summaryrefslogtreecommitdiff
path: root/flocq/Core/Fcore_digits.v
blob: 2ae076eec636843c500ef67f38ce7a098b82b87c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2011 Sylvie Boldo
#<br />#
Copyright (C) 2011 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

Require Import ZArith.
Require Import Fcore_Zaux.
Require Import ZOdiv.

(** Computes the number of bits (radix 2) of a positive integer.

It serves as an upper bound on the number of digits to ensure termination.
*)

Fixpoint digits2_Pnat (n : positive) : nat :=
  match n with
  | xH => O
  | xO p => S (digits2_Pnat p)
  | xI p => S (digits2_Pnat p)
  end.

Theorem digits2_Pnat_correct :
  forall n,
  let d := digits2_Pnat n in
  (Zpower_nat 2 d <= Zpos n < Zpower_nat 2 (S d))%Z.
Proof.
intros n d. unfold d. clear.
assert (Hp: forall m, (Zpower_nat 2 (S m) = 2 * Zpower_nat 2 m)%Z) by easy.
induction n ; simpl.
rewrite Zpos_xI, 2!Hp.
omega.
rewrite (Zpos_xO n), 2!Hp.
omega.
now split.
Qed.

Section Fcore_digits.

Variable beta : radix.

Definition Zdigit n k := ZOmod (ZOdiv n (Zpower beta k)) beta.

Theorem Zdigit_lt :
  forall n k,
  (k < 0)%Z ->
  Zdigit n k = Z0.
Proof.
intros n [|k|k] Hk ; try easy.
now case n.
Qed.

Theorem Zdigit_0 :
  forall k, Zdigit 0 k = Z0.
Proof.
intros k.
unfold Zdigit.
rewrite ZOdiv_0_l.
apply ZOmod_0_l.
Qed.

Theorem Zdigit_opp :
  forall n k,
  Zdigit (-n) k = Zopp (Zdigit n k).
Proof.
intros n k.
unfold Zdigit.
rewrite ZOdiv_opp_l.
apply ZOmod_opp_l.
Qed.

Theorem Zdigit_ge_Zpower_pos :
  forall e n,
  (0 <= n < Zpower beta e)%Z ->
  forall k, (e <= k)%Z -> Zdigit n k = Z0.
Proof.
intros e n Hn k Hk.
unfold Zdigit.
rewrite ZOdiv_small.
apply ZOmod_0_l.
split.
apply Hn.
apply Zlt_le_trans with (1 := proj2 Hn).
replace k with (e + (k - e))%Z by ring.
rewrite Zpower_plus.
rewrite <- (Zmult_1_r (beta ^ e)) at 1.
apply Zmult_le_compat_l.
apply (Zlt_le_succ 0).
apply Zpower_gt_0.
now apply Zle_minus_le_0.
apply Zlt_le_weak.
now apply Zle_lt_trans with n.
generalize (Zle_lt_trans _ _ _ (proj1 Hn) (proj2 Hn)).
clear.
now destruct e as [|e|e].
now apply Zle_minus_le_0.
Qed.

Theorem Zdigit_ge_Zpower :
  forall e n,
  (Zabs n < Zpower beta e)%Z ->
  forall k, (e <= k)%Z -> Zdigit n k = Z0.
Proof.
intros e [|n|n] Hn k.
easy.
apply Zdigit_ge_Zpower_pos.
now split.
intros He.
change (Zneg n) with (Zopp (Zpos n)).
rewrite Zdigit_opp.
rewrite Zdigit_ge_Zpower_pos with (2 := He).
apply Zopp_0.
now split.
Qed.

Theorem Zdigit_not_0_pos :
  forall e n, (0 <= e)%Z ->
  (Zpower beta e <= n < Zpower beta (e + 1))%Z ->
  Zdigit n e <> Z0.
Proof.
intros e n He (Hn1,Hn2).
unfold Zdigit.
rewrite <- ZOdiv_mod_mult.
rewrite ZOmod_small.
intros H.
apply Zle_not_lt with (1 := Hn1).
rewrite (ZO_div_mod_eq n (beta ^ e)).
rewrite H, Zmult_0_r, Zplus_0_l.
apply ZOmod_lt_pos_pos.
apply Zle_trans with (2 := Hn1).
apply Zpower_ge_0.
now apply Zpower_gt_0.
split.
apply Zle_trans with (2 := Hn1).
apply Zpower_ge_0.
replace (beta ^ e * beta)%Z with (beta ^ (e + 1))%Z.
exact Hn2.
rewrite <- (Zmult_1_r beta) at 3.
now apply (Zpower_plus beta e 1).
Qed.

