diff options
Diffstat (limited to 'flocq/Core')
-rw-r--r-- | flocq/Core/Fcore.v | 30 | ||||
-rw-r--r-- | flocq/Core/Fcore_FIX.v | 87 | ||||
-rw-r--r-- | flocq/Core/Fcore_FLT.v | 250 | ||||
-rw-r--r-- | flocq/Core/Fcore_FLX.v | 233 | ||||
-rw-r--r-- | flocq/Core/Fcore_FTZ.v | 330 | ||||
-rw-r--r-- | flocq/Core/Fcore_Raux.v | 1996 | ||||
-rw-r--r-- | flocq/Core/Fcore_Zaux.v | 774 | ||||
-rw-r--r-- | flocq/Core/Fcore_defs.v | 101 | ||||
-rw-r--r-- | flocq/Core/Fcore_digits.v | 899 | ||||
-rw-r--r-- | flocq/Core/Fcore_float_prop.v | 488 | ||||
-rw-r--r-- | flocq/Core/Fcore_generic_fmt.v | 2232 | ||||
-rw-r--r-- | flocq/Core/Fcore_rnd.v | 1394 | ||||
-rw-r--r-- | flocq/Core/Fcore_rnd_ne.v | 531 | ||||
-rw-r--r-- | flocq/Core/Fcore_ulp.v | 1142 |
14 files changed, 10487 insertions, 0 deletions
diff --git a/flocq/Core/Fcore.v b/flocq/Core/Fcore.v new file mode 100644 index 0000000..23ebb39 --- /dev/null +++ b/flocq/Core/Fcore.v @@ -0,0 +1,30 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** To ease the import *) +Require Export Fcore_Raux. +Require Export Fcore_defs. +Require Export Fcore_float_prop. +Require Export Fcore_rnd. +Require Export Fcore_generic_fmt. +Require Export Fcore_rnd_ne. +Require Export Fcore_FIX. +Require Export Fcore_FLX. +Require Export Fcore_FLT. +Require Export Fcore_ulp. diff --git a/flocq/Core/Fcore_FIX.v b/flocq/Core/Fcore_FIX.v new file mode 100644 index 0000000..f185ddf --- /dev/null +++ b/flocq/Core/Fcore_FIX.v @@ -0,0 +1,87 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Fixed-point format *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_rnd_ne. + +Section RND_FIX. + +Variable beta : radix. + +Notation bpow := (bpow beta). + +Variable emin : Z. + +(* fixed-point format with exponent emin *) +Definition FIX_format (x : R) := + exists f : float beta, + x = F2R f /\ (Fexp f = emin)%Z. + +Definition FIX_exp (e : Z) := emin. + +(** Properties of the FIX format *) + +Global Instance FIX_exp_valid : Valid_exp FIX_exp. +Proof. +intros k. +unfold FIX_exp. +split ; intros H. +now apply Zlt_le_weak. +split. +apply Zle_refl. +now intros _ _. +Qed. + +Theorem generic_format_FIX : + forall x, FIX_format x -> generic_format beta FIX_exp x. +Proof. +intros x ((xm, xe), (Hx1, Hx2)). +rewrite Hx1. +now apply generic_format_canonic. +Qed. + +Theorem FIX_format_generic : + forall x, generic_format beta FIX_exp x -> FIX_format x. +Proof. +intros x H. +rewrite H. +eexists ; repeat split. +Qed. + +Theorem FIX_format_satisfies_any : + satisfies_any FIX_format. +Proof. +refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FIX_exp)). +intros x. +split. +apply FIX_format_generic. +apply generic_format_FIX. +Qed. + +Global Instance FIX_exp_monotone : Monotone_exp FIX_exp. +Proof. +intros ex ey H. +apply Zle_refl. +Qed. + +End RND_FIX. diff --git a/flocq/Core/Fcore_FLT.v b/flocq/Core/Fcore_FLT.v new file mode 100644 index 0000000..4ad4797 --- /dev/null +++ b/flocq/Core/Fcore_FLT.v @@ -0,0 +1,250 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Floating-point format with gradual underflow *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_float_prop. +Require Import Fcore_FLX. +Require Import Fcore_FIX. +Require Import Fcore_rnd_ne. + +Section RND_FLT. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable emin prec : Z. + +Context { prec_gt_0_ : Prec_gt_0 prec }. + +(* floating-point format with gradual underflow *) +Definition FLT_format (x : R) := + exists f : float beta, + x = F2R f /\ (Zabs (Fnum f) < Zpower beta prec)%Z /\ (emin <= Fexp f)%Z. + +Definition FLT_exp e := Zmax (e - prec) emin. + +(** Properties of the FLT format *) +Global Instance FLT_exp_valid : Valid_exp FLT_exp. +Proof. +intros k. +unfold FLT_exp. +generalize (prec_gt_0 prec). +repeat split ; + intros ; zify ; omega. +Qed. + +Theorem generic_format_FLT : + forall x, FLT_format x -> generic_format beta FLT_exp x. +Proof. +clear prec_gt_0_. +intros x ((mx, ex), (H1, (H2, H3))). +simpl in H2, H3. +rewrite H1. +apply generic_format_F2R. +intros Zmx. +unfold canonic_exp, FLT_exp. +rewrite ln_beta_F2R with (1 := Zmx). +apply Zmax_lub with (2 := H3). +apply Zplus_le_reg_r with (prec - ex)%Z. +ring_simplify. +now apply ln_beta_le_Zpower. +Qed. + +Theorem FLT_format_generic : + forall x, generic_format beta FLT_exp x -> FLT_format x. +Proof. +intros x. +unfold generic_format. +set (ex := canonic_exp beta FLT_exp x). +set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)). +intros Hx. +rewrite Hx. +eexists ; repeat split ; simpl. +apply lt_Z2R. +rewrite Z2R_Zpower. 2: now apply Zlt_le_weak. +apply Rmult_lt_reg_r with (bpow ex). +apply bpow_gt_0. +rewrite <- bpow_plus. +change (F2R (Float beta (Zabs mx) ex) < bpow (prec + ex))%R. +rewrite F2R_Zabs. +rewrite <- Hx. +destruct (Req_dec x 0) as [Hx0|Hx0]. +rewrite Hx0, Rabs_R0. +apply bpow_gt_0. +unfold canonic_exp in ex. +destruct (ln_beta beta x) as (ex', He). +simpl in ex. +specialize (He Hx0). +apply Rlt_le_trans with (1 := proj2 He). +apply bpow_le. +cut (ex' - prec <= ex)%Z. omega. +unfold ex, FLT_exp. +apply Zle_max_l. +apply Zle_max_r. +Qed. + +Theorem FLT_format_satisfies_any : + satisfies_any FLT_format. +Proof. +refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)). +intros x. +split. +apply FLT_format_generic. +apply generic_format_FLT. +Qed. + +Theorem canonic_exp_FLT_FLX : + forall x, x <> R0 -> + (bpow (emin + prec - 1) <= Rabs x)%R -> + canonic_exp beta FLT_exp x = canonic_exp beta (FLX_exp prec) x. +Proof. +intros x Hx0 Hx. +unfold canonic_exp. +apply Zmax_left. +destruct (ln_beta beta x) as (ex, He). +unfold FLX_exp. simpl. +specialize (He Hx0). +cut (emin + prec - 1 < ex)%Z. omega. +apply (lt_bpow beta). +apply Rle_lt_trans with (1 := Hx). +apply He. +Qed. + +(** Links between FLT and FLX *) +Theorem generic_format_FLT_FLX : + forall x : R, + (bpow (emin + prec - 1) <= Rabs x)%R -> + generic_format beta (FLX_exp prec) x -> + generic_format beta FLT_exp x. +Proof. +intros x Hx H. +destruct (Req_dec x 0) as [Hx0|Hx0]. +rewrite Hx0. +apply generic_format_0. +unfold generic_format, scaled_mantissa. +now rewrite canonic_exp_FLT_FLX. +Qed. + +Theorem generic_format_FLX_FLT : + forall x : R, + generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x. +Proof. +clear prec_gt_0_. +intros x Hx. +unfold generic_format in Hx; rewrite Hx. +apply generic_format_F2R. +intros _. +rewrite <- Hx. +unfold canonic_exp, FLX_exp, FLT_exp. +apply Zle_max_l. +Qed. + +Theorem round_FLT_FLX : forall rnd x, + (bpow (emin + prec - 1) <= Rabs x)%R -> + round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x. +intros rnd x Hx. +unfold round, scaled_mantissa. +rewrite canonic_exp_FLT_FLX ; trivial. +contradict Hx. +rewrite Hx, Rabs_R0. +apply Rlt_not_le. +apply bpow_gt_0. +Qed. + +(** Links between FLT and FIX (underflow) *) +Theorem canonic_exp_FLT_FIX : + forall x, x <> R0 -> + (Rabs x < bpow (emin + prec))%R -> + canonic_exp beta FLT_exp x = canonic_exp beta (FIX_exp emin) x. +Proof. +intros x Hx0 Hx. +unfold canonic_exp. +apply Zmax_right. +unfold FIX_exp. +destruct (ln_beta beta x) as (ex, Hex). +simpl. +cut (ex - 1 < emin + prec)%Z. omega. +apply (lt_bpow beta). +apply Rle_lt_trans with (2 := Hx). +now apply Hex. +Qed. + +Theorem generic_format_FIX_FLT : + forall x : R, + generic_format beta FLT_exp x -> + generic_format beta (FIX_exp emin) x. +Proof. +clear prec_gt_0_. +intros x Hx. +rewrite Hx. +apply generic_format_F2R. +intros _. +rewrite <- Hx. +apply Zle_max_r. +Qed. + +Theorem generic_format_FLT_FIX : + forall x : R, + (Rabs x <= bpow (emin + prec))%R -> + generic_format beta (FIX_exp emin) x -> + generic_format beta FLT_exp x. +Proof with auto with typeclass_instances. +clear prec_gt_0_. +apply generic_inclusion_le... +intros e He. +unfold FIX_exp. +apply Zmax_lub. +omega. +apply Zle_refl. +Qed. + +(** FLT is a nice format: it has a monotone exponent... *) +Global Instance FLT_exp_monotone : Monotone_exp FLT_exp. +Proof. +intros ex ey. +unfold FLT_exp. +zify ; omega. +Qed. + +(** and it allows a rounding to nearest, ties to even. *) +Hypothesis NE_prop : Zeven beta = false \/ (1 < prec)%Z. + +Global Instance exists_NE_FLT : Exists_NE beta FLT_exp. +Proof. +destruct NE_prop as [H|H]. +now left. +right. +intros e. +unfold FLT_exp. +destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ; + rewrite H2 ; clear H2. +generalize (Zmax_spec (e + 1 - prec) emin). +generalize (Zmax_spec (e - prec + 1 - prec) emin). +omega. +generalize (Zmax_spec (e + 1 - prec) emin). +generalize (Zmax_spec (emin + 1 - prec) emin). +omega. +Qed. + +End RND_FLT. diff --git a/flocq/Core/Fcore_FLX.v b/flocq/Core/Fcore_FLX.v new file mode 100644 index 0000000..62ecb6f --- /dev/null +++ b/flocq/Core/Fcore_FLX.v @@ -0,0 +1,233 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Floating-point format without underflow *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_float_prop. +Require Import Fcore_FIX. +Require Import Fcore_rnd_ne. + +Section RND_FLX. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable prec : Z. + +Class Prec_gt_0 := + prec_gt_0 : (0 < prec)%Z. + +Context { prec_gt_0_ : Prec_gt_0 }. + +(* unbounded floating-point format *) +Definition FLX_format (x : R) := + exists f : float beta, + x = F2R f /\ (Zabs (Fnum f) < Zpower beta prec)%Z. + +Definition FLX_exp (e : Z) := (e - prec)%Z. + +(** Properties of the FLX format *) + +Global Instance FLX_exp_valid : Valid_exp FLX_exp. +Proof. +intros k. +unfold FLX_exp. +generalize prec_gt_0. +repeat split ; intros ; omega. +Qed. + +Theorem FIX_format_FLX : + forall x e, + (bpow (e - 1) <= Rabs x <= bpow e)%R -> + FLX_format x -> + FIX_format beta (e - prec) x. +Proof. +clear prec_gt_0_. +intros x e Hx ((xm, xe), (H1, H2)). +rewrite H1, (F2R_prec_normalize beta xm xe e prec). +now eexists. +exact H2. +now rewrite <- H1. +Qed. + +Theorem FLX_format_generic : + forall x, generic_format beta FLX_exp x -> FLX_format x. +Proof. +intros x H. +rewrite H. +unfold FLX_format. +eexists ; repeat split. +simpl. +apply lt_Z2R. +rewrite Z2R_abs. +rewrite <- scaled_mantissa_generic with (1 := H). +rewrite <- scaled_mantissa_abs. +apply Rmult_lt_reg_r with (bpow (canonic_exp beta FLX_exp (Rabs x))). +apply bpow_gt_0. +rewrite scaled_mantissa_mult_bpow. +rewrite Z2R_Zpower, <- bpow_plus. +2: now apply Zlt_le_weak. +unfold canonic_exp, FLX_exp. +ring_simplify (prec + (ln_beta beta (Rabs x) - prec))%Z. +rewrite ln_beta_abs. +destruct (Req_dec x 0) as [Hx|Hx]. +rewrite Hx, Rabs_R0. +apply bpow_gt_0. +destruct (ln_beta beta x) as (ex, Ex). +now apply Ex. +Qed. + +Theorem generic_format_FLX : + forall x, FLX_format x -> generic_format beta FLX_exp x. +Proof. +clear prec_gt_0_. +intros x ((mx,ex),(H1,H2)). +simpl in H2. +rewrite H1. +apply generic_format_F2R. +intros Zmx. +unfold canonic_exp, FLX_exp. +rewrite ln_beta_F2R with (1 := Zmx). +apply Zplus_le_reg_r with (prec - ex)%Z. +ring_simplify. +now apply ln_beta_le_Zpower. +Qed. + +Theorem FLX_format_satisfies_any : + satisfies_any FLX_format. +Proof. +refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)). +intros x. +split. +apply FLX_format_generic. +apply generic_format_FLX. +Qed. + +Theorem FLX_format_FIX : + forall x e, + (bpow (e - 1) <= Rabs x <= bpow e)%R -> + FIX_format beta (e - prec) x -> + FLX_format x. +Proof with auto with typeclass_instances. +intros x e Hx Fx. +apply FLX_format_generic. +apply generic_format_FIX in Fx. +revert Fx. +apply generic_inclusion with (e := e)... +apply Zle_refl. +Qed. + +(** unbounded floating-point format with normal mantissas *) +Definition FLXN_format (x : R) := + exists f : float beta, + x = F2R f /\ (x <> R0 -> + Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z. + +Theorem generic_format_FLXN : + forall x, FLXN_format x -> generic_format beta FLX_exp x. +Proof. +intros x ((xm,ex),(H1,H2)). +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx. +apply generic_format_0. +specialize (H2 Zx). +apply generic_format_FLX. +rewrite H1. +eexists ; repeat split. +apply H2. +Qed. + +Theorem FLXN_format_generic : + forall x, generic_format beta FLX_exp x -> FLXN_format x. +Proof. +intros x Hx. +rewrite Hx. +simpl. +eexists ; split. split. +simpl. +rewrite <- Hx. +intros Zx. +split. +(* *) +apply le_Z2R. +rewrite Z2R_Zpower. +2: now apply Zlt_0_le_0_pred. +rewrite Z2R_abs, <- scaled_mantissa_generic with (1 := Hx). +apply Rmult_le_reg_r with (bpow (canonic_exp beta FLX_exp x)). +apply bpow_gt_0. +rewrite <- bpow_plus. +rewrite <- scaled_mantissa_abs. +rewrite <- canonic_exp_abs. +rewrite scaled_mantissa_mult_bpow. +unfold canonic_exp, FLX_exp. +rewrite ln_beta_abs. +ring_simplify (prec - 1 + (ln_beta beta x - prec))%Z. +destruct (ln_beta beta x) as (ex,Ex). +now apply Ex. +(* *) +apply lt_Z2R. +rewrite Z2R_Zpower. +2: now apply Zlt_le_weak. +rewrite Z2R_abs, <- scaled_mantissa_generic with (1 := Hx). +apply Rmult_lt_reg_r with (bpow (canonic_exp beta FLX_exp x)). +apply bpow_gt_0. +rewrite <- bpow_plus. +rewrite <- scaled_mantissa_abs. +rewrite <- canonic_exp_abs. +rewrite scaled_mantissa_mult_bpow. +unfold canonic_exp, FLX_exp. +rewrite ln_beta_abs. +ring_simplify (prec + (ln_beta beta x - prec))%Z. +destruct (ln_beta beta x) as (ex,Ex). +now apply Ex. +Qed. + +Theorem FLXN_format_satisfies_any : + satisfies_any FLXN_format. +Proof. +refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLX_exp)). +split ; intros H. +now apply FLXN_format_generic. +now apply generic_format_FLXN. +Qed. + +(** FLX is a nice format: it has a monotone exponent... *) +Global Instance FLX_exp_monotone : Monotone_exp FLX_exp. +Proof. +intros ex ey Hxy. +now apply Zplus_le_compat_r. +Qed. + +(** and it allows a rounding to nearest, ties to even. *) +Hypothesis NE_prop : Zeven beta = false \/ (1 < prec)%Z. + +Global Instance exists_NE_FLX : Exists_NE beta FLX_exp. +Proof. +destruct NE_prop as [H|H]. +now left. +right. +unfold FLX_exp. +split ; omega. +Qed. + +End RND_FLX. diff --git a/flocq/Core/Fcore_FTZ.v b/flocq/Core/Fcore_FTZ.v new file mode 100644 index 0000000..5356c11 --- /dev/null +++ b/flocq/Core/Fcore_FTZ.v @@ -0,0 +1,330 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Floating-point format with abrupt underflow *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_float_prop. +Require Import Fcore_FLX. + +Section RND_FTZ. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable emin prec : Z. + +Context { prec_gt_0_ : Prec_gt_0 prec }. + +(* floating-point format with abrupt underflow *) +Definition FTZ_format (x : R) := + exists f : float beta, + x = F2R f /\ (x <> R0 -> Zpower beta (prec - 1) <= Zabs (Fnum f) < Zpower beta prec)%Z /\ + (emin <= Fexp f)%Z. + +Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z. + +(** Properties of the FTZ format *) +Global Instance FTZ_exp_valid : Valid_exp FTZ_exp. +Proof. +intros k. +unfold FTZ_exp. +generalize (Zlt_cases (k - prec) emin). +case (Zlt_bool (k - prec) emin) ; intros H1. +split ; intros H2. +omega. +split. +generalize (Zlt_cases (emin + prec + 1 - prec) emin). +case (Zlt_bool (emin + prec + 1 - prec) emin) ; intros H3. +omega. +generalize (Zlt_cases (emin + prec - 1 + 1 - prec) emin). +generalize (prec_gt_0 prec). +case (Zlt_bool (emin + prec - 1 + 1 - prec) emin) ; omega. +intros l H3. +generalize (Zlt_cases (l - prec) emin). +case (Zlt_bool (l - prec) emin) ; omega. +split ; intros H2. +generalize (Zlt_cases (k + 1 - prec) emin). +case (Zlt_bool (k + 1 - prec) emin) ; omega. +generalize (prec_gt_0 prec). +split ; intros ; omega. +Qed. + +Theorem FLXN_format_FTZ : + forall x, FTZ_format x -> FLXN_format beta prec x. +Proof. +intros x ((xm, xe), (Hx1, (Hx2, Hx3))). +eexists. +apply (conj Hx1 Hx2). +Qed. + +Theorem generic_format_FTZ : + forall x, FTZ_format x -> generic_format beta FTZ_exp x. +Proof. +intros x Hx. +cut (generic_format beta (FLX_exp prec) x). +apply generic_inclusion_ln_beta. +intros Zx. +destruct Hx as ((xm, xe), (Hx1, (Hx2, Hx3))). +simpl in Hx2, Hx3. +specialize (Hx2 Zx). +assert (Zxm: xm <> Z0). +contradict Zx. +rewrite Hx1, Zx. +apply F2R_0. +unfold FTZ_exp, FLX_exp. +rewrite Zlt_bool_false. +apply Zle_refl. +rewrite Hx1, ln_beta_F2R with (1 := Zxm). +cut (prec - 1 < ln_beta beta (Z2R xm))%Z. +clear -Hx3 ; omega. +apply ln_beta_gt_Zpower with (1 := Zxm). +apply Hx2. +apply generic_format_FLXN. +now apply FLXN_format_FTZ. +Qed. + +Theorem FTZ_format_generic : + forall x, generic_format beta FTZ_exp x -> FTZ_format x. +Proof. +intros x Hx. +destruct (Req_dec x 0) as [Hx3|Hx3]. +exists (Float beta 0 emin). +split. +unfold F2R. simpl. +now rewrite Rmult_0_l. +split. +intros H. +now elim H. +apply Zle_refl. +unfold generic_format, scaled_mantissa, canonic_exp, FTZ_exp in Hx. +destruct (ln_beta beta x) as (ex, Hx4). +simpl in Hx. +specialize (Hx4 Hx3). +generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx. +case (Zlt_bool (ex - prec) emin) ; intros Hx5 Hx2. +elim Rlt_not_ge with (1 := proj2 Hx4). +apply Rle_ge. +rewrite Hx2, <- F2R_Zabs. +rewrite <- (Rmult_1_l (bpow ex)). +unfold F2R. simpl. +apply Rmult_le_compat. +now apply (Z2R_le 0 1). +apply bpow_ge_0. +apply (Z2R_le 1). +apply (Zlt_le_succ 0). +apply lt_Z2R. +apply Rmult_lt_reg_r with (bpow (emin + prec - 1)). +apply bpow_gt_0. +rewrite Rmult_0_l. +change (0 < F2R (Float beta (Zabs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R. +rewrite F2R_Zabs, <- Hx2. +now apply Rabs_pos_lt. +apply bpow_le. +omega. +rewrite Hx2. +eexists ; repeat split ; simpl. +apply le_Z2R. +rewrite Z2R_Zpower. +apply Rmult_le_reg_r with (bpow (ex - prec)). +apply bpow_gt_0. +rewrite <- bpow_plus. +replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring. +change (bpow (ex - 1) <= F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R. +rewrite F2R_Zabs, <- Hx2. +apply Hx4. +apply Zle_minus_le_0. +now apply (Zlt_le_succ 0). +apply lt_Z2R. +rewrite Z2R_Zpower. +apply Rmult_lt_reg_r with (bpow (ex - prec)). +apply bpow_gt_0. +rewrite <- bpow_plus. +replace (prec + (ex - prec))%Z with ex by ring. +change (F2R (Float beta (Zabs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R. +rewrite F2R_Zabs, <- Hx2. +apply Hx4. +now apply Zlt_le_weak. +now apply Zge_le. +Qed. + +Theorem FTZ_format_satisfies_any : + satisfies_any FTZ_format. +Proof. +refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp)). +intros x. +split. +apply FTZ_format_generic. +apply generic_format_FTZ. +Qed. + +Theorem FTZ_format_FLXN : + forall x : R, + (bpow (emin + prec - 1) <= Rabs x)%R -> + FLXN_format beta prec x -> FTZ_format x. +Proof. +clear prec_gt_0_. +intros x Hx Fx. +apply FTZ_format_generic. +apply generic_format_FLXN in Fx. +revert Hx Fx. +apply generic_inclusion_ge. +intros e He. +unfold FTZ_exp. +rewrite Zlt_bool_false. +apply Zle_refl. +omega. +Qed. + +Section FTZ_round. + +(** Rounding with FTZ *) +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Definition Zrnd_FTZ x := + if Rle_bool R1 (Rabs x) then rnd x else Z0. + +Global Instance valid_rnd_FTZ : Valid_rnd Zrnd_FTZ. +Proof with auto with typeclass_instances. +split. +(* *) +intros x y Hxy. +unfold Zrnd_FTZ. +case Rle_bool_spec ; intros Hx ; + case Rle_bool_spec ; intros Hy. +4: easy. +(* 1 <= |x| *) +now apply Zrnd_le. +rewrite <- (Zrnd_Z2R rnd 0). +apply Zrnd_le... +apply Rle_trans with (Z2R (-1)). 2: now apply Z2R_le. +destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1]. +exact Hx1. +elim Rle_not_lt with (1 := Hx1). +apply Rle_lt_trans with (2 := Hy). +apply Rle_trans with (1 := Hxy). +apply RRle_abs. +(* |x| < 1 *) +rewrite <- (Zrnd_Z2R rnd 0). +apply Zrnd_le... +apply Rle_trans with (Z2R 1). +now apply Z2R_le. +destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1]. +elim Rle_not_lt with (1 := Hy1). +apply Rlt_le_trans with (2 := Hxy). +apply (Rabs_def2 _ _ Hx). +exact Hy1. +(* *) +intros n. +unfold Zrnd_FTZ. +rewrite Zrnd_Z2R... +case Rle_bool_spec. +easy. +rewrite <- Z2R_abs. +intros H. +generalize (lt_Z2R _ 1 H). +clear. +now case n ; trivial ; simpl ; intros [p|p|]. +Qed. + +Theorem round_FTZ_FLX : + forall x : R, + (bpow (emin + prec - 1) <= Rabs x)%R -> + round beta FTZ_exp Zrnd_FTZ x = round beta (FLX_exp prec) rnd x. +Proof. +intros x Hx. +unfold round, scaled_mantissa, canonic_exp. +destruct (ln_beta beta x) as (ex, He). simpl. +assert (Hx0: x <> R0). +intros Hx0. +apply Rle_not_lt with (1 := Hx). +rewrite Hx0, Rabs_R0. +apply bpow_gt_0. +specialize (He Hx0). +assert (He': (emin + prec <= ex)%Z). +apply (bpow_lt_bpow beta). +apply Rle_lt_trans with (1 := Hx). +apply He. +replace (FTZ_exp ex) with (FLX_exp prec ex). +unfold Zrnd_FTZ. +rewrite Rle_bool_true. +apply refl_equal. +rewrite Rabs_mult. +rewrite (Rabs_pos_eq (bpow (- FLX_exp prec ex))). +change R1 with (bpow 0). +rewrite <- (Zplus_opp_r (FLX_exp prec ex)). +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Rle_trans with (2 := proj1 He). +apply bpow_le. +unfold FLX_exp. +generalize (prec_gt_0 prec). +clear -He' ; omega. +apply bpow_ge_0. +unfold FLX_exp, FTZ_exp. +rewrite Zlt_bool_false. +apply refl_equal. +clear -He' ; omega. +Qed. + +Theorem round_FTZ_small : + forall x : R, + (Rabs x < bpow (emin + prec - 1))%R -> + round beta FTZ_exp Zrnd_FTZ x = R0. +Proof with auto with typeclass_instances. +intros x Hx. +destruct (Req_dec x 0) as [Hx0|Hx0]. +rewrite Hx0. +apply round_0... +unfold round, scaled_mantissa, canonic_exp. +destruct (ln_beta beta x) as (ex, He). simpl. +specialize (He Hx0). +unfold Zrnd_FTZ. +rewrite Rle_bool_false. +apply F2R_0. +rewrite Rabs_mult. +rewrite (Rabs_pos_eq (bpow (- FTZ_exp ex))). +change R1 with (bpow 0). +rewrite <- (Zplus_opp_r (FTZ_exp ex)). +rewrite bpow_plus. +apply Rmult_lt_compat_r. +apply bpow_gt_0. +apply Rlt_le_trans with (1 := Hx). +apply bpow_le. +unfold FTZ_exp. +generalize (Zlt_cases (ex - prec) emin). +case Zlt_bool. +intros _. +apply Zle_refl. +intros He'. +elim Rlt_not_le with (1 := Hx). +apply Rle_trans with (2 := proj1 He). +apply bpow_le. +omega. +apply bpow_ge_0. +Qed. + +End FTZ_round. + +End RND_FTZ. diff --git a/flocq/Core/Fcore_Raux.v b/flocq/Core/Fcore_Raux.v new file mode 100644 index 0000000..748e36e --- /dev/null +++ b/flocq/Core/Fcore_Raux.v @@ -0,0 +1,1996 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Missing definitions/lemmas *) +Require Export Reals. +Require Export ZArith. +Require Export Fcore_Zaux. + +Section Rmissing. + +(** About R *) +Theorem Rle_0_minus : + forall x y, (x <= y)%R -> (0 <= y - x)%R. +Proof. +intros. +apply Rge_le. +apply Rge_minus. +now apply Rle_ge. +Qed. + +Theorem Rabs_eq_Rabs : + forall x y : R, + Rabs x = Rabs y -> x = y \/ x = Ropp y. +Proof. +intros x y H. +unfold Rabs in H. +destruct (Rcase_abs x) as [_|_]. +assert (H' := f_equal Ropp H). +rewrite Ropp_involutive in H'. +rewrite H'. +destruct (Rcase_abs y) as [_|_]. +left. +apply Ropp_involutive. +now right. +rewrite H. +now destruct (Rcase_abs y) as [_|_] ; [right|left]. +Qed. + +Theorem Rabs_minus_le: + forall x y : R, + (0 <= y)%R -> (y <= 2*x)%R -> + (Rabs (x-y) <= x)%R. +Proof. +intros x y Hx Hy. +unfold Rabs; case (Rcase_abs (x - y)); intros H. +apply Rplus_le_reg_l with x; ring_simplify; assumption. +apply Rplus_le_reg_l with (-x)%R; ring_simplify. +auto with real. +Qed. + +Theorem Rplus_eq_reg_r : + forall r r1 r2 : R, + (r1 + r = r2 + r)%R -> (r1 = r2)%R. +Proof. +intros r r1 r2 H. +apply Rplus_eq_reg_l with r. +now rewrite 2!(Rplus_comm r). +Qed. + +Theorem Rplus_le_reg_r : + forall r r1 r2 : R, + (r1 + r <= r2 + r)%R -> (r1 <= r2)%R. +Proof. +intros. +apply Rplus_le_reg_l with r. +now rewrite 2!(Rplus_comm r). +Qed. + +Theorem Rmult_lt_reg_r : + forall r r1 r2 : R, (0 < r)%R -> + (r1 * r < r2 * r)%R -> (r1 < r2)%R. +Proof. +intros. +apply Rmult_lt_reg_l with r. +exact H. +now rewrite 2!(Rmult_comm r). +Qed. + +Theorem Rmult_le_reg_r : + forall r r1 r2 : R, (0 < r)%R -> + (r1 * r <= r2 * r)%R -> (r1 <= r2)%R. +Proof. +intros. +apply Rmult_le_reg_l with r. +exact H. +now rewrite 2!(Rmult_comm r). +Qed. + +Theorem Rmult_eq_reg_r : + forall r r1 r2 : R, (r1 * r)%R = (r2 * r)%R -> + r <> 0%R -> r1 = r2. +Proof. +intros r r1 r2 H1 H2. +apply Rmult_eq_reg_l with r. +now rewrite 2!(Rmult_comm r). +exact H2. +Qed. + +Theorem Rmult_minus_distr_r : + forall r r1 r2 : R, + ((r1 - r2) * r = r1 * r - r2 * r)%R. +Proof. +intros r r1 r2. +rewrite <- 3!(Rmult_comm r). +apply Rmult_minus_distr_l. +Qed. + +Theorem Rmult_min_distr_r : + forall r r1 r2 : R, + (0 <= r)%R -> + (Rmin r1 r2 * r)%R = Rmin (r1 * r) (r2 * r). +Proof. +intros r r1 r2 [Hr|Hr]. +unfold Rmin. +destruct (Rle_dec r1 r2) as [H1|H1] ; + destruct (Rle_dec (r1 * r) (r2 * r)) as [H2|H2] ; + try easy. +apply (f_equal (fun x => Rmult x r)). +apply Rle_antisym. +exact H1. +apply Rmult_le_reg_r with (1 := Hr). +apply Rlt_le. +now apply Rnot_le_lt. +apply Rle_antisym. +apply Rmult_le_compat_r. +now apply Rlt_le. +apply Rlt_le. +now apply Rnot_le_lt. +exact H2. +rewrite <- Hr. +rewrite 3!Rmult_0_r. +unfold Rmin. +destruct (Rle_dec 0 0) as [H0|H0]. +easy. +elim H0. +apply Rle_refl. +Qed. + +Theorem Rmult_min_distr_l : + forall r r1 r2 : R, + (0 <= r)%R -> + (r * Rmin r1 r2)%R = Rmin (r * r1) (r * r2). +Proof. +intros r r1 r2 Hr. +rewrite 3!(Rmult_comm r). +now apply Rmult_min_distr_r. +Qed. + +Theorem exp_le : + forall x y : R, + (x <= y)%R -> (exp x <= exp y)%R. +Proof. +intros x y [H|H]. +apply Rlt_le. +now apply exp_increasing. +rewrite H. +apply Rle_refl. +Qed. + +Theorem Rinv_lt : + forall x y, + (0 < x)%R -> (x < y)%R -> (/y < /x)%R. +Proof. +intros x y Hx Hxy. +apply Rinv_lt_contravar. +apply Rmult_lt_0_compat. +exact Hx. +now apply Rlt_trans with x. +exact Hxy. +Qed. + +Theorem Rinv_le : + forall x y, + (0 < x)%R -> (x <= y)%R -> (/y <= /x)%R. +Proof. +intros x y Hx Hxy. +apply Rle_Rinv. +exact Hx. +now apply Rlt_le_trans with x. +exact Hxy. +Qed. + +Theorem sqrt_ge_0 : + forall x : R, + (0 <= sqrt x)%R. +Proof. +intros x. +unfold sqrt. +destruct (Rcase_abs x) as [_|H]. +apply Rle_refl. +apply Rsqrt_positivity. +Qed. + +Theorem Rabs_le : + forall x y, + (-y <= x <= y)%R -> (Rabs x <= y)%R. +Proof. +intros x y (Hyx,Hxy). +unfold Rabs. +case Rcase_abs ; intros Hx. +apply Ropp_le_cancel. +now rewrite Ropp_involutive. +exact Hxy. +Qed. + +Theorem Rabs_le_inv : + forall x y, + (Rabs x <= y)%R -> (-y <= x <= y)%R. +Proof. +intros x y Hxy. +split. +apply Rle_trans with (- Rabs x)%R. +now apply Ropp_le_contravar. +apply Ropp_le_cancel. +rewrite Ropp_involutive, <- Rabs_Ropp. +apply RRle_abs. +apply Rle_trans with (2 := Hxy). +apply RRle_abs. +Qed. + +Theorem Rabs_ge : + forall x y, + (y <= -x \/ x <= y)%R -> (x <= Rabs y)%R. +Proof. +intros x y [Hyx|Hxy]. +apply Rle_trans with (-y)%R. +apply Ropp_le_cancel. +now rewrite Ropp_involutive. +rewrite <- Rabs_Ropp. +apply RRle_abs. +apply Rle_trans with (1 := Hxy). +apply RRle_abs. +Qed. + +Theorem Rabs_ge_inv : + forall x y, + (x <= Rabs y)%R -> (y <= -x \/ x <= y)%R. +Proof. +intros x y. +unfold Rabs. +case Rcase_abs ; intros Hy Hxy. +left. +apply Ropp_le_cancel. +now rewrite Ropp_involutive. +now right. +Qed. + +Theorem Rabs_lt : + forall x y, + (-y < x < y)%R -> (Rabs x < y)%R. +Proof. +intros x y (Hyx,Hxy). +now apply Rabs_def1. +Qed. + +Theorem Rabs_lt_inv : + forall x y, + (Rabs x < y)%R -> (-y < x < y)%R. +Proof. +intros x y H. +now split ; eapply Rabs_def2. +Qed. + +Theorem Rabs_gt : + forall x y, + (y < -x \/ x < y)%R -> (x < Rabs y)%R. +Proof. +intros x y [Hyx|Hxy]. +rewrite <- Rabs_Ropp. +apply Rlt_le_trans with (Ropp y). +apply Ropp_lt_cancel. +now rewrite Ropp_involutive. +apply RRle_abs. +apply Rlt_le_trans with (1 := Hxy). +apply RRle_abs. +Qed. + +Theorem Rabs_gt_inv : + forall x y, + (x < Rabs y)%R -> (y < -x \/ x < y)%R. +Proof. +intros x y. +unfold Rabs. +case Rcase_abs ; intros Hy Hxy. +left. +apply Ropp_lt_cancel. +now rewrite Ropp_involutive. +now right. +Qed. + +End Rmissing. + +Section Z2R. + +(** Z2R function (Z -> R) *) +Fixpoint P2R (p : positive) := + match p with + | xH => 1%R + | xO xH => 2%R + | xO t => (2 * P2R t)%R + | xI xH => 3%R + | xI t => (1 + 2 * P2R t)%R + end. + +Definition Z2R n := + match n with + | Zpos p => P2R p + | Zneg p => Ropp (P2R p) + | Z0 => R0 + end. + +Theorem P2R_INR : + forall n, P2R n = INR (nat_of_P n). +Proof. +induction n ; simpl ; try ( + rewrite IHn ; + rewrite <- (mult_INR 2) ; + rewrite <- (nat_of_P_mult_morphism 2) ; + change (2 * n)%positive with (xO n)). +(* xI *) +rewrite (Rplus_comm 1). +change (nat_of_P (xO n)) with (Pmult_nat n 2). +case n ; intros ; simpl ; try apply refl_equal. +case (Pmult_nat p 4) ; intros ; try apply refl_equal. +rewrite Rplus_0_l. +apply refl_equal. +apply Rplus_comm. +(* xO *) +case n ; intros ; apply refl_equal. +(* xH *) +apply refl_equal. +Qed. + +Theorem Z2R_IZR : + forall n, Z2R n = IZR n. +Proof. +intro. +case n ; intros ; simpl. +apply refl_equal. +apply P2R_INR. +apply Ropp_eq_compat. +apply P2R_INR. +Qed. + +Theorem Z2R_opp : + forall n, Z2R (-n) = (- Z2R n)%R. +Proof. +intros. +repeat rewrite Z2R_IZR. +apply Ropp_Ropp_IZR. +Qed. + +Theorem Z2R_plus : + forall m n, (Z2R (m + n) = Z2R m + Z2R n)%R. +Proof. +intros. +repeat rewrite Z2R_IZR. +apply plus_IZR. +Qed. + +Theorem minus_IZR : + forall n m : Z, + IZR (n - m) = (IZR n - IZR m)%R. +Proof. +intros. +unfold Zminus. +rewrite plus_IZR. +rewrite Ropp_Ropp_IZR. +apply refl_equal. +Qed. + +Theorem Z2R_minus : + forall m n, (Z2R (m - n) = Z2R m - Z2R n)%R. +Proof. +intros. +repeat rewrite Z2R_IZR. +apply minus_IZR. +Qed. + +Theorem Z2R_mult : + forall m n, (Z2R (m * n) = Z2R m * Z2R n)%R. +Proof. +intros. +repeat rewrite Z2R_IZR. +apply mult_IZR. +Qed. + +Theorem le_Z2R : + forall m n, (Z2R m <= Z2R n)%R -> (m <= n)%Z. +Proof. +intros m n. +repeat rewrite Z2R_IZR. +apply le_IZR. +Qed. + +Theorem Z2R_le : + forall m n, (m <= n)%Z -> (Z2R m <= Z2R n)%R. +Proof. +intros m n. +repeat rewrite Z2R_IZR. +apply IZR_le. +Qed. + +Theorem lt_Z2R : + forall m n, (Z2R m < Z2R n)%R -> (m < n)%Z. +Proof. +intros m n. +repeat rewrite Z2R_IZR. +apply lt_IZR. +Qed. + +Theorem Z2R_lt : + forall m n, (m < n)%Z -> (Z2R m < Z2R n)%R. +Proof. +intros m n. +repeat rewrite Z2R_IZR. +apply IZR_lt. +Qed. + +Theorem Z2R_le_lt : + forall m n p, (m <= n < p)%Z -> (Z2R m <= Z2R n < Z2R p)%R. +Proof. +intros m n p (H1, H2). +split. +now apply Z2R_le. +now apply Z2R_lt. +Qed. + +Theorem le_lt_Z2R : + forall m n p, (Z2R m <= Z2R n < Z2R p)%R -> (m <= n < p)%Z. +Proof. +intros m n p (H1, H2). +split. +now apply le_Z2R. +now apply lt_Z2R. +Qed. + +Theorem eq_Z2R : + forall m n, (Z2R m = Z2R n)%R -> (m = n)%Z. +Proof. +intros m n H. +apply eq_IZR. +now rewrite <- 2!Z2R_IZR. +Qed. + +Theorem neq_Z2R : + forall m n, (Z2R m <> Z2R n)%R -> (m <> n)%Z. +Proof. +intros m n H H'. +apply H. +now apply f_equal. +Qed. + +Theorem Z2R_neq : + forall m n, (m <> n)%Z -> (Z2R m <> Z2R n)%R. +Proof. +intros m n. +repeat rewrite Z2R_IZR. +apply IZR_neq. +Qed. + +Theorem Z2R_abs : + forall z, Z2R (Zabs z) = Rabs (Z2R z). +Proof. +intros. +repeat rewrite Z2R_IZR. +now rewrite Rabs_Zabs. +Qed. + +End Z2R. + +(** Decidable comparison on reals *) +Section Rcompare. + +Definition Rcompare x y := + match total_order_T x y with + | inleft (left _) => Lt + | inleft (right _) => Eq + | inright _ => Gt + end. + +Inductive Rcompare_prop (x y : R) : comparison -> Prop := + | Rcompare_Lt_ : (x < y)%R -> Rcompare_prop x y Lt + | Rcompare_Eq_ : x = y -> Rcompare_prop x y Eq + | Rcompare_Gt_ : (y < x)%R -> Rcompare_prop x y Gt. + +Theorem Rcompare_spec : + forall x y, Rcompare_prop x y (Rcompare x y). +Proof. +intros x y. +unfold Rcompare. +now destruct (total_order_T x y) as [[H|H]|H] ; constructor. +Qed. + +Global Opaque Rcompare. + +Theorem Rcompare_Lt : + forall x y, + (x < y)%R -> Rcompare x y = Lt. +Proof. +intros x y H. +case Rcompare_spec ; intro H'. +easy. +rewrite H' in H. +elim (Rlt_irrefl _ H). +elim (Rlt_irrefl x). +now apply Rlt_trans with y. +Qed. + +Theorem Rcompare_Lt_inv : + forall x y, + Rcompare x y = Lt -> (x < y)%R. +Proof. +intros x y. +now case Rcompare_spec. +Qed. + +Theorem Rcompare_not_Lt : + forall x y, + (y <= x)%R -> Rcompare x y <> Lt. +Proof. +intros x y H1 H2. +apply Rle_not_lt with (1 := H1). +now apply Rcompare_Lt_inv. +Qed. + +Theorem Rcompare_not_Lt_inv : + forall x y, + Rcompare x y <> Lt -> (y <= x)%R. +Proof. +intros x y H. +apply Rnot_lt_le. +contradict H. +now apply Rcompare_Lt. +Qed. + +Theorem Rcompare_Eq : + forall x y, + x = y -> Rcompare x y = Eq. +Proof. +intros x y H. +rewrite H. +now case Rcompare_spec ; intro H' ; try elim (Rlt_irrefl _ H'). +Qed. + +Theorem Rcompare_Eq_inv : + forall x y, + Rcompare x y = Eq -> x = y. +Proof. +intros x y. +now case Rcompare_spec. +Qed. + +Theorem Rcompare_Gt : + forall x y, + (y < x)%R -> Rcompare x y = Gt. +Proof. +intros x y H. +case Rcompare_spec ; intro H'. +elim (Rlt_irrefl x). +now apply Rlt_trans with y. +rewrite H' in H. +elim (Rlt_irrefl _ H). +easy. +Qed. + +Theorem Rcompare_Gt_inv : + forall x y, + Rcompare x y = Gt -> (y < x)%R. +Proof. +intros x y. +now case Rcompare_spec. +Qed. + +Theorem Rcompare_not_Gt : + forall x y, + (x <= y)%R -> Rcompare x y <> Gt. +Proof. +intros x y H1 H2. +apply Rle_not_lt with (1 := H1). +now apply Rcompare_Gt_inv. +Qed. + +Theorem Rcompare_not_Gt_inv : + forall x y, + Rcompare x y <> Gt -> (x <= y)%R. +Proof. +intros x y H. +apply Rnot_lt_le. +contradict H. +now apply Rcompare_Gt. +Qed. + +Theorem Rcompare_Z2R : + forall x y, Rcompare (Z2R x) (Z2R y) = Zcompare x y. +Proof. +intros x y. +case Rcompare_spec ; intros H ; apply sym_eq. +apply Zcompare_Lt. +now apply lt_Z2R. +apply Zcompare_Eq. +now apply eq_Z2R. +apply Zcompare_Gt. +now apply lt_Z2R. +Qed. + +Theorem Rcompare_sym : + forall x y, + Rcompare x y = CompOpp (Rcompare y x). +Proof. +intros x y. +destruct (Rcompare_spec y x) as [H|H|H]. +now apply Rcompare_Gt. +now apply Rcompare_Eq. +now apply Rcompare_Lt. +Qed. + +Theorem Rcompare_plus_r : + forall z x y, + Rcompare (x + z) (y + z) = Rcompare x y. +Proof. +intros z x y. +destruct (Rcompare_spec x y) as [H|H|H]. +apply Rcompare_Lt. +now apply Rplus_lt_compat_r. +apply Rcompare_Eq. +now rewrite H. +apply Rcompare_Gt. +now apply Rplus_lt_compat_r. +Qed. + +Theorem Rcompare_plus_l : + forall z x y, + Rcompare (z + x) (z + y) = Rcompare x y. +Proof. +intros z x y. +rewrite 2!