diff options
Diffstat (limited to 'plugins/dp/Dp.v')
-rw-r--r-- | plugins/dp/Dp.v | 120 |
1 files changed, 0 insertions, 120 deletions
diff --git a/plugins/dp/Dp.v b/plugins/dp/Dp.v deleted file mode 100644 index 5ddc4452..00000000 --- a/plugins/dp/Dp.v +++ /dev/null @@ -1,120 +0,0 @@ -(* Calls to external decision procedures *) - -Require Export ZArith. -Require Export Classical. - -(* Zenon *) - -(* Copyright 2004 INRIA *) -(* $Id: Dp.v 12337 2009-09-17 15:58:14Z glondu $ *) - -Lemma zenon_nottrue : - (~True -> False). -Proof. tauto. Qed. - -Lemma zenon_noteq : forall (T : Type) (t : T), - ((t <> t) -> False). -Proof. tauto. Qed. - -Lemma zenon_and : forall P Q : Prop, - (P -> Q -> False) -> (P /\ Q -> False). -Proof. tauto. Qed. - -Lemma zenon_or : forall P Q : Prop, - (P -> False) -> (Q -> False) -> (P \/ Q -> False). -Proof. tauto. Qed. - -Lemma zenon_imply : forall P Q : Prop, - (~P -> False) -> (Q -> False) -> ((P -> Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_equiv : forall P Q : Prop, - (~P -> ~Q -> False) -> (P -> Q -> False) -> ((P <-> Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_notand : forall P Q : Prop, - (~P -> False) -> (~Q -> False) -> (~(P /\ Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_notor : forall P Q : Prop, - (~P -> ~Q -> False) -> (~(P \/ Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_notimply : forall P Q : Prop, - (P -> ~Q -> False) -> (~(P -> Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_notequiv : forall P Q : Prop, - (~P -> Q -> False) -> (P -> ~Q -> False) -> (~(P <-> Q) -> False). -Proof. tauto. Qed. - -Lemma zenon_ex : forall (T : Type) (P : T -> Prop), - (forall z : T, ((P z) -> False)) -> ((exists x : T, (P x)) -> False). -Proof. firstorder. Qed. - -Lemma zenon_all : forall (T : Type) (P : T -> Prop) (t : T), - ((P t) -> False) -> ((forall x : T, (P x)) -> False). -Proof. firstorder. Qed. - -Lemma zenon_notex : forall (T : Type) (P : T -> Prop) (t : T), - (~(P t) -> False) -> (~(exists x : T, (P x)) -> False). -Proof. firstorder. Qed. - -Lemma zenon_notall : forall (T : Type) (P : T -> Prop), - (forall z : T, (~(P z) -> False)) -> (~(forall x : T, (P x)) -> False). -Proof. intros T P Ha Hb. apply Hb. intro. apply NNPP. exact (Ha x). Qed. - -Lemma zenon_equal_base : forall (T : Type) (f : T), f = f. -Proof. auto. Qed. - -Lemma zenon_equal_step : - forall (S T : Type) (fa fb : S -> T) (a b : S), - (fa = fb) -> (a <> b -> False) -> ((fa a) = (fb b)). -Proof. intros. rewrite (NNPP (a = b)). congruence. auto. Qed. - -Lemma zenon_pnotp : forall P Q : Prop, - (P = Q) -> (P -> ~Q -> False). -Proof. intros P Q Ha. rewrite Ha. auto. Qed. - -Lemma zenon_notequal : forall (T : Type) (a b : T), - (a = b) -> (a <> b -> False). -Proof. auto. Qed. - -Ltac zenon_intro id := - intro id || let nid := fresh in (intro nid; clear nid) -. - -Definition zenon_and_s := fun P Q a b => zenon_and P Q b a. -Definition zenon_or_s := fun P Q a b c => zenon_or P Q b c a. -Definition zenon_imply_s := fun P Q a b c => zenon_imply P Q b c a. -Definition zenon_equiv_s := fun P Q a b c => zenon_equiv P Q b c a. -Definition zenon_notand_s := fun P Q a b c => zenon_notand P Q b c a. -Definition zenon_notor_s := fun P Q a b => zenon_notor P Q b a. -Definition zenon_notimply_s := fun P Q a b => zenon_notimply P Q b a. -Definition zenon_notequiv_s := fun P Q a b c => zenon_notequiv P Q b c a. -Definition zenon_ex_s := fun T P a b => zenon_ex T P b a. -Definition zenon_notall_s := fun T P a b => zenon_notall T P b a. - -Definition zenon_pnotp_s := fun P Q a b c => zenon_pnotp P Q c a b. -Definition zenon_notequal_s := fun T a b x y => zenon_notequal T a b y x. - -(* Ergo *) - -Set Implicit Arguments. -Section congr. - Variable t:Type. -Lemma ergo_eq_concat_1 : - forall (P:t -> Prop) (x y:t), - P x -> x = y -> P y. -Proof. - intros; subst; auto. -Qed. - -Lemma ergo_eq_concat_2 : - forall (P:t -> t -> Prop) (x1 x2 y1 y2:t), - P x1 x2 -> x1 = y1 -> x2 = y2 -> P y1 y2. -Proof. - intros; subst; auto. -Qed. - -End congr. |