: xmlcommand.mli 14641 2011-11-06 11:59:10Z herbelin $ i*)
-
(* print_global qid fn *)
(* where qid is a long name denoting a definition/theorem or *)
(* an inductive definition *)
diff --git a/plugins/xml/xmlentries.ml4 b/plugins/xml/xmlentries.ml4
index f9d5bac0..d65a1bd3 100644
--- a/plugins/xml/xmlentries.ml4
+++ b/plugins/xml/xmlentries.ml4
@@ -1,6 +1,6 @@
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
-(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2011 *)
+(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2010 *)
(* \VV/ **************************************************************)
(* // * The HELM Project / The EU MoWGLI Project *)
(* * University of Bologna *)
@@ -14,8 +14,6 @@
(*i camlp4deps: "parsing/grammar.cma" i*)
-(* $Id: xmlentries.ml4 14641 2011-11-06 11:59:10Z herbelin $ *)
-
open Util;;
open Vernacinterp;;