(Rplus_comm z). +apply Rcompare_plus_r. +Qed. + +Theorem Rcompare_mult_r : + forall z x y, + (0 < z)%R -> + Rcompare (x * z) (y * z) = Rcompare x y. +Proof. +intros z x y Hz. +destruct (Rcompare_spec x y) as [H|H|H]. +apply Rcompare_Lt. +now apply Rmult_lt_compat_r. +apply Rcompare_Eq. +now rewrite H. +apply Rcompare_Gt. +now apply Rmult_lt_compat_r. +Qed. + +Theorem Rcompare_mult_l : + forall z x y, + (0 < z)%R -> + Rcompare (z * x) (z * y) = Rcompare x y. +Proof. +intros z x y. +rewrite 2!(Rmult_comm z). +apply Rcompare_mult_r. +Qed. + +Theorem Rcompare_middle : + forall x d u, + Rcompare (x - d) (u - x) = Rcompare x ((d + u) / 2). +Proof. +intros x d u. +rewrite <- (Rcompare_plus_r (- x / 2 - d / 2) x). +rewrite <- (Rcompare_mult_r (/2) (x - d)). +field_simplify (x + (- x / 2 - d / 2))%R. +now field_simplify ((d + u) / 2 + (- x / 2 - d / 2))%R. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +Qed. + +Theorem Rcompare_half_l : + forall x y, Rcompare (x / 2) y = Rcompare x (2 * y). +Proof. +intros x y. +rewrite <- (Rcompare_mult_r 2%R). +unfold Rdiv. +rewrite Rmult_assoc, Rinv_l, Rmult_1_r. +now rewrite Rmult_comm. +now apply (Z2R_neq 2 0). +now apply (Z2R_lt 0 2). +Qed. + +Theorem Rcompare_half_r : + forall x y, Rcompare x (y / 2) = Rcompare (2 * x) y. +Proof. +intros x y. +rewrite <- (Rcompare_mult_r 2%R). +unfold Rdiv. +rewrite Rmult_assoc, Rinv_l, Rmult_1_r. +now rewrite Rmult_comm. +now apply (Z2R_neq 2 0). +now apply (Z2R_lt 0 2). +Qed. + +Theorem Rcompare_sqr : + forall x y, + (0 <= x)%R -> (0 <= y)%R -> + Rcompare (x * x) (y * y) = Rcompare x y. +Proof. +intros x y Hx Hy. +destruct (Rcompare_spec x y) as [H|H|H]. +apply Rcompare_Lt. +now apply Rsqr_incrst_1. +rewrite H. +now apply Rcompare_Eq. +apply Rcompare_Gt. +now apply Rsqr_incrst_1. +Qed. + +Theorem Rmin_compare : + forall x y, + Rmin x y = match Rcompare x y with Lt => x | Eq => x | Gt => y end. +Proof. +intros x y. +unfold Rmin. +destruct (Rle_dec x y) as [[Hx|Hx]|Hx]. +now rewrite Rcompare_Lt. +now rewrite Rcompare_Eq. +rewrite Rcompare_Gt. +easy. +now apply Rnot_le_lt. +Qed. + +End Rcompare. + +Section Rle_bool. + +Definition Rle_bool x y := + match Rcompare x y with + | Gt => false + | _ => true + end. + +Inductive Rle_bool_prop (x y : R) : bool -> Prop := + | Rle_bool_true_ : (x <= y)%R -> Rle_bool_prop x y true + | Rle_bool_false_ : (y < x)%R -> Rle_bool_prop x y false. + +Theorem Rle_bool_spec : + forall x y, Rle_bool_prop x y (Rle_bool x y). +Proof. +intros x y. +unfold Rle_bool. +case Rcompare_spec ; constructor. +now apply Rlt_le. +rewrite H. +apply Rle_refl. +exact H. +Qed. + +Theorem Rle_bool_true : + forall x y, + (x <= y)%R -> Rle_bool x y = true. +Proof. +intros x y Hxy. +case Rle_bool_spec ; intros H. +apply refl_equal. +elim (Rlt_irrefl x). +now apply Rle_lt_trans with y. +Qed. + +Theorem Rle_bool_false : + forall x y, + (y < x)%R -> Rle_bool x y = false. +Proof. +intros x y Hxy. +case Rle_bool_spec ; intros H. +elim (Rlt_irrefl x). +now apply Rle_lt_trans with y. +apply refl_equal. +Qed. + +End Rle_bool. + +Section Rlt_bool. + +Definition Rlt_bool x y := + match Rcompare x y with + | Lt => true + | _ => false + end. + +Inductive Rlt_bool_prop (x y : R) : bool -> Prop := + | Rlt_bool_true_ : (x < y)%R -> Rlt_bool_prop x y true + | Rlt_bool_false_ : (y <= x)%R -> Rlt_bool_prop x y false. + +Theorem Rlt_bool_spec : + forall x y, Rlt_bool_prop x y (Rlt_bool x y). +Proof. +intros x y. +unfold Rlt_bool. +case Rcompare_spec ; constructor. +exact H. +rewrite H. +apply Rle_refl. +now apply Rlt_le. +Qed. + +Theorem negb_Rlt_bool : + forall x y, + negb (Rle_bool x y) = Rlt_bool y x. +Proof. +intros x y. +unfold Rlt_bool, Rle_bool. +rewrite Rcompare_sym. +now case Rcompare. +Qed. + +Theorem negb_Rle_bool : + forall x y, + negb (Rlt_bool x y) = Rle_bool y x. +Proof. +intros x y. +unfold Rlt_bool, Rle_bool. +rewrite Rcompare_sym. +now case Rcompare. +Qed. + +Theorem Rlt_bool_true : + forall x y, + (x < y)%R -> Rlt_bool x y = true. +Proof. +intros x y Hxy. +rewrite <- negb_Rlt_bool. +now rewrite Rle_bool_false. +Qed. + +Theorem Rlt_bool_false : + forall x y, + (y <= x)%R -> Rlt_bool x y = false. +Proof. +intros x y Hxy. +rewrite <- negb_Rlt_bool. +now rewrite Rle_bool_true. +Qed. + +End Rlt_bool. + +Section Req_bool. + +Definition Req_bool x y := + match Rcompare x y with + | Eq => true + | _ => false + end. + +Inductive Req_bool_prop (x y : R) : bool -> Prop := + | Req_bool_true_ : (x = y)%R -> Req_bool_prop x y true + | Req_bool_false_ : (x <> y)%R -> Req_bool_prop x y false. + +Theorem Req_bool_spec : + forall x y, Req_bool_prop x y (Req_bool x y). +Proof. +intros x y. +unfold Req_bool. +case Rcompare_spec ; constructor. +now apply Rlt_not_eq. +easy. +now apply Rgt_not_eq. +Qed. + +Theorem Req_bool_true : + forall x y, + (x = y)%R -> Req_bool x y = true. +Proof. +intros x y Hxy. +case Req_bool_spec ; intros H. +apply refl_equal. +contradict H. +exact Hxy. +Qed. + +Theorem Req_bool_false : + forall x y, + (x <> y)%R -> Req_bool x y = false. +Proof. +intros x y Hxy. +case Req_bool_spec ; intros H. +contradict Hxy. +exact H. +apply refl_equal. +Qed. + +End Req_bool. + +Section Floor_Ceil. + +(** Zfloor and Zceil *) +Definition Zfloor (x : R) := (up x - 1)%Z. + +Theorem Zfloor_lb : + forall x : R, + (Z2R (Zfloor x) <= x)%R. +Proof. +intros x. +unfold Zfloor. +rewrite Z2R_minus. +simpl. +rewrite Z2R_IZR. +apply Rplus_le_reg_r with (1 - x)%R. +ring_simplify. +exact (proj2 (archimed x)). +Qed. + +Theorem Zfloor_ub : + forall x : R, + (x < Z2R (Zfloor x) + 1)%R. +Proof. +intros x. +unfold Zfloor. +rewrite Z2R_minus. +unfold Rminus. +rewrite Rplus_assoc. +rewrite Rplus_opp_l, Rplus_0_r. +rewrite Z2R_IZR. +exact (proj1 (archimed x)). +Qed. + +Theorem Zfloor_lub : + forall n x, + (Z2R n <= x)%R -> + (n <= Zfloor x)%Z. +Proof. +intros n x Hnx. +apply Zlt_succ_le. +apply lt_Z2R. +apply Rle_lt_trans with (1 := Hnx). +unfold Zsucc. +rewrite Z2R_plus. +apply Zfloor_ub. +Qed. + +Theorem Zfloor_imp : + forall n x, + (Z2R n <= x < Z2R (n + 1))%R -> + Zfloor x = n. +Proof. +intros n x Hnx. +apply Zle_antisym. +apply Zlt_succ_le. +apply lt_Z2R. +apply Rle_lt_trans with (2 := proj2 Hnx). +apply Zfloor_lb. +now apply Zfloor_lub. +Qed. + +Theorem Zfloor_Z2R : + forall n, + Zfloor (Z2R n) = n. +Proof. +intros n. +apply Zfloor_imp. +split. +apply Rle_refl. +apply Z2R_lt. +apply Zlt_succ. +Qed. + +Theorem Zfloor_le : + forall x y, (x <= y)%R -> + (Zfloor x <= Zfloor y)%Z. +Proof. +intros x y Hxy. +apply Zfloor_lub. +apply Rle_trans with (2 := Hxy). +apply Zfloor_lb. +Qed. + +Definition Zceil (x : R) := (- Zfloor (- x))%Z. + +Theorem Zceil_ub : + forall x : R, + (x <= Z2R (Zceil x))%R. +Proof. +intros x. +unfold Zceil. +rewrite Z2R_opp. +apply Ropp_le_cancel. +rewrite Ropp_involutive. +apply Zfloor_lb. +Qed. + +Theorem Zceil_glb : + forall n x, + (x <= Z2R n)%R -> + (Zceil x <= n)%Z. +Proof. +intros n x Hnx. +unfold Zceil. +apply Zopp_le_cancel. +rewrite Zopp_involutive. +apply Zfloor_lub. +rewrite Z2R_opp. +now apply Ropp_le_contravar. +Qed. + +Theorem Zceil_imp : + forall n x, + (Z2R (n - 1) < x <= Z2R n)%R -> + Zceil x = n. +Proof. +intros n x Hnx. +unfold Zceil. +rewrite <- (Zopp_involutive n). +apply f_equal. +apply Zfloor_imp. +split. +rewrite Z2R_opp. +now apply Ropp_le_contravar. +rewrite <- (Zopp_involutive 1). +rewrite <- Zopp_plus_distr. +rewrite Z2R_opp. +now apply Ropp_lt_contravar. +Qed. + +Theorem Zceil_Z2R : + forall n, + Zceil (Z2R n) = n. +Proof. +intros n. +unfold Zceil. +rewrite <- Z2R_opp, Zfloor_Z2R. +apply Zopp_involutive. +Qed. + +Theorem Zceil_le : + forall x y, (x <= y)%R -> + (Zceil x <= Zceil y)%Z. +Proof. +intros x y Hxy. +apply Zceil_glb. +apply Rle_trans with (1 := Hxy). +apply Zceil_ub. +Qed. + +Theorem Zceil_floor_neq : + forall x : R, + (Z2R (Zfloor x) <> x)%R -> + (Zceil x = Zfloor x + 1)%Z. +Proof. +intros x Hx. +apply Zceil_imp. +split. +ring_simplify (Zfloor x + 1 - 1)%Z. +apply Rnot_le_lt. +intros H. +apply Hx. +apply Rle_antisym. +apply Zfloor_lb. +exact H. +apply Rlt_le. +rewrite Z2R_plus. +apply Zfloor_ub. +Qed. + +Definition Ztrunc x := if Rlt_bool x 0 then Zceil x else Zfloor x. + +Theorem Ztrunc_Z2R : + forall n, + Ztrunc (Z2R n) = n. +Proof. +intros n. +unfold Ztrunc. +case Rlt_bool_spec ; intro H. +apply Zceil_Z2R. +apply Zfloor_Z2R. +Qed. + +Theorem Ztrunc_floor : + forall x, + (0 <= x)%R -> + Ztrunc x = Zfloor x. +Proof. +intros x Hx. +unfold Ztrunc. +case Rlt_bool_spec ; intro H. +elim Rlt_irrefl with x. +now apply Rlt_le_trans with R0. +apply refl_equal. +Qed. + +Theorem Ztrunc_ceil : + forall x, + (x <= 0)%R -> + Ztrunc x = Zceil x. +Proof. +intros x Hx. +unfold Ztrunc. +case Rlt_bool_spec ; intro H. +apply refl_equal. +rewrite (Rle_antisym _ _ Hx H). +fold (Z2R 0). +rewrite Zceil_Z2R. +apply Zfloor_Z2R. +Qed. + +Theorem Ztrunc_le : + forall x y, (x <= y)%R -> + (Ztrunc x <= Ztrunc y)%Z. +Proof. +intros x y Hxy. +unfold Ztrunc at 1. +case Rlt_bool_spec ; intro Hx. +unfold Ztrunc. +case Rlt_bool_spec ; intro Hy. +now apply Zceil_le. +apply Zle_trans with 0%Z. +apply Zceil_glb. +now apply Rlt_le. +now apply Zfloor_lub. +rewrite Ztrunc_floor. +now apply Zfloor_le. +now apply Rle_trans with x. +Qed. + +Theorem Ztrunc_opp : + forall x, + Ztrunc (- x) = Zopp (Ztrunc x). +Proof. +intros x. +unfold Ztrunc at 2. +case Rlt_bool_spec ; intros Hx. +rewrite Ztrunc_floor. +apply sym_eq. +apply Zopp_involutive. +rewrite <- Ropp_0. +apply Ropp_le_contravar. +now apply Rlt_le. +rewrite Ztrunc_ceil. +unfold Zceil. +now rewrite Ropp_involutive. +rewrite <- Ropp_0. +now apply Ropp_le_contravar. +Qed. + +Theorem Ztrunc_abs : + forall x, + Ztrunc (Rabs x) = Zabs (Ztrunc x). +Proof. +intros x. +rewrite Ztrunc_floor. 2: apply Rabs_pos. +unfold Ztrunc. +case Rlt_bool_spec ; intro H. +rewrite Rabs_left with (1 := H). +rewrite Zabs_non_eq. +apply sym_eq. +apply Zopp_involutive. +apply Zceil_glb. +now apply Rlt_le. +rewrite Rabs_pos_eq with (1 := H). +apply sym_eq. +apply Zabs_eq. +now apply Zfloor_lub. +Qed. + +Theorem Ztrunc_lub : + forall n x, + (Z2R n <= Rabs x)%R -> + (n <= Zabs (Ztrunc x))%Z. +Proof. +intros n x H. +rewrite <- Ztrunc_abs. +rewrite Ztrunc_floor. 2: apply Rabs_pos. +now apply Zfloor_lub. +Qed. + +Definition Zaway x := if Rlt_bool x 0 then Zfloor x else Zceil x. + +Theorem Zaway_Z2R : + forall n, + Zaway (Z2R n) = n. +Proof. +intros n. +unfold Zaway. +case Rlt_bool_spec ; intro H. +apply Zfloor_Z2R. +apply Zceil_Z2R. +Qed. + +Theorem Zaway_ceil : + forall x, + (0 <= x)%R -> + Zaway x = Zceil x. +Proof. +intros x Hx. +unfold Zaway. +case Rlt_bool_spec ; intro H. +elim Rlt_irrefl with x. +now apply Rlt_le_trans with R0. +apply refl_equal. +Qed. + +Theorem Zaway_floor : + forall x, + (x <= 0)%R -> + Zaway x = Zfloor x. +Proof. +intros x Hx. +unfold Zaway. +case Rlt_bool_spec ; intro H. +apply refl_equal. +rewrite (Rle_antisym _ _ Hx H). +fold (Z2R 0). +rewrite Zfloor_Z2R. +apply Zceil_Z2R. +Qed. + +Theorem Zaway_le : + forall x y, (x <= y)%R -> + (Zaway x <= Zaway y)%Z. +Proof. +intros x y Hxy. +unfold Zaway at 1. +case Rlt_bool_spec ; intro Hx. +unfold Zaway. +case Rlt_bool_spec ; intro Hy. +now apply Zfloor_le. +apply le_Z2R. +apply Rle_trans with 0%R. +apply Rlt_le. +apply Rle_lt_trans with (2 := Hx). +apply Zfloor_lb. +apply Rle_trans with (1 := Hy). +apply Zceil_ub. +rewrite Zaway_ceil. +now apply Zceil_le. +now apply Rle_trans with x. +Qed. + +Theorem Zaway_opp : + forall x, + Zaway (- x) = Zopp (Zaway x). +Proof. +intros x. +unfold Zaway at 2. +case Rlt_bool_spec ; intro H. +rewrite Zaway_ceil. +unfold Zceil. +now rewrite Ropp_involutive. +apply Rlt_le. +now apply Ropp_0_gt_lt_contravar. +rewrite Zaway_floor. +apply sym_eq. +apply Zopp_involutive. +rewrite <- Ropp_0. +now apply Ropp_le_contravar. +Qed. + +Theorem Zaway_abs : + forall x, + Zaway (Rabs x) = Zabs (Zaway x). +Proof. +intros x. +rewrite Zaway_ceil. 2: apply Rabs_pos. +unfold Zaway. +case Rlt_bool_spec ; intro H. +rewrite Rabs_left with (1 := H). +rewrite Zabs_non_eq. +apply (f_equal (fun v => - Zfloor v)%Z). +apply Ropp_involutive. +apply le_Z2R. +apply Rlt_le. +apply Rle_lt_trans with (2 := H). +apply Zfloor_lb. +rewrite Rabs_pos_eq with (1 := H). +apply sym_eq. +apply Zabs_eq. +apply le_Z2R. +apply Rle_trans with (1 := H). +apply Zceil_ub. +Qed. + +End Floor_Ceil. + +Section Zdiv_Rdiv. + +Theorem Zfloor_div : + forall x y, + y <> Z0 -> + Zfloor (Z2R x / Z2R y) = (x / y)%Z. +Proof. +intros x y Zy. +generalize (Z_div_mod_eq_full x y Zy). +intros Hx. +rewrite Hx at 1. +assert (Zy': Z2R y <> R0). +contradict Zy. +now apply eq_Z2R. +unfold Rdiv. +rewrite Z2R_plus, Rmult_plus_distr_r, Z2R_mult. +replace (Z2R y * Z2R (x / y) * / Z2R y)%R with (Z2R (x / y)) by now field. +apply Zfloor_imp. +rewrite Z2R_plus. +assert (0 <= Z2R (x mod y) * / Z2R y < 1)%R. +(* *) +assert (forall x' y', (0 < y')%Z -> 0 <= Z2R (x' mod y') * / Z2R y' < 1)%R. +(* . *) +clear. +intros x y Hy. +split. +apply Rmult_le_pos. +apply (Z2R_le 0). +refine (proj1 (Z_mod_lt _ _ _)). +now apply Zlt_gt. +apply Rlt_le. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0). +apply Rmult_lt_reg_r with (Z2R y). +now apply (Z2R_lt 0). +rewrite Rmult_1_l, Rmult_assoc, Rinv_l, Rmult_1_r. +apply Z2R_lt. +eapply Z_mod_lt. +now apply Zlt_gt. +apply Rgt_not_eq. +now apply (Z2R_lt 0). +(* . *) +destruct (Z_lt_le_dec y 0) as [Hy|Hy]. +rewrite <- Rmult_opp_opp. +rewrite Ropp_inv_permute with (1 := Zy'). +rewrite <- 2!Z2R_opp. +rewrite <- Zmod_opp_opp. +apply H. +clear -Hy. omega. +apply H. +clear -Zy Hy. omega. +(* *) +split. +pattern (Z2R (x / y)) at 1 ; rewrite <- Rplus_0_r. +apply Rplus_le_compat_l. +apply H. +apply Rplus_lt_compat_l. +apply H. +Qed. + +End Zdiv_Rdiv. + +Section pow. + +Variable r : radix. + +Theorem radix_pos : (0 < Z2R r)%R. +Proof. +destruct r as (v, Hr). simpl. +apply (Z2R_lt 0). +apply Zlt_le_trans with 2%Z. +easy. +now apply Zle_bool_imp_le. +Qed. + +(** Well-used function called bpow for computing the power function #β#^e *) +Definition bpow e := + match e with + | Zpos p => Z2R (Zpower_pos r p) + | Zneg p => Rinv (Z2R (Zpower_pos r p)) + | Z0 => R1 + end. + +Theorem Z2R_Zpower_pos : + forall n m, + Z2R (Zpower_pos n m) = powerRZ (Z2R n) (Zpos m). +Proof. +intros. +rewrite Zpower_pos_nat. +simpl. +induction (nat_of_P m). +apply refl_equal. +unfold Zpower_nat. +simpl. +rewrite Z2R_mult. +apply Rmult_eq_compat_l. +exact IHn0. +Qed. + +Theorem bpow_powerRZ : + forall e, + bpow e = powerRZ (Z2R r) e. +Proof. +destruct e ; unfold bpow. +reflexivity. +now rewrite Z2R_Zpower_pos. +now rewrite Z2R_Zpower_pos. +Qed. + +Theorem bpow_ge_0 : + forall e : Z, (0 <= bpow e)%R. +Proof. +intros. +rewrite bpow_powerRZ. +apply powerRZ_le. +apply radix_pos. +Qed. + +Theorem bpow_gt_0 : + forall e : Z, (0 < bpow e)%R. +Proof. +intros. +rewrite bpow_powerRZ. +apply powerRZ_lt. +apply radix_pos. +Qed. + +Theorem bpow_plus : + forall e1 e2 : Z, (bpow (e1 + e2) = bpow e1 * bpow e2)%R. +Proof. +intros. +repeat rewrite bpow_powerRZ. +apply powerRZ_add. +apply Rgt_not_eq. +apply radix_pos. +Qed. + +Theorem bpow_1 : + bpow 1 = Z2R r. +Proof. +unfold bpow, Zpower_pos. simpl. +now rewrite Zmult_1_r. +Qed. + +Theorem bpow_plus1 : + forall e : Z, (bpow (e + 1) = Z2R r * bpow e)%R. +Proof. +intros. +rewrite <- bpow_1. +rewrite <- bpow_plus. +now rewrite Zplus_comm. +Qed. + +Theorem bpow_opp : + forall e : Z, (bpow (-e) = /bpow e)%R. +Proof. +intros e; destruct e. +simpl; now rewrite Rinv_1. +now replace (-Zpos p)%Z with (Zneg p) by reflexivity. +replace (-Zneg p)%Z with (Zpos p) by reflexivity. +simpl; rewrite Rinv_involutive; trivial. +generalize (bpow_gt_0 (Zpos p)). +simpl; auto with real. +Qed. + +Theorem Z2R_Zpower_nat : + forall e : nat, + Z2R (Zpower_nat r e) = bpow (Z_of_nat e). +Proof. +intros [|e]. +split. +rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ. +rewrite <- Zpower_pos_nat. +now rewrite <- Zpos_eq_Z_of_nat_o_nat_of_P. +Qed. + +Theorem Z2R_Zpower : + forall e : Z, + (0 <= e)%Z -> + Z2R (Zpower r e) = bpow e. +Proof. +intros [|e|e] H. +split. +split. +now elim H. +Qed. + +Theorem bpow_lt : + forall e1 e2 : Z, + (e1 < e2)%Z -> (bpow e1 < bpow e2)%R. +Proof. +intros e1 e2 H. +replace e2 with (e1 + (e2 - e1))%Z by ring. +rewrite <- (Rmult_1_r (bpow e1)). +rewrite bpow_plus. +apply Rmult_lt_compat_l. +apply bpow_gt_0. +assert (0 < e2 - e1)%Z by omega. +destruct (e2 - e1)%Z ; try discriminate H0. +clear. +rewrite <- Z2R_Zpower by easy. +apply (Z2R_lt 1). +now apply Zpower_gt_1. +Qed. + +Theorem lt_bpow : + forall e1 e2 : Z, + (bpow e1 < bpow e2)%R -> (e1 < e2)%Z. +Proof. +intros e1 e2 H. +apply Zgt_lt. +apply Znot_le_gt. +intros H'. +apply Rlt_not_le with (1 := H). +destruct (Zle_lt_or_eq _ _ H'). +apply Rlt_le. +now apply bpow_lt. +rewrite H0. +apply Rle_refl. +Qed. + +Theorem bpow_le : + forall e1 e2 : Z, + (e1 <= e2)%Z -> (bpow e1 <= bpow e2)%R. +Proof. +intros e1 e2 H. +apply Rnot_lt_le. +intros H'. +apply Zle_not_gt with (1 := H). +apply Zlt_gt. +now apply lt_bpow. +Qed. + +Theorem le_bpow : + forall e1 e2 : Z, + (bpow e1 <= bpow e2)%R -> (e1 <= e2)%Z. +Proof. +intros e1 e2 H. +apply Znot_gt_le. +intros H'. +apply Rle_not_lt with (1 := H). +apply bpow_lt. +now apply Zgt_lt. +Qed. + +Theorem bpow_inj : + forall e1 e2 : Z, + bpow e1 = bpow e2 -> e1 = e2. +Proof. +intros. +apply Zle_antisym. +apply le_bpow. +now apply Req_le. +apply le_bpow. +now apply Req_le. +Qed. + +Theorem bpow_exp : + forall e : Z, + bpow e = exp (Z2R e * ln (Z2R r)). +Proof. +(* positive case *) +assert (forall e, bpow (Zpos e) = exp (Z2R (Zpos e) * ln (Z2R r))). +intros e. +unfold bpow. +rewrite Zpower_pos_nat. +unfold Z2R at 2. +rewrite P2R_INR. +induction (nat_of_P e). +rewrite Rmult_0_l. +now rewrite exp_0. +rewrite Zpower_nat_S. +rewrite S_INR. +rewrite Rmult_plus_distr_r. +rewrite exp_plus. +rewrite Rmult_1_l. +rewrite exp_ln. +rewrite <- IHn. +rewrite <- Z2R_mult. +now rewrite Zmult_comm. +apply radix_pos. +(* general case *) +intros [|e|e]. +rewrite Rmult_0_l. +now rewrite exp_0. +apply H. +unfold bpow. +change (Z2R (Zpower_pos r e)) with (bpow (Zpos e)). +rewrite H. +rewrite <- exp_Ropp. +rewrite <- Ropp_mult_distr_l_reverse. +now rewrite <- Z2R_opp. +Qed. + +(** Another well-used function for having the logarithm of a real number x to the base #β# *) +Record ln_beta_prop x := { + ln_beta_val :> Z ; + _ : (x <> 0)%R -> (bpow (ln_beta_val - 1)%Z <= Rabs x < bpow ln_beta_val)%R +}. + +Definition ln_beta : + forall x : R, ln_beta_prop x. +Proof. +intros x. +set (fact := ln (Z2R r)). +(* . *) +assert (0 < fact)%R. +apply exp_lt_inv. +rewrite exp_0. +unfold fact. +rewrite exp_ln. +apply (Z2R_lt 1). +apply radix_gt_1. +apply radix_pos. +(* . *) +exists (Zfloor (ln (Rabs x) / fact) + 1)%Z. +intros Hx'. +generalize (Rabs_pos_lt _ Hx'). clear Hx'. +generalize (Rabs x). clear x. +intros x Hx. +rewrite 2!bpow_exp. +fold fact. +pattern x at 2 3 ; replace x with (exp (ln x * / fact * fact)). +split. +rewrite Z2R_minus. +apply exp_le. +apply Rmult_le_compat_r. +now apply Rlt_le. +unfold Rminus. +rewrite Z2R_plus. +rewrite Rplus_assoc. +rewrite Rplus_opp_r, Rplus_0_r. +apply Zfloor_lb. +apply exp_increasing. +apply Rmult_lt_compat_r. +exact H. +rewrite Z2R_plus. +apply Zfloor_ub. +rewrite Rmult_assoc. +rewrite Rinv_l. +rewrite Rmult_1_r. +now apply exp_ln. +now apply Rgt_not_eq. +Qed. + +Theorem bpow_lt_bpow : + forall e1 e2, + (bpow (e1 - 1) < bpow e2)%R -> + (e1 <= e2)%Z. +Proof. +intros e1 e2 He. +rewrite (Zsucc_pred e1). +apply Zlt_le_succ. +now apply lt_bpow. +Qed. + +Theorem bpow_unique : + forall x e1 e2, + (bpow (e1 - 1) <= x < bpow e1)%R -> + (bpow (e2 - 1) <= x < bpow e2)%R -> + e1 = e2. +Proof. +intros x e1 e2 (H1a,H1b) (H2a,H2b). +apply Zle_antisym ; + apply bpow_lt_bpow ; + apply Rle_lt_trans with x ; + assumption. +Qed. + +Theorem ln_beta_unique : + forall (x : R) (e : Z), + (bpow (e - 1) <= Rabs x < bpow e)%R -> + ln_beta x = e :> Z. +Proof. +intros x e1 He. +destruct (Req_dec x 0) as [Hx|Hx]. +elim Rle_not_lt with (1 := proj1 He). +rewrite Hx, Rabs_R0. +apply bpow_gt_0. +destruct (ln_beta x) as (e2, Hx2). +simpl. +apply bpow_unique with (2 := He). +now apply Hx2. +Qed. + +Theorem ln_beta_opp : + forall x, + ln_beta (-x) = ln_beta x :> Z. +Proof. +intros x. +destruct (Req_dec x 0) as [Hx|Hx]. +now rewrite Hx, Ropp_0. +destruct (ln_beta x) as (e, He). +simpl. +specialize (He Hx). +apply ln_beta_unique. +now rewrite Rabs_Ropp. +Qed. + +Theorem ln_beta_abs : + forall x, + ln_beta (Rabs x) = ln_beta x :> Z. +Proof. +intros x. +unfold Rabs. +case Rcase_abs ; intros _. +apply ln_beta_opp. +apply refl_equal. +Qed. + +Theorem ln_beta_unique_pos : + forall (x : R) (e : Z), + (bpow (e - 1) <= x < bpow e)%R -> + ln_beta x = e :> Z. +Proof. +intros x e1 He1. +rewrite <- ln_beta_abs. +apply ln_beta_unique. +rewrite 2!Rabs_pos_eq. +exact He1. +apply Rle_trans with (2 := proj1 He1). +apply bpow_ge_0. +apply Rabs_pos. +Qed. + +Theorem ln_beta_le_abs : + forall x y, + (x <> 0)%R -> (Rabs x <= Rabs y)%R -> + (ln_beta x <= ln_beta y)%Z. +Proof. +intros x y H0x Hxy. +destruct (ln_beta x) as (ex, Hx). +destruct (ln_beta y) as (ey, Hy). +simpl. +apply bpow_lt_bpow. +specialize (Hx H0x). +apply Rle_lt_trans with (1 := proj1 Hx). +apply Rle_lt_trans with (1 := Hxy). +apply Hy. +intros Hy'. +apply Rlt_not_le with (1 := Rabs_pos_lt _ H0x). +apply Rle_trans with (1 := Hxy). +rewrite Hy', Rabs_R0. +apply Rle_refl. +Qed. + +Theorem ln_beta_le : + forall x y, + (0 < x)%R -> (x <= y)%R -> + (ln_beta x <= ln_beta y)%Z. +Proof. +intros x y H0x Hxy. +apply ln_beta_le_abs. +now apply Rgt_not_eq. +rewrite 2!Rabs_pos_eq. +exact Hxy. +apply Rle_trans with (2 := Hxy). +now apply Rlt_le. +now apply Rlt_le. +Qed. + +Theorem ln_beta_bpow : + forall e, (ln_beta (bpow e) = e + 1 :> Z)%Z. +Proof. +intros e. +apply ln_beta_unique. +rewrite Rabs_right. +replace (e + 1 - 1)%Z with e by ring. +split. +apply Rle_refl. +apply bpow_lt. +apply Zlt_succ. +apply Rle_ge. +apply bpow_ge_0. +Qed. + +Theorem ln_beta_mult_bpow : + forall x e, x <> R0 -> + (ln_beta (x * bpow e) = ln_beta x + e :>Z)%Z. +Proof. +intros x e Zx. +destruct (ln_beta x) as (ex, Ex) ; simpl. +specialize (Ex Zx). +apply ln_beta_unique. +rewrite Rabs_mult. +rewrite (Rabs_pos_eq (bpow e)) by apply bpow_ge_0. +split. +replace (ex + e - 1)%Z with (ex - 1 + e)%Z by ring. +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Ex. +rewrite bpow_plus. +apply Rmult_lt_compat_r. +apply bpow_gt_0. +apply Ex. +Qed. + +Theorem ln_beta_le_bpow : + forall x e, + x <> R0 -> + (Rabs x < bpow e)%R -> + (ln_beta x <= e)%Z. +Proof. +intros x e Zx Hx. +destruct (ln_beta x) as (ex, Ex) ; simpl. +specialize (Ex Zx). +apply bpow_lt_bpow. +now apply Rle_lt_trans with (Rabs x). +Qed. + +Theorem ln_beta_gt_bpow : + forall x e, + (bpow e <= Rabs x)%R -> + (e < ln_beta x)%Z. +Proof. +intros x e Hx. +destruct (ln_beta x) as (ex, Ex) ; simpl. +apply lt_bpow. +apply Rle_lt_trans with (1 := Hx). +apply Ex. +intros Zx. +apply Rle_not_lt with (1 := Hx). +rewrite Zx, Rabs_R0. +apply bpow_gt_0. +Qed. + +Theorem bpow_ln_beta_gt : + forall x, + (Rabs x < bpow (ln_beta x))%R. +Proof. +intros x. +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx, Rabs_R0. +apply bpow_gt_0. +destruct (ln_beta x) as (ex, Ex) ; simpl. +now apply Ex. +Qed. + +Theorem ln_beta_le_Zpower : + forall m e, + m <> Z0 -> + (Zabs m < Zpower r e)%Z-> + (ln_beta (Z2R m) <= e)%Z. +Proof. +intros m e Zm Hm. +apply ln_beta_le_bpow. +exact (Z2R_neq m 0 Zm). +destruct (Zle_or_lt 0 e). +rewrite <- Z2R_abs, <- Z2R_Zpower with (1 := H). +now apply Z2R_lt. +elim Zm. +cut (Zabs m < 0)%Z. +now case m. +clear -Hm H. +now destruct e. +Qed. + +Theorem ln_beta_gt_Zpower : + forall m e, + m <> Z0 -> + (Zpower r e <= Zabs m)%Z -> + (e < ln_beta (Z2R m))%Z. +Proof. +intros m e Zm Hm. +apply ln_beta_gt_bpow. +rewrite <- Z2R_abs. +destruct (Zle_or_lt 0 e). +rewrite <- Z2R_Zpower with (1 := H). +now apply Z2R_le. +apply Rle_trans with (bpow 0). +apply bpow_le. +now apply Zlt_le_weak. +apply (Z2R_le 1). +clear -Zm. +zify ; omega. +Qed. + +End pow. + +Section Bool. + +Theorem eqb_sym : + forall x y, Bool.eqb x y = Bool.eqb y x. +Proof. +now intros [|] [|]. +Qed. + +Theorem eqb_false : + forall x y, x = negb y -> Bool.eqb x y = false. +Proof. +now intros [|] [|]. +Qed. + +Theorem eqb_true : + forall x y, x = y -> Bool.eqb x y = true. +Proof. +now intros [|] [|]. +Qed. + +End Bool. + +Section cond_Ropp. + +Definition cond_Ropp (b : bool) m := if b then Ropp m else m. + +Theorem Z2R_cond_Zopp : + forall b m, + Z2R (cond_Zopp b m) = cond_Ropp b (Z2R m). +Proof. +intros [|] m. +apply Z2R_opp. +apply refl_equal. +Qed. + +Theorem abs_cond_Ropp : + forall b m, + Rabs (cond_Ropp b m) = Rabs m. +Proof. +intros [|] m. +apply Rabs_Ropp. +apply refl_equal. +Qed. + +Theorem cond_Ropp_Rlt_bool : + forall m, + cond_Ropp (Rlt_bool m 0) m = Rabs m. +Proof. +intros m. +apply sym_eq. +case Rlt_bool_spec ; intros Hm. +now apply Rabs_left. +now apply Rabs_pos_eq. +Qed. + +Theorem cond_Ropp_involutive : + forall b x, + cond_Ropp b (cond_Ropp b x) = x. +Proof. +intros [|] x. +apply Ropp_involutive. +apply refl_equal. +Qed. + +Theorem cond_Ropp_even_function : + forall {A : Type} (f : R -> A), + (forall x, f (Ropp x) = f x) -> + forall b x, f (cond_Ropp b x) = f x. +Proof. +now intros A f Hf [|] x ; simpl. +Qed. + +Theorem cond_Ropp_odd_function : + forall (f : R -> R), + (forall x, f (Ropp x) = Ropp (f x)) -> + forall b x, f (cond_Ropp b x) = cond_Ropp b (f x). +Proof. +now intros f Hf [|] x ; simpl. +Qed. + +Theorem cond_Ropp_inj : + forall b x y, + cond_Ropp b x = cond_Ropp b y -> x = y. +Proof. +intros b x y H. +rewrite <- (cond_Ropp_involutive b x), H. +apply cond_Ropp_involutive. +Qed. + +Theorem cond_Ropp_mult_l : + forall b x y, + cond_Ropp b (x * y) = (cond_Ropp b x * y)%R. +Proof. +intros [|] x y. +apply sym_eq. +apply Ropp_mult_distr_l_reverse. +apply refl_equal. +Qed. + +Theorem cond_Ropp_mult_r : + forall b x y, + cond_Ropp b (x * y) = (x * cond_Ropp b y)%R. +Proof. +intros [|] x y. +apply sym_eq. +apply Ropp_mult_distr_r_reverse. +apply refl_equal. +Qed. + +Theorem cond_Ropp_plus : + forall b x y, + cond_Ropp b (x + y) = (cond_Ropp b x + cond_Ropp b y)%R. +Proof. +intros [|] x y. +apply Ropp_plus_distr. +apply refl_equal. +Qed. + +End cond_Ropp. diff --git a/flocq/Core/Fcore_Zaux.v b/flocq/Core/Fcore_Zaux.v new file mode 100644 index 0000000..af0d837 --- /dev/null +++ b/flocq/Core/Fcore_Zaux.v @@ -0,0 +1,774 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2011 Sylvie Boldo +#<br /># +Copyright (C) 2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +Require Import ZArith. +Require Import ZOdiv. + +Section Zmissing. + +(** About Z *) +Theorem Zopp_le_cancel : + forall x y : Z, + (-y <= -x)%Z -> Zle x y. +Proof. +intros x y Hxy. +apply Zplus_le_reg_r with (-x - y)%Z. +now ring_simplify. +Qed. + +Theorem Zgt_not_eq : + forall x y : Z, + (y < x)%Z -> (x <> y)%Z. +Proof. +intros x y H Hn. +apply Zlt_irrefl with x. +now rewrite Hn at 1. +Qed. + +End Zmissing. + +Section Proof_Irrelevance. + +Scheme eq_dep_elim := Induction for eq Sort Type. + +Definition eqbool_dep P (h1 : P true) b := + match b return P b -> Prop with + | true => fun (h2 : P true) => h1 = h2 + | false => fun (h2 : P false) => False + end. + +Lemma eqbool_irrelevance : forall (b : bool) (h1 h2 : b = true), h1 = h2. +Proof. +assert (forall (h : true = true), refl_equal true = h). +apply (eq_dep_elim bool true (eqbool_dep _ _) (refl_equal _)). +intros b. +case b. +intros h1 h2. +now rewrite <- (H h1). +intros h. +discriminate h. +Qed. + +End Proof_Irrelevance. + +Section Even_Odd. + +(** Zeven, used for rounding to nearest, ties to even *) +Definition Zeven (n : Z) := + match n with + | Zpos (xO _) => true + | Zneg (xO _) => true + | Z0 => true + | _ => false + end. + +Theorem Zeven_mult : + forall x y, Zeven (x * y) = orb (Zeven x) (Zeven y). +Proof. +now intros [|[xp|xp|]|[xp|xp|]] [|[yp|yp|]|[yp|yp|]]. +Qed. + +Theorem Zeven_opp : + forall x, Zeven (- x) = Zeven x. +Proof. +now intros [|[n|n|]|[n|n|]]. +Qed. + +Theorem Zeven_ex : + forall x, exists p, x = (2 * p + if Zeven x then 0 else 1)%Z. +Proof. +intros [|[n|n|]|[n|n|]]. +now exists Z0. +now exists (Zpos n). +now exists (Zpos n). +now exists Z0. +exists (Zneg n - 1)%Z. +change (2 * Zneg n - 1 = 2 * (Zneg n - 1) + 1)%Z. +ring. +now exists (Zneg n). +now exists (-1)%Z. +Qed. + +Theorem Zeven_2xp1 : + forall n, Zeven (2 * n + 1) = false. +Proof. +intros n. +destruct (Zeven_ex (2 * n + 1)) as (p, Hp). +revert Hp. +case (Zeven (2 * n + 1)) ; try easy. +intros H. +apply False_ind. +omega. +Qed. + +Theorem Zeven_plus : + forall x y, Zeven (x + y) = Bool.eqb (Zeven x) (Zeven y). +Proof. +intros x y. +destruct (Zeven_ex x) as (px, Hx). +rewrite Hx at 1. +destruct (Zeven_ex y) as (py, Hy). +rewrite Hy at 1. +replace (2 * px + (if Zeven x then 0 else 1) + (2 * py + (if Zeven y then 0 else 1)))%Z + with (2 * (px + py) + ((if Zeven x then 0 else 1) + (if Zeven y then 0 else 1)))%Z by ring. +case (Zeven x) ; case (Zeven y). +rewrite Zplus_0_r. +now rewrite Zeven_mult. +apply Zeven_2xp1. +apply Zeven_2xp1. +replace (2 * (px + py) + (1 + 1))%Z with (2 * (px + py + 1))%Z by ring. +now rewrite Zeven_mult. +Qed. + +End Even_Odd. + +Section Zpower. + +Theorem Zpower_plus : + forall n k1 k2, (0 <= k1)%Z -> (0 <= k2)%Z -> + Zpower n (k1 + k2) = (Zpower n k1 * Zpower n k2)%Z. +Proof. +intros n k1 k2 H1 H2. +now apply Zpower_exp ; apply Zle_ge. +Qed. + +Theorem Zpower_Zpower_nat : + forall b e, (0 <= e)%Z -> + Zpower b e = Zpower_nat b (Zabs_nat e). +Proof. +intros b [|e|e] He. +apply refl_equal. +apply Zpower_pos_nat. +elim He. +apply refl_equal. +Qed. + +Theorem Zpower_nat_S : + forall b e, + Zpower_nat b (S e) = (b * Zpower_nat b e)%Z. +Proof. +intros b e. +rewrite (Zpower_nat_is_exp 1 e). +apply (f_equal (fun x => x * _)%Z). +apply Zmult_1_r. +Qed. + +Theorem Zpower_pos_gt_0 : + forall b p, (0 < b)%Z -> + (0 < Zpower_pos b p)%Z. +Proof. +intros b p Hb. +rewrite Zpower_pos_nat. +induction (nat_of_P p). +easy. +rewrite Zpower_nat_S. +now apply Zmult_lt_0_compat. +Qed. + +Theorem Zeven_Zpower : + forall b e, (0 < e)%Z -> + Zeven (Zpower b e) = Zeven b. +Proof. +intros b e He. +case_eq (Zeven b) ; intros Hb. +(* b even *) +replace e with (e - 1 + 1)%Z by ring. +rewrite Zpower_exp. +rewrite Zeven_mult. +replace (Zeven (b ^ 1)) with true. +apply Bool.orb_true_r. +unfold Zpower, Zpower_pos. simpl. +now rewrite Zmult_1_r. +omega. +discriminate. +(* b odd *) +rewrite Zpower_Zpower_nat. +induction (Zabs_nat e). +easy. +unfold Zpower_nat. simpl. +rewrite Zeven_mult. +now rewrite Hb. +now apply Zlt_le_weak. +Qed. + +Theorem Zeven_Zpower_odd : + forall b e, (0 <= e)%Z -> Zeven b = false -> + Zeven (Zpower b e) = false. +Proof. +intros b e He Hb. +destruct (Z_le_lt_eq_dec _ _ He) as [He'|He']. +rewrite <- Hb. +now apply Zeven_Zpower. +now rewrite <- He'. +Qed. + +(** The radix must be greater than 1 *) +Record radix := { radix_val :> Z ; radix_prop : Zle_bool 2 radix_val = true }. + +Theorem radix_val_inj : + forall r1 r2, radix_val r1 = radix_val r2 -> r1 = r2. +Proof. +intros (r1, H1) (r2, H2) H. +simpl in H. +revert H1. +rewrite H. +intros H1. +apply f_equal. +apply eqbool_irrelevance. +Qed. + +Variable r : radix. + +Theorem radix_gt_0 : (0 < r)%Z. +Proof. +apply Zlt_le_trans with 2%Z. +easy. +apply Zle_bool_imp_le. +apply r. +Qed. + +Theorem radix_gt_1 : (1 < r)%Z. +Proof. +destruct r as (v, Hr). simpl. +apply Zlt_le_trans with 2%Z. +easy. +now apply Zle_bool_imp_le. +Qed. + +Theorem Zpower_gt_1 : + forall p, + (0 < p)%Z -> + (1 < Zpower r p)%Z. +Proof. +intros [|p|p] Hp ; try easy. +simpl. +rewrite Zpower_pos_nat. +generalize (lt_O_nat_of_P p). +induction (nat_of_P p). +easy. +intros _. +rewrite Zpower_nat_S. +assert (0 < Zpower_nat r n)%Z. +clear. +induction n. +easy. +rewrite Zpower_nat_S. +apply Zmult_lt_0_compat with (2 := IHn). +apply radix_gt_0. +apply Zle_lt_trans with (1 * Zpower_nat r n)%Z. +rewrite Zmult_1_l. +now apply (Zlt_le_succ 0). +apply Zmult_lt_compat_r with (1 := H). +apply radix_gt_1. +Qed. + +Theorem Zpower_gt_0 : + forall p, + (0 <= p)%Z -> + (0 < Zpower r p)%Z. +Proof. +intros p Hp. +rewrite Zpower_Zpower_nat with (1 := Hp). +induction (Zabs_nat p). +easy. +rewrite Zpower_nat_S. +apply Zmult_lt_0_compat with (2 := IHn). +apply radix_gt_0. +Qed. + +Theorem Zpower_ge_0 : + forall e, + (0 <= Zpower r e)%Z. +Proof. +intros [|e|e] ; try easy. +apply Zlt_le_weak. +now apply Zpower_gt_0. +Qed. + +Theorem Zpower_le : + forall e1 e2, (e1 <= e2)%Z -> + (Zpower r e1 <= Zpower r e2)%Z. +Proof. +intros e1 e2 He. +destruct (Zle_or_lt 0 e1)%Z as [H1|H1]. +replace e2 with (e2 - e1 + e1)%Z by ring. +rewrite Zpower_plus with (2 := H1). +rewrite <- (Zmult_1_l (r ^ e1)) at 1. +apply Zmult_le_compat_r. +apply (Zlt_le_succ 0). +apply Zpower_gt_0. +now apply Zle_minus_le_0. +apply Zpower_ge_0. +now apply Zle_minus_le_0. +clear He. +destruct e1 as [|e1|e1] ; try easy. +apply Zpower_ge_0. +Qed. + +Theorem Zpower_lt : + forall e1 e2, (0 <= e2)%Z -> (e1 < e2)%Z -> + (Zpower r e1 < Zpower r e2)%Z. +Proof. +intros e1 e2 He2 He. +destruct (Zle_or_lt 0 e1)%Z as [H1|H1]. +replace e2 with (e2 - e1 + e1)%Z by ring. +rewrite Zpower_plus with (2 := H1). +rewrite Zmult_comm. +rewrite <- (Zmult_1_r (r ^ e1)) at 1. +apply Zmult_lt_compat2. +split. +now apply Zpower_gt_0. +apply Zle_refl. +split. +easy. +apply Zpower_gt_1. +clear -He ; omega. +apply Zle_minus_le_0. +now apply Zlt_le_weak. +revert H1. +clear -He2. +destruct e1 ; try easy. +intros _. +now apply Zpower_gt_0. +Qed. + +Theorem Zpower_lt_Zpower : + forall e1 e2, + (Zpower r (e1 - 1) < Zpower r e2)%Z -> + (e1 <= e2)%Z. +Proof. +intros e1 e2 He. +apply Znot_gt_le. +intros H. +apply Zlt_not_le with (1 := He). +apply Zpower_le. +clear -H ; omega. +Qed. + +End Zpower. + +Section Div_Mod. + +Theorem Zmod_mod_mult : + forall n a b, (0 < a)%Z -> (0 <= b)%Z -> + Zmod (Zmod n (a * b)) b = Zmod n b. +Proof. +intros n a [|b|b] Ha Hb. +now rewrite 2!Zmod_0_r. +rewrite (Zmod_eq n (a * Zpos b)). +rewrite Zmult_assoc. +unfold Zminus. +rewrite Zopp_mult_distr_l. +apply Z_mod_plus. +easy. +apply Zmult_gt_0_compat. +now apply Zlt_gt. +easy. +now elim Hb. +Qed. + +Theorem ZOmod_eq : + forall a b, + ZOmod a b = (a - ZOdiv a b * b)%Z. +Proof. +intros a b. +rewrite (ZO_div_mod_eq a b) at 2. +ring. +Qed. + +Theorem ZOmod_mod_mult : + forall n a b, + ZOmod (ZOmod n (a * b)) b = ZOmod n b. +Proof. +intros n a b. +assert (ZOmod n (a * b) = n + - (ZOdiv n (a * b) * a) * b)%Z. +rewrite <- Zopp_mult_distr_l. +rewrite <- Zmult_assoc. +apply ZOmod_eq. +rewrite H. +apply ZO_mod_plus. +rewrite <- H. +apply ZOmod_sgn2. +Qed. + +Theorem Zdiv_mod_mult : + forall n a b, (0 <= a)%Z -> (0 <= b)%Z -> + (Zdiv (Zmod n (a * b)) a) = Zmod (Zdiv n a) b. +Proof. +intros n a b Ha Hb. +destruct (Zle_lt_or_eq _ _ Ha) as [Ha'|Ha']. +destruct (Zle_lt_or_eq _ _ Hb) as [Hb'|Hb']. +rewrite (Zmod_eq n (a * b)). +rewrite (Zmult_comm a b) at 2. +rewrite Zmult_assoc. +unfold Zminus. +rewrite Zopp_mult_distr_l. +rewrite Z_div_plus by now apply Zlt_gt. +rewrite <- Zdiv_Zdiv by easy. +apply sym_eq. +apply Zmod_eq. +now apply Zlt_gt. +now apply Zmult_gt_0_compat ; apply Zlt_gt. +rewrite <- Hb'. +rewrite Zmult_0_r, 2!Zmod_0_r. +apply Zdiv_0_l. +rewrite <- Ha'. +now rewrite 2!Zdiv_0_r, Zmod_0_l. +Qed. + +Theorem ZOdiv_mod_mult : + forall n a b, + (ZOdiv (ZOmod n (a * b)) a) = ZOmod (ZOdiv n a) b. +Proof. +intros n a b. +destruct (Z_eq_dec a 0) as [Za|Za]. +rewrite Za. +now rewrite 2!ZOdiv_0_r, ZOmod_0_l. +assert (ZOmod n (a * b) = n + - (ZOdiv (ZOdiv n a) b * b) * a)%Z. +rewrite (ZOmod_eq n (a * b)) at 1. +rewrite ZOdiv_ZOdiv. +ring. +rewrite H. +rewrite ZO_div_plus with (2 := Za). +apply sym_eq. +apply ZOmod_eq. +rewrite <- H. +apply ZOmod_sgn2. +Qed. + +Theorem ZOdiv_small_abs : + forall a b, + (Zabs a < b)%Z -> ZOdiv a b = Z0. +Proof. +intros a b Ha. +destruct (Zle_or_lt 0 a) as [H|H]. +apply ZOdiv_small. +split. +exact H. +now rewrite Zabs_eq in Ha. +apply Zopp_inj. +rewrite <- ZOdiv_opp_l, Zopp_0. +apply ZOdiv_small. +generalize (Zabs_non_eq a). +omega. +Qed. + +Theorem ZOmod_small_abs : + forall a b, + (Zabs a < b)%Z -> ZOmod a b = a. +Proof. +intros a b Ha. +destruct (Zle_or_lt 0 a) as [H|H]. +apply ZOmod_small. +split. +exact H. +now rewrite Zabs_eq in Ha. +apply Zopp_inj. +rewrite <- ZOmod_opp_l. +apply ZOmod_small. +generalize (Zabs_non_eq a). +omega. +Qed. + +Theorem ZOdiv_plus : + forall a b c, (0 <= a * b)%Z -> + (ZOdiv (a + b) c = ZOdiv a c + ZOdiv b c + ZOdiv (ZOmod a c + ZOmod b c) c)%Z. +Proof. +intros a b c Hab. +destruct (Z_eq_dec c 0) as [Zc|Zc]. +now rewrite Zc, 4!ZOdiv_0_r. +apply Zmult_reg_r with (1 := Zc). +rewrite 2!Zmult_plus_distr_l. +assert (forall d, ZOdiv d c * c = d - ZOmod d c)%Z. +intros d. +rewrite ZOmod_eq. +ring. +rewrite 4!H. +rewrite <- ZOplus_mod with (1 := Hab). +ring. +Qed. + +End Div_Mod. + +Section Same_sign. + +Theorem Zsame_sign_trans : + forall v u w, v <> Z0 -> + (0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z. +Proof. +intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now elim Zv. +Qed. + +Theorem Zsame_sign_trans_weak : + forall v u w, (v = Z0 -> w = Z0) -> + (0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z. +Proof. +intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now discriminate Zv. +Qed. + +Theorem Zsame_sign_imp : + forall u v, + (0 < u -> 0 <= v)%Z -> + (0 < -u -> 0 <= -v)%Z -> + (0 <= u * v)%Z. +Proof. +intros [|u|u] v Hp Hn. +easy. +apply Zmult_le_0_compat. +easy. +now apply Hp. +replace (Zneg u * v)%Z with (Zpos u * (-v))%Z. +apply Zmult_le_0_compat. +easy. +now apply Hn. +rewrite <- Zopp_mult_distr_r. +apply Zopp_mult_distr_l. +Qed. + +Theorem Zsame_sign_odiv : + forall u v, (0 <= v)%Z -> + (0 <= u * ZOdiv u v)%Z. +Proof. +intros u v Hv. +apply Zsame_sign_imp ; intros Hu. +apply ZO_div_pos with (2 := Hv). +now apply Zlt_le_weak. +rewrite <- ZOdiv_opp_l. +apply ZO_div_pos with (2 := Hv). +now apply Zlt_le_weak. +Qed. + +End Same_sign. + +(** Boolean comparisons *) + +Section Zeq_bool. + +Inductive Zeq_bool_prop (x y : Z) : bool -> Prop := + | Zeq_bool_true_ : x = y -> Zeq_bool_prop x y true + | Zeq_bool_false_ : x <> y -> Zeq_bool_prop x y false. + +Theorem Zeq_bool_spec : + forall x y, Zeq_bool_prop x y (Zeq_bool x y). +Proof. +intros x y. +generalize (Zeq_is_eq_bool x y). +case (Zeq_bool x y) ; intros (H1, H2) ; constructor. +now apply H2. +intros H. +specialize (H1 H). +discriminate H1. +Qed. + +Theorem Zeq_bool_true : + forall x y, x = y -> Zeq_bool x y = true. +Proof. +intros x y. +apply -> Zeq_is_eq_bool. +Qed. + +Theorem Zeq_bool_false : + forall x y, x <> y -> Zeq_bool x y = false. +Proof. +intros x y. +generalize (proj2 (Zeq_is_eq_bool x y)). +case Zeq_bool. +intros He Hn. +elim Hn. +now apply He. +now intros _ _. +Qed. + +End Zeq_bool. + +Section Zle_bool. + +Inductive Zle_bool_prop (x y : Z) : bool -> Prop := + | Zle_bool_true_ : (x <= y)%Z -> Zle_bool_prop x y true + | Zle_bool_false_ : (y < x)%Z -> Zle_bool_prop x y false. + +Theorem Zle_bool_spec : + forall x y, Zle_bool_prop x y (Zle_bool x y). +Proof. +intros x y. +generalize (Zle_is_le_bool x y). +case Zle_bool ; intros (H1, H2) ; constructor. +now apply H2. +destruct (Zle_or_lt x y) as [H|H]. +now specialize (H1 H). +exact H. +Qed. + +Theorem Zle_bool_true : + forall x y : Z, + (x <= y)%Z -> Zle_bool x y = true. +Proof. +intros x y. +apply (proj1 (Zle_is_le_bool x y)). +Qed. + +Theorem Zle_bool_false : + forall x y : Z, + (y < x)%Z -> Zle_bool x y = false. +Proof. +intros x y Hxy. +generalize (Zle_cases x y). +case Zle_bool ; intros H. +elim (Zlt_irrefl x). +now apply Zle_lt_trans with y. +apply refl_equal. +Qed. + +End Zle_bool. + +Section Zlt_bool. + +Inductive Zlt_bool_prop (x y : Z) : bool -> Prop := + | Zlt_bool_true_ : (x < y)%Z -> Zlt_bool_prop x y true + | Zlt_bool_false_ : (y <= x)%Z -> Zlt_bool_prop x y false. + +Theorem Zlt_bool_spec : + forall x y, Zlt_bool_prop x y (Zlt_bool x y). +Proof. +intros x y. +generalize (Zlt_is_lt_bool x y). +case Zlt_bool ; intros (H1, H2) ; constructor. +now apply H2. +destruct (Zle_or_lt y x) as [H|H]. +exact H. +now specialize (H1 H). +Qed. + +Theorem Zlt_bool_true : + forall x y : Z, + (x < y)%Z -> Zlt_bool x y = true. +Proof. +intros x y. +apply (proj1 (Zlt_is_lt_bool x y)). +Qed. + +Theorem Zlt_bool_false : + forall x y : Z, + (y <= x)%Z -> Zlt_bool x y = false. +Proof. +intros x y Hxy. +generalize (Zlt_cases x y). +case Zlt_bool ; intros H. +elim (Zlt_irrefl x). +now apply Zlt_le_trans with y. +apply refl_equal. +Qed. + +Theorem negb_Zle_bool : + forall x y : Z, + negb (Zle_bool x y) = Zlt_bool y x. +Proof. +intros x y. +case Zle_bool_spec ; intros H. +now rewrite Zlt_bool_false. +now rewrite Zlt_bool_true. +Qed. + +Theorem negb_Zlt_bool : + forall x y : Z, + negb (Zlt_bool x y) = Zle_bool y x. +Proof. +intros x y. +case Zlt_bool_spec ; intros H. +now rewrite Zle_bool_false. +now rewrite Zle_bool_true. +Qed. + +End Zlt_bool. + +Section Zcompare. + +Inductive Zcompare_prop (x y : Z) : comparison -> Prop := + | Zcompare_Lt_ : (x < y)%Z -> Zcompare_prop x y Lt + | Zcompare_Eq_ : x = y -> Zcompare_prop x y Eq + | Zcompare_Gt_ : (y < x)%Z -> Zcompare_prop x y Gt. + +Theorem Zcompare_spec : + forall x y, Zcompare_prop x y (Zcompare x y). +Proof. +intros x y. +destruct (Z_dec x y) as [[H|H]|H]. +generalize (Zlt_compare _ _ H). +case (Zcompare x y) ; try easy. +now constructor. +generalize (Zgt_compare _ _ H). +case (Zcompare x y) ; try easy. +constructor. +now apply Zgt_lt. +generalize (proj2 (Zcompare_Eq_iff_eq _ _) H). +case (Zcompare x y) ; try easy. +now constructor. +Qed. + +Theorem Zcompare_Lt : + forall x y, + (x < y)%Z -> Zcompare x y = Lt. +Proof. +easy. +Qed. + +Theorem Zcompare_Eq : + forall x y, + (x = y)%Z -> Zcompare x y = Eq. +Proof. +intros x y. +apply <- Zcompare_Eq_iff_eq. +Qed. + +Theorem Zcompare_Gt : + forall x y, + (y < x)%Z -> Zcompare x y = Gt. +Proof. +intros x y. +apply Zlt_gt. +Qed. + +End Zcompare. + +Section cond_Zopp. + +Definition cond_Zopp (b : bool) m := if b then Zopp m else m. + +Theorem abs_cond_Zopp : + forall b m, + Zabs (cond_Zopp b m) = Zabs m. +Proof. +intros [|] m. +apply Zabs_Zopp. +apply refl_equal. +Qed. + +Theorem cond_Zopp_Zlt_bool : + forall m, + cond_Zopp (Zlt_bool m 0) m = Zabs m. +Proof. +intros m. +apply sym_eq. +case Zlt_bool_spec ; intros Hm. +apply Zabs_non_eq. +now apply Zlt_le_weak. +now apply Zabs_eq. +Qed. + +End cond_Zopp. diff --git a/flocq/Core/Fcore_defs.v b/flocq/Core/Fcore_defs.v new file mode 100644 index 0000000..fda3a85 --- /dev/null +++ b/flocq/Core/Fcore_defs.v @@ -0,0 +1,101 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Basic definitions: float and rounding property *) +Require Import Fcore_Raux. + +Section Def. + +(** Definition of a floating-point number *) +Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }. + +Implicit Arguments Fnum [[beta]]. +Implicit Arguments Fexp [[beta]]. + +Variable beta : radix. + +Definition F2R (f : float beta) := + (Z2R (Fnum f) * bpow beta (Fexp f))%R. + +(** Requirements on a rounding mode *) +Definition round_pred_total (P : R -> R -> Prop) := + forall x, exists f, P x f. + +Definition round_pred_monotone (P : R -> R -> Prop) := + forall x y f g, P x f -> P y g -> (x <= y)%R -> (f <= g)%R. + +Definition round_pred (P : R -> R -> Prop) := + round_pred_total P /\ + round_pred_monotone P. + +End Def. + +Implicit Arguments Fnum [[beta]]. +Implicit Arguments Fexp [[beta]]. +Implicit Arguments F2R [[beta]]. + +Section RND. + +(** property of being a round toward -inf *) +Definition Rnd_DN_pt (F : R -> Prop) (x f : R) := + F f /\ (f <= x)%R /\ + forall g : R, F g -> (g <= x)%R -> (g <= f)%R. + +Definition Rnd_DN (F : R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_DN_pt F x (rnd x). + +(** property of being a round toward +inf *) +Definition Rnd_UP_pt (F : R -> Prop) (x f : R) := + F f /\ (x <= f)%R /\ + forall g : R, F g -> (x <= g)%R -> (f <= g)%R. + +Definition Rnd_UP (F : R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_UP_pt F x (rnd x). + +(** property of being a round toward zero *) +Definition Rnd_ZR_pt (F : R -> Prop) (x f : R) := + ( (0 <= x)%R -> Rnd_DN_pt F x f ) /\ + ( (x <= 0)%R -> Rnd_UP_pt F x f ). + +Definition Rnd_ZR (F : R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_ZR_pt F x (rnd x). + +(** property of being a round to nearest *) +Definition Rnd_N_pt (F : R -> Prop) (x f : R) := + F f /\ + forall g : R, F g -> (Rabs (f - x) <= Rabs (g - x))%R. + +Definition Rnd_N (F : R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_N_pt F x (rnd x). + +Definition Rnd_NG_pt (F : R -> Prop) (P : R -> R -> Prop) (x f : R) := + Rnd_N_pt F x f /\ + ( P x f \/ forall f2 : R, Rnd_N_pt F x f2 -> f2 = f ). + +Definition Rnd_NG (F : R -> Prop) (P : R -> R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_NG_pt F P x (rnd x). + +Definition Rnd_NA_pt (F : R -> Prop) (x f : R) := + Rnd_N_pt F x f /\ + forall f2 : R, Rnd_N_pt F x f2 -> (Rabs f2 <= Rabs f)%R. + +Definition Rnd_NA (F : R -> Prop) (rnd : R -> R) := + forall x : R, Rnd_NA_pt F x (rnd x). + +End RND. diff --git a/flocq/Core/Fcore_digits.v b/flocq/Core/Fcore_digits.v new file mode 100644 index 0000000..2ae076e --- /dev/null +++ b/flocq/Core/Fcore_digits.v @@ -0,0 +1,899 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2011 Sylvie Boldo +#<br /># +Copyright (C) 2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +Require Import ZArith. +Require Import Fcore_Zaux. +Require Import ZOdiv. + +(** Computes the number of bits (radix 2) of a positive integer. + +It serves as an upper bound on the number of digits to ensure termination. +*) + +Fixpoint digits2_Pnat (n : positive) : nat := + match n with + | xH => O + | xO p => S (digits2_Pnat p) + | xI p => S (digits2_Pnat p) + end. + +Theorem digits2_Pnat_correct : + forall n, + let d := digits2_Pnat n in + (Zpower_nat 2 d <= Zpos n < Zpower_nat 2 (S d))%Z. +Proof. +intros n d. unfold d. clear. +assert (Hp: forall m, (Zpower_nat 2 (S m) = 2 * Zpower_nat 2 m)%Z) by easy. +induction n ; simpl. +rewrite Zpos_xI, 2!Hp. +omega. +rewrite (Zpos_xO n), 2!Hp. +omega. +now split. +Qed. + +Section Fcore_digits. + +Variable beta : radix. + +Definition Zdigit n k := ZOmod (ZOdiv n (Zpower beta k)) beta. + +Theorem Zdigit_lt : + forall n k, + (k < 0)%Z -> + Zdigit n k = Z0. +Proof. +intros n [|k|k] Hk ; try easy. +now case n. +Qed. + +Theorem Zdigit_0 : + forall k, Zdigit 0 k = Z0. +Proof. +intros k. +unfold Zdigit. +rewrite ZOdiv_0_l. +apply ZOmod_0_l. +Qed. + +Theorem Zdigit_opp : + forall n k, + Zdigit (-n) k = Zopp (Zdigit n k). +Proof. +intros n k. +unfold Zdigit. +rewrite ZOdiv_opp_l. +apply ZOmod_opp_l. +Qed. + +Theorem Zdigit_ge_Zpower_pos : + forall e n, + (0 <= n < Zpower beta e)%Z -> + forall k, (e <= k)%Z -> Zdigit n k = Z0. +Proof. +intros e n Hn k Hk. +unfold Zdigit. +rewrite ZOdiv_small. +apply ZOmod_0_l. +split. +apply Hn. +apply Zlt_le_trans with (1 := proj2 Hn). +replace k with (e + (k - e))%Z by ring. +rewrite Zpower_plus. +rewrite <- (Zmult_1_r (beta ^ e)) at 1. +apply Zmult_le_compat_l. +apply (Zlt_le_succ 0). +apply Zpower_gt_0. +now apply Zle_minus_le_0. +apply Zlt_le_weak. +now apply Zle_lt_trans with n. +generalize (Zle_lt_trans _ _ _ (proj1 Hn) (proj2 Hn)). +clear. +now destruct e as [|e|e]. +now apply Zle_minus_le_0. +Qed. + +Theorem Zdigit_ge_Zpower : + forall e n, + (Zabs n < Zpower beta e)%Z -> + forall k, (e <= k)%Z -> Zdigit n k = Z0. +Proof. +intros e [|n|n] Hn k. +easy. +apply Zdigit_ge_Zpower_pos. +now split. +intros He. +change (Zneg n) with (Zopp (Zpos n)). +rewrite Zdigit_opp. +rewrite Zdigit_ge_Zpower_pos with (2 := He). +apply Zopp_0. +now split. +Qed. + +Theorem Zdigit_not_0_pos : + forall e n, (0 <= e)%Z -> + (Zpower beta e <= n < Zpower beta (e + 1))%Z -> + Zdigit n e <> Z0. +Proof. +intros e n He (Hn1,Hn2). +unfold Zdigit. +rewrite <- ZOdiv_mod_mult. +rewrite ZOmod_small. +intros H. +apply Zle_not_lt with (1 := Hn1). +rewrite (ZO_div_mod_eq n (beta ^ e)). +rewrite H, Zmult_0_r, Zplus_0_l. +apply ZOmod_lt_pos_pos. +apply Zle_trans with (2 := Hn1). +apply Zpower_ge_0. +now apply Zpower_gt_0. +split. +apply Zle_trans with (2 := Hn1). +apply Zpower_ge_0. +replace (beta ^ e * beta)%Z with (beta ^ (e + 1))%Z. +exact Hn2. +rewrite <- (Zmult_1_r beta) at 3. +now apply (Zpower_plus beta e 1). +Qed. + +Theorem Zdigit_not_0 : + forall e n, (0 <= e)%Z -> + (Zpower beta e <= Zabs n < Zpower beta (e + 1))%Z -> + Zdigit n e <> Z0. +Proof. +intros e n He Hn. +destruct (Zle_or_lt 0 n) as [Hn'|Hn']. +rewrite (Zabs_eq _ Hn') in Hn. +now apply Zdigit_not_0_pos. +intros H. +rewrite (Zabs_non_eq n) in Hn by now apply Zlt_le_weak. +apply (Zdigit_not_0_pos _ _ He Hn). +now rewrite Zdigit_opp, H. +Qed. + +Theorem Zdigit_mul_pow : + forall n k k', (0 <= k')%Z -> + Zdigit (n * Zpower beta k') k = Zdigit n (k - k'). +Proof. +intros n k k' Hk'. +destruct (Zle_or_lt k' k) as [H|H]. +revert k H. +pattern k' ; apply Zlt_0_ind with (2 := Hk'). +clear k' Hk'. +intros k' IHk' Hk' k H. +unfold Zdigit. +apply (f_equal (fun x => ZOmod x beta)). +pattern k at 1 ; replace k with (k - k' + k')%Z by ring. +rewrite Zpower_plus with (2 := Hk'). +apply ZOdiv_mult_cancel_r. +apply Zgt_not_eq. +now apply Zpower_gt_0. +now apply Zle_minus_le_0. +destruct (Zle_or_lt 0 k) as [H0|H0]. +rewrite (Zdigit_lt n) by omega. +unfold Zdigit. +replace k' with (k' - k + k)%Z by ring. +rewrite Zpower_plus with (2 := H0). +rewrite Zmult_assoc, ZO_div_mult. +replace (k' - k)%Z with (k' - k - 1 + 1)%Z by ring. +rewrite Zpower_exp by omega. +rewrite Zmult_assoc. +change (Zpower beta 1) with (beta * 1)%Z. +rewrite Zmult_1_r. +apply ZO_mod_mult. +apply Zgt_not_eq. +now apply Zpower_gt_0. +apply Zle_minus_le_0. +now apply Zlt_le_weak. +rewrite Zdigit_lt with (1 := H0). +apply sym_eq. +apply Zdigit_lt. +omega. +Qed. + +Theorem Zdigit_div_pow : + forall n k k', (0 <= k)%Z -> (0 <= k')%Z -> + Zdigit (ZOdiv n (Zpower beta k')) k = Zdigit n (k + k'). +Proof. +intros n k k' Hk Hk'. +unfold Zdigit. +rewrite ZOdiv_ZOdiv. +rewrite Zplus_comm. +now rewrite Zpower_plus. +Qed. + +Theorem Zdigit_mod_pow : + forall n k k', (k < k')%Z -> + Zdigit (ZOmod n (Zpower beta k')) k = Zdigit n k. +Proof. +intros n k k' Hk. +destruct (Zle_or_lt 0 k) as [H|H]. +unfold Zdigit. +rewrite <- 2!ZOdiv_mod_mult. +apply (f_equal (fun x => ZOdiv x (beta ^ k))). +replace k' with (k + 1 + (k' - (k + 1)))%Z by ring. +rewrite Zpower_exp by omega. +rewrite Zmult_comm. +rewrite Zpower_plus by easy. +change (Zpower beta 1) with (beta * 1)%Z. +rewrite Zmult_1_r. +apply ZOmod_mod_mult. +now rewrite 2!Zdigit_lt. +Qed. + +Theorem Zdigit_mod_pow_out : + forall n k k', (0 <= k' <= k)%Z -> + Zdigit (ZOmod n (Zpower beta k')) k = Z0. +Proof. +intros n k k' Hk. +unfold Zdigit. +rewrite ZOdiv_small_abs. +apply ZOmod_0_l. +apply Zlt_le_trans with (Zpower beta k'). +rewrite <- (Zabs_eq (beta ^ k')) at 2 by apply Zpower_ge_0. +apply ZOmod_lt. +apply Zgt_not_eq. +now apply Zpower_gt_0. +now apply Zpower_le. +Qed. + +Fixpoint Zsum_digit f k := + match k with + | O => Z0 + | S k => (Zsum_digit f k + f (Z_of_nat k) * Zpower beta (Z_of_nat k))%Z + end. + +Theorem Zsum_digit_digit : + forall n k, + Zsum_digit (Zdigit n) k = ZOmod n (Zpower beta (Z_of_nat k)). +Proof. +intros n. +induction k. +apply sym_eq. +apply ZOmod_1_r. +simpl Zsum_digit. +rewrite IHk. +unfold Zdigit. +rewrite <- ZOdiv_mod_mult. +rewrite <- (ZOmod_mod_mult n beta). +rewrite Zmult_comm. +replace (beta ^ Z_of_nat k * beta)%Z with (Zpower beta (Z_of_nat (S k))). +rewrite Zplus_comm, Zmult_comm. +apply sym_eq. +apply ZO_div_mod_eq. +rewrite inj_S. +rewrite <- (Zmult_1_r beta) at 3. +apply Zpower_plus. +apply Zle_0_nat. +easy. +Qed. + +Theorem Zpower_gt_id : + forall n, (n < Zpower beta n)%Z. +Proof. +intros [|n|n] ; try easy. +simpl. +rewrite Zpower_pos_nat. +rewrite Zpos_eq_Z_of_nat_o_nat_of_P. +induction (nat_of_P n). +easy. +rewrite inj_S. +change (Zpower_nat beta (S n0)) with (beta * Zpower_nat beta n0)%Z. +unfold Zsucc. +apply Zlt_le_trans with (beta * (Z_of_nat n0 + 1))%Z. +clear. +apply Zlt_0_minus_lt. +replace (beta * (Z_of_nat n0 + 1) - (Z_of_nat n0 + 1))%Z with ((beta - 1) * (Z_of_nat n0 + 1))%Z by ring. +apply Zmult_lt_0_compat. +cut (2 <= beta)%Z. omega. +apply Zle_bool_imp_le. +apply beta. +apply (Zle_lt_succ 0). +apply Zle_0_nat. +apply Zmult_le_compat_l. +now apply Zlt_le_succ. +apply Zle_trans with 2%Z. +easy. +apply Zle_bool_imp_le. +apply beta. +Qed. + +Theorem Zdigit_ext : + forall n1 n2, + (forall k, (0 <= k)%Z -> Zdigit n1 k = Zdigit n2 k) -> + n1 = n2. +Proof. +intros n1 n2 H. +rewrite <- (ZOmod_small_abs n1 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))). +rewrite <- (ZOmod_small_abs n2 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))) at 2. +replace (Zmax (Zabs n1) (Zabs n2)) with (Z_of_nat (Zabs_nat (Zmax (Zabs n1) (Zabs n2)))). +rewrite <- 2!Zsum_digit_digit. +induction (Zabs_nat (Zmax (Zabs n1) (Zabs n2))). +easy. +simpl. +rewrite H, IHn. +apply refl_equal. +apply Zle_0_nat. +rewrite inj_Zabs_nat. +apply Zabs_eq. +apply Zle_trans with (Zabs n1). +apply Zabs_pos. +apply Zle_max_l. +apply Zlt_le_trans with (Zpower beta (Zabs n2)). +apply Zpower_gt_id. +apply Zpower_le. +apply Zle_max_r. +apply Zlt_le_trans with (Zpower beta (Zabs n1)). +apply Zpower_gt_id. +apply Zpower_le. +apply Zle_max_l. +Qed. + +Theorem ZOmod_plus_pow_digit : + forall u v n, (0 <= u * v)%Z -> + (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) -> + ZOmod (u + v) (Zpower beta n) = (ZOmod u (Zpower beta n) + ZOmod v (Zpower beta n))%Z. +Proof. +intros u v n Huv Hd. +destruct (Zle_or_lt 0 n) as [Hn|Hn]. +rewrite ZOplus_mod with (1 := Huv). +apply ZOmod_small_abs. +generalize (Zle_refl n). +pattern n at -2 ; rewrite <- Zabs_eq with (1 := Hn). +rewrite <- (inj_Zabs_nat n). +induction (Zabs_nat n) as [|p IHp]. +now rewrite 2!ZOmod_1_r. +rewrite <- 2!Zsum_digit_digit. +simpl Zsum_digit. +rewrite inj_S. +intros Hn'. +replace (Zsum_digit (Zdigit u) p + Zdigit u (Z_of_nat p) * beta ^ Z_of_nat p + + (Zsum_digit (Zdigit v) p + Zdigit v (Z_of_nat p) * beta ^ Z_of_nat p))%Z with + (Zsum_digit (Zdigit u) p + Zsum_digit (Zdigit v) p + + (Zdigit u (Z_of_nat p) + Zdigit v (Z_of_nat p)) * beta ^ Z_of_nat p)%Z by ring. +apply (Zle_lt_trans _ _ _ (Zabs_triangle _ _)). +replace (beta ^ Zsucc (Z_of_nat p))%Z with (beta ^ Z_of_nat p + (beta - 1) * beta ^ Z_of_nat p)%Z. +apply Zplus_lt_le_compat. +rewrite 2!Zsum_digit_digit. +apply IHp. +now apply Zle_succ_le. +rewrite Zabs_Zmult. +rewrite (Zabs_eq (beta ^ Z_of_nat p)) by apply Zpower_ge_0. +apply Zmult_le_compat_r. 2: apply Zpower_ge_0. +apply Zlt_succ_le. +assert (forall u v, Zabs (Zdigit u v) < Zsucc (beta - 1))%Z. +clear ; intros n k. +assert (0 < beta)%Z. +apply Zlt_le_trans with 2%Z. +apply refl_equal. +apply Zle_bool_imp_le. +apply beta. +replace (Zsucc (beta - 1)) with (Zabs beta). +apply ZOmod_lt. +now apply Zgt_not_eq. +rewrite Zabs_eq. +apply Zsucc_pred. +now apply Zlt_le_weak. +assert (0 <= Z_of_nat p < n)%Z. +split. +apply Zle_0_nat. +apply Zgt_lt. +now apply Zle_succ_gt. +destruct (Hd (Z_of_nat p) H0) as [K|K] ; rewrite K. +apply H. +rewrite Zplus_0_r. +apply H. +unfold Zsucc. +ring_simplify. +rewrite Zpower_plus. +change (beta ^1)%Z with (beta * 1)%Z. +now rewrite Zmult_1_r. +apply Zle_0_nat. +easy. +destruct n as [|n|n] ; try easy. +now rewrite 3!ZOmod_0_r. +Qed. + +Theorem ZOdiv_plus_pow_digit : + forall u v n, (0 <= u * v)%Z -> + (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) -> + ZOdiv (u + v) (Zpower beta n) = (ZOdiv u (Zpower beta n) + ZOdiv v (Zpower beta n))%Z. +Proof. +intros u v n Huv Hd. +rewrite <- (Zplus_0_r (ZOdiv u (Zpower beta n) + ZOdiv v (Zpower beta n))). +rewrite ZOdiv_plus with (1 := Huv). +rewrite <- ZOmod_plus_pow_digit by assumption. +apply f_equal. +destruct (Zle_or_lt 0 n) as [Hn|Hn]. +apply ZOdiv_small_abs. +rewrite <- Zabs_eq. +apply ZOmod_lt. +apply Zgt_not_eq. +now apply Zpower_gt_0. +apply Zpower_ge_0. +clear -Hn. +destruct n as [|n|n] ; try easy. +apply ZOdiv_0_r. +Qed. + +Theorem Zdigit_plus : + forall u v, (0 <= u * v)%Z -> + (forall k, (0 <= k)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) -> + forall k, + Zdigit (u + v) k = (Zdigit u k + Zdigit v k)%Z. +Proof. +intros u v Huv Hd k. +destruct (Zle_or_lt 0 k) as [Hk|Hk]. +unfold Zdigit. +rewrite ZOdiv_plus_pow_digit with (1 := Huv). +rewrite <- (Zmult_1_r beta) at 3 5 7. +change (beta * 1)%Z with (beta ^1)%Z. +apply ZOmod_plus_pow_digit. +apply Zsame_sign_trans_weak with v. +intros Zv ; rewrite Zv. +apply ZOdiv_0_l. +rewrite Zmult_comm. +apply Zsame_sign_trans_weak with u. +intros Zu ; rewrite Zu. +apply ZOdiv_0_l. +now rewrite Zmult_comm. +apply Zsame_sign_odiv. +apply Zpower_ge_0. +apply Zsame_sign_odiv. +apply Zpower_ge_0. +intros k' (Hk1,Hk2). +rewrite 2!Zdigit_div_pow by assumption. +apply Hd. +now apply Zplus_le_0_compat. +intros k' (Hk1,Hk2). +now apply Hd. +now rewrite 3!Zdigit_lt. +Qed. + +Definition Zscale n k := + if Zle_bool 0 k then (n * Zpower beta k)%Z else ZOdiv n (Zpower beta (-k)). + +Theorem Zdigit_scale : + forall n k k', (0 <= k')%Z -> + Zdigit (Zscale n k) k' = Zdigit n (k' - k). +Proof. +intros n k k' Hk'. +unfold Zscale. +case Zle_bool_spec ; intros Hk. +now apply Zdigit_mul_pow. +apply Zdigit_div_pow with (1 := Hk'). +omega. +Qed. + +Theorem Zscale_0 : + forall k, + Zscale 0 k = Z0. +Proof. +intros k. +unfold Zscale. +case Zle_bool. +apply Zmult_0_l. +apply ZOdiv_0_l. +Qed. + +Theorem Zsame_sign_scale : + forall n k, + (0 <= n * Zscale n k)%Z. +Proof. +intros n k. +unfold Zscale. +case Zle_bool_spec ; intros Hk. +rewrite Zmult_assoc. +apply Zmult_le_0_compat. +apply Zsame_sign_imp ; apply Zlt_le_weak. +apply Zpower_ge_0. +apply Zsame_sign_odiv. +apply Zpower_ge_0. +Qed. + +Theorem Zscale_mul_pow : + forall n k k', (0 <= k)%Z -> + Zscale (n * Zpower beta k) k' = Zscale n (k + k'). +Proof. +intros n k k' Hk. +unfold Zscale. +case Zle_bool_spec ; intros Hk'. +rewrite Zle_bool_true. +rewrite <- Zmult_assoc. +apply f_equal. +now rewrite Zpower_plus. +now apply Zplus_le_0_compat. +case Zle_bool_spec ; intros Hk''. +pattern k at 1 ; replace k with (k + k' + -k')%Z by ring. +assert (0 <= -k')%Z by omega. +rewrite Zpower_plus by easy. +rewrite Zmult_assoc, ZO_div_mult. +apply refl_equal. +apply Zgt_not_eq. +now apply Zpower_gt_0. +replace (-k')%Z with (-(k+k') + k)%Z by ring. +rewrite Zpower_plus with (2 := Hk). +apply ZOdiv_mult_cancel_r. +apply Zgt_not_eq. +now apply Zpower_gt_0. +omega. +Qed. + +Theorem Zscale_scale : + forall n k k', (0 <= k)%Z -> + Zscale (Zscale n k) k' = Zscale n (k + k'). +Proof. +intros n k k' Hk. +unfold Zscale at 2. +rewrite Zle_bool_true with (1 := Hk). +now apply Zscale_mul_pow. +Qed. + +Definition Zslice n k1 k2 := + if Zle_bool 0 k2 then ZOmod (Zscale n (-k1)) (Zpower beta k2) else Z0. + +Theorem Zdigit_slice : + forall n k1 k2 k, (0 <= k < k2)%Z -> + Zdigit (Zslice n k1 k2) k = Zdigit n (k1 + k). +Proof. +intros n k1 k2 k Hk. +unfold Zslice. +rewrite Zle_bool_true. +rewrite Zdigit_mod_pow by apply Hk. +rewrite Zdigit_scale by apply Hk. +unfold Zminus. +now rewrite Zopp_involutive, Zplus_comm. +omega. +Qed. + +Theorem Zdigit_slice_out : + forall n k1 k2 k, (k2 <= k)%Z -> + Zdigit (Zslice n k1 k2) k = Z0. +Proof. +intros n k1 k2 k Hk. +unfold Zslice. +case Zle_bool_spec ; intros Hk2. +apply Zdigit_mod_pow_out. +now split. +apply Zdigit_0. +Qed. + +Theorem Zslice_0 : + forall k k', + Zslice 0 k k' = Z0. +Proof. +intros k k'. +unfold Zslice. +case Zle_bool. +rewrite Zscale_0. +apply ZOmod_0_l. +apply refl_equal. +Qed. + +Theorem Zsame_sign_slice : + forall n k k', + (0 <= n * Zslice n k k')%Z. +Proof. +intros n k k'. +unfold Zslice. +case Zle_bool. +apply Zsame_sign_trans_weak with (Zscale n (-k)). +intros H ; rewrite H. +apply ZOmod_0_l. +apply Zsame_sign_scale. +rewrite Zmult_comm. +apply ZOmod_sgn2. +now rewrite Zmult_0_r. +Qed. + +Theorem Zslice_slice : + forall n k1 k2 k1' k2', (0 <= k1' <= k2)%Z -> + Zslice (Zslice n k1 k2) k1' k2' = Zslice n (k1 + k1') (Zmin (k2 - k1') k2'). +Proof. +intros n k1 k2 k1' k2' Hk1'. +destruct (Zle_or_lt 0 k2') as [Hk2'|Hk2']. +apply Zdigit_ext. +intros k Hk. +destruct (Zle_or_lt (Zmin (k2 - k1') k2') k) as [Hk'|Hk']. +rewrite (Zdigit_slice_out n (k1 + k1')) with (1 := Hk'). +destruct (Zle_or_lt k2' k) as [Hk''|Hk'']. +now apply Zdigit_slice_out. +rewrite Zdigit_slice by now split. +apply Zdigit_slice_out. +zify ; omega. +rewrite Zdigit_slice by (zify ; omega). +rewrite (Zdigit_slice n (k1 + k1')) by now split. +rewrite Zdigit_slice. +now rewrite Zplus_assoc. +zify ; omega. +unfold Zslice. +rewrite Zmin_r. +now rewrite Zle_bool_false. +omega. +Qed. + +Theorem Zslice_mul_pow : + forall n k k1 k2, (0 <= k)%Z -> + Zslice (n * Zpower beta k) k1 k2 = Zslice n (k1 - k) k2. +Proof. +intros n k k1 k2 Hk. +unfold Zslice. +case Zle_bool_spec ; intros Hk2. +2: apply refl_equal. +rewrite Zscale_mul_pow with (1 := Hk). +now replace (- (k1 - k))%Z with (k + -k1)%Z by ring. +Qed. + +Theorem Zslice_div_pow : + forall n k k1 k2, (0 <= k)%Z -> (0 <= k1)%Z -> + Zslice (ZOdiv n (Zpower beta k)) k1 k2 = Zslice n (k1 + k) k2. +Proof. +intros n k k1 k2 Hk Hk1. +unfold Zslice. +case Zle_bool_spec ; intros Hk2. +2: apply refl_equal. +apply (f_equal (fun x => ZOmod x (beta ^ k2))). +unfold Zscale. +case Zle_bool_spec ; intros Hk1'. +replace k1 with Z0 by omega. +case Zle_bool_spec ; intros Hk'. +replace k with Z0 by omega. +simpl. +now rewrite ZOdiv_1_r. +rewrite Zopp_involutive. +apply Zmult_1_r. +rewrite Zle_bool_false by omega. +rewrite 2!Zopp_involutive, Zplus_comm. +rewrite Zpower_plus by assumption. +apply ZOdiv_ZOdiv. +Qed. + +Theorem Zslice_scale : + forall n k k1 k2, (0 <= k1)%Z -> + Zslice (Zscale n k) k1 k2 = Zslice n (k1 - k) k2. +Proof. +intros n k k1 k2 Hk1. +unfold Zscale. +case Zle_bool_spec; intros Hk. +now apply Zslice_mul_pow. +apply Zslice_div_pow with (2 := Hk1). +omega. +Qed. + +Theorem Zslice_div_pow_scale : + forall n k k1 k2, (0 <= k)%Z -> + Zslice (ZOdiv n (Zpower beta k)) k1 k2 = Zscale (Zslice n k (k1 + k2)) (-k1). +Proof. +intros n k k1 k2 Hk. +apply Zdigit_ext. +intros k' Hk'. +rewrite Zdigit_scale with (1 := Hk'). +unfold Zminus. +rewrite (Zplus_comm k'), Zopp_involutive. +destruct (Zle_or_lt k2 k') as [Hk2|Hk2]. +rewrite Zdigit_slice_out with (1 := Hk2). +apply sym_eq. +apply Zdigit_slice_out. +now apply Zplus_le_compat_l. +rewrite Zdigit_slice by now split. +destruct (Zle_or_lt 0 (k1 + k')) as [Hk1'|Hk1']. +rewrite Zdigit_slice by omega. +rewrite Zdigit_div_pow by assumption. +apply f_equal. +ring. +now rewrite 2!Zdigit_lt. +Qed. + +Theorem Zplus_slice : + forall n k l1 l2, (0 <= l1)%Z -> (0 <= l2)%Z -> + (Zslice n k l1 + Zscale (Zslice n (k + l1) l2) l1)%Z = Zslice n k (l1 + l2). +Proof. +intros n k1 l1 l2 Hl1 Hl2. +clear Hl1. +apply Zdigit_ext. +intros k Hk. +rewrite Zdigit_plus. +rewrite Zdigit_scale with (1 := Hk). +destruct (Zle_or_lt (l1 + l2) k) as [Hk2|Hk2]. +rewrite Zdigit_slice_out with (1 := Hk2). +now rewrite 2!Zdigit_slice_out by omega. +rewrite Zdigit_slice with (1 := conj Hk Hk2). +destruct (Zle_or_lt l1 k) as [Hk1|Hk1]. +rewrite Zdigit_slice_out with (1 := Hk1). +rewrite Zdigit_slice by omega. +simpl ; apply f_equal. +ring. +rewrite Zdigit_slice with (1 := conj Hk Hk1). +rewrite (Zdigit_lt _ (k - l1)) by omega. +apply Zplus_0_r. +rewrite Zmult_comm. +apply Zsame_sign_trans_weak with n. +intros H ; rewrite H. +apply Zslice_0. +rewrite Zmult_comm. +apply Zsame_sign_trans_weak with (Zslice n (k1 + l1) l2). +intros H ; rewrite H. +apply Zscale_0. +apply Zsame_sign_slice. +apply Zsame_sign_scale. +apply Zsame_sign_slice. +clear k Hk ; intros k Hk. +rewrite Zdigit_scale with (1 := Hk). +destruct (Zle_or_lt l1 k) as [Hk1|Hk1]. +left. +now apply Zdigit_slice_out. +right. +apply Zdigit_lt. +omega. +Qed. + +Section digits_aux. + +Variable p : Z. +Hypothesis Hp : (0 <= p)%Z. + +Fixpoint Zdigits_aux (nb pow : Z) (n : nat) { struct n } : Z := + match n with + | O => nb + | S n => if Zlt_bool p pow then nb else Zdigits_aux (nb + 1) (Zmult beta pow) n + end. + +End digits_aux. +(** Number of digits of an integer *) +Definition Zdigits n := + match n with + | Z0 => Z0 + | Zneg p => Zdigits_aux (Zpos p) 1 beta (digits2_Pnat p) + | Zpos p => Zdigits_aux n 1 beta (digits2_Pnat p) + end. + +Theorem Zdigits_correct : + forall n, + (Zpower beta (Zdigits n - 1) <= Zabs n < Zpower beta (Zdigits n))%Z. +Proof. +cut (forall p, Zpower beta (Zdigits (Zpos p) - 1) <= Zpos p < Zpower beta (Zdigits (Zpos p)))%Z. +intros H [|n|n] ; try exact (H n). +now split. +intros n. +simpl. +(* *) +assert (U: (Zpos n < Zpower beta (Z_of_nat (S (digits2_Pnat n))))%Z). +apply Zlt_le_trans with (1 := proj2 (digits2_Pnat_correct n)). +rewrite Zpower_Zpower_nat. +rewrite Zabs_nat_Z_of_nat. +induction (S (digits2_Pnat n)). +easy. +rewrite 2!(Zpower_nat_S). +apply Zmult_le_compat with (2 := IHn0). +apply Zle_bool_imp_le. +apply beta. +easy. +rewrite <- (Zabs_nat_Z_of_nat n0). +rewrite <- Zpower_Zpower_nat. +apply (Zpower_ge_0 (Build_radix 2 (refl_equal true))). +apply Zle_0_nat. +apply Zle_0_nat. +(* *) +revert U. +rewrite inj_S. +unfold Zsucc. +generalize (digits2_Pnat n). +intros u U. +pattern (radix_val beta) at 2 4 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r. +assert (V: (Zpower beta (1 - 1) <= Zpos n)%Z). +now apply (Zlt_le_succ 0). +generalize (conj V U). +clear. +generalize (Zle_refl 1). +generalize 1%Z at 2 3 5 6 7 9 10. +(* *) +induction u. +easy. +rewrite inj_S; unfold Zsucc. +simpl Zdigits_aux. +intros v Hv U. +case Zlt_bool_spec ; intros K. +now split. +pattern (radix_val beta) at 2 5 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r. +rewrite <- Zpower_plus. +rewrite Zplus_comm. +apply IHu. +clear -Hv ; omega. +split. +now ring_simplify (1 + v - 1)%Z. +now rewrite Zplus_assoc. +easy. +apply Zle_succ_le with (1 := Hv). +Qed. + +Theorem Zdigits_abs : + forall n, Zdigits (Zabs n) = Zdigits n. +Proof. +now intros [|n|n]. +Qed. + +Theorem Zdigits_gt_0 : + forall n, n <> Z0 -> (0 < Zdigits n)%Z. +Proof. +intros n Zn. +rewrite <- (Zdigits_abs n). +assert (Hn: (0 < Zabs n)%Z). +destruct n ; try easy. +now elim Zn. +destruct (Zabs n) as [|p|p] ; try easy ; clear. +simpl. +generalize 1%Z (radix_val beta) (refl_equal Lt : (0 < 1)%Z). +induction (digits2_Pnat p). +easy. +simpl. +intros. +case Zlt_bool. +exact H. +apply IHn. +now apply Zlt_lt_succ. +Qed. + +Theorem Zdigits_ge_0 : + forall n, (0 <= Zdigits n)%Z. +Proof. +intros n. +destruct (Z_eq_dec n 0) as [H|H]. +now rewrite H. +apply Zlt_le_weak. +now apply Zdigits_gt_0. +Qed. + +Theorem Zdigit_out : + forall n k, (Zdigits n <= k)%Z -> + Zdigit n k = Z0. +Proof. +intros n k Hk. +apply Zdigit_ge_Zpower with (2 := Hk). +apply Zdigits_correct. +Qed. + +Theorem Zdigit_digits : + forall n, n <> Z0 -> + Zdigit n (Zdigits n - 1) <> Z0. +Proof. +intros n Zn. +apply Zdigit_not_0. +apply Zlt_0_le_0_pred. +now apply Zdigits_gt_0. +ring_simplify (Zdigits n - 1 + 1)%Z. +apply Zdigits_correct. +Qed. + +Theorem Zdigits_slice : + forall n k l, (0 <= l)%Z -> + (Zdigits (Zslice n k l) <= l)%Z. +Proof. +intros n k l Hl. +unfold Zslice. +rewrite Zle_bool_true with (1 := Hl). +destruct (Zdigits_correct (ZOmod (Zscale n (- k)) (Zpower beta l))) as (H1,H2). +apply Zpower_lt_Zpower with beta. +apply Zle_lt_trans with (1 := H1). +rewrite <- (Zabs_eq (beta ^ l)) at 2 by apply Zpower_ge_0. +apply ZOmod_lt. +apply Zgt_not_eq. +now apply Zpower_gt_0. +Qed. + +End Fcore_digits. diff --git a/flocq/Core/Fcore_float_prop.v b/flocq/Core/Fcore_float_prop.v new file mode 100644 index 0000000..746f7a6 --- /dev/null +++ b/flocq/Core/Fcore_float_prop.v @@ -0,0 +1,488 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Basic properties of floating-point formats: lemmas about mantissa, exponent... *) +Require Import Fcore_Raux. +Require Import Fcore_defs. + +Section Float_prop. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Theorem Rcompare_F2R : + forall e m1 m2 : Z, + Rcompare (F2R (Float beta m1 e)) (F2R (Float beta m2 e)) = Zcompare m1 m2. +Proof. +intros e m1 m2. +unfold F2R. simpl. +rewrite Rcompare_mult_r. +apply Rcompare_Z2R. +apply bpow_gt_0. +Qed. + +(** Basic facts *) +Theorem F2R_le_reg : + forall e m1 m2 : Z, + (F2R (Float beta m1 e) <= F2R (Float beta m2 e))%R -> + (m1 <= m2)%Z. +Proof. +intros e m1 m2 H. +apply le_Z2R. +apply Rmult_le_reg_r with (bpow e). +apply bpow_gt_0. +exact H. +Qed. + +Theorem F2R_le_compat : + forall m1 m2 e : Z, + (m1 <= m2)%Z -> + (F2R (Float beta m1 e) <= F2R (Float beta m2 e))%R. +Proof. +intros m1 m2 e H. +unfold F2R. simpl. +apply Rmult_le_compat_r. +apply bpow_ge_0. +now apply Z2R_le. +Qed. + +Theorem F2R_lt_reg : + forall e m1 m2 : Z, + (F2R (Float beta m1 e) < F2R (Float beta m2 e))%R -> + (m1 < m2)%Z. +Proof. +intros e m1 m2 H. +apply lt_Z2R. +apply Rmult_lt_reg_r with (bpow e). +apply bpow_gt_0. +exact H. +Qed. + +Theorem F2R_lt_compat : + forall e m1 m2 : Z, + (m1 < m2)%Z -> + (F2R (Float beta m1 e) < F2R (Float beta m2 e))%R. +Proof. +intros e m1 m2 H. +unfold F2R. simpl. +apply Rmult_lt_compat_r. +apply bpow_gt_0. +now apply Z2R_lt. +Qed. + +Theorem F2R_eq_compat : + forall e m1 m2 : Z, + (m1 = m2)%Z -> + (F2R (Float beta m1 e) = F2R (Float beta m2 e))%R. +Proof. +intros e m1 m2 H. +now apply (f_equal (fun m => F2R (Float beta m e))). +Qed. + +Theorem F2R_eq_reg : + forall e m1 m2 : Z, + F2R (Float beta m1 e) = F2R (Float beta m2 e) -> + m1 = m2. +Proof. +intros e m1 m2 H. +apply Zle_antisym ; + apply F2R_le_reg with e ; + rewrite H ; + apply Rle_refl. +Qed. + +Theorem F2R_Zabs: + forall m e : Z, + F2R (Float beta (Zabs m) e) = Rabs (F2R (Float beta m e)). +Proof. +intros m e. +unfold F2R. +rewrite Rabs_mult. +rewrite <- Z2R_abs. +simpl. +apply f_equal. +apply sym_eq; apply Rabs_right. +apply Rle_ge. +apply bpow_ge_0. +Qed. + +Theorem F2R_Zopp : + forall m e : Z, + F2R (Float beta (Zopp m) e) = Ropp (F2R (Float beta m e)). +Proof. +intros m e. +unfold F2R. simpl. +rewrite <- Ropp_mult_distr_l_reverse. +now rewrite Z2R_opp. +Qed. + +(** Sign facts *) +Theorem F2R_0 : + forall e : Z, + F2R (Float beta 0 e) = R0. +Proof. +intros e. +unfold F2R. simpl. +apply Rmult_0_l. +Qed. + +Theorem F2R_eq_0_reg : + forall m e : Z, + F2R (Float beta m e) = R0 -> + m = Z0. +Proof. +intros m e H. +apply F2R_eq_reg with e. +now rewrite F2R_0. +Qed. + +Theorem F2R_ge_0_reg : + forall m e : Z, + (0 <= F2R (Float beta m e))%R -> + (0 <= m)%Z. +Proof. +intros m e H. +apply F2R_le_reg with e. +now rewrite F2R_0. +Qed. + +Theorem F2R_le_0_reg : + forall m e : Z, + (F2R (Float beta m e) <= 0)%R -> + (m <= 0)%Z. +Proof. +intros m e H. +apply F2R_le_reg with e. +now rewrite F2R_0. +Qed. + +Theorem F2R_gt_0_reg : + forall m e : Z, + (0 < F2R (Float beta m e))%R -> + (0 < m)%Z. +Proof. +intros m e H. +apply F2R_lt_reg with e. +now rewrite F2R_0. +Qed. + +Theorem F2R_lt_0_reg : + forall m e : Z, + (F2R (Float beta m e) < 0)%R -> + (m < 0)%Z. +Proof. +intros m e H. +apply F2R_lt_reg with e. +now rewrite F2R_0. +Qed. + +Theorem F2R_ge_0_compat : + forall f : float beta, + (0 <= Fnum f)%Z -> + (0 <= F2R f)%R. +Proof. +intros f H. +rewrite <- F2R_0 with (Fexp f). +now apply F2R_le_compat. +Qed. + +Theorem F2R_le_0_compat : + forall f : float beta, + (Fnum f <= 0)%Z -> + (F2R f <= 0)%R. +Proof. +intros f H. +rewrite <- F2R_0 with (Fexp f). +now apply F2R_le_compat. +Qed. + +Theorem F2R_gt_0_compat : + forall f : float beta, + (0 < Fnum f)%Z -> + (0 < F2R f)%R. +Proof. +intros f H. +rewrite <- F2R_0 with (Fexp f). +now apply F2R_lt_compat. +Qed. + +Theorem F2R_lt_0_compat : + forall f : float beta, + (Fnum f < 0)%Z -> + (F2R f < 0)%R. +Proof. +intros f H. +rewrite <- F2R_0 with (Fexp f). +now apply F2R_lt_compat. +Qed. + +(** Floats and bpow *) +Theorem F2R_bpow : + forall e : Z, + F2R (Float beta 1 e) = bpow e. +Proof. +intros e. +unfold F2R. simpl. +apply Rmult_1_l. +Qed. + +Theorem bpow_le_F2R : + forall m e : Z, + (0 < m)%Z -> + (bpow e <= F2R (Float beta m e))%R. +Proof. +intros m e H. +rewrite <- F2R_bpow. +apply F2R_le_compat. +now apply (Zlt_le_succ 0). +Qed. + +Theorem F2R_p1_le_bpow : + forall m e1 e2 : Z, + (0 < m)%Z -> + (F2R (Float beta m e1) < bpow e2)%R -> + (F2R (Float beta (m + 1) e1) <= bpow e2)%R. +Proof. +intros m e1 e2 Hm. +intros H. +assert (He : (e1 <= e2)%Z). +(* . *) +apply (le_bpow beta). +apply Rle_trans with (F2R (Float beta m e1)). +unfold F2R. simpl. +rewrite <- (Rmult_1_l (bpow e1)) at 1. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply (Z2R_le 1). +now apply (Zlt_le_succ 0). +now apply Rlt_le. +(* . *) +revert H. +replace e2 with (e2 - e1 + e1)%Z by ring. +rewrite bpow_plus. +unfold F2R. simpl. +rewrite <- (Z2R_Zpower beta (e2 - e1)). +intros H. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Rmult_lt_reg_r in H. +apply Z2R_le. +apply Zlt_le_succ. +now apply lt_Z2R. +apply bpow_gt_0. +now apply Zle_minus_le_0. +Qed. + +Theorem bpow_le_F2R_m1 : + forall m e1 e2 : Z, + (1 < m)%Z -> + (bpow e2 < F2R (Float beta m e1))%R -> + (bpow e2 <= F2R (Float beta (m - 1) e1))%R. +Proof. +intros m e1 e2 Hm. +case (Zle_or_lt e1 e2); intros He. +replace e2 with (e2 - e1 + e1)%Z by ring. +rewrite bpow_plus. +unfold F2R. simpl. +rewrite <- (Z2R_Zpower beta (e2 - e1)). +intros H. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Rmult_lt_reg_r in H. +apply Z2R_le. +rewrite (Zpred_succ (Zpower _ _)). +apply Zplus_le_compat_r. +apply Zlt_le_succ. +now apply lt_Z2R. +apply bpow_gt_0. +now apply Zle_minus_le_0. +intros H. +apply Rle_trans with (1*bpow e1)%R. +rewrite Rmult_1_l. +apply bpow_le. +now apply Zlt_le_weak. +unfold F2R. simpl. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 1%R with (Z2R 1) by reflexivity. +apply Z2R_le. +omega. +Qed. + +Theorem F2R_lt_bpow : + forall f : float beta, forall e', + (Zabs (Fnum f) < Zpower beta (e' - Fexp f))%Z -> + (Rabs (F2R f) < bpow e')%R. +Proof. +intros (m, e) e' Hm. +rewrite <- F2R_Zabs. +destruct (Zle_or_lt e e') as [He|He]. +unfold F2R. simpl. +apply Rmult_lt_reg_r with (bpow (-e)). +apply bpow_gt_0. +rewrite Rmult_assoc, <- 2!bpow_plus, Zplus_opp_r, Rmult_1_r. +rewrite <-Z2R_Zpower. 2: now apply Zle_left. +now apply Z2R_lt. +elim Zlt_not_le with (1 := Hm). +simpl. +cut (e' - e < 0)%Z. 2: omega. +clear. +case (e' - e)%Z ; try easy. +intros p _. +apply Zabs_pos. +Qed. + +Theorem F2R_change_exp : + forall e' m e : Z, + (e' <= e)%Z -> + F2R (Float beta m e) = F2R (Float beta (m * Zpower beta (e - e')) e'). +Proof. +intros e' m e He. +unfold F2R. simpl. +rewrite Z2R_mult, Z2R_Zpower, Rmult_assoc. +apply f_equal. +pattern e at 1 ; replace e with (e - e' + e')%Z by ring. +apply bpow_plus. +now apply Zle_minus_le_0. +Qed. + +Theorem F2R_prec_normalize : + forall m e e' p : Z, + (Zabs m < Zpower beta p)%Z -> + (bpow (e' - 1)%Z <= Rabs (F2R (Float beta m e)))%R -> + F2R (Float beta m e) = F2R (Float beta (m * Zpower beta (e - e' + p)) (e' - p)). +Proof. +intros m e e' p Hm Hf. +assert (Hp: (0 <= p)%Z). +destruct p ; try easy. +now elim (Zle_not_lt _ _ (Zabs_pos m)). +(* . *) +replace (e - e' + p)%Z with (e - (e' - p))%Z by ring. +apply F2R_change_exp. +cut (e' - 1 < e + p)%Z. omega. +apply (lt_bpow beta). +apply Rle_lt_trans with (1 := Hf). +rewrite <- F2R_Zabs, Zplus_comm, bpow_plus. +apply Rmult_lt_compat_r. +apply bpow_gt_0. +rewrite <- Z2R_Zpower. +now apply Z2R_lt. +exact Hp. +Qed. + +(** Floats and ln_beta *) +Theorem ln_beta_F2R_bounds : + forall x m e, (0 < m)%Z -> + (F2R (Float beta m e) <= x < F2R (Float beta (m + 1) e))%R -> + ln_beta beta x = ln_beta beta (F2R (Float beta m e)) :> Z. +Proof. +intros x m e Hp (Hx,Hx2). +destruct (ln_beta beta (F2R (Float beta m e))) as (ex, He). +simpl. +apply ln_beta_unique. +assert (Hp1: (0 < F2R (Float beta m e))%R). +now apply F2R_gt_0_compat. +specialize (He (Rgt_not_eq _ _ Hp1)). +rewrite Rabs_pos_eq in He. 2: now apply Rlt_le. +destruct He as (He1, He2). +assert (Hx1: (0 < x)%R). +now apply Rlt_le_trans with (2 := Hx). +rewrite Rabs_pos_eq. 2: now apply Rlt_le. +split. +now apply Rle_trans with (1 := He1). +apply Rlt_le_trans with (1 := Hx2). +now apply F2R_p1_le_bpow. +Qed. + +Theorem ln_beta_F2R : + forall m e : Z, + m <> Z0 -> + (ln_beta beta (F2R (Float beta m e)) = ln_beta beta (Z2R m) + e :> Z)%Z. +Proof. +intros m e H. +unfold F2R ; simpl. +apply ln_beta_mult_bpow. +exact (Z2R_neq m 0 H). +Qed. + +Theorem float_distribution_pos : + forall m1 e1 m2 e2 : Z, + (0 < m1)%Z -> + (F2R (Float beta m1 e1) < F2R (Float beta m2 e2) < F2R (Float beta (m1 + 1) e1))%R -> + (e2 < e1)%Z /\ (e1 + ln_beta beta (Z2R m1) = e2 + ln_beta beta (Z2R m2))%Z. +Proof. +intros m1 e1 m2 e2 Hp1 (H12, H21). +assert (He: (e2 < e1)%Z). +(* . *) +apply Znot_ge_lt. +intros H0. +elim Rlt_not_le with (1 := H21). +apply Zge_le in H0. +apply (F2R_change_exp e1 m2 e2) in H0. +rewrite H0. +apply F2R_le_compat. +apply Zlt_le_succ. +apply (F2R_lt_reg e1). +now rewrite <- H0. +(* . *) +split. +exact He. +rewrite (Zplus_comm e1), (Zplus_comm e2). +assert (Hp2: (0 < m2)%Z). +apply (F2R_gt_0_reg m2 e2). +apply Rlt_trans with (2 := H12). +now apply F2R_gt_0_compat. +rewrite <- 2!ln_beta_F2R. +destruct (ln_beta beta (F2R (Float beta m1 e1))) as (e1', H1). +simpl. +apply sym_eq. +apply ln_beta_unique. +assert (H2 : (bpow (e1' - 1) <= F2R (Float beta m1 e1) < bpow e1')%R). +rewrite <- (Zabs_eq m1), F2R_Zabs. +apply H1. +apply Rgt_not_eq. +apply Rlt_gt. +now apply F2R_gt_0_compat. +now apply Zlt_le_weak. +clear H1. +rewrite <- F2R_Zabs, Zabs_eq. +split. +apply Rlt_le. +apply Rle_lt_trans with (2 := H12). +apply H2. +apply Rlt_le_trans with (1 := H21). +now apply F2R_p1_le_bpow. +now apply Zlt_le_weak. +apply sym_not_eq. +now apply Zlt_not_eq. +apply sym_not_eq. +now apply Zlt_not_eq. +Qed. + +Theorem F2R_cond_Zopp : + forall b m e, + F2R (Float beta (cond_Zopp b m) e) = cond_Ropp b (F2R (Float beta m e)). +Proof. +intros [|] m e ; unfold F2R ; simpl. +now rewrite Z2R_opp, Ropp_mult_distr_l_reverse. +apply refl_equal. +Qed. + +End Float_prop. diff --git a/flocq/Core/Fcore_generic_fmt.v b/flocq/Core/Fcore_generic_fmt.v new file mode 100644 index 0000000..b1db47c --- /dev/null +++ b/flocq/Core/Fcore_generic_fmt.v @@ -0,0 +1,2232 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * What is a real number belonging to a format, and many properties. *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_float_prop. + +Section Generic. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Section Format. + +Variable fexp : Z -> Z. + +(** To be a good fexp *) + +Class Valid_exp := + valid_exp : + forall k : Z, + ( (fexp k < k)%Z -> (fexp (k + 1) <= k)%Z ) /\ + ( (k <= fexp k)%Z -> + (fexp (fexp k + 1) <= fexp k)%Z /\ + forall l : Z, (l <= fexp k)%Z -> fexp l = fexp k ). + +Context { valid_exp_ : Valid_exp }. + +Theorem valid_exp_large : + forall k l, + (fexp k < k)%Z -> (k <= l)%Z -> + (fexp l < l)%Z. +Proof. +intros k l Hk H. +apply Znot_ge_lt. +intros Hl. +apply Zge_le in Hl. +assert (H' := proj2 (proj2 (valid_exp l) Hl) k). +omega. +Qed. + +Theorem valid_exp_large' : + forall k l, + (fexp k < k)%Z -> (l <= k)%Z -> + (fexp l < k)%Z. +Proof. +intros k l Hk H. +apply Znot_ge_lt. +intros H'. +apply Zge_le in H'. +assert (Hl := Zle_trans _ _ _ H H'). +apply valid_exp in Hl. +assert (H1 := proj2 Hl k H'). +omega. +Qed. + +Definition canonic_exp x := + fexp (ln_beta beta x). + +Definition canonic (f : float beta) := + Fexp f = canonic_exp (F2R f). + +Definition scaled_mantissa x := + (x * bpow (- canonic_exp x))%R. + +Definition generic_format (x : R) := + x = F2R (Float beta (Ztrunc (scaled_mantissa x)) (canonic_exp x)). + +(** Basic facts *) +Theorem generic_format_0 : + generic_format 0. +Proof. +unfold generic_format, scaled_mantissa. +rewrite Rmult_0_l. +change (Ztrunc 0) with (Ztrunc (Z2R 0)). +now rewrite Ztrunc_Z2R, F2R_0. +Qed. + +Theorem canonic_exp_opp : + forall x, + canonic_exp (-x) = canonic_exp x. +Proof. +intros x. +unfold canonic_exp. +now rewrite ln_beta_opp. +Qed. + +Theorem canonic_exp_abs : + forall x, + canonic_exp (Rabs x) = canonic_exp x. +Proof. +intros x. +unfold canonic_exp. +now rewrite ln_beta_abs. +Qed. + +Theorem generic_format_bpow : + forall e, (fexp (e + 1) <= e)%Z -> + generic_format (bpow e). +Proof. +intros e H. +unfold generic_format, scaled_mantissa, canonic_exp. +rewrite ln_beta_bpow. +rewrite <- bpow_plus. +rewrite <- (Z2R_Zpower beta (e + - fexp (e + 1))). +rewrite Ztrunc_Z2R. +rewrite <- F2R_bpow. +rewrite F2R_change_exp with (1 := H). +now rewrite Zmult_1_l. +now apply Zle_minus_le_0. +Qed. + +Theorem generic_format_bpow' : + forall e, (fexp e <= e)%Z -> + generic_format (bpow e). +Proof. +intros e He. +apply generic_format_bpow. +destruct (Zle_lt_or_eq _ _ He). +now apply valid_exp. +rewrite <- H. +apply valid_exp_. +rewrite H. +apply Zle_refl. +Qed. + +Theorem generic_format_F2R : + forall m e, + ( m <> 0 -> canonic_exp (F2R (Float beta m e)) <= e )%Z -> + generic_format (F2R (Float beta m e)). +Proof. +intros m e. +destruct (Z_eq_dec m 0) as [Zm|Zm]. +intros _. +rewrite Zm, F2R_0. +apply generic_format_0. +unfold generic_format, scaled_mantissa. +set (e' := canonic_exp (F2R (Float beta m e))). +intros He. +specialize (He Zm). +unfold F2R at 3. simpl. +rewrite F2R_change_exp with (1 := He). +apply F2R_eq_compat. +rewrite Rmult_assoc, <- bpow_plus, <- Z2R_Zpower, <- Z2R_mult. +now rewrite Ztrunc_Z2R. +now apply Zle_left. +Qed. + +Theorem canonic_opp : + forall m e, + canonic (Float beta m e) -> + canonic (Float beta (-m) e). +Proof. +intros m e H. +unfold canonic. +now rewrite F2R_Zopp, canonic_exp_opp. +Qed. + +Theorem canonic_unicity : + forall f1 f2, + canonic f1 -> + canonic f2 -> + F2R f1 = F2R f2 -> + f1 = f2. +Proof. +intros (m1, e1) (m2, e2). +unfold canonic. simpl. +intros H1 H2 H. +rewrite H in H1. +rewrite <- H2 in H1. clear H2. +rewrite H1 in H |- *. +apply (f_equal (fun m => Float beta m e2)). +apply F2R_eq_reg with (1 := H). +Qed. + +Theorem scaled_mantissa_generic : + forall x, + generic_format x -> + scaled_mantissa x = Z2R (Ztrunc (scaled_mantissa x)). +Proof. +intros x Hx. +unfold scaled_mantissa. +pattern x at 1 3 ; rewrite Hx. +unfold F2R. simpl. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +now rewrite Ztrunc_Z2R. +Qed. + +Theorem scaled_mantissa_mult_bpow : + forall x, + (scaled_mantissa x * bpow (canonic_exp x))%R = x. +Proof. +intros x. +unfold scaled_mantissa. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l. +apply Rmult_1_r. +Qed. + +Theorem scaled_mantissa_0 : + scaled_mantissa 0 = R0. +Proof. +apply Rmult_0_l. +Qed. + +Theorem scaled_mantissa_opp : + forall x, + scaled_mantissa (-x) = (-scaled_mantissa x)%R. +Proof. +intros x. +unfold scaled_mantissa. +rewrite canonic_exp_opp. +now rewrite Ropp_mult_distr_l_reverse. +Qed. + +Theorem scaled_mantissa_abs : + forall x, + scaled_mantissa (Rabs x) = Rabs (scaled_mantissa x). +Proof. +intros x. +unfold scaled_mantissa. +rewrite canonic_exp_abs, Rabs_mult. +apply f_equal. +apply sym_eq. +apply Rabs_pos_eq. +apply bpow_ge_0. +Qed. + +Theorem generic_format_opp : + forall x, generic_format x -> generic_format (-x). +Proof. +intros x Hx. +unfold generic_format. +rewrite scaled_mantissa_opp, canonic_exp_opp. +rewrite Ztrunc_opp. +rewrite F2R_Zopp. +now apply f_equal. +Qed. + +Theorem generic_format_abs : + forall x, generic_format x -> generic_format (Rabs x). +Proof. +intros x Hx. +unfold generic_format. +rewrite scaled_mantissa_abs, canonic_exp_abs. +rewrite Ztrunc_abs. +rewrite F2R_Zabs. +now apply f_equal. +Qed. + +Theorem generic_format_abs_inv : + forall x, generic_format (Rabs x) -> generic_format x. +Proof. +intros x. +unfold generic_format, Rabs. +case Rcase_abs ; intros _. +rewrite scaled_mantissa_opp, canonic_exp_opp, Ztrunc_opp. +intros H. +rewrite <- (Ropp_involutive x) at 1. +rewrite H, F2R_Zopp. +apply Ropp_involutive. +easy. +Qed. + +Theorem canonic_exp_fexp : + forall x ex, + (bpow (ex - 1) <= Rabs x < bpow ex)%R -> + canonic_exp x = fexp ex. +Proof. +intros x ex Hx. +unfold canonic_exp. +now rewrite ln_beta_unique with (1 := Hx). +Qed. + +Theorem canonic_exp_fexp_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + canonic_exp x = fexp ex. +Proof. +intros x ex Hx. +apply canonic_exp_fexp. +rewrite Rabs_pos_eq. +exact Hx. +apply Rle_trans with (2 := proj1 Hx). +apply bpow_ge_0. +Qed. + +(** Properties when the real number is "small" (kind of subnormal) *) +Theorem mantissa_small_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + (0 < x * bpow (- fexp ex) < 1)%R. +Proof. +intros x ex Hx He. +split. +apply Rmult_lt_0_compat. +apply Rlt_le_trans with (2 := proj1 Hx). +apply bpow_gt_0. +apply bpow_gt_0. +apply Rmult_lt_reg_r with (bpow (fexp ex)). +apply bpow_gt_0. