summaryrefslogtreecommitdiff
path: root/plugins/dp/Dp.v
diff options
context:
space:
mode:
Diffstat (limited to 'plugins/dp/Dp.v')
-rw-r--r--plugins/dp/Dp.v120
1 files changed, 0 insertions, 120 deletions
diff --git a/plugins/dp/Dp.v b/plugins/dp/Dp.v
deleted file mode 100644
index 5ddc4452..00000000
--- a/plugins/dp/Dp.v
+++ /dev/null
@@ -1,120 +0,0 @@
-(* Calls to external decision procedures *)
-
-Require Export ZArith.
-Require Export Classical.
-
-(* Zenon *)
-
-(* Copyright 2004 INRIA *)
-(* $Id: Dp.v 12337 2009-09-17 15:58:14Z glondu $ *)
-
-Lemma zenon_nottrue :
- (~True -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_noteq : forall (T : Type) (t : T),
- ((t <> t) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_and : forall P Q : Prop,
- (P -> Q -> False) -> (P /\ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_or : forall P Q : Prop,
- (P -> False) -> (Q -> False) -> (P \/ Q -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_imply : forall P Q : Prop,
- (~P -> False) -> (Q -> False) -> ((P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_equiv : forall P Q : Prop,
- (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notand : forall P Q : Prop,
- (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notor : forall P Q : Prop,
- (~P -> ~Q -> False) -> (~(P \/ Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notimply : forall P Q : Prop,
- (P -> ~Q -> False) -> (~(P -> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_notequiv : forall P Q : Prop,
- (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False).
-Proof. tauto. Qed.
-
-Lemma zenon_ex : forall (T : Type) (P : T -> Prop),
- (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T),
- ((P t) -> False) -> ((forall x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T),
- (~(P t) -> False) -> (~(exists x : T, (P x)) -> False).
-Proof. firstorder. Qed.
-
-Lemma zenon_notall : forall (T : Type) (P : T -> Prop),
- (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False).
-Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed.
-
-Lemma zenon_equal_base : forall (T : Type) (f : T), f = f.
-Proof. auto. Qed.
-
-Lemma zenon_equal_step :
- forall (S T : Type) (fa fb : S -> T) (a b : S),
- (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)).
-Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed.
-
-Lemma zenon_pnotp : forall P Q : Prop,
- (P = Q) -> (P -> ~Q -> False).
-Proof. intros P Q Ha. rewrite Ha. auto. Qed.
-
-Lemma zenon_notequal : forall (T : Type) (a b : T),
- (a = b) -> (a <> b -> False).
-Proof. auto. Qed.
-
-Ltac zenon_intro id :=
- intro id || let nid := fresh in (intro nid; clear nid)
-.
-
-Definition zenon_and_s := fun P Q a b => zenon_and P Q b a.
-Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a.
-Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a.
-Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a.
-Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a.
-Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a.
-Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a.
-Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a.
-Definition zenon_ex_s := fun T P a b => zenon_ex T P b a.
-Definition zenon_notall_s := fun T P a b => zenon_notall T P b a.
-
-Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b.
-Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x.
-
-(* Ergo *)
-
-Set Implicit Arguments.
-Section congr.
- Variable t:Type.
-Lemma ergo_eq_concat_1 :
- forall (P:t -> Prop) (x y:t),
- P x -> x = y -> P y.
-Proof.
- intros; subst; auto.
-Qed.
-
-Lemma ergo_eq_concat_2 :
- forall (P:t -> t -> Prop) (x1 x2 y1 y2:t),
- P x1 x2 -> x1 = y1 -> x2 = y2 -> P y1 y2.
-Proof.
- intros; subst; auto.
-Qed.
-
-End congr.