Theorem Zdigit_not_0 :
  forall e n, (0 <= e)%Z ->
  (Zpower beta e <= Zabs n < Zpower beta (e + 1))%Z ->
  Zdigit n e <> Z0.
Proof.
intros e n He Hn.
destruct (Zle_or_lt 0 n) as [Hn'|Hn'].
rewrite (Zabs_eq _ Hn') in Hn.
now apply Zdigit_not_0_pos.
intros H.
rewrite (Zabs_non_eq n) in Hn by now apply Zlt_le_weak.
apply (Zdigit_not_0_pos _ _ He Hn).
now rewrite Zdigit_opp, H.
Qed.

Theorem Zdigit_mul_pow :
  forall n k k', (0 <= k')%Z ->
  Zdigit (n * Zpower beta k') k = Zdigit n (k - k').
Proof.
intros n k k' Hk'.
destruct (Zle_or_lt k' k) as [H|H].
revert k H.
pattern k' ; apply Zlt_0_ind with (2 := Hk').
clear k' Hk'.
intros k' IHk' Hk' k H.
unfold Zdigit.
apply (f_equal (fun x => ZOmod x beta)).
pattern k at 1 ; replace k with (k - k' + k')%Z by ring.
rewrite Zpower_plus with (2 := Hk').
apply ZOdiv_mult_cancel_r.
apply Zgt_not_eq.
now apply Zpower_gt_0.
now apply Zle_minus_le_0.
destruct (Zle_or_lt 0 k) as [H0|H0].
rewrite (Zdigit_lt n) by omega.
unfold Zdigit.
replace k' with (k' - k + k)%Z by ring.
rewrite Zpower_plus with (2 := H0).
rewrite Zmult_assoc, ZO_div_mult.
replace (k' - k)%Z with (k' - k - 1 + 1)%Z by ring.
rewrite Zpower_exp by omega.
rewrite Zmult_assoc.
change (Zpower beta 1) with (beta * 1)%Z.
rewrite Zmult_1_r.
apply ZO_mod_mult.
apply Zgt_not_eq.
now apply Zpower_gt_0.
apply Zle_minus_le_0.
now apply Zlt_le_weak.
rewrite Zdigit_lt with (1 := H0).
apply sym_eq.
apply Zdigit_lt.
omega.
Qed.

Theorem Zdigit_div_pow :
  forall n k k', (0 <= k)%Z -> (0 <= k')%Z ->
  Zdigit (ZOdiv n (Zpower beta k')) k = Zdigit n (k + k').
Proof.
intros n k k' Hk Hk'.
unfold Zdigit.
rewrite ZOdiv_ZOdiv.
rewrite Zplus_comm.
now rewrite Zpower_plus.
Qed.

Theorem Zdigit_mod_pow :
  forall n k k', (k < k')%Z ->
  Zdigit (ZOmod n (Zpower beta k')) k = Zdigit n k.
Proof.
intros n k k' Hk.
destruct (Zle_or_lt 0 k) as [H|H].
unfold Zdigit.
rewrite <- 2!ZOdiv_mod_mult.
apply (f_equal (fun x => ZOdiv x (beta ^ k))).
replace k' with (k + 1 + (k' - (k + 1)))%Z by ring.
rewrite Zpower_exp by omega.
rewrite Zmult_comm.
rewrite Zpower_plus by easy.
change (Zpower beta 1) with (beta * 1)%Z.
rewrite Zmult_1_r.
apply ZOmod_mod_mult.
now rewrite 2!Zdigit_lt.
Qed.

Theorem Zdigit_mod_pow_out :
  forall n k k', (0 <= k' <= k)%Z ->
  Zdigit (ZOmod n (Zpower beta k')) k = Z0.
Proof.
intros n k k' Hk.
unfold Zdigit.
rewrite ZOdiv_small_abs.
apply ZOmod_0_l.
apply Zlt_le_trans with (Zpower beta k').
rewrite <- (Zabs_eq (beta ^ k')) at 2 by apply Zpower_ge_0.
apply ZOmod_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
now apply Zpower_le.
Qed.

Fixpoint Zsum_digit f k :=
  match k with
  | O => Z0
  | S k => (Zsum_digit f k + f (Z_of_nat k) * Zpower beta (Z_of_nat k))%Z
  end.