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l. +rewrite Rmult_1_r, Rmult_1_l. +apply Rlt_le_trans with (1 := proj2 Hx). +now apply bpow_le. +Qed. + +Theorem scaled_mantissa_small : + forall x ex, + (Rabs x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + (Rabs (scaled_mantissa x) < 1)%R. +Proof. +intros x ex Ex He. +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx, scaled_mantissa_0, Rabs_R0. +now apply (Z2R_lt 0 1). +rewrite <- scaled_mantissa_abs. +unfold scaled_mantissa. +rewrite canonic_exp_abs. +unfold canonic_exp. +destruct (ln_beta beta x) as (ex', Ex'). +simpl. +specialize (Ex' Zx). +apply (mantissa_small_pos _ _ Ex'). +assert (ex' <= fexp ex)%Z. +apply Zle_trans with (2 := He). +apply bpow_lt_bpow with beta. +now apply Rle_lt_trans with (2 := Ex). +now rewrite (proj2 (proj2 (valid_exp _) He)). +Qed. + +Theorem abs_scaled_mantissa_lt_bpow : + forall x, + (Rabs (scaled_mantissa x) < bpow (ln_beta beta x - canonic_exp x))%R. +Proof. +intros x. +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx, scaled_mantissa_0, Rabs_R0. +apply bpow_gt_0. +apply Rlt_le_trans with (1 := bpow_ln_beta_gt beta _). +apply bpow_le. +unfold scaled_mantissa. +rewrite ln_beta_mult_bpow with (1 := Zx). +apply Zle_refl. +Qed. + +Theorem ln_beta_generic_gt : + forall x, (x <> 0)%R -> + generic_format x -> + (canonic_exp x < ln_beta beta x)%Z. +Proof. +intros x Zx Gx. +apply Znot_ge_lt. +unfold canonic_exp. +destruct (ln_beta beta x) as (ex,Ex) ; simpl. +specialize (Ex Zx). +intros H. +apply Zge_le in H. +generalize (scaled_mantissa_small x ex (proj2 Ex) H). +contradict Zx. +rewrite Gx. +replace (Ztrunc (scaled_mantissa x)) with Z0. +apply F2R_0. +cut (Zabs (Ztrunc (scaled_mantissa x)) < 1)%Z. +clear ; zify ; omega. +apply lt_Z2R. +rewrite Z2R_abs. +now rewrite <- scaled_mantissa_generic. +Qed. + +Theorem mantissa_DN_small_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + Zfloor (x * bpow (- fexp ex)) = Z0. +Proof. +intros x ex Hx He. +apply Zfloor_imp. simpl. +assert (H := mantissa_small_pos x ex Hx He). +split ; try apply Rlt_le ; apply H. +Qed. + +Theorem mantissa_UP_small_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + Zceil (x * bpow (- fexp ex)) = 1%Z. +Proof. +intros x ex Hx He. +apply Zceil_imp. simpl. +assert (H := mantissa_small_pos x ex Hx He). +split ; try apply Rlt_le ; apply H. +Qed. + +(** Generic facts about any format *) +Theorem generic_format_discrete : + forall x m, + let e := canonic_exp x in + (F2R (Float beta m e) < x < F2R (Float beta (m + 1) e))%R -> + ~ generic_format x. +Proof. +intros x m e (Hx,Hx2) Hf. +apply Rlt_not_le with (1 := Hx2). clear Hx2. +rewrite Hf. +fold e. +apply F2R_le_compat. +apply Zlt_le_succ. +apply lt_Z2R. +rewrite <- scaled_mantissa_generic with (1 := Hf). +apply Rmult_lt_reg_r with (bpow e). +apply bpow_gt_0. +now rewrite scaled_mantissa_mult_bpow. +Qed. + +Theorem generic_format_canonic : + forall f, canonic f -> + generic_format (F2R f). +Proof. +intros (m, e) Hf. +unfold canonic in Hf. simpl in Hf. +unfold generic_format, scaled_mantissa. +rewrite <- Hf. +apply F2R_eq_compat. +unfold F2R. simpl. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +now rewrite Ztrunc_Z2R. +Qed. + +Theorem generic_format_ge_bpow : + forall emin, + ( forall e, (emin <= fexp e)%Z ) -> + forall x, + (0 < x)%R -> + generic_format x -> + (bpow emin <= x)%R. +Proof. +intros emin Emin x Hx Fx. +rewrite Fx. +apply Rle_trans with (bpow (fexp (ln_beta beta x))). +now apply bpow_le. +apply bpow_le_F2R. +apply F2R_gt_0_reg with beta (canonic_exp x). +now rewrite <- Fx. +Qed. + +Theorem abs_lt_bpow_prec: + forall prec, + (forall e, (e - prec <= fexp e)%Z) -> + (* OK with FLX, FLT and FTZ *) + forall x, + (Rabs x < bpow (prec + canonic_exp x))%R. +intros prec Hp x. +case (Req_dec x 0); intros Hxz. +rewrite Hxz, Rabs_R0. +apply bpow_gt_0. +unfold canonic_exp. +destruct (ln_beta beta x) as (ex,Ex) ; simpl. +specialize (Ex Hxz). +apply Rlt_le_trans with (1 := proj2 Ex). +apply bpow_le. +specialize (Hp ex). +omega. +Qed. + +Theorem generic_format_bpow_inv' : + forall e, + generic_format (bpow e) -> + (fexp (e + 1) <= e)%Z. +Proof. +intros e He. +apply Znot_gt_le. +contradict He. +unfold generic_format, scaled_mantissa, canonic_exp, F2R. simpl. +rewrite ln_beta_bpow, <- bpow_plus. +apply Rgt_not_eq. +rewrite Ztrunc_floor. +2: apply bpow_ge_0. +rewrite Zfloor_imp with (n := Z0). +rewrite Rmult_0_l. +apply bpow_gt_0. +split. +apply bpow_ge_0. +apply (bpow_lt _ _ 0). +clear -He ; omega. +Qed. + +Theorem generic_format_bpow_inv : + forall e, + generic_format (bpow e) -> + (fexp e <= e)%Z. +Proof. +intros e He. +apply generic_format_bpow_inv' in He. +assert (H := valid_exp_large' (e + 1) e). +omega. +Qed. + +Section Fcore_generic_round_pos. + +(** Rounding functions: R -> Z *) + +Variable rnd : R -> Z. + +Class Valid_rnd := { + Zrnd_le : forall x y, (x <= y)%R -> (rnd x <= rnd y)%Z ; + Zrnd_Z2R : forall n, rnd (Z2R n) = n +}. + +Context { valid_rnd : Valid_rnd }. + +Theorem Zrnd_DN_or_UP : + forall x, rnd x = Zfloor x \/ rnd x = Zceil x. +Proof. +intros x. +destruct (Zle_or_lt (rnd x) (Zfloor x)) as [Hx|Hx]. +left. +apply Zle_antisym with (1 := Hx). +rewrite <- (Zrnd_Z2R (Zfloor x)). +apply Zrnd_le. +apply Zfloor_lb. +right. +apply Zle_antisym. +rewrite <- (Zrnd_Z2R (Zceil x)). +apply Zrnd_le. +apply Zceil_ub. +rewrite Zceil_floor_neq. +omega. +intros H. +rewrite <- H in Hx. +rewrite Zfloor_Z2R, Zrnd_Z2R in Hx. +apply Zlt_irrefl with (1 := Hx). +Qed. + +Theorem Zrnd_ZR_or_AW : + forall x, rnd x = Ztrunc x \/ rnd x = Zaway x. +Proof. +intros x. +unfold Ztrunc, Zaway. +destruct (Zrnd_DN_or_UP x) as [Hx|Hx] ; + case Rlt_bool. +now right. +now left. +now left. +now right. +Qed. + +(** the most useful one: R -> F *) +Definition round x := + F2R (Float beta (rnd (scaled_mantissa x)) (canonic_exp x)). + +Theorem round_le_pos : + forall x y, (0 < x)%R -> (x <= y)%R -> (round x <= round y)%R. +Proof. +intros x y Hx Hxy. +unfold round, scaled_mantissa, canonic_exp. +destruct (ln_beta beta x) as (ex, Hex). simpl. +destruct (ln_beta beta y) as (ey, Hey). simpl. +specialize (Hex (Rgt_not_eq _ _ Hx)). +specialize (Hey (Rgt_not_eq _ _ (Rlt_le_trans _ _ _ Hx Hxy))). +rewrite Rabs_pos_eq in Hex. +2: now apply Rlt_le. +rewrite Rabs_pos_eq in Hey. +2: apply Rle_trans with (2:=Hxy); now apply Rlt_le. +assert (He: (ex <= ey)%Z). +cut (ex - 1 < ey)%Z. omega. +apply (lt_bpow beta). +apply Rle_lt_trans with (1 := proj1 Hex). +apply Rle_lt_trans with (1 := Hxy). +apply Hey. +destruct (Zle_or_lt ey (fexp ey)) as [Hy1|Hy1]. +rewrite (proj2 (proj2 (valid_exp ey) Hy1) ex). +apply F2R_le_compat. +apply Zrnd_le. +apply Rmult_le_compat_r. +apply bpow_ge_0. +exact Hxy. +now apply Zle_trans with ey. +destruct (Zle_lt_or_eq _ _ He) as [He'|He']. +destruct (Zle_or_lt ey (fexp ex)) as [Hx2|Hx2]. +rewrite (proj2 (proj2 (valid_exp ex) (Zle_trans _ _ _ He Hx2)) ey Hx2). +apply F2R_le_compat. +apply Zrnd_le. +apply Rmult_le_compat_r. +apply bpow_ge_0. +exact Hxy. +apply Rle_trans with (F2R (Float beta (rnd (bpow (ey - 1) * bpow (- fexp ey))) (fexp ey))). +rewrite <- bpow_plus. +rewrite <- (Z2R_Zpower beta (ey - 1 + -fexp ey)). 2: omega. +rewrite Zrnd_Z2R. +destruct (Zle_or_lt ex (fexp ex)) as [Hx1|Hx1]. +apply Rle_trans with (F2R (Float beta 1 (fexp ex))). +apply F2R_le_compat. +rewrite <- (Zrnd_Z2R 1). +apply Zrnd_le. +apply Rlt_le. +exact (proj2 (mantissa_small_pos _ _ Hex Hx1)). +unfold F2R. simpl. +rewrite Z2R_Zpower. 2: omega. +rewrite <- bpow_plus, Rmult_1_l. +apply bpow_le. +omega. +apply Rle_trans with (F2R (Float beta (rnd (bpow ex * bpow (- fexp ex))) (fexp ex))). +apply F2R_le_compat. +apply Zrnd_le. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Rlt_le. +apply Hex. +rewrite <- bpow_plus. +rewrite <- Z2R_Zpower. 2: omega. +rewrite Zrnd_Z2R. +unfold F2R. simpl. +rewrite 2!Z2R_Zpower ; try omega. +rewrite <- 2!bpow_plus. +apply bpow_le. +omega. +apply F2R_le_compat. +apply Zrnd_le. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Hey. +rewrite He'. +apply F2R_le_compat. +apply Zrnd_le. +apply Rmult_le_compat_r. +apply bpow_ge_0. +exact Hxy. +Qed. + +Theorem round_generic : + forall x, + generic_format x -> + round x = x. +Proof. +intros x Hx. +unfold round. +rewrite scaled_mantissa_generic with (1 := Hx). +rewrite Zrnd_Z2R. +now apply sym_eq. +Qed. + +Theorem round_0 : + round 0 = R0. +Proof. +unfold round, scaled_mantissa. +rewrite Rmult_0_l. +fold (Z2R 0). +rewrite Zrnd_Z2R. +apply F2R_0. +Qed. + +Theorem round_bounded_large_pos : + forall x ex, + (fexp ex < ex)%Z -> + (bpow (ex - 1) <= x < bpow ex)%R -> + (bpow (ex - 1) <= round x <= bpow ex)%R. +Proof. +intros x ex He Hx. +unfold round, scaled_mantissa. +rewrite (canonic_exp_fexp_pos _ _ Hx). +unfold F2R. simpl. +destruct (Zrnd_DN_or_UP (x * bpow (- fexp ex))) as [Hr|Hr] ; rewrite Hr. +(* DN *) +split. +replace (ex - 1)%Z with (ex - 1 + - fexp ex + fexp ex)%Z by ring. +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +assert (Hf: Z2R (Zpower beta (ex - 1 - fexp ex)) = bpow (ex - 1 + - fexp ex)). +apply Z2R_Zpower. +omega. +rewrite <- Hf. +apply Z2R_le. +apply Zfloor_lub. +rewrite Hf. +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Hx. +apply Rle_trans with (2 := Rlt_le _ _ (proj2 Hx)). +apply Rmult_le_reg_r with (bpow (- fexp ex)). +apply bpow_gt_0. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +apply Zfloor_lb. +(* UP *) +split. +apply Rle_trans with (1 := proj1 Hx). +apply Rmult_le_reg_r with (bpow (- fexp ex)). +apply bpow_gt_0. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +apply Zceil_ub. +pattern ex at 3 ; replace ex with (ex - fexp ex + fexp ex)%Z by ring. +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +assert (Hf: Z2R (Zpower beta (ex - fexp ex)) = bpow (ex - fexp ex)). +apply Z2R_Zpower. +omega. +rewrite <- Hf. +apply Z2R_le. +apply Zceil_glb. +rewrite Hf. +unfold Zminus. +rewrite bpow_plus. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Rlt_le. +apply Hx. +Qed. + +Theorem round_bounded_small_pos : + forall x ex, + (ex <= fexp ex)%Z -> + (bpow (ex - 1) <= x < bpow ex)%R -> + round x = R0 \/ round x = bpow (fexp ex). +Proof. +intros x ex He Hx. +unfold round, scaled_mantissa. +rewrite (canonic_exp_fexp_pos _ _ Hx). +unfold F2R. simpl. +destruct (Zrnd_DN_or_UP (x * bpow (-fexp ex))) as [Hr|Hr] ; rewrite Hr. +(* DN *) +left. +apply Rmult_eq_0_compat_r. +apply (@f_equal _ _ Z2R _ Z0). +apply Zfloor_imp. +refine (let H := _ in conj (Rlt_le _ _ (proj1 H)) (proj2 H)). +now apply mantissa_small_pos. +(* UP *) +right. +pattern (bpow (fexp ex)) at 2 ; rewrite <- Rmult_1_l. +apply (f_equal (fun m => (m * bpow (fexp ex))%R)). +apply (@f_equal _ _ Z2R _ 1%Z). +apply Zceil_imp. +refine (let H := _ in conj (proj1 H) (Rlt_le _ _ (proj2 H))). +now apply mantissa_small_pos. +Qed. + +Theorem generic_format_round_pos : + forall x, + (0 < x)%R -> + generic_format (round x). +Proof. +intros x Hx0. +destruct (ln_beta beta x) as (ex, Hex). +specialize (Hex (Rgt_not_eq _ _ Hx0)). +rewrite Rabs_pos_eq in Hex. 2: now apply Rlt_le. +destruct (Zle_or_lt ex (fexp ex)) as [He|He]. +(* small *) +destruct (round_bounded_small_pos _ _ He Hex) as [Hr|Hr] ; rewrite Hr. +apply generic_format_0. +apply generic_format_bpow. +now apply valid_exp. +(* large *) +generalize (round_bounded_large_pos _ _ He Hex). +intros (Hr1, Hr2). +destruct (Rle_or_lt (bpow ex) (round x)) as [Hr|Hr]. +rewrite <- (Rle_antisym _ _ Hr Hr2). +apply generic_format_bpow. +now apply valid_exp. +assert (Hr' := conj Hr1 Hr). +unfold generic_format, scaled_mantissa. +rewrite (canonic_exp_fexp_pos _ _ Hr'). +unfold round, scaled_mantissa. +rewrite (canonic_exp_fexp_pos _ _ Hex). +unfold F2R at 3. simpl. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +now rewrite Ztrunc_Z2R. +Qed. + +End Fcore_generic_round_pos. + +Theorem round_ext : + forall rnd1 rnd2, + ( forall x, rnd1 x = rnd2 x ) -> + forall x, + round rnd1 x = round rnd2 x. +Proof. +intros rnd1 rnd2 Hext x. +unfold round. +now rewrite Hext. +Qed. + +Section Zround_opp. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Definition Zrnd_opp x := Zopp (rnd (-x)). + +Global Instance valid_rnd_opp : Valid_rnd Zrnd_opp. +Proof with auto with typeclass_instances. +split. +(* *) +intros x y Hxy. +unfold Zrnd_opp. +apply Zopp_le_cancel. +rewrite 2!Zopp_involutive. +apply Zrnd_le... +now apply Ropp_le_contravar. +(* *) +intros n. +unfold Zrnd_opp. +rewrite <- Z2R_opp, Zrnd_Z2R... +apply Zopp_involutive. +Qed. + +Theorem round_opp : + forall x, + round rnd (- x) = Ropp (round Zrnd_opp x). +Proof. +intros x. +unfold round. +rewrite <- F2R_Zopp, canonic_exp_opp, scaled_mantissa_opp. +apply F2R_eq_compat. +apply sym_eq. +exact (Zopp_involutive _). +Qed. + +End Zround_opp. + +(** IEEE-754 roundings: up, down and to zero *) + +Global Instance valid_rnd_DN : Valid_rnd Zfloor. +Proof. +split. +apply Zfloor_le. +apply Zfloor_Z2R. +Qed. + +Global Instance valid_rnd_UP : Valid_rnd Zceil. +Proof. +split. +apply Zceil_le. +apply Zceil_Z2R. +Qed. + +Global Instance valid_rnd_ZR : Valid_rnd Ztrunc. +Proof. +split. +apply Ztrunc_le. +apply Ztrunc_Z2R. +Qed. + +Global Instance valid_rnd_AW : Valid_rnd Zaway. +Proof. +split. +apply Zaway_le. +apply Zaway_Z2R. +Qed. + +Section monotone. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Theorem round_DN_or_UP : + forall x, + round rnd x = round Zfloor x \/ round rnd x = round Zceil x. +Proof. +intros x. +unfold round. +destruct (Zrnd_DN_or_UP rnd (scaled_mantissa x)) as [Hx|Hx]. +left. now rewrite Hx. +right. now rewrite Hx. +Qed. + +Theorem round_ZR_or_AW : + forall x, + round rnd x = round Ztrunc x \/ round rnd x = round Zaway x. +Proof. +intros x. +unfold round. +destruct (Zrnd_ZR_or_AW rnd (scaled_mantissa x)) as [Hx|Hx]. +left. now rewrite Hx. +right. now rewrite Hx. +Qed. + +Theorem round_le : + forall x y, (x <= y)%R -> (round rnd x <= round rnd y)%R. +Proof with auto with typeclass_instances. +intros x y Hxy. +destruct (total_order_T x 0) as [[Hx|Hx]|Hx]. +3: now apply round_le_pos. +(* x < 0 *) +unfold round. +destruct (Rlt_or_le y 0) as [Hy|Hy]. +(* . y < 0 *) +rewrite <- (Ropp_involutive x), <- (Ropp_involutive y). +rewrite (scaled_mantissa_opp (-x)), (scaled_mantissa_opp (-y)). +rewrite (canonic_exp_opp (-x)), (canonic_exp_opp (-y)). +apply Ropp_le_cancel. +rewrite <- 2!F2R_Zopp. +apply (round_le_pos (Zrnd_opp rnd) (-y) (-x)). +rewrite <- Ropp_0. +now apply Ropp_lt_contravar. +now apply Ropp_le_contravar. +(* . 0 <= y *) +apply Rle_trans with R0. +apply F2R_le_0_compat. simpl. +rewrite <- (Zrnd_Z2R rnd 0). +apply Zrnd_le... +simpl. +rewrite <- (Rmult_0_l (bpow (- fexp (ln_beta beta x)))). +apply Rmult_le_compat_r. +apply bpow_ge_0. +now apply Rlt_le. +apply F2R_ge_0_compat. simpl. +rewrite <- (Zrnd_Z2R rnd 0). +apply Zrnd_le... +apply Rmult_le_pos. +exact Hy. +apply bpow_ge_0. +(* x = 0 *) +rewrite Hx. +rewrite round_0... +apply F2R_ge_0_compat. +simpl. +rewrite <- (Zrnd_Z2R rnd 0). +apply Zrnd_le... +apply Rmult_le_pos. +now rewrite <- Hx. +apply bpow_ge_0. +Qed. + +Theorem round_ge_generic : + forall x y, generic_format x -> (x <= y)%R -> (x <= round rnd y)%R. +Proof. +intros x y Hx Hxy. +rewrite <- (round_generic rnd x Hx). +now apply round_le. +Qed. + +Theorem round_le_generic : + forall x y, generic_format y -> (x <= y)%R -> (round rnd x <= y)%R. +Proof. +intros x y Hy Hxy. +rewrite <- (round_generic rnd y Hy). +now apply round_le. +Qed. + +End monotone. + +Theorem round_abs_abs' : + forall P : R -> R -> Prop, + ( forall rnd (Hr : Valid_rnd rnd) x, (0 <= x)%R -> P x (round rnd x) ) -> + forall rnd {Hr : Valid_rnd rnd} x, P (Rabs x) (Rabs (round rnd x)). +Proof with auto with typeclass_instances. +intros P HP rnd Hr x. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +(* . *) +rewrite 2!Rabs_pos_eq. +now apply HP. +rewrite <- (round_0 rnd). +now apply round_le. +exact Hx. +(* . *) +rewrite (Rabs_left _ Hx). +rewrite Rabs_left1. +pattern x at 2 ; rewrite <- Ropp_involutive. +rewrite round_opp. +rewrite Ropp_involutive. +apply HP... +rewrite <- Ropp_0. +apply Ropp_le_contravar. +now apply Rlt_le. +rewrite <- (round_0 rnd). +apply round_le... +now apply Rlt_le. +Qed. + +(* TODO: remove *) +Theorem round_abs_abs : + forall P : R -> R -> Prop, + ( forall rnd (Hr : Valid_rnd rnd) x, P x (round rnd x) ) -> + forall rnd {Hr : Valid_rnd rnd} x, P (Rabs x) (Rabs (round rnd x)). +Proof. +intros P HP. +apply round_abs_abs'. +intros. +now apply HP. +Qed. + +Theorem round_bounded_large : + forall rnd {Hr : Valid_rnd rnd} x ex, + (fexp ex < ex)%Z -> + (bpow (ex - 1) <= Rabs x < bpow ex)%R -> + (bpow (ex - 1) <= Rabs (round rnd x) <= bpow ex)%R. +Proof with auto with typeclass_instances. +intros rnd Hr x ex He. +apply round_abs_abs... +clear rnd Hr x. +intros rnd' Hr x. +apply round_bounded_large_pos... +Qed. + +Section monotone_abs. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Theorem abs_round_ge_generic : + forall x y, generic_format x -> (x <= Rabs y)%R -> (x <= Rabs (round rnd y))%R. +Proof with auto with typeclass_instances. +intros x y. +apply round_abs_abs... +clear rnd valid_rnd y. +intros rnd' Hrnd y Hy. +apply round_ge_generic... +Qed. + +Theorem abs_round_le_generic : + forall x y, generic_format y -> (Rabs x <= y)%R -> (Rabs (round rnd x) <= y)%R. +Proof with auto with typeclass_instances. +intros x y. +apply round_abs_abs... +clear rnd valid_rnd x. +intros rnd' Hrnd x Hx. +apply round_le_generic... +Qed. + +End monotone_abs. + +Theorem round_DN_opp : + forall x, + round Zfloor (-x) = (- round Zceil x)%R. +Proof. +intros x. +unfold round. +rewrite scaled_mantissa_opp. +rewrite <- F2R_Zopp. +unfold Zceil. +rewrite Zopp_involutive. +now rewrite canonic_exp_opp. +Qed. + +Theorem round_UP_opp : + forall x, + round Zceil (-x) = (- round Zfloor x)%R. +Proof. +intros x. +unfold round. +rewrite scaled_mantissa_opp. +rewrite <- F2R_Zopp. +unfold Zceil. +rewrite Ropp_involutive. +now rewrite canonic_exp_opp. +Qed. + +Theorem round_ZR_opp : + forall x, + round Ztrunc (- x) = Ropp (round Ztrunc x). +Proof. +intros x. +unfold round. +rewrite scaled_mantissa_opp, canonic_exp_opp, Ztrunc_opp. +apply F2R_Zopp. +Qed. + +Theorem round_ZR_abs : + forall x, + round Ztrunc (Rabs x) = Rabs (round Ztrunc x). +Proof with auto with typeclass_instances. +intros x. +apply sym_eq. +unfold Rabs at 2. +destruct (Rcase_abs x) as [Hx|Hx]. +rewrite round_ZR_opp. +apply Rabs_left1. +rewrite <- (round_0 Ztrunc). +apply round_le... +now apply Rlt_le. +apply Rabs_pos_eq. +rewrite <- (round_0 Ztrunc). +apply round_le... +now apply Rge_le. +Qed. + +Theorem round_AW_opp : + forall x, + round Zaway (- x) = Ropp (round Zaway x). +Proof. +intros x. +unfold round. +rewrite scaled_mantissa_opp, canonic_exp_opp, Zaway_opp. +apply F2R_Zopp. +Qed. + +Theorem round_AW_abs : + forall x, + round Zaway (Rabs x) = Rabs (round Zaway x). +Proof with auto with typeclass_instances. +intros x. +apply sym_eq. +unfold Rabs at 2. +destruct (Rcase_abs x) as [Hx|Hx]. +rewrite round_AW_opp. +apply Rabs_left1. +rewrite <- (round_0 Zaway). +apply round_le... +now apply Rlt_le. +apply Rabs_pos_eq. +rewrite <- (round_0 Zaway). +apply round_le... +now apply Rge_le. +Qed. + +Theorem round_ZR_pos : + forall x, + (0 <= x)%R -> + round Ztrunc x = round Zfloor x. +Proof. +intros x Hx. +unfold round, Ztrunc. +case Rlt_bool_spec. +intros H. +elim Rlt_not_le with (1 := H). +rewrite <- (Rmult_0_l (bpow (- canonic_exp x))). +apply Rmult_le_compat_r with (2 := Hx). +apply bpow_ge_0. +easy. +Qed. + +Theorem round_ZR_neg : + forall x, + (x <= 0)%R -> + round Ztrunc x = round Zceil x. +Proof. +intros x Hx. +unfold round, Ztrunc. +case Rlt_bool_spec. +easy. +intros [H|H]. +elim Rlt_not_le with (1 := H). +rewrite <- (Rmult_0_l (bpow (- canonic_exp x))). +apply Rmult_le_compat_r with (2 := Hx). +apply bpow_ge_0. +rewrite <- H. +change R0 with (Z2R 0). +now rewrite Zfloor_Z2R, Zceil_Z2R. +Qed. + +Theorem round_AW_pos : + forall x, + (0 <= x)%R -> + round Zaway x = round Zceil x. +Proof. +intros x Hx. +unfold round, Zaway. +case Rlt_bool_spec. +intros H. +elim Rlt_not_le with (1 := H). +rewrite <- (Rmult_0_l (bpow (- canonic_exp x))). +apply Rmult_le_compat_r with (2 := Hx). +apply bpow_ge_0. +easy. +Qed. + +Theorem round_AW_neg : + forall x, + (x <= 0)%R -> + round Zaway x = round Zfloor x. +Proof. +intros x Hx. +unfold round, Zaway. +case Rlt_bool_spec. +easy. +intros [H|H]. +elim Rlt_not_le with (1 := H). +rewrite <- (Rmult_0_l (bpow (- canonic_exp x))). +apply Rmult_le_compat_r with (2 := Hx). +apply bpow_ge_0. +rewrite <- H. +change R0 with (Z2R 0). +now rewrite Zfloor_Z2R, Zceil_Z2R. +Qed. + +Theorem generic_format_round : + forall rnd { Hr : Valid_rnd rnd } x, + generic_format (round rnd x). +Proof with auto with typeclass_instances. +intros rnd Zrnd x. +destruct (total_order_T x 0) as [[Hx|Hx]|Hx]. +rewrite <- (Ropp_involutive x). +destruct (round_DN_or_UP rnd (- - x)) as [Hr|Hr] ; rewrite Hr. +rewrite round_DN_opp. +apply generic_format_opp. +apply generic_format_round_pos... +now apply Ropp_0_gt_lt_contravar. +rewrite round_UP_opp. +apply generic_format_opp. +apply generic_format_round_pos... +now apply Ropp_0_gt_lt_contravar. +rewrite Hx. +rewrite round_0... +apply generic_format_0. +now apply generic_format_round_pos. +Qed. + +Theorem round_DN_pt : + forall x, + Rnd_DN_pt generic_format x (round Zfloor x). +Proof with auto with typeclass_instances. +intros x. +split. +apply generic_format_round... +split. +pattern x at 2 ; rewrite <- scaled_mantissa_mult_bpow. +unfold round, F2R. simpl. +apply Rmult_le_compat_r. +apply bpow_ge_0. +apply Zfloor_lb. +intros g Hg Hgx. +apply round_ge_generic... +Qed. + +Theorem generic_format_satisfies_any : + satisfies_any generic_format. +Proof. +split. +(* symmetric set *) +exact generic_format_0. +exact generic_format_opp. +(* round down *) +intros x. +eexists. +apply round_DN_pt. +Qed. + +Theorem round_UP_pt : + forall x, + Rnd_UP_pt generic_format x (round Zceil x). +Proof. +intros x. +rewrite <- (Ropp_involutive x). +rewrite round_UP_opp. +apply Rnd_DN_UP_pt_sym. +apply generic_format_opp. +apply round_DN_pt. +Qed. + +Theorem round_ZR_pt : + forall x, + Rnd_ZR_pt generic_format x (round Ztrunc x). +Proof. +intros x. +split ; intros Hx. +rewrite round_ZR_pos with (1 := Hx). +apply round_DN_pt. +rewrite round_ZR_neg with (1 := Hx). +apply round_UP_pt. +Qed. + +Theorem round_DN_small_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + round Zfloor x = R0. +Proof. +intros x ex Hx He. +rewrite <- (F2R_0 beta (canonic_exp x)). +rewrite <- mantissa_DN_small_pos with (1 := Hx) (2 := He). +now rewrite <- canonic_exp_fexp_pos with (1 := Hx). +Qed. + +Theorem round_UP_small_pos : + forall x ex, + (bpow (ex - 1) <= x < bpow ex)%R -> + (ex <= fexp ex)%Z -> + round Zceil x = (bpow (fexp ex)). +Proof. +intros x ex Hx He. +rewrite <- F2R_bpow. +rewrite <- mantissa_UP_small_pos with (1 := Hx) (2 := He). +now rewrite <- canonic_exp_fexp_pos with (1 := Hx). +Qed. + +Theorem generic_format_EM : + forall x, + generic_format x \/ ~generic_format x. +Proof with auto with typeclass_instances. +intros x. +destruct (Req_dec (round Zfloor x) x) as [Hx|Hx]. +left. +rewrite <- Hx. +apply generic_format_round... +right. +intros H. +apply Hx. +apply round_generic... +Qed. + +Section round_large. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Theorem round_large_pos_ge_pow : + forall x e, + (0 < round rnd x)%R -> + (bpow e <= x)%R -> + (bpow e <= round rnd x)%R. +Proof. +intros x e Hd Hex. +destruct (ln_beta beta x) as (ex, He). +assert (Hx: (0 < x)%R). +apply Rlt_le_trans with (2 := Hex). +apply bpow_gt_0. +specialize (He (Rgt_not_eq _ _ Hx)). +rewrite Rabs_pos_eq in He. 2: now apply Rlt_le. +apply Rle_trans with (bpow (ex - 1)). +apply bpow_le. +cut (e < ex)%Z. omega. +apply (lt_bpow beta). +now apply Rle_lt_trans with (2 := proj2 He). +destruct (Zle_or_lt ex (fexp ex)). +destruct (round_bounded_small_pos rnd x ex H He) as [Hr|Hr]. +rewrite Hr in Hd. +elim Rlt_irrefl with (1 := Hd). +rewrite Hr. +apply bpow_le. +omega. +apply (round_bounded_large_pos rnd x ex H He). +Qed. + +End round_large. + +Theorem ln_beta_round_ZR : + forall x, + (round Ztrunc x <> 0)%R -> + (ln_beta beta (round Ztrunc x) = ln_beta beta x :> Z). +Proof with auto with typeclass_instances. +intros x Zr. +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx, round_0... +apply ln_beta_unique. +destruct (ln_beta beta x) as (ex, Ex) ; simpl. +specialize (Ex Zx). +rewrite <- round_ZR_abs. +split. +apply round_large_pos_ge_pow... +rewrite round_ZR_abs. +now apply Rabs_pos_lt. +apply Ex. +apply Rle_lt_trans with (2 := proj2 Ex). +rewrite round_ZR_pos. +apply round_DN_pt. +apply Rabs_pos. +Qed. + +Theorem ln_beta_round : + forall rnd {Hrnd : Valid_rnd rnd} x, + (round rnd x <> 0)%R -> + (ln_beta beta (round rnd x) = ln_beta beta x :> Z) \/ + Rabs (round rnd x) = bpow (Zmax (ln_beta beta x) (fexp (ln_beta beta x))). +Proof with auto with typeclass_instances. +intros rnd Hrnd x. +destruct (round_ZR_or_AW rnd x) as [Hr|Hr] ; rewrite Hr ; clear Hr rnd Hrnd. +left. +now apply ln_beta_round_ZR. +intros Zr. +destruct (Req_dec x 0) as [Zx|Zx]. +rewrite Zx, round_0... +destruct (ln_beta beta x) as (ex, Ex) ; simpl. +specialize (Ex Zx). +rewrite <- ln_beta_abs. +rewrite <- round_AW_abs. +destruct (Zle_or_lt ex (fexp ex)) as [He|He]. +right. +rewrite Zmax_r with (1 := He). +rewrite round_AW_pos with (1 := Rabs_pos _). +now apply round_UP_small_pos. +destruct (round_bounded_large_pos Zaway _ ex He Ex) as (H1,[H2|H2]). +left. +apply ln_beta_unique. +rewrite <- round_AW_abs, Rabs_Rabsolu. +now split. +right. +now rewrite Zmax_l with (1 := Zlt_le_weak _ _ He). +Qed. + +Theorem ln_beta_round_DN : + forall x, + (0 < round Zfloor x)%R -> + (ln_beta beta (round Zfloor x) = ln_beta beta x :> Z). +Proof. +intros x Hd. +assert (0 < x)%R. +apply Rlt_le_trans with (1 := Hd). +apply round_DN_pt. +revert Hd. +rewrite <- round_ZR_pos. +intros Hd. +apply ln_beta_round_ZR. +now apply Rgt_not_eq. +now apply Rlt_le. +Qed. + +(* TODO: remove *) +Theorem canonic_exp_DN : + forall x, + (0 < round Zfloor x)%R -> + canonic_exp (round Zfloor x) = canonic_exp x. +Proof. +intros x Hd. +apply (f_equal fexp). +now apply ln_beta_round_DN. +Qed. + +Theorem scaled_mantissa_DN : + forall x, + (0 < round Zfloor x)%R -> + scaled_mantissa (round Zfloor x) = Z2R (Zfloor (scaled_mantissa x)). +Proof. +intros x Hd. +unfold scaled_mantissa. +rewrite canonic_exp_DN with (1 := Hd). +unfold round, F2R. simpl. +now rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +Qed. + +Theorem generic_N_pt_DN_or_UP : + forall x f, + Rnd_N_pt generic_format x f -> + f = round Zfloor x \/ f = round Zceil x. +Proof. +intros x f Hxf. +destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf). +left. +apply Rnd_DN_pt_unicity with (1 := H). +apply round_DN_pt. +right. +apply Rnd_UP_pt_unicity with (1 := H). +apply round_UP_pt. +Qed. + +Section not_FTZ. + +Class Exp_not_FTZ := + exp_not_FTZ : forall e, (fexp (fexp e + 1) <= fexp e)%Z. + +Context { exp_not_FTZ_ : Exp_not_FTZ }. + +Theorem subnormal_exponent : + forall e x, + (e <= fexp e)%Z -> + generic_format x -> + x = F2R (Float beta (Ztrunc (x * bpow (- fexp e))) (fexp e)). +Proof. +intros e x He Hx. +pattern x at 2 ; rewrite Hx. +unfold F2R at 2. simpl. +rewrite Rmult_assoc, <- bpow_plus. +assert (H: Z2R (Zpower beta (canonic_exp x + - fexp e)) = bpow (canonic_exp x + - fexp e)). +apply Z2R_Zpower. +unfold canonic_exp. +set (ex := ln_beta beta x). +generalize (exp_not_FTZ ex). +generalize (proj2 (proj2 (valid_exp _) He) (fexp ex + 1)%Z). +omega. +rewrite <- H. +rewrite <- Z2R_mult, Ztrunc_Z2R. +unfold F2R. simpl. +rewrite Z2R_mult. +rewrite H. +rewrite Rmult_assoc, <- bpow_plus. +now ring_simplify (canonic_exp x + - fexp e + fexp e)%Z. +Qed. + +End not_FTZ. + +Section monotone_exp. + +Class Monotone_exp := + monotone_exp : forall ex ey, (ex <= ey)%Z -> (fexp ex <= fexp ey)%Z. + +Context { monotone_exp_ : Monotone_exp }. + +Global Instance monotone_exp_not_FTZ : Exp_not_FTZ. +Proof. +intros e. +destruct (Z_lt_le_dec (fexp e) e) as [He|He]. +apply monotone_exp. +now apply Zlt_le_succ. +now apply valid_exp. +Qed. + +Lemma canonic_exp_le_bpow : + forall (x : R) (e : Z), + x <> R0 -> + (Rabs x < bpow e)%R -> + (canonic_exp x <= fexp e)%Z. +Proof. +intros x e Zx Hx. +apply monotone_exp. +now apply ln_beta_le_bpow. +Qed. + +Lemma canonic_exp_ge_bpow : + forall (x : R) (e : Z), + (bpow (e - 1) <= Rabs x)%R -> + (fexp e <= canonic_exp x)%Z. +Proof. +intros x e Hx. +apply monotone_exp. +rewrite (Zsucc_pred e). +apply Zlt_le_succ. +now apply ln_beta_gt_bpow. +Qed. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Theorem ln_beta_round_ge : + forall x, + round rnd x <> R0 -> + (ln_beta beta x <= ln_beta beta (round rnd x))%Z. +Proof with auto with typeclass_instances. +intros x. +destruct (round_ZR_or_AW rnd x) as [H|H] ; rewrite H ; clear H ; intros Zr. +rewrite ln_beta_round_ZR with (1 := Zr). +apply Zle_refl. +apply ln_beta_le_abs. +contradict Zr. +rewrite Zr. +apply round_0... +rewrite <- round_AW_abs. +rewrite round_AW_pos. +apply round_UP_pt. +apply Rabs_pos. +Qed. + +Theorem canonic_exp_round_ge : + forall x, + round rnd x <> R0 -> + (canonic_exp x <= canonic_exp (round rnd x))%Z. +Proof with auto with typeclass_instances. +intros x Zr. +unfold canonic_exp. +apply monotone_exp. +now apply ln_beta_round_ge. +Qed. + +End monotone_exp. + +Section Znearest. + +(** Roundings to nearest: when in the middle, use the choice function *) +Variable choice : Z -> bool. + +Definition Znearest x := + match Rcompare (x - Z2R (Zfloor x)) (/2) with + | Lt => Zfloor x + | Eq => if choice (Zfloor x) then Zceil x else Zfloor x + | Gt => Zceil x + end. + +Theorem Znearest_DN_or_UP : + forall x, + Znearest x = Zfloor x \/ Znearest x = Zceil x. +Proof. +intros x. +unfold Znearest. +case Rcompare_spec ; intros _. +now left. +case choice. +now right. +now left. +now right. +Qed. + +Theorem Znearest_ge_floor : + forall x, + (Zfloor x <= Znearest x)%Z. +Proof. +intros x. +destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx. +apply Zle_refl. +apply le_Z2R. +apply Rle_trans with x. +apply Zfloor_lb. +apply Zceil_ub. +Qed. + +Theorem Znearest_le_ceil : + forall x, + (Znearest x <= Zceil x)%Z. +Proof. +intros x. +destruct (Znearest_DN_or_UP x) as [Hx|Hx] ; rewrite Hx. +apply le_Z2R. +apply Rle_trans with x. +apply Zfloor_lb. +apply Zceil_ub. +apply Zle_refl. +Qed. + +Global Instance valid_rnd_N : Valid_rnd Znearest. +Proof. +split. +(* *) +intros x y Hxy. +destruct (Rle_or_lt (Z2R (Zceil x)) y) as [H|H]. +apply Zle_trans with (1 := Znearest_le_ceil x). +apply Zle_trans with (2 := Znearest_ge_floor y). +now apply Zfloor_lub. +(* . *) +assert (Hf: Zfloor y = Zfloor x). +apply Zfloor_imp. +split. +apply Rle_trans with (2 := Zfloor_lb y). +apply Z2R_le. +now apply Zfloor_le. +apply Rlt_le_trans with (1 := H). +apply Z2R_le. +apply Zceil_glb. +apply Rlt_le. +rewrite Z2R_plus. +apply Zfloor_ub. +(* . *) +unfold Znearest at 1. +case Rcompare_spec ; intro Hx. +(* .. *) +rewrite <- Hf. +apply Znearest_ge_floor. +(* .. *) +unfold Znearest. +rewrite Hf. +case Rcompare_spec ; intro Hy. +elim Rlt_not_le with (1 := Hy). +rewrite <- Hx. +now apply Rplus_le_compat_r. +replace y with x. +apply Zle_refl. +apply Rplus_eq_reg_l with (- Z2R (Zfloor x))%R. +rewrite 2!(Rplus_comm (- (Z2R (Zfloor x)))). +change (x - Z2R (Zfloor x) = y - Z2R (Zfloor x))%R. +now rewrite Hy. +apply Zle_trans with (Zceil x). +case choice. +apply Zle_refl. +apply le_Z2R. +apply Rle_trans with x. +apply Zfloor_lb. +apply Zceil_ub. +now apply Zceil_le. +(* .. *) +unfold Znearest. +rewrite Hf. +rewrite Rcompare_Gt. +now apply Zceil_le. +apply Rlt_le_trans with (1 := Hx). +now apply Rplus_le_compat_r. +(* *) +intros n. +unfold Znearest. +rewrite Zfloor_Z2R. +rewrite Rcompare_Lt. +easy. +unfold Rminus. +rewrite Rplus_opp_r. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +Qed. + +Theorem Rcompare_floor_ceil_mid : + forall x, + Z2R (Zfloor x) <> x -> + Rcompare (x - Z2R (Zfloor x)) (/ 2) = Rcompare (x - Z2R (Zfloor x)) (Z2R (Zceil x) - x). +Proof. +intros x Hx. +rewrite Zceil_floor_neq with (1 := Hx). +rewrite Z2R_plus. simpl. +destruct (Rcompare_spec (x - Z2R (Zfloor x)) (/ 2)) as [H1|H1|H1] ; apply sym_eq. +(* . *) +apply Rcompare_Lt. +apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R. +replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring. +replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field. +apply Rmult_lt_compat_r with (2 := H1). +now apply (Z2R_lt 0 2). +(* . *) +apply Rcompare_Eq. +replace (Z2R (Zfloor x) + 1 - x)%R with (1 - (x - Z2R (Zfloor x)))%R by ring. +rewrite H1. +field. +(* . *) +apply Rcompare_Gt. +apply Rplus_lt_reg_r with (x - Z2R (Zfloor x))%R. +replace (x - Z2R (Zfloor x) + (x - Z2R (Zfloor x)))%R with ((x - Z2R (Zfloor x)) * 2)%R by ring. +replace (x - Z2R (Zfloor x) + (Z2R (Zfloor x) + 1 - x))%R with (/2 * 2)%R by field. +apply Rmult_lt_compat_r with (2 := H1). +now apply (Z2R_lt 0 2). +Qed. + +Theorem Rcompare_ceil_floor_mid : + forall x, + Z2R (Zfloor x) <> x -> + Rcompare (Z2R (Zceil x) - x) (/ 2) = Rcompare (Z2R (Zceil x) - x) (x - Z2R (Zfloor x)). +Proof. +intros x Hx. +rewrite Zceil_floor_neq with (1 := Hx). +rewrite Z2R_plus. simpl. +destruct (Rcompare_spec (Z2R (Zfloor x) + 1 - x) (/ 2)) as [H1|H1|H1] ; apply sym_eq. +(* . *) +apply Rcompare_Lt. +apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R. +replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring. +replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field. +apply Rmult_lt_compat_r with (2 := H1). +now apply (Z2R_lt 0 2). +(* . *) +apply Rcompare_Eq. +replace (x - Z2R (Zfloor x))%R with (1 - (Z2R (Zfloor x) + 1 - x))%R by ring. +rewrite H1. +field. +(* . *) +apply Rcompare_Gt. +apply Rplus_lt_reg_r with (Z2R (Zfloor x) + 1 - x)%R. +replace (Z2R (Zfloor x) + 1 - x + (Z2R (Zfloor x) + 1 - x))%R with ((Z2R (Zfloor x) + 1 - x) * 2)%R by ring. +replace (Z2R (Zfloor x) + 1 - x + (x - Z2R (Zfloor x)))%R with (/2 * 2)%R by field. +apply Rmult_lt_compat_r with (2 := H1). +now apply (Z2R_lt 0 2). +Qed. + +Theorem Znearest_N_strict : + forall x, + (x - Z2R (Zfloor x) <> /2)%R -> + (Rabs (x - Z2R (Znearest x)) < /2)%R. +Proof. +intros x Hx. +unfold Znearest. +case Rcompare_spec ; intros H. +rewrite Rabs_pos_eq. +exact H. +apply Rle_0_minus. +apply Zfloor_lb. +now elim Hx. +rewrite Rabs_left1. +rewrite Ropp_minus_distr. +rewrite Zceil_floor_neq. +rewrite Z2R_plus. +simpl. +apply Ropp_lt_cancel. +apply Rplus_lt_reg_r with R1. +replace (1 + -/2)%R with (/2)%R by field. +now replace (1 + - (Z2R (Zfloor x) + 1 - x))%R with (x - Z2R (Zfloor x))%R by ring. +apply Rlt_not_eq. +apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R. +apply Rlt_trans with (/2)%R. +rewrite Rplus_opp_l. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +now rewrite <- (Rplus_comm x). +apply Rle_minus. +apply Zceil_ub. +Qed. + +Theorem Znearest_N : + forall x, + (Rabs (x - Z2R (Znearest x)) <= /2)%R. +Proof. +intros x. +destruct (Req_dec (x - Z2R (Zfloor x)) (/2)) as [Hx|Hx]. +assert (K: (Rabs (/2) <= /2)%R). +apply Req_le. +apply Rabs_pos_eq. +apply Rlt_le. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +destruct (Znearest_DN_or_UP x) as [H|H] ; rewrite H ; clear H. +now rewrite Hx. +rewrite Zceil_floor_neq. +rewrite Z2R_plus. +simpl. +replace (x - (Z2R (Zfloor x) + 1))%R with (x - Z2R (Zfloor x) - 1)%R by ring. +rewrite Hx. +rewrite Rabs_minus_sym. +now replace (1 - /2)%R with (/2)%R by field. +apply Rlt_not_eq. +apply Rplus_lt_reg_r with (- Z2R (Zfloor x))%R. +rewrite Rplus_opp_l, Rplus_comm. +fold (x - Z2R (Zfloor x))%R. +rewrite Hx. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +apply Rlt_le. +now apply Znearest_N_strict. +Qed. + +Theorem Znearest_imp : + forall x n, + (Rabs (x - Z2R n) < /2)%R -> + Znearest x = n. +Proof. +intros x n Hd. +cut (Zabs (Znearest x - n) < 1)%Z. +clear ; zify ; omega. +apply lt_Z2R. +rewrite Z2R_abs, Z2R_minus. +replace (Z2R (Znearest x) - Z2R n)%R with (- (x - Z2R (Znearest x)) + (x - Z2R n))%R by ring. +apply Rle_lt_trans with (1 := Rabs_triang _ _). +simpl. +replace R1 with (/2 + /2)%R by field. +apply Rplus_le_lt_compat with (2 := Hd). +rewrite Rabs_Ropp. +apply Znearest_N. +Qed. + +Theorem round_N_pt : + forall x, + Rnd_N_pt generic_format x (round Znearest x). +Proof. +intros x. +set (d := round Zfloor x). +set (u := round Zceil x). +set (mx := scaled_mantissa x). +set (bx := bpow (canonic_exp x)). +(* . *) +assert (H: (Rabs (round Znearest x - x) <= Rmin (x - d) (u - x))%R). +pattern x at -1 ; rewrite <- scaled_mantissa_mult_bpow. +unfold d, u, round, F2R. simpl. +fold mx bx. +rewrite <- 3!Rmult_minus_distr_r. +rewrite Rabs_mult, (Rabs_pos_eq bx). 2: apply bpow_ge_0. +rewrite <- Rmult_min_distr_r. 2: apply bpow_ge_0. +apply Rmult_le_compat_r. +apply bpow_ge_0. +unfold Znearest. +destruct (Req_dec (Z2R (Zfloor mx)) mx) as [Hm|Hm]. +(* .. *) +rewrite Hm. +unfold Rminus at 2. +rewrite Rplus_opp_r. +rewrite Rcompare_Lt. +rewrite Hm. +unfold Rminus at -3. +rewrite Rplus_opp_r. +rewrite Rabs_R0. +unfold Rmin. +destruct (Rle_dec 0 (Z2R (Zceil mx) - mx)) as [H|H]. +apply Rle_refl. +apply Rle_0_minus. +apply Zceil_ub. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +(* .. *) +rewrite Rcompare_floor_ceil_mid with (1 := Hm). +rewrite Rmin_compare. +assert (H: (Rabs (mx - Z2R (Zfloor mx)) <= mx - Z2R (Zfloor mx))%R). +rewrite Rabs_pos_eq. +apply Rle_refl. +apply Rle_0_minus. +apply Zfloor_lb. +case Rcompare_spec ; intros Hm'. +now rewrite Rabs_minus_sym. +case choice. +rewrite <- Hm'. +exact H. +now rewrite Rabs_minus_sym. +rewrite Rabs_pos_eq. +apply Rle_refl. +apply Rle_0_minus. +apply Zceil_ub. +(* . *) +apply Rnd_DN_UP_pt_N with d u. +apply generic_format_round. +auto with typeclass_instances. +now apply round_DN_pt. +now apply round_UP_pt. +apply Rle_trans with (1 := H). +apply Rmin_l. +apply Rle_trans with (1 := H). +apply Rmin_r. +Qed. + +Theorem round_N_middle : + forall x, + (x - round Zfloor x = round Zceil x - x)%R -> + round Znearest x = if choice (Zfloor (scaled_mantissa x)) then round Zceil x else round Zfloor x. +Proof. +intros x. +pattern x at 1 4 ; rewrite <- scaled_mantissa_mult_bpow. +unfold round, Znearest, F2R. simpl. +destruct (Req_dec (Z2R (Zfloor (scaled_mantissa x))) (scaled_mantissa x)) as [Fx|Fx]. +(* *) +intros _. +rewrite <- Fx. +rewrite Zceil_Z2R, Zfloor_Z2R. +set (m := Zfloor (scaled_mantissa x)). +now case (Rcompare (Z2R m - Z2R m) (/ 2)) ; case (choice m). +(* *) +intros H. +rewrite Rcompare_floor_ceil_mid with (1 := Fx). +rewrite Rcompare_Eq. +now case choice. +apply Rmult_eq_reg_r with (bpow (canonic_exp x)). +now rewrite 2!Rmult_minus_distr_r. +apply Rgt_not_eq. +apply bpow_gt_0. +Qed. + +End Znearest. + +Section rndNA. + +Global Instance valid_rnd_NA : Valid_rnd (Znearest (Zle_bool 0)) := valid_rnd_N _. + +Theorem round_NA_pt : + forall x, + Rnd_NA_pt generic_format x (round (Znearest (Zle_bool 0)) x). +Proof. +intros x. +generalize (round_N_pt (Zle_bool 0) x). +set (f := round (Znearest (Zle_bool 0)) x). +intros Rxf. +destruct (Req_dec (x - round Zfloor x) (round Zceil x - x)) as [Hm|Hm]. +(* *) +apply Rnd_NA_N_pt. +exact generic_format_0. +exact Rxf. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +(* . *) +rewrite Rabs_pos_eq with (1 := Hx). +rewrite Rabs_pos_eq. +unfold f. +rewrite round_N_middle with (1 := Hm). +rewrite Zle_bool_true. +apply (round_UP_pt x). +apply Zfloor_lub. +apply Rmult_le_pos with (1 := Hx). +apply bpow_ge_0. +apply Rnd_N_pt_pos with (2 := Hx) (3 := Rxf). +exact generic_format_0. +(* . *) +rewrite Rabs_left with (1 := Hx). +rewrite Rabs_left1. +apply Ropp_le_contravar. +unfold f. +rewrite round_N_middle with (1 := Hm). +rewrite Zle_bool_false. +apply (round_DN_pt x). +apply lt_Z2R. +apply Rle_lt_trans with (scaled_mantissa x). +apply Zfloor_lb. +simpl. +rewrite <- (Rmult_0_l (bpow (- canonic_exp x))). +apply Rmult_lt_compat_r with (2 := Hx). +apply bpow_gt_0. +apply Rnd_N_pt_neg with (3 := Rxf). +exact generic_format_0. +now apply Rlt_le. +(* *) +split. +apply Rxf. +intros g Rxg. +rewrite Rnd_N_pt_unicity with (3 := Hm) (4 := Rxf) (5 := Rxg). +apply Rle_refl. +apply round_DN_pt. +apply round_UP_pt. +Qed. + +End rndNA. + +Section rndN_opp. + +Theorem Znearest_opp : + forall choice x, + Znearest choice (- x) = (- Znearest (fun t => negb (choice (- (t + 1))%Z)) x)%Z. +Proof with auto with typeclass_instances. +intros choice x. +destruct (Req_dec (Z2R (Zfloor x)) x) as [Hx|Hx]. +rewrite <- Hx. +rewrite <- Z2R_opp. +rewrite 2!Zrnd_Z2R... +unfold Znearest. +replace (- x - Z2R (Zfloor (-x)))%R with (Z2R (Zceil x) - x)%R. +rewrite Rcompare_ceil_floor_mid with (1 := Hx). +rewrite Rcompare_floor_ceil_mid with (1 := Hx). +rewrite Rcompare_sym. +rewrite <- Zceil_floor_neq with (1 := Hx). +unfold Zceil. +rewrite Ropp_involutive. +case Rcompare ; simpl ; trivial. +rewrite Zopp_involutive. +case (choice (Zfloor (- x))) ; simpl ; trivial. +now rewrite Zopp_involutive. +now rewrite Zopp_involutive. +unfold Zceil. +rewrite Z2R_opp. +apply Rplus_comm. +Qed. + +Theorem round_N_opp : + forall choice, + forall x, + round (Znearest choice) (-x) = (- round (Znearest (fun t => negb (choice (- (t + 1))%Z))) x)%R. +Proof. +intros choice x. +unfold round, F2R. simpl. +rewrite canonic_exp_opp. +rewrite scaled_mantissa_opp. +rewrite Znearest_opp. +rewrite Z2R_opp. +now rewrite Ropp_mult_distr_l_reverse. +Qed. + +End rndN_opp. + +End Format. + +(** Inclusion of a format into an extended format *) +Section Inclusion. + +Variables fexp1 fexp2 : Z -> Z. + +Context { valid_exp1 : Valid_exp fexp1 }. +Context { valid_exp2 : Valid_exp fexp2 }. + +Theorem generic_inclusion_ln_beta : + forall x, + ( x <> R0 -> (fexp2 (ln_beta beta x) <= fexp1 (ln_beta beta x))%Z ) -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof. +intros x He Fx. +rewrite Fx. +apply generic_format_F2R. +intros Zx. +rewrite <- Fx. +apply He. +contradict Zx. +rewrite Zx, scaled_mantissa_0. +apply (Ztrunc_Z2R 0). +Qed. + +Theorem generic_inclusion_lt_ge : + forall e1 e2, + ( forall e, (e1 < e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) -> + forall x, + (bpow e1 <= Rabs x < bpow e2)%R -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof. +intros e1 e2 He x (Hx1,Hx2). +apply generic_inclusion_ln_beta. +intros Zx. +apply He. +split. +now apply ln_beta_gt_bpow. +now apply ln_beta_le_bpow. +Qed. + +Theorem generic_inclusion : + forall e, + (fexp2 e <= fexp1 e)%Z -> + forall x, + (bpow (e - 1) <= Rabs x <= bpow e)%R -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof with auto with typeclass_instances. +intros e He x (Hx1,[Hx2|Hx2]). +apply generic_inclusion_ln_beta. +now rewrite ln_beta_unique with (1 := conj Hx1 Hx2). +intros Fx. +apply generic_format_abs_inv. +rewrite Hx2. +apply generic_format_bpow'... +apply Zle_trans with (1 := He). +apply generic_format_bpow_inv... +rewrite <- Hx2. +now apply generic_format_abs. +Qed. + +Theorem generic_inclusion_le_ge : + forall e1 e2, + (e1 < e2)%Z -> + ( forall e, (e1 < e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) -> + forall x, + (bpow e1 <= Rabs x <= bpow e2)%R -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof. +intros e1 e2 He' He x (Hx1,[Hx2|Hx2]). +(* *) +apply generic_inclusion_ln_beta. +intros Zx. +apply He. +split. +now apply ln_beta_gt_bpow. +now apply ln_beta_le_bpow. +(* *) +apply generic_inclusion with (e := e2). +apply He. +split. +apply He'. +apply Zle_refl. +rewrite Hx2. +split. +apply bpow_le. +apply Zle_pred. +apply Rle_refl. +Qed. + +Theorem generic_inclusion_le : + forall e2, + ( forall e, (e <= e2)%Z -> (fexp2 e <= fexp1 e)%Z ) -> + forall x, + (Rabs x <= bpow e2)%R -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof. +intros e2 He x [Hx|Hx]. +apply generic_inclusion_ln_beta. +intros Zx. +apply He. +now apply ln_beta_le_bpow. +apply generic_inclusion with (e := e2). +apply He. +apply Zle_refl. +rewrite Hx. +split. +apply bpow_le. +apply Zle_pred. +apply Rle_refl. +Qed. + +Theorem generic_inclusion_ge : + forall e1, + ( forall e, (e1 < e)%Z -> (fexp2 e <= fexp1 e)%Z ) -> + forall x, + (bpow e1 <= Rabs x)%R -> + generic_format fexp1 x -> + generic_format fexp2 x. +Proof. +intros e1 He x Hx. +apply generic_inclusion_ln_beta. +intros Zx. +apply He. +now apply ln_beta_gt_bpow. +Qed. + +Variable rnd : R -> Z. +Context { valid_rnd : Valid_rnd rnd }. + +Theorem generic_round_generic : + forall x, + generic_format fexp1 x -> + generic_format fexp1 (round fexp2 rnd x). +Proof with auto with typeclass_instances. +intros x Gx. +apply generic_format_abs_inv. +apply generic_format_abs in Gx. +revert rnd valid_rnd x Gx. +refine (round_abs_abs' _ (fun x y => generic_format fexp1 x -> generic_format fexp1 y) _). +intros rnd valid_rnd x [Hx|Hx] Gx. +(* x > 0 *) +generalize (ln_beta_generic_gt _ x (Rgt_not_eq _ _ Hx) Gx). +unfold canonic_exp. +destruct (ln_beta beta x) as (ex,Ex) ; simpl. +specialize (Ex (Rgt_not_eq _ _ Hx)). +intros He'. +rewrite Rabs_pos_eq in Ex by now apply Rlt_le. +destruct (Zle_or_lt ex (fexp2 ex)) as [He|He]. +(* - x near 0 for fexp2 *) +destruct (round_bounded_small_pos fexp2 rnd x ex He Ex) as [Hr|Hr]. +rewrite Hr. +apply generic_format_0. +rewrite Hr. +apply generic_format_bpow'... +apply Zlt_le_weak. +apply valid_exp_large with ex... +(* - x large for fexp2 *) +destruct (Zle_or_lt (canonic_exp fexp2 x) (canonic_exp fexp1 x)) as [He''|He'']. +(* - - round fexp2 x is representable for fexp1 *) +rewrite round_generic... +rewrite Gx. +apply generic_format_F2R. +fold (round fexp1 Ztrunc x). +intros Zx. +unfold canonic_exp at 1. +rewrite ln_beta_round_ZR... +contradict Zx. +apply F2R_eq_0_reg with (1 := Zx). +(* - - round fexp2 x has too many digits for fexp1 *) +destruct (round_bounded_large_pos fexp2 rnd x ex He Ex) as (Hr1,[Hr2|Hr2]). +apply generic_format_F2R. +intros Zx. +fold (round fexp2 rnd x). +unfold canonic_exp at 1. +rewrite ln_beta_unique_pos with (1 := conj Hr1 Hr2). +rewrite <- ln_beta_unique_pos with (1 := Ex). +now apply Zlt_le_weak. +rewrite Hr2. +apply generic_format_bpow'... +now apply Zlt_le_weak. +(* x = 0 *) +rewrite <- Hx, round_0... +apply generic_format_0. +Qed. + +End Inclusion. + +End Generic. + +Notation ZnearestA := (Znearest (Zle_bool 0)). + +(** Notations for backward-compatibility with Flocq 1.4. *) +Notation rndDN := Zfloor (only parsing). +Notation rndUP := Zceil (only parsing). +Notation rndZR := Ztrunc (only parsing). +Notation rndNA := ZnearestA (only parsing). diff --git a/flocq/Core/Fcore_rnd.v b/flocq/Core/Fcore_rnd.v new file mode 100644 index 0000000..6b4d807 --- /dev/null +++ b/flocq/Core/Fcore_rnd.v @@ -0,0 +1,1394 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Roundings: properties and/or functions *) +Require Import Fcore_Raux. +Require Import Fcore_defs. + +Section RND_prop. + +Open Scope R_scope. + +Theorem round_val_of_pred : + forall rnd : R -> R -> Prop, + round_pred rnd -> + forall x, { f : R | rnd x f }. +Proof. +intros rnd (H1,H2) x. +specialize (H1 x). +(* . *) +assert (H3 : bound (rnd x)). +destruct H1 as (f, H1). +exists f. +intros g Hg. +now apply H2 with (3 := Rle_refl x). +(* . *) +exists (projT1 (completeness _ H3 H1)). +destruct completeness as (f1, (H4, H5)). +simpl. +destruct H1 as (f2, H1). +assert (f1 = f2). +apply Rle_antisym. +apply H5. +intros f3 H. +now apply H2 with (3 := Rle_refl x). +now apply H4. +now rewrite H. +Qed. + +Theorem round_fun_of_pred : + forall rnd : R -> R -> Prop, + round_pred rnd -> + { f : R -> R | forall x, rnd x (f x) }. +Proof. +intros rnd H. +exists (fun x => projT1 (round_val_of_pred rnd H x)). +intros x. +now destruct round_val_of_pred as (f, H1). +Qed. + +Theorem round_unicity : + forall rnd : R -> R -> Prop, + round_pred_monotone rnd -> + forall x f1 f2, + rnd x f1 -> + rnd x f2 -> + f1 = f2. +Proof. +intros rnd Hr x f1 f2 H1 H2. +apply Rle_antisym. +now apply Hr with (3 := Rle_refl x). +now apply Hr with (3 := Rle_refl x). +Qed. + +Theorem Rnd_DN_pt_monotone : + forall F : R -> Prop, + round_pred_monotone (Rnd_DN_pt F). +Proof. +intros F x y f g (Hx1,(Hx2,_)) (Hy1,(_,Hy2)) Hxy. +apply Hy2. +apply Hx1. +now apply Rle_trans with (2 := Hxy). +Qed. + +Theorem Rnd_DN_pt_unicity : + forall F : R -> Prop, + forall x f1 f2 : R, + Rnd_DN_pt F x f1 -> Rnd_DN_pt F x f2 -> + f1 = f2. +Proof. +intros F. +apply round_unicity. +apply Rnd_DN_pt_monotone. +Qed. + +Theorem Rnd_DN_unicity : + forall F : R -> Prop, + forall rnd1 rnd2 : R -> R, + Rnd_DN F rnd1 -> Rnd_DN F rnd2 -> + forall x, rnd1 x = rnd2 x. +Proof. +intros F rnd1 rnd2 H1 H2 x. +now eapply Rnd_DN_pt_unicity. +Qed. + +Theorem Rnd_UP_pt_monotone : + forall F : R -> Prop, + round_pred_monotone (Rnd_UP_pt F). +Proof. +intros F x y f g (Hx1,(_,Hx2)) (Hy1,(Hy2,_)) Hxy. +apply Hx2. +apply Hy1. +now apply Rle_trans with (1 := Hxy). +Qed. + +Theorem Rnd_UP_pt_unicity : + forall F : R -> Prop, + forall x f1 f2 : R, + Rnd_UP_pt F x f1 -> Rnd_UP_pt F x f2 -> + f1 = f2. +Proof. +intros F. +apply round_unicity. +apply Rnd_UP_pt_monotone. +Qed. + +Theorem Rnd_UP_unicity : + forall F : R -> Prop, + forall rnd1 rnd2 : R -> R, + Rnd_UP F rnd1 -> Rnd_UP F rnd2 -> + forall x, rnd1 x = rnd2 x. +Proof. +intros F rnd1 rnd2 H1 H2 x. +now eapply Rnd_UP_pt_unicity. +Qed. + +Theorem Rnd_DN_UP_pt_sym : + forall F : R -> Prop, + ( forall x, F x -> F (- x) ) -> + forall x f : R, + Rnd_DN_pt F x f -> Rnd_UP_pt F (-x) (-f). +Proof. +intros F HF x f H. +repeat split. +apply HF. +apply H. +apply Ropp_le_contravar. +apply H. +intros g Hg. +rewrite <- (Ropp_involutive g). +intros Hxg. +apply Ropp_le_contravar. +apply H. +now apply HF. +now apply Ropp_le_cancel. +Qed. + +Theorem Rnd_UP_DN_pt_sym : + forall F : R -> Prop, + ( forall x, F x -> F (- x) ) -> + forall x f : R, + Rnd_UP_pt F x f -> Rnd_DN_pt F (-x) (-f). +Proof. +intros F HF x f H. +repeat split. +apply HF. +apply H. +apply Ropp_le_contravar. +apply H. +intros g Hg. +rewrite <- (Ropp_involutive g). +intros Hxg. +apply Ropp_le_contravar. +apply H. +now apply HF. +now apply Ropp_le_cancel. +Qed. + +Theorem Rnd_DN_UP_sym : + forall F : R -> Prop, + ( forall x, F x -> F (- x) ) -> + forall rnd1 rnd2 : R -> R, + Rnd_DN F rnd1 -> Rnd_UP F rnd2 -> + forall x, rnd1 (- x) = - rnd2 x. +Proof. +intros F HF rnd1 rnd2 H1 H2 x. +rewrite <- (Ropp_involutive (rnd1 (-x))). +apply f_equal. +apply (Rnd_UP_unicity F (fun x => - rnd1 (-x))) ; trivial. +intros y. +pattern y at 1 ; rewrite <- Ropp_involutive. +apply Rnd_DN_UP_pt_sym. +apply HF. +apply H1. +Qed. + +Theorem Rnd_DN_UP_pt_split : + forall F : R -> Prop, + forall x d u, + Rnd_DN_pt F x d -> + Rnd_UP_pt F x u -> + forall f, F f -> + (f <= d) \/ (u <= f). +Proof. +intros F x d u Hd Hu f Hf. +destruct (Rle_or_lt f x). +left. +now apply Hd. +right. +assert (H' := Rlt_le _ _ H). +now apply Hu. +Qed. + +Theorem Rnd_DN_pt_refl : + forall F : R -> Prop, + forall x : R, F x -> + Rnd_DN_pt F x x. +Proof. +intros F x Hx. +repeat split. +exact Hx. +apply Rle_refl. +now intros. +Qed. + +Theorem Rnd_DN_pt_idempotent : + forall F : R -> Prop, + forall x f : R, + Rnd_DN_pt F x f -> F x -> + f = x. +Proof. +intros F x f (_,(Hx1,Hx2)) Hx. +apply Rle_antisym. +exact Hx1. +apply Hx2. +exact Hx. +apply Rle_refl. +Qed. + +Theorem Rnd_UP_pt_refl : + forall F : R -> Prop, + forall x : R, F x -> + Rnd_UP_pt F x x. +Proof. +intros F x Hx. +repeat split. +exact Hx. +apply Rle_refl. +now intros. +Qed. + +Theorem Rnd_UP_pt_idempotent : + forall F : R -> Prop, + forall x f : R, + Rnd_UP_pt F x f -> F x -> + f = x. +Proof. +intros F x f (_,(Hx1,Hx2)) Hx. +apply Rle_antisym. +apply Hx2. +exact Hx. +apply Rle_refl. +exact Hx1. +Qed. + +Theorem Only_DN_or_UP : + forall F : R -> Prop, + forall x fd fu f : R, + Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> + F f -> (fd <= f <= fu)%R -> + f = fd \/ f = fu. +Proof. +intros F x fd fu f Hd Hu Hf ([Hdf|Hdf], Hfu). +2 : now left. +destruct Hfu. +2 : now right. +destruct (Rle_or_lt x f). +elim Rlt_not_le with (1 := H). +now apply Hu. +elim Rlt_not_le with (1 := Hdf). +apply Hd ; auto with real. +Qed. + +Theorem Rnd_ZR_abs : + forall (F : R -> Prop) (rnd: R-> R), + Rnd_ZR F rnd -> + forall x : R, (Rabs (rnd x) <= Rabs x)%R. +Proof. +intros F rnd H x. +assert (F 0%R). +replace 0%R with (rnd 0%R). +eapply H. +apply Rle_refl. +destruct (H 0%R) as (H1, H2). +apply Rle_antisym. +apply H1. +apply Rle_refl. +apply H2. +apply Rle_refl. +(* . *) +destruct (Rle_or_lt 0 x). +(* positive *) +rewrite Rabs_right. +rewrite Rabs_right; auto with real. +now apply (proj1 (H x)). +apply Rle_ge. +now apply (proj1 (H x)). +(* negative *) +rewrite Rabs_left1. +rewrite Rabs_left1 ; auto with real. +apply Ropp_le_contravar. +apply (proj2 (H x)). +auto with real. +apply (proj2 (H x)) ; auto with real. +Qed. + +Theorem Rnd_ZR_pt_monotone : + forall F : R -> Prop, F 0 -> + round_pred_monotone (Rnd_ZR_pt F). +Proof. +intros F F0 x y f g (Hx1, Hx2) (Hy1, Hy2) Hxy. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +(* . *) +apply Hy1. +now apply Rle_trans with x. +now apply Hx1. +apply Rle_trans with (2 := Hxy). +now apply Hx1. +(* . *) +apply Rlt_le in Hx. +destruct (Rle_or_lt 0 y) as [Hy|Hy]. +apply Rle_trans with 0. +now apply Hx2. +now apply Hy1. +apply Rlt_le in Hy. +apply Hx2. +exact Hx. +now apply Hy2. +apply Rle_trans with (1 := Hxy). +now apply Hy2. +Qed. + +Theorem Rnd_N_pt_DN_or_UP : + forall F : R -> Prop, + forall x f : R, + Rnd_N_pt F x f -> + Rnd_DN_pt F x f \/ Rnd_UP_pt F x f. +Proof. +intros F x f (Hf1,Hf2). +destruct (Rle_or_lt x f) as [Hxf|Hxf]. +(* . *) +right. +repeat split ; try assumption. +intros g Hg Hxg. +specialize (Hf2 g Hg). +rewrite 2!Rabs_pos_eq in Hf2. +now apply Rplus_le_reg_r with (-x)%R. +now apply Rle_0_minus. +now apply Rle_0_minus. +(* . *) +left. +repeat split ; try assumption. +now apply Rlt_le. +intros g Hg Hxg. +specialize (Hf2 g Hg). +rewrite 2!Rabs_left1 in Hf2. +generalize (Ropp_le_cancel _ _ Hf2). +intros H. +now apply Rplus_le_reg_r with (-x)%R. +now apply Rle_minus. +apply Rlt_le. +now apply Rlt_minus. +Qed. + +Theorem Rnd_N_pt_DN_or_UP_eq : + forall F : R -> Prop, + forall x fd fu f : R, + Rnd_DN_pt F x fd -> Rnd_UP_pt F x fu -> + Rnd_N_pt F x f -> + f = fd \/ f = fu. +Proof. +intros F x fd fu f Hd Hu Hf. +destruct (Rnd_N_pt_DN_or_UP F x f Hf) as [H|H]. +left. +apply Rnd_DN_pt_unicity with (1 := H) (2 := Hd). +right. +apply Rnd_UP_pt_unicity with (1 := H) (2 := Hu). +Qed. + +Theorem Rnd_N_pt_sym : + forall F : R -> Prop, + ( forall x, F x -> F (- x) ) -> + forall x f : R, + Rnd_N_pt F (-x) (-f) -> Rnd_N_pt F x f. +Proof. +intros F HF x f (H1,H2). +rewrite <- (Ropp_involutive f). +repeat split. +apply HF. +apply H1. +intros g H3. +rewrite Ropp_involutive. +replace (f - x)%R with (-(-f - -x))%R by ring. +replace (g - x)%R with (-(-g - -x))%R by ring. +rewrite 2!Rabs_Ropp. +apply H2. +now apply HF. +Qed. + +Theorem Rnd_N_pt_monotone : + forall F : R -> Prop, + forall x y f g : R, + Rnd_N_pt F x f -> Rnd_N_pt F y g -> + x < y -> f <= g. +Proof. +intros F x y f g (Hf,Hx) (Hg,Hy) Hxy. +apply Rnot_lt_le. +intros Hgf. +assert (Hfgx := Hx g Hg). +assert (Hgfy := Hy f Hf). +clear F Hf Hg Hx Hy. +destruct (Rle_or_lt x g) as [Hxg|Hgx]. +(* x <= g < f *) +apply Rle_not_lt with (1 := Hfgx). +rewrite 2!Rabs_pos_eq. +now apply Rplus_lt_compat_r. +apply Rle_0_minus. +apply Rlt_le. +now apply Rle_lt_trans with (1 := Hxg). +now apply Rle_0_minus. +assert (Hgy := Rlt_trans _ _ _ Hgx Hxy). +destruct (Rle_or_lt f y) as [Hfy|Hyf]. +(* g < f <= y *) +apply Rle_not_lt with (1 := Hgfy). +rewrite (Rabs_left (g - y)). +2: now apply Rlt_minus. +rewrite Rabs_left1. +apply Ropp_lt_contravar. +now apply Rplus_lt_compat_r. +now apply Rle_minus. +(* g < x < y < f *) +rewrite Rabs_left, Rabs_pos_eq, Ropp_minus_distr in Hgfy. +rewrite Rabs_pos_eq, Rabs_left, Ropp_minus_distr in Hfgx. +apply Rle_not_lt with (1 := Rplus_le_compat _ _ _ _ Hfgx Hgfy). +apply Rminus_lt. +ring_simplify. +apply Rlt_minus. +apply Rmult_lt_compat_l. +now apply (Z2R_lt 0 2). +exact Hxy. +now apply Rlt_minus. +apply Rle_0_minus. +apply Rlt_le. +now apply Rlt_trans with (1 := Hxy). +apply Rle_0_minus. +now apply Rlt_le. +now apply Rlt_minus. +Qed. + +Theorem Rnd_N_pt_unicity : + forall F : R -> Prop, + forall x d u f1 f2 : R, + Rnd_DN_pt F x d -> + Rnd_UP_pt F x u -> + x - d <> u - x -> + Rnd_N_pt F x f1 -> + Rnd_N_pt F x f2 -> + f1 = f2. +Proof. +intros F x d u f1 f2 Hd Hu Hdu. +assert (forall f1 f2, Rnd_N_pt F x f1 -> Rnd_N_pt F x f2 -> f1 < f2 -> False). +clear f1 f2. intros f1 f2 Hf1 Hf2 H12. +destruct (Rnd_N_pt_DN_or_UP F x f1 Hf1) as [Hd1|Hu1] ; + destruct (Rnd_N_pt_DN_or_UP F x f2 Hf2) as [Hd2|Hu2]. +apply Rlt_not_eq with (1 := H12). +now apply Rnd_DN_pt_unicity with (1 := Hd1). +apply Hdu. +rewrite Rnd_DN_pt_unicity with (1 := Hd) (2 := Hd1). +rewrite Rnd_UP_pt_unicity with (1 := Hu) (2 := Hu2). +rewrite <- (Rabs_pos_eq (x - f1)). +rewrite <- (Rabs_pos_eq (f2 - x)). +rewrite Rabs_minus_sym. +apply Rle_antisym. +apply Hf1. apply Hf2. +apply Hf2. apply Hf1. +apply Rle_0_minus. +apply Hu2. +apply Rle_0_minus. +apply Hd1. +apply Rlt_not_le with (1 := H12). +apply Rle_trans with x. +apply Hd2. +apply Hu1. +apply Rgt_not_eq with (1 := H12). +now apply Rnd_UP_pt_unicity with (1 := Hu2). +intros Hf1 Hf2. +now apply Rle_antisym ; apply Rnot_lt_le ; refine (H _ _ _ _). +Qed. + +Theorem Rnd_N_pt_refl : + forall F : R -> Prop, + forall x : R, F x -> + Rnd_N_pt F x x. +Proof. +intros F x Hx. +repeat split. +exact Hx. +intros g _. +unfold Rminus at 1. +rewrite Rplus_opp_r, Rabs_R0. +apply Rabs_pos. +Qed. + +Theorem Rnd_N_pt_idempotent : + forall F : R -> Prop, + forall x f : R, + Rnd_N_pt F x f -> F x -> + f = x. +Proof. +intros F x f (_,Hf) Hx. +apply Rminus_diag_uniq. +destruct (Req_dec (f - x) 0) as [H|H]. +exact H. +elim Rabs_no_R0 with (1 := H). +apply Rle_antisym. +replace 0 with (Rabs (x - x)). +now apply Hf. +unfold Rminus. +rewrite Rplus_opp_r. +apply Rabs_R0. +apply Rabs_pos. +Qed. + +Theorem Rnd_N_pt_0 : + forall F : R -> Prop, + F 0 -> + Rnd_N_pt F 0 0. +Proof. +intros F HF. +split. +exact HF. +intros g _. +rewrite 2!Rminus_0_r, Rabs_R0. +apply Rabs_pos. +Qed. + +Theorem Rnd_N_pt_pos : + forall F : R -> Prop, F 0 -> + forall x f, 0 <= x -> + Rnd_N_pt F x f -> + 0 <= f. +Proof. +intros F HF x f [Hx|Hx] Hxf. +eapply Rnd_N_pt_monotone ; try eassumption. +now apply Rnd_N_pt_0. +right. +apply sym_eq. +apply Rnd_N_pt_idempotent with F. +now rewrite Hx. +exact HF. +Qed. + +Theorem Rnd_N_pt_neg : + forall F : R -> Prop, F 0 -> + forall x f, x <= 0 -> + Rnd_N_pt F x f -> + f <= 0. +Proof. +intros F HF x f [Hx|Hx] Hxf. +eapply Rnd_N_pt_monotone ; try eassumption. +now apply Rnd_N_pt_0. +right. +apply Rnd_N_pt_idempotent with F. +now rewrite <- Hx. +exact HF. +Qed. + +Theorem Rnd_N_pt_abs : + forall F : R -> Prop, + F 0 -> + ( forall x, F x -> F (- x) ) -> + forall x f : R, + Rnd_N_pt F x f -> Rnd_N_pt F (Rabs x) (Rabs f). +Proof. +intros F HF0 HF x f Hxf. +unfold Rabs at 1. +destruct (Rcase_abs x) as [Hx|Hx]. +rewrite Rabs_left1. +apply Rnd_N_pt_sym. +exact HF. +now rewrite 2!Ropp_involutive. +apply Rnd_N_pt_neg with (3 := Hxf). +exact HF0. +now apply Rlt_le. +rewrite Rabs_pos_eq. +exact Hxf. +apply Rnd_N_pt_pos with (3 := Hxf). +exact HF0. +now apply Rge_le. +Qed. + +Theorem Rnd_DN_UP_pt_N : + forall F : R -> Prop, + forall x d u f : R, + F f -> + Rnd_DN_pt F x d -> + Rnd_UP_pt F x u -> + (Rabs (f - x) <= x - d)%R -> + (Rabs (f - x) <= u - x)%R -> + Rnd_N_pt F x f. +Proof. +intros F x d u f Hf Hxd Hxu Hd Hu. +split. +exact Hf. +intros g Hg. +destruct (Rnd_DN_UP_pt_split F x d u Hxd Hxu g Hg) as [Hgd|Hgu]. +(* g <= d *) +apply Rle_trans with (1 := Hd). +rewrite Rabs_left1. +rewrite Ropp_minus_distr. +apply Rplus_le_compat_l. +now apply Ropp_le_contravar. +apply Rle_minus. +apply Rle_trans with (1 := Hgd). +apply Hxd. +(* u <= g *) +apply Rle_trans with (1 := Hu). +rewrite Rabs_pos_eq. +now apply Rplus_le_compat_r. +apply Rle_0_minus. +apply Rle_trans with (2 := Hgu). +apply Hxu. +Qed. + +Theorem Rnd_DN_pt_N : + forall F : R -> Prop, + forall x d u : R, + Rnd_DN_pt F x d -> + Rnd_UP_pt F x u -> + (x - d <= u - x)%R -> + Rnd_N_pt F x d. +Proof. +intros F x d u Hd Hu Hx. +assert (Hdx: (Rabs (d - x) = x - d)%R). +rewrite Rabs_minus_sym. +apply Rabs_pos_eq. +apply Rle_0_minus. +apply Hd. +apply Rnd_DN_UP_pt_N with (2 := Hd) (3 := Hu). +apply Hd. +rewrite Hdx. +apply Rle_refl. +now rewrite Hdx. +Qed. + +Theorem Rnd_UP_pt_N : + forall F : R -> Prop, + forall x d u : R, + Rnd_DN_pt F x d -> + Rnd_UP_pt F x u -> + (u - x <= x - d)%R -> + Rnd_N_pt F x u. +Proof. +intros F x d u Hd Hu Hx. +assert (Hux: (Rabs (u - x) = u - x)%R). +apply Rabs_pos_eq. +apply Rle_0_minus. +apply Hu. +apply Rnd_DN_UP_pt_N with (2 := Hd) (3 := Hu). +apply Hu. +now rewrite Hux. +rewrite Hux. +apply Rle_refl. +Qed. + +Definition Rnd_NG_pt_unicity_prop F P := + forall x d u, + Rnd_DN_pt F x d -> Rnd_N_pt F x d -> + Rnd_UP_pt F x u -> Rnd_N_pt F x u -> + P x d -> P x u -> d = u. + +Theorem Rnd_NG_pt_unicity : + forall (F : R -> Prop) (P : R -> R -> Prop), + Rnd_NG_pt_unicity_prop F P -> + forall x f1 f2 : R, + Rnd_NG_pt F P x f1 -> Rnd_NG_pt F P x f2 -> + f1 = f2. +Proof. +intros F P HP x f1 f2 (H1a,H1b) (H2a,H2b). +destruct H1b as [H1b|H1b]. +destruct H2b as [H2b|H2b]. +destruct (Rnd_N_pt_DN_or_UP _ _ _ H1a) as [H1c|H1c] ; + destruct (Rnd_N_pt_DN_or_UP _ _ _ H2a) as [H2c|H2c]. +eapply Rnd_DN_pt_unicity ; eassumption. +now apply (HP x f1 f2). +apply sym_eq. +now apply (HP x f2 f1 H2c H2a H1c H1a). +eapply Rnd_UP_pt_unicity ; eassumption. +now apply H2b. +apply sym_eq. +now apply H1b. +Qed. + +Theorem Rnd_NG_pt_monotone : + forall (F : R -> Prop) (P : R -> R -> Prop), + Rnd_NG_pt_unicity_prop F P -> + round_pred_monotone (Rnd_NG_pt F P). +Proof. +intros F P HP x y f g (Hf,Hx) (Hg,Hy) [Hxy|Hxy]. +now apply Rnd_N_pt_monotone with F x y. +apply Req_le. +rewrite <- Hxy in Hg, Hy. +eapply Rnd_NG_pt_unicity ; try split ; eassumption. +Qed. + +Theorem Rnd_NG_pt_refl : + forall (F : R -> Prop) (P : R -> R -> Prop), + forall x, F x -> Rnd_NG_pt F P x x. +Proof. +intros F P x Hx. +split. +now apply Rnd_N_pt_refl. +right. +intros f2 Hf2. +now apply Rnd_N_pt_idempotent with F. +Qed. + +Theorem Rnd_NG_pt_sym : + forall (F : R -> Prop) (P : R -> R -> Prop), + ( forall x, F x -> F (-x) ) -> + ( forall x f, P x f -> P (-x) (-f) ) -> + forall x f : R, + Rnd_NG_pt F P (-x) (-f) -> Rnd_NG_pt F P x f. +Proof. +intros F P HF HP x f (H1,H2). +split. +now apply Rnd_N_pt_sym. +destruct H2 as [H2|H2]. +left. +rewrite <- (Ropp_involutive x), <- (Ropp_involutive f). +now apply HP. +right. +intros f2 Hxf2. +rewrite <- (Ropp_involutive f). +rewrite <- H2 with (-f2). +apply sym_eq. +apply Ropp_involutive. +apply Rnd_N_pt_sym. +exact HF. +now rewrite 2!Ropp_involutive. +Qed. + +Theorem Rnd_NG_unicity : + forall (F : R -> Prop) (P : R -> R -> Prop), + Rnd_NG_pt_unicity_prop F P -> + forall rnd1 rnd2 : R -> R, + Rnd_NG F P rnd1 -> Rnd_NG F P rnd2 -> + forall x, rnd1 x = rnd2 x. +Proof. +intros F P HP rnd1 rnd2 H1 H2 x. +now apply Rnd_NG_pt_unicity with F P x. +Qed. + +Theorem Rnd_NA_NG_pt : + forall F : R -> Prop, + F 0 -> + forall x f, + Rnd_NA_pt F x f <-> Rnd_NG_pt F (fun x f => Rabs x <= Rabs f) x f. +Proof. +intros F HF x f. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +(* *) +split ; intros (H1, H2). +(* . *) +assert (Hf := Rnd_N_pt_pos F HF x f Hx H1). +split. +exact H1. +destruct (Rnd_N_pt_DN_or_UP _ _ _ H1) as [H3|H3]. +(* . . *) +right. +intros f2 Hxf2. +specialize (H2 _ Hxf2). +destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H4|H4]. +eapply Rnd_DN_pt_unicity ; eassumption. +apply Rle_antisym. +rewrite Rabs_pos_eq with (1 := Hf) in H2. +rewrite Rabs_pos_eq in H2. +exact H2. +now apply Rnd_N_pt_pos with F x. +apply Rle_trans with x. +apply H3. +apply H4. +(* . . *) +left. +rewrite Rabs_pos_eq with (1 := Hf). +rewrite Rabs_pos_eq with (1 := Hx). +apply H3. +(* . *) +split. +exact H1. +intros f2 Hxf2. +destruct H2 as [H2|H2]. +assert (Hf := Rnd_N_pt_pos F HF x f Hx H1). +assert (Hf2 := Rnd_N_pt_pos F HF x f2 Hx Hxf2). +rewrite 2!Rabs_pos_eq ; trivial. +rewrite 2!Rabs_pos_eq in H2 ; trivial. +destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H3|H3]. +apply Rle_trans with (2 := H2). +apply H3. +apply H3. +apply H1. +apply H2. +rewrite (H2 _ Hxf2). +apply Rle_refl. +(* *) +assert (Hx' := Rlt_le _ _ Hx). +clear Hx. rename Hx' into Hx. +split ; intros (H1, H2). +(* . *) +assert (Hf := Rnd_N_pt_neg F HF x f Hx H1). +split. +exact H1. +destruct (Rnd_N_pt_DN_or_UP _ _ _ H1) as [H3|H3]. +(* . . *) +left. +rewrite Rabs_left1 with (1 := Hf). +rewrite Rabs_left1 with (1 := Hx). +apply Ropp_le_contravar. +apply H3. +(* . . *) +right. +intros f2 Hxf2. +specialize (H2 _ Hxf2). +destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H4|H4]. +apply Rle_antisym. +apply Rle_trans with x. +apply H4. +apply H3. +rewrite Rabs_left1 with (1 := Hf) in H2. +rewrite Rabs_left1 in H2. +now apply Ropp_le_cancel. +now apply Rnd_N_pt_neg with F x. +eapply Rnd_UP_pt_unicity ; eassumption. +(* . *) +split. +exact H1. +intros f2 Hxf2. +destruct H2 as [H2|H2]. +assert (Hf := Rnd_N_pt_neg F HF x f Hx H1). +assert (Hf2 := Rnd_N_pt_neg F HF x f2 Hx Hxf2). +rewrite 2!Rabs_left1 ; trivial. +rewrite 2!Rabs_left1 in H2 ; trivial. +apply Ropp_le_contravar. +apply Ropp_le_cancel in H2. +destruct (Rnd_N_pt_DN_or_UP _ _ _ Hxf2) as [H3|H3]. +apply H3. +apply H1. +apply H2. +apply Rle_trans with (1 := H2). +apply H3. +rewrite (H2 _ Hxf2). +apply Rle_refl. +Qed. + +Theorem Rnd_NA_pt_unicity_prop : + forall F : R -> Prop, + F 0 -> + Rnd_NG_pt_unicity_prop F (fun a b => (Rabs a <= Rabs b)%R). +Proof. +intros F HF x d u Hxd1 Hxd2 Hxu1 Hxu2 Hd Hu. +apply Rle_antisym. +apply Rle_trans with x. +apply Hxd1. +apply Hxu1. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +apply Hxu1. +apply Hxd1. +rewrite Rabs_pos_eq with (1 := Hx) in Hd. +rewrite Rabs_pos_eq in Hd. +exact Hd. +now apply Hxd1. +apply Hxd1. +apply Hxu1. +rewrite Rabs_left with (1 := Hx) in Hu. +rewrite Rabs_left1 in Hu. +now apply Ropp_le_cancel. +apply Hxu1. +apply HF. +now apply Rlt_le. +Qed. + +Theorem Rnd_NA_pt_unicity : + forall F : R -> Prop, + F 0 -> + forall x f1 f2 : R, + Rnd_NA_pt F x f1 -> Rnd_NA_pt F x f2 -> + f1 = f2. +Proof. +intros F HF x f1 f2 H1 H2. +apply (Rnd_NG_pt_unicity F _ (Rnd_NA_pt_unicity_prop F HF) x). +now apply -> Rnd_NA_NG_pt. +now apply -> Rnd_NA_NG_pt. +Qed. + +Theorem Rnd_NA_N_pt : + forall F : R -> Prop, + F 0 -> + forall x f : R, + Rnd_N_pt F x f -> + (Rabs x <= Rabs f)%R -> + Rnd_NA_pt F x f. +Proof. +intros F HF x f Rxf Hxf. +split. +apply Rxf. +intros g Rxg. +destruct (Rabs_eq_Rabs (f - x) (g - x)) as [H|H]. +apply Rle_antisym. +apply Rxf. +apply Rxg. +apply Rxg. +apply Rxf. +(* *) +replace g with f. +apply Rle_refl. +apply Rplus_eq_reg_r with (1 := H). +(* *) +assert (g = 2 * x - f)%R. +replace (2 * x - f)%R with (x - (f - x))%R by ring. +rewrite H. +ring. +destruct (Rle_lt_dec 0 x) as [Hx|Hx]. +(* . *) +revert Hxf. +rewrite Rabs_pos_eq with (1 := Hx). +rewrite 2!Rabs_pos_eq ; try ( apply (Rnd_N_pt_pos F HF x) ; assumption ). +intros Hxf. +rewrite H0. +apply Rplus_le_reg_r with f. +ring_simplify. +apply Rmult_le_compat_l with (2 := Hxf). +now apply (Z2R_le 0 2). +(* . *) +revert Hxf. +apply Rlt_le in Hx. +rewrite Rabs_left1 with (1 := Hx). +rewrite 2!Rabs_left1 ; try ( apply (Rnd_N_pt_neg F HF x) ; assumption ). +intros Hxf. +rewrite H0. +apply Ropp_le_contravar. +apply Rplus_le_reg_r with f. +ring_simplify. +apply Rmult_le_compat_l. +now apply (Z2R_le 0 2). +now apply Ropp_le_cancel. +Qed. + +Theorem Rnd_NA_unicity : + forall (F : R -> Prop), + F 0 -> + forall rnd1 rnd2 : R -> R, + Rnd_NA F rnd1 -> Rnd_NA F rnd2 -> + forall x, rnd1 x = rnd2 x. +Proof. +intros F HF rnd1 rnd2 H1 H2 x. +now apply Rnd_NA_pt_unicity with F x. +Qed. + +Theorem Rnd_NA_pt_monotone : + forall F : R -> Prop, + F 0 -> + round_pred_monotone (Rnd_NA_pt F). +Proof. +intros F HF x y f g Hxf Hyg Hxy. +apply (Rnd_NG_pt_monotone F _ (Rnd_NA_pt_unicity_prop F HF) x y). +now apply -> Rnd_NA_NG_pt. +now apply -> Rnd_NA_NG_pt. +exact Hxy. +Qed. + +Theorem Rnd_NA_pt_refl : + forall F : R -> Prop, + forall x : R, F x -> + Rnd_NA_pt F x x. +Proof. +intros F x Hx. +split. +now apply Rnd_N_pt_refl. +intros f Hxf. +apply Req_le. +apply f_equal. +now apply Rnd_N_pt_idempotent with (1 := Hxf). +Qed. + +Theorem Rnd_NA_pt_idempotent : + forall F : R -> Prop, + forall x f : R, + Rnd_NA_pt F x f -> F x -> + f = x. +Proof. +intros F x f (Hf,_) Hx. +now apply Rnd_N_pt_idempotent with F. +Qed. + +Theorem round_pred_ge_0 : + forall P : R -> R -> Prop, + round_pred_monotone P -> + P 0 0 -> + forall x f, P x f -> 0 <= x -> 0 <= f. +Proof. +intros P HP HP0 x f Hxf Hx. +now apply (HP 0 x). +Qed. + +Theorem round_pred_gt_0 : + forall P : R -> R -> Prop, + round_pred_monotone P -> + P 0 0 -> + forall x f, P x f -> 0 < f -> 0 < x. +Proof. +intros P HP HP0 x f Hxf Hf. +apply Rnot_le_lt. +intros Hx. +apply Rlt_not_le with (1 := Hf). +now apply (HP x 0). +Qed. + +Theorem round_pred_le_0 : + forall P : R -> R -> Prop, + round_pred_monotone P -> + P 0 0 -> + forall x f, P x f -> x <= 0 -> f <= 0. +Proof. +intros P HP HP0 x f Hxf Hx. +now apply (HP x 0). +Qed. + +Theorem round_pred_lt_0 : + forall P : R -> R -> Prop, + round_pred_monotone P -> + P 0 0 -> + forall x f, P x f -> f < 0 -> x < 0. +Proof. +intros P HP HP0 x f Hxf Hf. +apply Rnot_le_lt. +intros Hx. +apply Rlt_not_le with (1 := Hf). +now apply (HP 0 x). +Qed. + +Theorem Rnd_DN_pt_equiv_format : + forall F1 F2 : R -> Prop, + forall a b : R, + F1 a -> + ( forall x, a <= x <= b -> (F1 x <-> F2 x) ) -> + forall x f, a <= x <= b -> Rnd_DN_pt F1 x f -> Rnd_DN_pt F2 x f. +Proof. +intros F1 F2 a b Ha HF x f Hx (H1, (H2, H3)). +split. +apply -> HF. +exact H1. +split. +now apply H3. +now apply Rle_trans with (1 := H2). +split. +exact H2. +intros k Hk Hl. +destruct (Rlt_or_le k a) as [H|H]. +apply Rlt_le. +apply Rlt_le_trans with (1 := H). +now apply H3. +apply H3. +apply <- HF. +exact Hk. +split. +exact H. +now apply Rle_trans with (1 := Hl). +exact Hl. +Qed. + +Theorem Rnd_UP_pt_equiv_format : + forall F1 F2 : R -> Prop, + forall a b : R, + F1 b -> + ( forall x, a <= x <= b -> (F1 x <-> F2 x) ) -> + forall x f, a <= x <= b -> Rnd_UP_pt F1 x f -> Rnd_UP_pt F2 x f. +Proof. +intros F1 F2 a b Hb HF x f Hx (H1, (H2, H3)). +split. +apply -> HF. +exact H1. +split. +now apply Rle_trans with (2 := H2). +now apply H3. +split. +exact H2. +intros k Hk Hl. +destruct (Rle_or_lt k b) as [H|H]. +apply H3. +apply <- HF. +exact Hk. +split. +now apply Rle_trans with (2 := Hl). +exact H. +exact Hl. +apply Rlt_le. +apply Rle_lt_trans with (2 := H). +now apply H3. +Qed. + +(** ensures a real number can always be rounded *) +Inductive satisfies_any (F : R -> Prop) := + Satisfies_any : + F 0 -> ( forall x : R, F x -> F (-x) ) -> + round_pred_total (Rnd_DN_pt F) -> satisfies_any F. + +Theorem satisfies_any_eq : + forall F1 F2 : R -> Prop, + ( forall x, F1 x <-> F2 x ) -> + satisfies_any F1 -> + satisfies_any F2. +Proof. +intros F1 F2 Heq (Hzero, Hsym, Hrnd). +split. +now apply -> Heq. +intros x Hx. +apply -> Heq. +apply Hsym. +now apply <- Heq. +intros x. +destruct (Hrnd x) as (f, (H1, (H2, H3))). +exists f. +split. +now apply -> Heq. +split. +exact H2. +intros g Hg Hgx. +apply H3. +now apply <- Heq. +exact Hgx. +Qed. + +Theorem satisfies_any_imp_DN : + forall F : R -> Prop, + satisfies_any F -> + round_pred (Rnd_DN_pt F). +Proof. +intros F (_,_,Hrnd). +split. +apply Hrnd. +apply Rnd_DN_pt_monotone. +Qed. + +Theorem satisfies_any_imp_UP : + forall F : R -> Prop, + satisfies_any F -> + round_pred (Rnd_UP_pt F). +Proof. +intros F Hany. +split. +intros x. +destruct (proj1 (satisfies_any_imp_DN F Hany) (-x)) as (f, Hf). +exists (-f). +rewrite <- (Ropp_involutive x). +apply Rnd_DN_UP_pt_sym. +apply Hany. +exact Hf. +apply Rnd_UP_pt_monotone. +Qed. + +Theorem satisfies_any_imp_ZR : + forall F : R -> Prop, + satisfies_any F -> + round_pred (Rnd_ZR_pt F). +Proof. +intros F Hany. +split. +intros x. +destruct (Rle_or_lt 0 x) as [Hx|Hx]. +(* positive *) +destruct (proj1 (satisfies_any_imp_DN F Hany) x) as (f, Hf). +exists f. +split. +now intros _. +intros Hx'. +(* zero *) +assert (x = 0). +now apply Rle_antisym. +rewrite H in Hf |- *. +clear H Hx Hx'. +rewrite Rnd_DN_pt_idempotent with (1 := Hf). +apply Rnd_UP_pt_refl. +apply Hany. +apply Hany. +(* negative *) +destruct (proj1 (satisfies_any_imp_UP F Hany) x) as (f, Hf). +exists f. +split. +intros Hx'. +elim (Rlt_irrefl 0). +now apply Rle_lt_trans with x. +now intros _. +(* . *) +apply Rnd_ZR_pt_monotone. +apply Hany. +Qed. + +Definition NG_existence_prop (F : R -> Prop) (P : R -> R -> Prop) := + forall x d u, ~F x -> Rnd_DN_pt F x d -> Rnd_UP_pt F x u -> P x u \/ P x d. + +Theorem satisfies_any_imp_NG : + forall (F : R -> Prop) (P : R -> R -> Prop), + satisfies_any F -> + NG_existence_prop F P -> + round_pred_total (Rnd_NG_pt F P). +Proof. +intros F P Hany HP x. +destruct (proj1 (satisfies_any_imp_DN F Hany) x) as (d, Hd). +destruct (proj1 (satisfies_any_imp_UP F Hany) x) as (u, Hu). +destruct (total_order_T (Rabs (u - x)) (Rabs (d - x))) as [[H|H]|H]. +(* |up(x) - x| < |dn(x) - x| *) +exists u. +split. +(* - . *) +split. +apply Hu. +intros g Hg. +destruct (Rle_or_lt x g) as [Hxg|Hxg]. +rewrite 2!Rabs_pos_eq. +apply Rplus_le_compat_r. +now apply Hu. +now apply Rle_0_minus. +apply Rle_0_minus. +apply Hu. +apply Rlt_le in Hxg. +apply Rlt_le. +apply Rlt_le_trans with (1 := H). +do 2 rewrite <- (Rabs_minus_sym x). +rewrite 2!Rabs_pos_eq. +apply Rplus_le_compat_l. +apply Ropp_le_contravar. +now apply Hd. +now apply Rle_0_minus. +apply Rle_0_minus. +apply Hd. +(* - . *) +right. +intros f Hf. +destruct (Rnd_N_pt_DN_or_UP_eq F x _ _ _ Hd Hu Hf) as [K|K] ; rewrite K. +elim Rlt_not_le with (1 := H). +rewrite <- K. +apply Hf. +apply Hu. +apply refl_equal. +(* |up(x) - x| = |dn(x) - x| *) +destruct (Req_dec x d) as [He|Hne]. +(* - x = d = u *) +exists x. +split. +apply Rnd_N_pt_refl. +rewrite He. +apply Hd. +right. +intros. +apply Rnd_N_pt_idempotent with (1 := H0). +rewrite He. +apply Hd. +assert (Hf : ~F x). +intros Hf. +apply Hne. +apply sym_eq. +now apply Rnd_DN_pt_idempotent with (1 := Hd). +destruct (HP x _ _ Hf Hd Hu) as [H'|H']. +(* - u >> d *) +exists u. +split. +split. +apply Hu. +intros g Hg. +destruct (Rle_or_lt x g) as [Hxg|Hxg]. +rewrite 2!Rabs_pos_eq. +apply Rplus_le_compat_r. +now apply Hu. +now apply Rle_0_minus. +apply Rle_0_minus. +apply Hu. +apply Rlt_le in Hxg. +rewrite H. +rewrite 2!Rabs_left1. +apply Ropp_le_contravar. +apply Rplus_le_compat_r. +now apply Hd. +now apply Rle_minus. +apply Rle_minus. +apply Hd. +now left. +(* - d >> u *) +exists d. +split. +split. +apply Hd. +intros g Hg. +destruct (Rle_or_lt x g) as [Hxg|Hxg]. +rewrite <- H. +rewrite 2!Rabs_pos_eq. +apply Rplus_le_compat_r. +now apply Hu. +now apply Rle_0_minus. +apply Rle_0_minus. +apply Hu. +apply Rlt_le in Hxg. +rewrite 2!Rabs_left1. +apply Ropp_le_contravar. +apply Rplus_le_compat_r. +now apply Hd. +now apply Rle_minus. +apply Rle_minus. +apply Hd. +now left. +(* |up(x) - x| > |dn(x) - x| *) +exists d. +split. +split. +apply Hd. +intros g Hg. +destruct (Rle_or_lt x g) as [Hxg|Hxg]. +apply Rlt_le. +apply Rlt_le_trans with (1 := H). +rewrite 2!Rabs_pos_eq. +apply Rplus_le_compat_r. +now apply Hu. +now apply Rle_0_minus. +apply Rle_0_minus. +apply Hu. +apply Rlt_le in Hxg. +rewrite 2!Rabs_left1. +apply Ropp_le_contravar. +apply Rplus_le_compat_r. +now apply Hd. +now apply Rle_minus. +apply Rle_minus. +apply Hd. +right. +intros f Hf. +destruct (Rnd_N_pt_DN_or_UP_eq F x _ _ _ Hd Hu Hf) as [K|K] ; rewrite K. +apply refl_equal. +elim Rlt_not_le with (1 := H). +rewrite <- K. +apply Hf. +apply Hd. +Qed. + +Theorem satisfies_any_imp_NA : + forall F : R -> Prop, + satisfies_any F -> + round_pred (Rnd_NA_pt F). +Proof. +intros F Hany. +split. +assert (H : round_pred_total (Rnd_NG_pt F (fun a b => (Rabs a <= Rabs b)%R))). +apply satisfies_any_imp_NG. +apply Hany. +intros x d u Hf Hd Hu. +destruct (Rle_lt_dec 0 x) as [Hx|Hx]. +left. +rewrite Rabs_pos_eq with (1 := Hx). +rewrite Rabs_pos_eq. +apply Hu. +apply Rle_trans with (1 := Hx). +apply Hu. +right. +rewrite Rabs_left with (1 := Hx). +rewrite Rabs_left1. +apply Ropp_le_contravar. +apply Hd. +apply Rlt_le in Hx. +apply Rle_trans with (2 := Hx). +apply Hd. +intros x. +destruct (H x) as (f, Hf). +exists f. +apply <- Rnd_NA_NG_pt. +apply Hf. +apply Hany. +apply Rnd_NA_pt_monotone. +apply Hany. +Qed. + +End RND_prop. diff --git a/flocq/Core/Fcore_rnd_ne.v b/flocq/Core/Fcore_rnd_ne.v new file mode 100644 index 0000000..0b0776e --- /dev/null +++ b/flocq/Core/Fcore_rnd_ne.v @@ -0,0 +1,531 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Rounding to nearest, ties to even: existence, unicity... *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_float_prop. +Require Import Fcore_ulp. + +Notation ZnearestE := (Znearest (fun x => negb (Zeven x))). + +Section Fcore_rnd_NE. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable fexp : Z -> Z. + +Context { valid_exp : Valid_exp fexp }. + +Notation format := (generic_format beta fexp). +Notation canonic := (canonic beta fexp). + +Definition NE_prop (_ : R) f := + exists g : float beta, f = F2R g /\ canonic g /\ Zeven (Fnum g) = true. + +Definition Rnd_NE_pt := + Rnd_NG_pt format NE_prop. + +Definition DN_UP_parity_pos_prop := + forall x xd xu, + (0 < x)%R -> + ~ format x -> + canonic xd -> + canonic xu -> + F2R xd = round beta fexp Zfloor x -> + F2R xu = round beta fexp Zceil x -> + Zeven (Fnum xu) = negb (Zeven (Fnum xd)). + +Definition DN_UP_parity_prop := + forall x xd xu, + ~ format x -> + canonic xd -> + canonic xu -> + F2R xd = round beta fexp Zfloor x -> + F2R xu = round beta fexp Zceil x -> + Zeven (Fnum xu) = negb (Zeven (Fnum xd)). + +Lemma DN_UP_parity_aux : + DN_UP_parity_pos_prop -> + DN_UP_parity_prop. +Proof. +intros Hpos x xd xu Hfx Hd Hu Hxd Hxu. +destruct (total_order_T 0 x) as [[Hx|Hx]|Hx]. +(* . *) +exact (Hpos x xd xu Hx Hfx Hd Hu Hxd Hxu). +elim Hfx. +rewrite <- Hx. +apply generic_format_0. +(* . *) +assert (Hx': (0 < -x)%R). +apply Ropp_lt_cancel. +now rewrite Ropp_involutive, Ropp_0. +destruct xd as (md, ed). +destruct xu as (mu, eu). +simpl. +rewrite <- (Bool.negb_involutive (Zeven mu)). +apply f_equal. +apply sym_eq. +rewrite <- (Zeven_opp mu), <- (Zeven_opp md). +change (Zeven (Fnum (Float beta (-md) ed)) = negb (Zeven (Fnum (Float beta (-mu) eu)))). +apply (Hpos (-x)%R _ _ Hx'). +intros H. +apply Hfx. +rewrite <- Ropp_involutive. +now apply generic_format_opp. +now apply canonic_opp. +now apply canonic_opp. +rewrite round_DN_opp, F2R_Zopp. +now apply f_equal. +rewrite round_UP_opp, F2R_Zopp. +now apply f_equal. +Qed. + +Class Exists_NE := + exists_NE : Zeven beta = false \/ forall e, + ((fexp e < e)%Z -> (fexp (e + 1) < e)%Z) /\ ((e <= fexp e)%Z -> fexp (fexp e + 1) = fexp e). + +Context { exists_NE_ : Exists_NE }. + +Theorem DN_UP_parity_generic_pos : + DN_UP_parity_pos_prop. +Proof with auto with typeclass_instances. +intros x xd xu H0x Hfx Hd Hu Hxd Hxu. +destruct (ln_beta beta x) as (ex, Hexa). +specialize (Hexa (Rgt_not_eq _ _ H0x)). +generalize Hexa. intros Hex. +rewrite (Rabs_pos_eq _ (Rlt_le _ _ H0x)) in Hex. +destruct (Zle_or_lt ex (fexp ex)) as [Hxe|Hxe]. +(* small x *) +assert (Hd3 : Fnum xd = Z0). +apply F2R_eq_0_reg with beta (Fexp xd). +change (F2R xd = R0). +rewrite Hxd. +apply round_DN_small_pos with (1 := Hex) (2 := Hxe). +assert (Hu3 : xu = Float beta (1 * Zpower beta (fexp ex - fexp (fexp ex + 1))) (fexp (fexp ex + 1))). +apply canonic_unicity with (1 := Hu). +apply (f_equal fexp). +rewrite <- F2R_change_exp. +now rewrite F2R_bpow, ln_beta_bpow. +now apply valid_exp. +rewrite <- F2R_change_exp. +rewrite F2R_bpow. +apply sym_eq. +rewrite Hxu. +apply sym_eq. +apply round_UP_small_pos with (1 := Hex) (2 := Hxe). +now apply valid_exp. +rewrite Hd3, Hu3. +rewrite Zmult_1_l. +simpl. +destruct exists_NE_ as [H|H]. +apply Zeven_Zpower_odd with (2 := H). +apply Zle_minus_le_0. +now apply valid_exp. +rewrite (proj2 (H ex)). +now rewrite Zminus_diag. +exact Hxe. +(* large x *) +assert (Hd4: (bpow (ex - 1) <= Rabs (F2R xd) < bpow ex)%R). +rewrite Rabs_pos_eq. +rewrite Hxd. +split. +apply (round_DN_pt beta fexp x). +apply generic_format_bpow. +ring_simplify (ex - 1 + 1)%Z. +omega. +apply Hex. +apply Rle_lt_trans with (2 := proj2 Hex). +apply (round_DN_pt beta fexp x). +rewrite Hxd. +apply (round_DN_pt beta fexp x). +apply generic_format_0. +now apply Rlt_le. +assert (Hxe2 : (fexp (ex + 1) <= ex)%Z) by now apply valid_exp. +assert (Hud: (F2R xu = F2R xd + ulp beta fexp x)%R). +rewrite Hxu, Hxd. +now apply ulp_DN_UP. +destruct (total_order_T (bpow ex) (F2R xu)) as [[Hu2|Hu2]|Hu2]. +(* - xu > bpow ex *) +elim (Rlt_not_le _ _ Hu2). +rewrite Hxu. +apply round_bounded_large_pos... +(* - xu = bpow ex *) +assert (Hu3: xu = Float beta (1 * Zpower beta (ex - fexp (ex + 1))) (fexp (ex + 1))). +apply canonic_unicity with (1 := Hu). +apply (f_equal fexp). +rewrite <- F2R_change_exp. +now rewrite F2R_bpow, ln_beta_bpow. +now apply valid_exp. +rewrite <- Hu2. +apply sym_eq. +rewrite <- F2R_change_exp. +apply F2R_bpow. +exact Hxe2. +assert (Hd3: xd = Float beta (Zpower beta (ex - fexp ex) - 1) (fexp ex)). +assert (H: F2R xd = F2R (Float beta (Zpower beta (ex - fexp ex) - 1) (fexp ex))). +unfold F2R. simpl. +rewrite Z2R_minus. +unfold Rminus. +rewrite Rmult_plus_distr_r. +rewrite Z2R_Zpower, <- bpow_plus. +ring_simplify (ex - fexp ex + fexp ex)%Z. +rewrite Hu2, Hud. +unfold ulp, canonic_exp. +rewrite ln_beta_unique with beta x ex. +unfold F2R. +simpl. ring. +rewrite Rabs_pos_eq. +exact Hex. +now apply Rlt_le. +apply Zle_minus_le_0. +now apply Zlt_le_weak. +apply canonic_unicity with (1 := Hd) (3 := H). +apply (f_equal fexp). +rewrite <- H. +apply sym_eq. +now apply ln_beta_unique. +rewrite Hd3, Hu3. +unfold Fnum. +rewrite Zeven_mult. simpl. +unfold Zminus at 2. +rewrite Zeven_plus. +rewrite eqb_sym. simpl. +fold (negb (Zeven (beta ^ (ex - fexp ex)))). +rewrite Bool.negb_involutive. +rewrite (Zeven_Zpower beta (ex - fexp ex)). 2: omega. +destruct exists_NE_. +rewrite H. +apply Zeven_Zpower_odd with (2 := H). +now apply Zle_minus_le_0. +apply Zeven_Zpower. +specialize (H ex). +omega. +(* - xu < bpow ex *) +revert Hud. +unfold ulp, F2R. +rewrite Hd, Hu. +unfold canonic_exp. +rewrite ln_beta_unique with beta (F2R xu) ex. +rewrite ln_beta_unique with (1 := Hd4). +rewrite ln_beta_unique with (1 := Hexa). +intros H. +replace (Fnum xu) with (Fnum xd + 1)%Z. +rewrite Zeven_plus. +now apply eqb_sym. +apply sym_eq. +apply eq_Z2R. +rewrite Z2R_plus. +apply Rmult_eq_reg_r with (bpow (fexp ex)). +rewrite H. +simpl. ring. +apply Rgt_not_eq. +apply bpow_gt_0. +rewrite Rabs_pos_eq. +split. +apply Rle_trans with (1 := proj1 Hex). +rewrite Hxu. +apply (round_UP_pt beta fexp x). +exact Hu2. +apply Rlt_le. +apply Rlt_le_trans with (1 := H0x). +rewrite Hxu. +apply (round_UP_pt beta fexp x). +Qed. + +Theorem DN_UP_parity_generic : + DN_UP_parity_prop. +Proof. +apply DN_UP_parity_aux. +apply DN_UP_parity_generic_pos. +Qed. + +Theorem Rnd_NE_pt_total : + round_pred_total Rnd_NE_pt. +Proof. +apply satisfies_any_imp_NG. +now apply generic_format_satisfies_any. +intros x d u Hf Hd Hu. +generalize (proj1 Hd). +unfold generic_format. +set (ed := canonic_exp beta fexp d). +set (md := Ztrunc (scaled_mantissa beta fexp d)). +intros Hd1. +case_eq (Zeven md) ; [ intros He | intros Ho ]. +right. +exists (Float beta md ed). +unfold Fcore_generic_fmt.canonic. +rewrite <- Hd1. +now repeat split. +left. +generalize (proj1 Hu). +unfold generic_format. +set (eu := canonic_exp beta fexp u). +set (mu := Ztrunc (scaled_mantissa beta fexp u)). +intros Hu1. +rewrite Hu1. +eexists ; repeat split. +unfold Fcore_generic_fmt.canonic. +now rewrite <- Hu1. +rewrite (DN_UP_parity_generic x (Float beta md ed) (Float beta mu eu)). +simpl. +now rewrite Ho. +exact Hf. +unfold Fcore_generic_fmt.canonic. +now rewrite <- Hd1. +unfold Fcore_generic_fmt.canonic. +now rewrite <- Hu1. +rewrite <- Hd1. +apply Rnd_DN_pt_unicity with (1 := Hd). +now apply round_DN_pt. +rewrite <- Hu1. +apply Rnd_UP_pt_unicity with (1 := Hu). +now apply round_UP_pt. +Qed. + +Theorem Rnd_NE_pt_monotone : + round_pred_monotone Rnd_NE_pt. +Proof. +apply Rnd_NG_pt_monotone. +intros x d u Hd Hdn Hu Hun (cd, (Hd1, Hd2)) (cu, (Hu1, Hu2)). +destruct (Req_dec x d) as [Hx|Hx]. +rewrite <- Hx. +apply sym_eq. +apply Rnd_UP_pt_idempotent with (1 := Hu). +rewrite Hx. +apply Hd. +rewrite (DN_UP_parity_aux DN_UP_parity_generic_pos x cd cu) in Hu2 ; try easy. +now rewrite (proj2 Hd2) in Hu2. +intros Hf. +apply Hx. +apply sym_eq. +now apply Rnd_DN_pt_idempotent with (1 := Hd). +rewrite <- Hd1. +apply Rnd_DN_pt_unicity with (1 := Hd). +now apply round_DN_pt. +rewrite <- Hu1. +apply Rnd_UP_pt_unicity with (1 := Hu). +now apply round_UP_pt. +Qed. + +Theorem Rnd_NE_pt_round : + round_pred Rnd_NE_pt. +split. +apply Rnd_NE_pt_total. +apply Rnd_NE_pt_monotone. +Qed. + +Lemma round_NE_pt_pos : + forall x, + (0 < x)%R -> + Rnd_NE_pt x (round beta fexp ZnearestE x). +Proof with auto with typeclass_instances. +intros x Hx. +split. +now apply round_N_pt. +unfold NE_prop. +set (mx := scaled_mantissa beta fexp x). +set (xr := round beta fexp ZnearestE x). +destruct (Req_dec (mx - Z2R (Zfloor mx)) (/2)) as [Hm|Hm]. +(* midpoint *) +left. +exists (Float beta (Ztrunc (scaled_mantissa beta fexp xr)) (canonic_exp beta fexp xr)). +split. +apply round_N_pt... +split. +unfold Fcore_generic_fmt.canonic. simpl. +apply f_equal. +apply round_N_pt... +simpl. +unfold xr, round, Znearest. +fold mx. +rewrite Hm. +rewrite Rcompare_Eq. 2: apply refl_equal. +case_eq (Zeven (Zfloor mx)) ; intros Hmx. +(* . even floor *) +change (Zeven (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zfloor x))) = true). +destruct (Rle_or_lt (round beta fexp Zfloor x) 0) as [Hr|Hr]. +rewrite (Rle_antisym _ _ Hr). +unfold scaled_mantissa. +rewrite Rmult_0_l. +change R0 with (Z2R 0). +now rewrite (Ztrunc_Z2R 0). +rewrite <- (round_0 beta fexp Zfloor). +apply round_le... +now apply Rlt_le. +rewrite scaled_mantissa_DN... +now rewrite Ztrunc_Z2R. +(* . odd floor *) +change (Zeven (Ztrunc (scaled_mantissa beta fexp (round beta fexp Zceil x))) = true). +destruct (ln_beta beta x) as (ex, Hex). +specialize (Hex (Rgt_not_eq _ _ Hx)). +rewrite (Rabs_pos_eq _ (Rlt_le _ _ Hx)) in Hex. +destruct (Z_lt_le_dec (fexp ex) ex) as [He|He]. +(* .. large pos *) +assert (Hu := round_bounded_large_pos _ _ Zceil _ _ He Hex). +assert (Hfc: Zceil mx = (Zfloor mx + 1)%Z). +apply Zceil_floor_neq. +intros H. +rewrite H in Hm. +unfold Rminus in Hm. +rewrite Rplus_opp_r in Hm. +elim (Rlt_irrefl 0). +rewrite Hm at 2. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +destruct (proj2 Hu) as [Hu'|Hu']. +(* ... u <> bpow *) +unfold scaled_mantissa. +rewrite canonic_exp_fexp_pos with (1 := conj (proj1 Hu) Hu'). +unfold round, F2R. simpl. +rewrite canonic_exp_fexp_pos with (1 := Hex). +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_r, Rmult_1_r. +rewrite Ztrunc_Z2R. +fold mx. +rewrite Hfc. +now rewrite Zeven_plus, Hmx. +(* ... u = bpow *) +rewrite Hu'. +unfold scaled_mantissa, canonic_exp. +rewrite ln_beta_bpow. +rewrite <- bpow_plus, <- Z2R_Zpower. +rewrite Ztrunc_Z2R. +case_eq (Zeven beta) ; intros Hr. +destruct exists_NE_ as [Hs|Hs]. +now rewrite Hs in Hr. +destruct (Hs ex) as (H,_). +rewrite Zeven_Zpower. +exact Hr. +omega. +assert (Zeven (Zfloor mx) = true). 2: now rewrite H in Hmx. +replace (Zfloor mx) with (Zceil mx + -1)%Z by omega. +rewrite Zeven_plus. +apply eqb_true. +unfold mx. +replace (Zceil (scaled_mantissa beta fexp x)) with (Zpower beta (ex - fexp ex)). +rewrite Zeven_Zpower_odd with (2 := Hr). +easy. +omega. +apply eq_Z2R. +rewrite Z2R_Zpower. 2: omega. +apply Rmult_eq_reg_r with (bpow (fexp ex)). +unfold Zminus. +rewrite bpow_plus. +rewrite Rmult_assoc, <- bpow_plus, Zplus_opp_l, Rmult_1_r. +pattern (fexp ex) ; rewrite <- canonic_exp_fexp_pos with (1 := Hex). +now apply sym_eq. +apply Rgt_not_eq. +apply bpow_gt_0. +generalize (proj1 (valid_exp ex) He). +omega. +(* .. small pos *) +assert (Zeven (Zfloor mx) = true). 2: now rewrite H in Hmx. +unfold mx, scaled_mantissa. +rewrite canonic_exp_fexp_pos with (1 := Hex). +now rewrite mantissa_DN_small_pos. +(* not midpoint *) +right. +intros g Hg. +destruct (Req_dec x g) as [Hxg|Hxg]. +rewrite <- Hxg. +apply sym_eq. +apply round_generic... +rewrite Hxg. +apply Hg. +set (d := round beta fexp Zfloor x). +set (u := round beta fexp Zceil x). +apply Rnd_N_pt_unicity with (d := d) (u := u) (4 := Hg). +now apply round_DN_pt. +now apply round_UP_pt. +2: now apply round_N_pt. +rewrite <- (scaled_mantissa_mult_bpow beta fexp x). +unfold d, u, round, F2R. simpl. fold mx. +rewrite <- 2!Rmult_minus_distr_r. +intros H. +apply Rmult_eq_reg_r in H. +apply Hm. +apply Rcompare_Eq_inv. +rewrite Rcompare_floor_ceil_mid. +now apply Rcompare_Eq. +contradict Hxg. +apply sym_eq. +apply Rnd_N_pt_idempotent with (1 := Hg). +rewrite <- (scaled_mantissa_mult_bpow beta fexp x). +fold mx. +rewrite <- Hxg. +change (Z2R (Zfloor mx) * bpow (canonic_exp beta fexp x))%R with d. +now eapply round_DN_pt. +apply Rgt_not_eq. +apply bpow_gt_0. +Qed. + +Theorem round_NE_opp : + forall x, + round beta fexp ZnearestE (-x) = (- round beta fexp ZnearestE x)%R. +Proof. +intros x. +unfold round. simpl. +rewrite scaled_mantissa_opp, canonic_exp_opp. +rewrite Znearest_opp. +rewrite <- F2R_Zopp. +apply (f_equal (fun v => F2R (Float beta (-v) _))). +set (m := scaled_mantissa beta fexp x). +unfold Znearest. +case Rcompare ; trivial. +apply (f_equal (fun (b : bool) => if b then Zceil m else Zfloor m)). +rewrite Bool.negb_involutive. +rewrite Zeven_opp. +rewrite Zeven_plus. +now rewrite eqb_sym. +Qed. + +Theorem round_NE_pt : + forall x, + Rnd_NE_pt x (round beta fexp ZnearestE x). +Proof with auto with typeclass_instances. +intros x. +destruct (total_order_T x 0) as [[Hx|Hx]|Hx]. +apply Rnd_NG_pt_sym. +apply generic_format_opp. +unfold NE_prop. +intros _ f ((mg,eg),(H1,(H2,H3))). +exists (Float beta (- mg) eg). +repeat split. +rewrite H1. +now rewrite F2R_Zopp. +now apply canonic_opp. +simpl. +now rewrite Zeven_opp. +rewrite <- round_NE_opp. +apply round_NE_pt_pos. +now apply Ropp_0_gt_lt_contravar. +rewrite Hx, round_0... +apply Rnd_NG_pt_refl. +apply generic_format_0. +now apply round_NE_pt_pos. +Qed. + +End Fcore_rnd_NE. + +(** Notations for backward-compatibility with Flocq 1.4. *) +Notation rndNE := ZnearestE (only parsing). diff --git a/flocq/Core/Fcore_ulp.v b/flocq/Core/Fcore_ulp.v new file mode 100644 index 0000000..492fac6 --- /dev/null +++ b/flocq/Core/Fcore_ulp.v @@ -0,0 +1,1142 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2010-2011 Sylvie Boldo +#<br /># +Copyright (C) 2010-2011 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** * Unit in the Last Place: our definition using fexp and its properties, successor and predecessor *) +Require Import Fcore_Raux. +Require Import Fcore_defs. +Require Import Fcore_rnd. +Require Import Fcore_generic_fmt. +Require Import Fcore_float_prop. + +Section Fcore_ulp. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Variable fexp : Z -> Z. + +Context { valid_exp : Valid_exp fexp }. + +Definition ulp x := bpow (canonic_exp beta fexp x). + +Notation F := (generic_format beta fexp). + +Theorem ulp_opp : + forall x, ulp (- x) = ulp x. +Proof. +intros x. +unfold ulp. +now rewrite canonic_exp_opp. +Qed. + +Theorem ulp_abs : + forall x, ulp (Rabs x) = ulp x. +Proof. +intros x. +unfold ulp. +now rewrite canonic_exp_abs. +Qed. + +Theorem ulp_le_id: + forall x, + (0 < x)%R -> + F x -> + (ulp x <= x)%R. +Proof. +intros x Zx Fx. +rewrite <- (Rmult_1_l (ulp x)). +pattern x at 2; rewrite Fx. +unfold F2R, ulp; simpl. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 1%R with (Z2R (Zsucc 0)) by reflexivity. +apply Z2R_le. +apply Zlt_le_succ. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +now rewrite <- Fx. +Qed. + +Theorem ulp_le_abs: + forall x, + (x <> 0)%R -> + F x -> + (ulp x <= Rabs x)%R. +Proof. +intros x Zx Fx. +rewrite <- ulp_abs. +apply ulp_le_id. +now apply Rabs_pos_lt. +now apply generic_format_abs. +Qed. + +Theorem ulp_DN_UP : + forall x, ~ F x -> + round beta fexp Zceil x = (round beta fexp Zfloor x + ulp x)%R. +Proof. +intros x Fx. +unfold round, ulp. simpl. +unfold F2R. simpl. +rewrite Zceil_floor_neq. +rewrite Z2R_plus. simpl. +ring. +intros H. +apply Fx. +unfold generic_format, F2R. simpl. +rewrite <- H. +rewrite Ztrunc_Z2R. +rewrite H. +now rewrite scaled_mantissa_mult_bpow. +Qed. + +(** The successor of x is x + ulp x *) +Theorem succ_le_bpow : + forall x e, (0 < x)%R -> F x -> + (x < bpow e)%R -> + (x + ulp x <= bpow e)%R. +Proof. +intros x e Zx Fx Hx. +pattern x at 1 ; rewrite Fx. +unfold ulp, F2R. simpl. +pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l. +rewrite <- Rmult_plus_distr_r. +change 1%R with (Z2R 1). +rewrite <- Z2R_plus. +change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow e)%R. +apply F2R_p1_le_bpow. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +now rewrite <- Fx. +now rewrite <- Fx. +Qed. + +Theorem ln_beta_succ : + forall x, (0 < x)%R -> F x -> + forall eps, (0 <= eps < ulp x)%R -> + ln_beta beta (x + eps) = ln_beta beta x :> Z. +Proof. +intros x Zx Fx eps Heps. +destruct (ln_beta beta x) as (ex, He). +simpl. +specialize (He (Rgt_not_eq _ _ Zx)). +apply ln_beta_unique. +rewrite Rabs_pos_eq. +rewrite Rabs_pos_eq in He. +split. +apply Rle_trans with (1 := proj1 He). +pattern x at 1 ; rewrite <- Rplus_0_r. +now apply Rplus_le_compat_l. +apply Rlt_le_trans with (x + ulp x)%R. +now apply Rplus_lt_compat_l. +pattern x at 1 ; rewrite Fx. +unfold ulp, F2R. simpl. +pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l. +rewrite <- Rmult_plus_distr_r. +change 1%R with (Z2R 1). +rewrite <- Z2R_plus. +change (F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) + 1) (canonic_exp beta fexp x)) <= bpow ex)%R. +apply F2R_p1_le_bpow. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +now rewrite <- Fx. +now rewrite <- Fx. +now apply Rlt_le. +apply Rplus_le_le_0_compat. +now apply Rlt_le. +apply Heps. +Qed. + +Theorem round_DN_succ : + forall x, (0 < x)%R -> F x -> + forall eps, (0 <= eps < ulp x)%R -> + round beta fexp Zfloor (x + eps) = x. +Proof. +intros x Zx Fx eps Heps. +pattern x at 2 ; rewrite Fx. +unfold round. +unfold scaled_mantissa. simpl. +unfold canonic_exp at 1 2. +rewrite ln_beta_succ ; trivial. +apply (f_equal (fun m => F2R (Float beta m _))). +rewrite Ztrunc_floor. +apply Zfloor_imp. +split. +apply (Rle_trans _ _ _ (Zfloor_lb _)). +apply Rmult_le_compat_r. +apply bpow_ge_0. +pattern x at 1 ; rewrite <- Rplus_0_r. +now apply Rplus_le_compat_l. +apply Rlt_le_trans with ((x + ulp x) * bpow (- canonic_exp beta fexp x))%R. +apply Rmult_lt_compat_r. +apply bpow_gt_0. +now apply Rplus_lt_compat_l. +rewrite Rmult_plus_distr_r. +rewrite Z2R_plus. +apply Rplus_le_compat. +pattern x at 1 3 ; rewrite Fx. +unfold F2R. simpl. +rewrite Rmult_assoc. +rewrite <- bpow_plus. +rewrite Zplus_opp_r. +rewrite Rmult_1_r. +rewrite Zfloor_Z2R. +apply Rle_refl. +unfold ulp. +rewrite <- bpow_plus. +rewrite Zplus_opp_r. +apply Rle_refl. +apply Rmult_le_pos. +now apply Rlt_le. +apply bpow_ge_0. +Qed. + +Theorem generic_format_succ : + forall x, (0 < x)%R -> F x -> + F (x + ulp x). +Proof. +intros x Zx Fx. +destruct (ln_beta beta x) as (ex, Ex). +specialize (Ex (Rgt_not_eq _ _ Zx)). +assert (Ex' := Ex). +rewrite Rabs_pos_eq in Ex'. +destruct (succ_le_bpow x ex) ; try easy. +unfold generic_format, scaled_mantissa, canonic_exp. +rewrite ln_beta_unique with beta (x + ulp x)%R ex. +pattern x at 1 3 ; rewrite Fx. +unfold ulp, scaled_mantissa. +rewrite canonic_exp_fexp with (1 := Ex). +unfold F2R. simpl. +rewrite Rmult_plus_distr_r. +rewrite Rmult_assoc. +rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r. +change (bpow 0) with (Z2R 1). +rewrite <- Z2R_plus. +rewrite Ztrunc_Z2R. +rewrite Z2R_plus. +rewrite Rmult_plus_distr_r. +now rewrite Rmult_1_l. +rewrite Rabs_pos_eq. +split. +apply Rle_trans with (1 := proj1 Ex'). +pattern x at 1 ; rewrite <- Rplus_0_r. +apply Rplus_le_compat_l. +apply bpow_ge_0. +exact H. +apply Rplus_le_le_0_compat. +now apply Rlt_le. +apply bpow_ge_0. +rewrite H. +apply generic_format_bpow. +apply valid_exp. +destruct (Zle_or_lt ex (fexp ex)) ; trivial. +elim Rlt_not_le with (1 := Zx). +rewrite Fx. +replace (Ztrunc (scaled_mantissa beta fexp x)) with Z0. +rewrite F2R_0. +apply Rle_refl. +unfold scaled_mantissa. +rewrite canonic_exp_fexp with (1 := Ex). +destruct (mantissa_small_pos beta fexp x ex) ; trivial. +rewrite Ztrunc_floor. +apply sym_eq. +apply Zfloor_imp. +split. +now apply Rlt_le. +exact H2. +now apply Rlt_le. +now apply Rlt_le. +Qed. + +Theorem round_UP_succ : + forall x, (0 < x)%R -> F x -> + forall eps, (0 < eps <= ulp x)%R -> + round beta fexp Zceil (x + eps) = (x + ulp x)%R. +Proof with auto with typeclass_instances. +intros x Zx Fx eps (Heps1,[Heps2|Heps2]). +assert (Heps: (0 <= eps < ulp x)%R). +split. +now apply Rlt_le. +exact Heps2. +assert (Hd := round_DN_succ x Zx Fx eps Heps). +rewrite ulp_DN_UP. +rewrite Hd. +unfold ulp, canonic_exp. +now rewrite ln_beta_succ. +intros Fs. +rewrite round_generic in Hd... +apply Rgt_not_eq with (2 := Hd). +pattern x at 2 ; rewrite <- Rplus_0_r. +now apply Rplus_lt_compat_l. +rewrite Heps2. +apply round_generic... +now apply generic_format_succ. +Qed. + +Theorem succ_le_lt: + forall x y, + F x -> F y -> + (0 < x < y)%R -> + (x + ulp x <= y)%R. +Proof with auto with typeclass_instances. +intros x y Hx Hy H. +case (Rle_or_lt (ulp x) (y-x)); intros H1. +apply Rplus_le_reg_r with (-x)%R. +now ring_simplify (x+ulp x + -x)%R. +replace y with (x+(y-x))%R by ring. +absurd (x < y)%R. +2: apply H. +apply Rle_not_lt; apply Req_le. +rewrite <- round_DN_succ with (eps:=(y-x)%R); try easy. +ring_simplify (x+(y-x))%R. +apply sym_eq. +apply round_generic... +split; trivial. +apply Rlt_le; now apply Rlt_Rminus. +Qed. + +(** Error of a rounding, expressed in number of ulps *) +Theorem ulp_error : + forall rnd { Zrnd : Valid_rnd rnd } x, + (Rabs (round beta fexp rnd x - x) < ulp x)%R. +Proof with auto with typeclass_instances. +intros rnd Zrnd x. +destruct (generic_format_EM beta fexp x) as [Hx|Hx]. +(* x = rnd x *) +rewrite round_generic... +unfold Rminus. +rewrite Rplus_opp_r, Rabs_R0. +apply bpow_gt_0. +(* x <> rnd x *) +destruct (round_DN_or_UP beta fexp rnd x) as [H|H] ; rewrite H ; clear H. +(* . *) +rewrite Rabs_left1. +rewrite Ropp_minus_distr. +apply Rplus_lt_reg_r with (round beta fexp Zfloor x). +rewrite <- ulp_DN_UP with (1 := Hx). +ring_simplify. +assert (Hu: (x <= round beta fexp Zceil x)%R). +apply round_UP_pt... +destruct Hu as [Hu|Hu]. +exact Hu. +elim Hx. +rewrite Hu. +apply generic_format_round... +apply Rle_minus. +apply round_DN_pt... +(* . *) +rewrite Rabs_pos_eq. +rewrite ulp_DN_UP with (1 := Hx). +apply Rplus_lt_reg_r with (x - ulp x)%R. +ring_simplify. +assert (Hd: (round beta fexp Zfloor x <= x)%R). +apply round_DN_pt... +destruct Hd as [Hd|Hd]. +exact Hd. +elim Hx. +rewrite <- Hd. +apply generic_format_round... +apply Rle_0_minus. +apply round_UP_pt... +Qed. + +Theorem ulp_half_error : + forall choice x, + (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp x)%R. +Proof with auto with typeclass_instances. +intros choice x. +destruct (generic_format_EM beta fexp x) as [Hx|Hx]. +(* x = rnd x *) +rewrite round_generic... +unfold Rminus. +rewrite Rplus_opp_r, Rabs_R0. +apply Rmult_le_pos. +apply Rlt_le. +apply Rinv_0_lt_compat. +now apply (Z2R_lt 0 2). +apply bpow_ge_0. +(* x <> rnd x *) +set (d := round beta fexp Zfloor x). +destruct (round_N_pt beta fexp choice x) as (Hr1, Hr2). +destruct (Rle_or_lt (x - d) (d + ulp x - x)) as [H|H]. +(* . rnd(x) = rndd(x) *) +apply Rle_trans with (Rabs (d - x)). +apply Hr2. +apply (round_DN_pt beta fexp x). +rewrite Rabs_left1. +rewrite Ropp_minus_distr. +apply Rmult_le_reg_r with 2%R. +now apply (Z2R_lt 0 2). +apply Rplus_le_reg_r with (d - x)%R. +ring_simplify. +apply Rle_trans with (1 := H). +right. field. +apply Rle_minus. +apply (round_DN_pt beta fexp x). +(* . rnd(x) = rndu(x) *) +assert (Hu: (d + ulp x)%R = round beta fexp Zceil x). +unfold d. +now rewrite <- ulp_DN_UP. +apply Rle_trans with (Rabs (d + ulp x - x)). +apply Hr2. +rewrite Hu. +apply (round_UP_pt beta fexp x). +rewrite Rabs_pos_eq. +apply Rmult_le_reg_r with 2%R. +now apply (Z2R_lt 0 2). +apply Rplus_le_reg_r with (- (d + ulp x - x))%R. +ring_simplify. +apply Rlt_le. +apply Rlt_le_trans with (1 := H). +right. field. +apply Rle_0_minus. +rewrite Hu. +apply (round_UP_pt beta fexp x). +Qed. + +Theorem ulp_le : + forall { Hm : Monotone_exp fexp }, + forall x y: R, + (0 < x)%R -> (x <= y)%R -> + (ulp x <= ulp y)%R. +Proof. +intros Hm x y Hx Hxy. +apply bpow_le. +apply Hm. +now apply ln_beta_le. +Qed. + +Theorem ulp_bpow : + forall e, ulp (bpow e) = bpow (fexp (e + 1)). +intros e. +unfold ulp. +apply f_equal. +apply canonic_exp_fexp. +rewrite Rabs_pos_eq. +split. +ring_simplify (e + 1 - 1)%Z. +apply Rle_refl. +apply bpow_lt. +apply Zlt_succ. +apply bpow_ge_0. +Qed. + +Theorem ulp_DN : + forall x, + (0 < round beta fexp Zfloor x)%R -> + ulp (round beta fexp Zfloor x) = ulp x. +Proof. +intros x Hd. +unfold ulp. +now rewrite canonic_exp_DN with (2 := Hd). +Qed. + +Theorem ulp_error_f : + forall { Hm : Monotone_exp fexp } rnd { Zrnd : Valid_rnd rnd } x, + (round beta fexp rnd x <> 0)%R -> + (Rabs (round beta fexp rnd x - x) < ulp (round beta fexp rnd x))%R. +Proof with auto with typeclass_instances. +intros Hm rnd Zrnd x Hfx. +case (round_DN_or_UP beta fexp rnd x); intros Hx. +(* *) +case (Rle_or_lt 0 (round beta fexp Zfloor x)). +intros H; destruct H. +rewrite Hx at 2. +rewrite ulp_DN; trivial. +apply ulp_error... +rewrite Hx in Hfx; contradict Hfx; auto with real. +intros H. +apply Rlt_le_trans with (1:=ulp_error _ _). +rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp rnd x)). +apply ulp_le; trivial. +apply Ropp_0_gt_lt_contravar; apply Rlt_gt. +case (Rle_or_lt 0 x); trivial. +intros H1; contradict H. +apply Rle_not_lt. +apply round_ge_generic... +apply generic_format_0. +apply Ropp_le_contravar; rewrite Hx. +apply (round_DN_pt beta fexp x). +(* *) +rewrite Hx; case (Rle_or_lt 0 (round beta fexp Zceil x)). +intros H; destruct H. +apply Rlt_le_trans with (1:=ulp_error _ _). +apply ulp_le; trivial. +case (Rle_or_lt x 0); trivial. +intros H1; contradict H. +apply Rle_not_lt. +apply round_le_generic... +apply generic_format_0. +apply round_UP_pt... +rewrite Hx in Hfx; contradict Hfx; auto with real. +intros H. +rewrite <- (ulp_opp (round beta fexp Zceil x)). +rewrite <- round_DN_opp. +rewrite ulp_DN; trivial. +replace (round beta fexp Zceil x - x)%R with (-((round beta fexp Zfloor (-x) - (-x))))%R. +rewrite Rabs_Ropp. +apply ulp_error... +rewrite round_DN_opp; ring. +rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption. +Qed. + +Theorem ulp_half_error_f : + forall { Hm : Monotone_exp fexp }, + forall choice x, + (round beta fexp (Znearest choice) x <> 0)%R -> + (Rabs (round beta fexp (Znearest choice) x - x) <= /2 * ulp (round beta fexp (Znearest choice) x))%R. +Proof with auto with typeclass_instances. +intros Hm choice x Hfx. +case (round_DN_or_UP beta fexp (Znearest choice) x); intros Hx. +(* *) +case (Rle_or_lt 0 (round beta fexp Zfloor x)). +intros H; destruct H. +rewrite Hx at 2. +rewrite ulp_DN; trivial. +apply ulp_half_error. +rewrite Hx in Hfx; contradict Hfx; auto with real. +intros H. +apply Rle_trans with (1:=ulp_half_error _ _). +apply Rmult_le_compat_l. +auto with real. +rewrite <- (ulp_opp x), <- (ulp_opp (round beta fexp (Znearest choice) x)). +apply ulp_le; trivial. +apply Ropp_0_gt_lt_contravar; apply Rlt_gt. +case (Rle_or_lt 0 x); trivial. +intros H1; contradict H. +apply Rle_not_lt. +apply round_ge_generic... +apply generic_format_0. +apply Ropp_le_contravar; rewrite Hx. +apply (round_DN_pt beta fexp x). +(* *) +case (Rle_or_lt 0 (round beta fexp Zceil x)). +intros H; destruct H. +apply Rle_trans with (1:=ulp_half_error _ _). +apply Rmult_le_compat_l. +auto with real. +apply ulp_le; trivial. +case (Rle_or_lt x 0); trivial. +intros H1; contradict H. +apply Rle_not_lt. +apply round_le_generic... +apply generic_format_0. +rewrite Hx; apply (round_UP_pt beta fexp x). +rewrite Hx in Hfx; contradict Hfx; auto with real. +intros H. +rewrite Hx at 2; rewrite <- (ulp_opp (round beta fexp Zceil x)). +rewrite <- round_DN_opp. +rewrite ulp_DN; trivial. +pattern x at 1 2; rewrite <- Ropp_involutive. +rewrite round_N_opp. +unfold Rminus. +rewrite <- Ropp_plus_distr, Rabs_Ropp. +apply ulp_half_error. +rewrite round_DN_opp; apply Ropp_0_gt_lt_contravar; apply Rlt_gt; assumption. +Qed. + +(** Predecessor *) +Definition pred x := + if Req_bool x (bpow (ln_beta beta x - 1)) then + (x - bpow (fexp (ln_beta beta x - 1)))%R + else + (x - ulp x)%R. + +Theorem pred_ge_bpow : + forall x e, F x -> + x <> ulp x -> + (bpow e < x)%R -> + (bpow e <= x - ulp x)%R. +Proof. +intros x e Fx Hx' Hx. +(* *) +assert (1 <= Ztrunc (scaled_mantissa beta fexp x))%Z. +assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +rewrite <- Fx. +apply Rle_lt_trans with (2:=Hx). +apply bpow_ge_0. +omega. +case (Zle_lt_or_eq _ _ H); intros Hm. +(* *) +pattern x at 1 ; rewrite Fx. +unfold ulp, F2R. simpl. +pattern (bpow (canonic_exp beta fexp x)) at 2 ; rewrite <- Rmult_1_l. +rewrite <- Rmult_minus_distr_r. +change 1%R with (Z2R 1). +rewrite <- Z2R_minus. +change (bpow e <= F2R (Float beta (Ztrunc (scaled_mantissa beta fexp x) - 1) (canonic_exp beta fexp x)))%R. +apply bpow_le_F2R_m1; trivial. +now rewrite <- Fx. +(* *) +contradict Hx'. +pattern x at 1; rewrite Fx. +rewrite <- Hm. +unfold ulp, F2R; simpl. +now rewrite Rmult_1_l. +Qed. + +Lemma generic_format_pred_1: + forall x, (0 < x)%R -> F x -> + x <> bpow (ln_beta beta x - 1) -> + F (x - ulp x). +Proof. +intros x Zx Fx Hx. +destruct (ln_beta beta x) as (ex, Ex). +simpl in Hx. +specialize (Ex (Rgt_not_eq _ _ Zx)). +assert (Ex' : (bpow (ex - 1) < x < bpow ex)%R). +rewrite Rabs_pos_eq in Ex. +destruct Ex as (H,H'); destruct H; split; trivial. +contradict Hx; easy. +now apply Rlt_le. +unfold generic_format, scaled_mantissa, canonic_exp. +rewrite ln_beta_unique with beta (x - ulp x)%R ex. +pattern x at 1 3 ; rewrite Fx. +unfold ulp, scaled_mantissa. +rewrite canonic_exp_fexp with (1 := Ex). +unfold F2R. simpl. +rewrite Rmult_minus_distr_r. +rewrite Rmult_assoc. +rewrite <- bpow_plus, Zplus_opp_r, Rmult_1_r. +change (bpow 0) with (Z2R 1). +rewrite <- Z2R_minus. +rewrite Ztrunc_Z2R. +rewrite Z2R_minus. +rewrite Rmult_minus_distr_r. +now rewrite Rmult_1_l. +rewrite Rabs_pos_eq. +split. +apply pred_ge_bpow; trivial. +unfold ulp; intro H. +assert (ex-1 < canonic_exp beta fexp x < ex)%Z. +split ; apply (lt_bpow beta) ; rewrite <- H ; easy. +clear -H0. omega. +apply Ex'. +apply Rle_lt_trans with (2 := proj2 Ex'). +pattern x at 3 ; rewrite <- Rplus_0_r. +apply Rplus_le_compat_l. +rewrite <-Ropp_0. +apply Ropp_le_contravar. +apply bpow_ge_0. +apply Rle_0_minus. +pattern x at 2; rewrite Fx. +unfold ulp, F2R; simpl. +pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 1%R with (Z2R 1) by reflexivity. +apply Z2R_le. +assert (0 < Ztrunc (scaled_mantissa beta fexp x))%Z. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +rewrite <- Fx. +apply Rle_lt_trans with (2:=proj1 Ex'). +apply bpow_ge_0. +omega. +Qed. + +Lemma generic_format_pred_2 : + forall x, (0 < x)%R -> F x -> + let e := ln_beta_val beta x (ln_beta beta x) in + x = bpow (e - 1) -> + F (x - bpow (fexp (e - 1))). +Proof. +intros x Zx Fx e Hx. +pose (f:=(x - bpow (fexp (e - 1)))%R). +fold f. +assert (He:(fexp (e-1) <= e-1)%Z). +apply generic_format_bpow_inv with beta; trivial. +rewrite <- Hx; assumption. +case (Zle_lt_or_eq _ _ He); clear He; intros He. +assert (f = F2R (Float beta (Zpower beta (e-1-(fexp (e-1))) -1) (fexp (e-1))))%R. +unfold f; rewrite Hx. +unfold F2R; simpl. +rewrite Z2R_minus, Z2R_Zpower. +rewrite Rmult_minus_distr_r, Rmult_1_l. +rewrite <- bpow_plus. +now replace (e - 1 - fexp (e - 1) + fexp (e - 1))%Z with (e-1)%Z by ring. +omega. +rewrite H. +apply generic_format_F2R. +intros _. +apply Zeq_le. +apply canonic_exp_fexp. +rewrite <- H. +unfold f; rewrite Hx. +rewrite Rabs_right. +split. +apply Rplus_le_reg_l with (bpow (fexp (e-1))). +ring_simplify. +apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R. +apply Rplus_le_compat ; apply bpow_le ; omega. +apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac]. +apply Rle_trans with (bpow 1*bpow (e - 2))%R. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 2%R with (Z2R 2) by reflexivity. +replace (bpow 1) with (Z2R beta). +apply Z2R_le. +apply <- Zle_is_le_bool. +now destruct beta. +simpl. +unfold Zpower_pos; simpl. +now rewrite Zmult_1_r. +rewrite <- bpow_plus. +replace (1+(e-2))%Z with (e-1)%Z by ring. +now right. +rewrite <- Rplus_0_r. +apply Rplus_lt_compat_l. +rewrite <- Ropp_0. +apply Ropp_lt_contravar. +apply bpow_gt_0. +apply Rle_ge; apply Rle_0_minus. +apply bpow_le. +omega. +replace f with 0%R. +apply generic_format_0. +unfold f. +rewrite Hx, He. +ring. +Qed. + +Theorem generic_format_pred : + forall x, (0 < x)%R -> F x -> + F (pred x). +Proof. +intros x Zx Fx. +unfold pred. +case Req_bool_spec; intros H. +now apply generic_format_pred_2. +now apply generic_format_pred_1. +Qed. + +Theorem generic_format_plus_ulp : + forall { monotone_exp : Monotone_exp fexp }, + forall x, (x <> 0)%R -> + F x -> F (x + ulp x). +Proof with auto with typeclass_instances. +intros monotone_exp x Zx Fx. +destruct (Rtotal_order x 0) as [Hx|[Hx|Hx]]. +rewrite <- Ropp_involutive. +apply generic_format_opp. +rewrite Ropp_plus_distr, <- ulp_opp. +apply generic_format_opp in Fx. +destruct (Req_dec (-x) (bpow (ln_beta beta (-x) - 1))) as [Hx'|Hx']. +rewrite Hx' in Fx |- *. +apply generic_format_bpow_inv' in Fx... +unfold ulp, canonic_exp. +rewrite ln_beta_bpow. +revert Fx. +generalize (ln_beta_val _ _ (ln_beta beta (-x)) - 1)%Z. +clear -monotone_exp valid_exp. +intros e He. +destruct (Zle_lt_or_eq _ _ He) as [He1|He1]. +assert (He2 : e = (e - fexp (e + 1) + fexp (e + 1))%Z) by ring. +rewrite He2 at 1. +rewrite bpow_plus. +assert (Hb := Z2R_Zpower beta _ (Zle_minus_le_0 _ _ He)). +match goal with |- F (?a * ?b + - ?b) => + replace (a * b + -b)%R with ((a - 1) * b)%R by ring end. +rewrite <- Hb. +rewrite <- (Z2R_minus _ 1). +change (F (F2R (Float beta (Zpower beta (e - fexp (e + 1)) - 1) (fexp (e + 1))))). +apply generic_format_F2R. +intros Zb. +unfold canonic_exp. +rewrite ln_beta_F2R with (1 := Zb). +rewrite (ln_beta_unique beta _ (e - fexp (e + 1))). +apply monotone_exp. +rewrite <- He2. +apply Zle_succ. +rewrite Rabs_pos_eq. +rewrite Z2R_minus, Hb. +split. +apply Rplus_le_reg_r with (- bpow (e - fexp (e + 1) - 1) + Z2R 1)%R. +apply Rmult_le_reg_r with (bpow (-(e - fexp (e+1) - 1))). +apply bpow_gt_0. +ring_simplify. +apply Rle_trans with R1. +rewrite Rmult_1_l. +apply (bpow_le _ _ 0). +clear -He1 ; omega. +rewrite Ropp_mult_distr_l_reverse. +rewrite <- 2!bpow_plus. +ring_simplify (e - fexp (e + 1) - 1 + - (e - fexp (e + 1) - 1))%Z. +ring_simplify (- (e - fexp (e + 1) - 1) + (e - fexp (e + 1)))%Z. +rewrite bpow_1. +rewrite <- (Z2R_plus (-1) _). +apply (Z2R_le 1). +generalize (Zle_bool_imp_le _ _ (radix_prop beta)). +clear ; omega. +rewrite <- (Rplus_0_r (bpow (e - fexp (e + 1)))) at 2. +apply Rplus_lt_compat_l. +now apply (Z2R_lt (-1) 0). +rewrite Z2R_minus. +apply Rle_0_minus. +rewrite Hb. +apply (bpow_le _ 0). +now apply Zle_minus_le_0. +rewrite He1, Rplus_opp_r. +apply generic_format_0. +apply generic_format_pred_1 ; try easy. +rewrite <- Ropp_0. +now apply Ropp_lt_contravar. +now elim Zx. +now apply generic_format_succ. +Qed. + +Theorem generic_format_minus_ulp : + forall { monotone_exp : Monotone_exp fexp }, + forall x, (x <> 0)%R -> + F x -> F (x - ulp x). +Proof. +intros monotone_exp x Zx Fx. +replace (x - ulp x)%R with (-(-x + ulp x))%R by ring. +apply generic_format_opp. +rewrite <- ulp_opp. +apply generic_format_plus_ulp. +contradict Zx. +rewrite <- (Ropp_involutive x), Zx. +apply Ropp_0. +now apply generic_format_opp. +Qed. + +Lemma pred_plus_ulp_1 : + forall x, (0 < x)%R -> F x -> + x <> bpow (ln_beta beta x - 1) -> + ((x - ulp x) + ulp (x-ulp x) = x)%R. +Proof. +intros x Zx Fx Hx. +replace (ulp (x - ulp x)) with (ulp x). +ring. +unfold ulp at 1 2; apply f_equal. +unfold canonic_exp; apply f_equal. +destruct (ln_beta beta x) as (ex, Hex). +simpl in *. +assert (x <> 0)%R by auto with real. +specialize (Hex H). +apply sym_eq. +apply ln_beta_unique. +rewrite Rabs_right. +rewrite Rabs_right in Hex. +2: apply Rle_ge; apply Rlt_le; easy. +split. +destruct Hex as ([H1|H1],H2). +apply pred_ge_bpow; trivial. +unfold ulp; intros H3. +assert (ex-1 < canonic_exp beta fexp x < ex)%Z. +split ; apply (lt_bpow beta) ; rewrite <- H3 ; easy. +omega. +contradict Hx; auto with real. +apply Rle_lt_trans with (2:=proj2 Hex). +rewrite <- Rplus_0_r. +apply Rplus_le_compat_l. +rewrite <- Ropp_0. +apply Ropp_le_contravar. +apply bpow_ge_0. +apply Rle_ge. +apply Rle_0_minus. +pattern x at 2; rewrite Fx. +unfold ulp, F2R; simpl. +pattern (bpow (canonic_exp beta fexp x)) at 1; rewrite <- Rmult_1_l. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 1%R with (Z2R (Zsucc 0)) by reflexivity. +apply Z2R_le. +apply Zlt_le_succ. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +now rewrite <- Fx. +Qed. + +Lemma pred_plus_ulp_2 : + forall x, (0 < x)%R -> F x -> + let e := ln_beta_val beta x (ln_beta beta x) in + x = bpow (e - 1) -> + (x - bpow (fexp (e-1)) <> 0)%R -> + ((x - bpow (fexp (e-1))) + ulp (x - bpow (fexp (e-1))) = x)%R. +Proof. +intros x Zx Fx e Hxe Zp. +replace (ulp (x - bpow (fexp (e - 1)))) with (bpow (fexp (e - 1))). +ring. +assert (He:(fexp (e-1) <= e-1)%Z). +apply generic_format_bpow_inv with beta; trivial. +rewrite <- Hxe; assumption. +case (Zle_lt_or_eq _ _ He); clear He; intros He. +(* *) +unfold ulp; apply f_equal. +unfold canonic_exp; apply f_equal. +apply sym_eq. +apply ln_beta_unique. +rewrite Rabs_right. +split. +apply Rplus_le_reg_l with (bpow (fexp (e-1))). +ring_simplify. +apply Rle_trans with (bpow (e - 2) + bpow (e - 2))%R. +apply Rplus_le_compat; apply bpow_le; omega. +apply Rle_trans with (2*bpow (e - 2))%R;[right; ring|idtac]. +apply Rle_trans with (bpow 1*bpow (e - 2))%R. +apply Rmult_le_compat_r. +apply bpow_ge_0. +replace 2%R with (Z2R 2) by reflexivity. +replace (bpow 1) with (Z2R beta). +apply Z2R_le. +apply <- Zle_is_le_bool. +now destruct beta. +simpl. +unfold Zpower_pos; simpl. +now rewrite Zmult_1_r. +rewrite <- bpow_plus. +replace (1+(e-2))%Z with (e-1)%Z by ring. +now right. +rewrite <- Rplus_0_r, Hxe. +apply Rplus_lt_compat_l. +rewrite <- Ropp_0. +apply Ropp_lt_contravar. +apply bpow_gt_0. +apply Rle_ge; apply Rle_0_minus. +rewrite Hxe. +apply bpow_le. +omega. +(* *) +contradict Zp. +rewrite Hxe, He; ring. +Qed. + +Theorem pred_plus_ulp : + forall x, (0 < x)%R -> F x -> + (pred x <> 0)%R -> + (pred x + ulp (pred x) = x)%R. +Proof. +intros x Zx Fx. +unfold pred. +case Req_bool_spec; intros H Zp. +now apply pred_plus_ulp_2. +now apply pred_plus_ulp_1. +Qed. + +Theorem pred_lt_id : + forall x, + (pred x < x)%R. +Proof. +intros. +unfold pred. +case Req_bool_spec; intros H. +(* *) +rewrite <- Rplus_0_r. +apply Rplus_lt_compat_l. +rewrite <- Ropp_0. +apply Ropp_lt_contravar. +apply bpow_gt_0. +(* *) +rewrite <- Rplus_0_r. +apply Rplus_lt_compat_l. +rewrite <- Ropp_0. +apply Ropp_lt_contravar. +apply bpow_gt_0. +Qed. + +Theorem pred_ge_0 : + forall x, + (0 < x)%R -> F x -> (0 <= pred x)%R. +intros x Zx Fx. +unfold pred. +case Req_bool_spec; intros H. +(* *) +apply Rle_0_minus. +rewrite H. +apply bpow_le. +destruct (ln_beta beta x) as (ex,Ex) ; simpl. +rewrite ln_beta_bpow. +ring_simplify (ex - 1 + 1 - 1)%Z. +apply generic_format_bpow_inv with beta; trivial. +simpl in H. +rewrite <- H; assumption. +apply Rle_0_minus. +now apply ulp_le_id. +Qed. + +Theorem round_UP_pred : + forall x, (0 < pred x)%R -> F x -> + forall eps, (0 < eps <= ulp (pred x) )%R -> + round beta fexp Zceil (pred x + eps) = x. +Proof. +intros x Hx Fx eps Heps. +rewrite round_UP_succ; trivial. +apply pred_plus_ulp; trivial. +apply Rlt_trans with (1:=Hx). +apply pred_lt_id. +now apply Rgt_not_eq. +apply generic_format_pred; trivial. +apply Rlt_trans with (1:=Hx). +apply pred_lt_id. +Qed. + +Theorem round_DN_pred : + forall x, (0 < pred x)%R -> F x -> + forall eps, (0 < eps <= ulp (pred x))%R -> + round beta fexp Zfloor (x - eps) = pred x. +Proof. +intros x Hpx Fx eps Heps. +assert (Hx:(0 < x)%R). +apply Rlt_trans with (1:=Hpx). +apply pred_lt_id. +replace (x-eps)%R with (pred x + (ulp (pred x)-eps))%R. +2: pattern x at 3; rewrite <- (pred_plus_ulp x); trivial. +2: ring. +2: now apply Rgt_not_eq. +rewrite round_DN_succ; trivial. +now apply generic_format_pred. +split. +apply Rle_0_minus. +now apply Heps. +rewrite <- Rplus_0_r. +apply Rplus_lt_compat_l. +rewrite <- Ropp_0. +apply Ropp_lt_contravar. +now apply Heps. +Qed. + +Lemma le_pred_lt_aux : + forall x y, + F x -> F y -> + (0 < x < y)%R -> + (x <= pred y)%R. +Proof with auto with typeclass_instances. +intros x y Hx Hy H. +assert (Zy:(0 < y)%R). +apply Rlt_trans with (1:=proj1 H). +apply H. +(* *) +assert (Zp: (0 < pred y)%R). +assert (Zp:(0 <= pred y)%R). +apply pred_ge_0 ; trivial. +destruct Zp; trivial. +generalize H0. +unfold pred. +destruct (ln_beta beta y) as (ey,Hey); simpl. +case Req_bool_spec; intros Hy2. +(* . *) +intros Hy3. +assert (ey-1 = fexp (ey -1))%Z. +apply bpow_inj with beta. +rewrite <- Hy2, <- Rplus_0_l, Hy3. +ring. +assert (Zx: (x <> 0)%R). +now apply Rgt_not_eq. +destruct (ln_beta beta x) as (ex,Hex). +specialize (Hex Zx). +assert (ex <= ey)%Z. +apply bpow_lt_bpow with beta. +apply Rle_lt_trans with (1:=proj1 Hex). +apply Rlt_trans with (Rabs y). +rewrite 2!Rabs_right. +apply H. +now apply Rgt_ge. +now apply Rgt_ge. +apply Hey. +now apply Rgt_not_eq. +case (Zle_lt_or_eq _ _ H2); intros Hexy. +assert (fexp ex = fexp (ey-1))%Z. +apply valid_exp. +omega. +rewrite <- H1. +omega. +absurd (0 < Ztrunc (scaled_mantissa beta fexp x) < 1)%Z. +omega. +split. +apply F2R_gt_0_reg with beta (canonic_exp beta fexp x). +now rewrite <- Hx. +apply lt_Z2R. +apply Rmult_lt_reg_r with (bpow (canonic_exp beta fexp x)). +apply bpow_gt_0. +replace (Z2R (Ztrunc (scaled_mantissa beta fexp x)) * + bpow (canonic_exp beta fexp x))%R with x. +rewrite Rmult_1_l. +unfold canonic_exp. +rewrite ln_beta_unique with beta x ex. +rewrite H3,<-H1, <- Hy2. +apply H. +exact Hex. +absurd (y <= x)%R. +now apply Rlt_not_le. +rewrite Rabs_right in Hex. +apply Rle_trans with (2:=proj1 Hex). +rewrite Hexy, Hy2. +now apply Rle_refl. +now apply Rgt_ge. +(* . *) +intros Hy3. +assert (y = bpow (fexp ey))%R. +apply Rminus_diag_uniq. +rewrite Hy3. +unfold ulp, canonic_exp. +rewrite (ln_beta_unique beta y ey); trivial. +apply Hey. +now apply Rgt_not_eq. +contradict Hy2. +rewrite H1. +apply f_equal. +apply Zplus_reg_l with 1%Z. +ring_simplify. +apply trans_eq with (ln_beta beta y). +apply sym_eq; apply ln_beta_unique. +rewrite H1, Rabs_right. +split. +apply bpow_le. +omega. +apply bpow_lt. +omega. +apply Rle_ge; apply bpow_ge_0. +apply ln_beta_unique. +apply Hey. +now apply Rgt_not_eq. +(* *) +case (Rle_or_lt (ulp (pred y)) (y-x)); intros H1. +(* . *) +apply Rplus_le_reg_r with (-x + ulp (pred y))%R. +ring_simplify (x+(-x+ulp (pred y)))%R. +apply Rle_trans with (1:=H1). +rewrite <- (pred_plus_ulp y) at 1; trivial. +apply Req_le; ring. +now apply Rgt_not_eq. +(* . *) +replace x with (y-(y-x))%R by ring. +rewrite <- round_DN_pred with (eps:=(y-x)%R); try easy. +ring_simplify (y-(y-x))%R. +apply Req_le. +apply sym_eq. +apply round_generic... +split; trivial. +now apply Rlt_Rminus. +now apply Rlt_le. +Qed. + +Theorem le_pred_lt : + forall x y, + F x -> F y -> + (0 < y)%R -> + (x < y)%R -> + (x <= pred y)%R. +Proof. +intros x y Fx Fy Hy Hxy. +destruct (Rle_or_lt x 0) as [Hx|Hx]. +apply Rle_trans with (1 := Hx). +now apply pred_ge_0. +apply le_pred_lt_aux ; try easy. +now split. +Qed. + +End Fcore_ulp. |