Theorem Zsum_digit_digit :
  forall n k,
  Zsum_digit (Zdigit n) k = ZOmod n (Zpower beta (Z_of_nat k)).
Proof.
intros n.
induction k.
apply sym_eq.
apply ZOmod_1_r.
simpl Zsum_digit.
rewrite IHk.
unfold Zdigit.
rewrite <- ZOdiv_mod_mult.
rewrite <- (ZOmod_mod_mult n beta).
rewrite Zmult_comm.
replace (beta ^ Z_of_nat k * beta)%Z with (Zpower beta (Z_of_nat (S k))).
rewrite Zplus_comm, Zmult_comm.
apply sym_eq.
apply ZO_div_mod_eq.
rewrite inj_S.
rewrite <- (Zmult_1_r beta) at 3.
apply Zpower_plus.
apply Zle_0_nat.
easy.
Qed.

Theorem Zpower_gt_id :
  forall n, (n < Zpower beta n)%Z.
Proof.
intros [|n|n] ; try easy.
simpl.
rewrite Zpower_pos_nat.
rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
induction (nat_of_P n).
easy.
rewrite inj_S.
change (Zpower_nat beta (S n0)) with (beta * Zpower_nat beta n0)%Z.
unfold Zsucc.
apply Zlt_le_trans with (beta * (Z_of_nat n0 + 1))%Z.
clear.
apply Zlt_0_minus_lt.
replace (beta * (Z_of_nat n0 + 1) - (Z_of_nat n0 + 1))%Z with ((beta - 1) * (Z_of_nat n0 + 1))%Z by ring.
apply Zmult_lt_0_compat.
cut (2 <= beta)%Z. omega.
apply Zle_bool_imp_le.
apply beta.
apply (Zle_lt_succ 0).
apply Zle_0_nat.
apply Zmult_le_compat_l.
now apply Zlt_le_succ.
apply Zle_trans with 2%Z.
easy.
apply Zle_bool_imp_le.
apply beta.
Qed.

Theorem Zdigit_ext :
  forall n1 n2,
  (forall k, (0 <= k)%Z -> Zdigit n1 k = Zdigit n2 k) ->
  n1 = n2.
Proof.
intros n1 n2 H.
rewrite <- (ZOmod_small_abs n1 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))).
rewrite <- (ZOmod_small_abs n2 (Zpower beta (Zmax (Zabs n1) (Zabs n2)))) at 2.
replace (Zmax (Zabs n1) (Zabs n2)) with (Z_of_nat (Zabs_nat (Zmax (Zabs n1) (Zabs n2)))).
rewrite <- 2!Zsum_digit_digit.
induction (Zabs_nat (Zmax (Zabs n1) (Zabs n2))).
easy.
simpl.
rewrite H, IHn.
apply refl_equal.
apply Zle_0_nat.
rewrite inj_Zabs_nat.
apply Zabs_eq.
apply Zle_trans with (Zabs n1).
apply Zabs_pos.
apply Zle_max_l.
apply Zlt_le_trans with (Zpower beta (Zabs n2)).
apply Zpower_gt_id.
apply Zpower_le.
apply Zle_max_r.
apply Zlt_le_trans with (Zpower beta (Zabs n1)).
apply Zpower_gt_id.
apply Zpower_le.
apply Zle_max_l.
Qed.

Theorem ZOmod_plus_pow_digit :
  forall u v n, (0 <= u * v)%Z ->
  (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  ZOmod (u + v) (Zpower beta n) = (ZOmod u (Zpower beta n) + ZOmod v (Zpower beta n))%Z.
Proof.
intros u v n Huv Hd.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
rewrite ZOplus_mod with (1 := Huv).
apply ZOmod_small_abs.
generalize (Zle_refl n).
pattern n at -2 ; rewrite <- Zabs_eq with (1 := Hn).
rewrite <- (inj_Zabs_nat n).
induction (Zabs_nat n) as [|p IHp].
now rewrite 2!ZOmod_1_r.
rewrite <- 2!Zsum_digit_digit.
simpl Zsum_digit.
rewrite inj_S.
intros Hn'.
replace (Zsum_digit (Zdigit u) p + Zdigit u (Z_of_nat p) * beta ^ Z_of_nat p +
  (Zsum_digit (Zdigit v) p + Zdigit v (Z_of_nat p) * beta ^ Z_of_nat p))%Z with
  (Zsum_digit (Zdigit u) p + Zsum_digit (Zdigit v) p +
  (Zdigit u (Z_of_nat p) + Zdigit v (Z_of_nat p)) * beta ^ Z_of_nat p)%Z by ring.
apply (Zle_lt_trans _ _ _ (Zabs_triangle _ _)).
replace (beta ^ Zsucc (Z_of_nat p))%Z with (beta ^ Z_of_nat p + (beta - 1) * beta ^ Z_of_nat p)%Z.
apply Zplus_lt_le_compat.
rewrite 2!Zsum_digit_digit.
apply IHp.
now apply Zle_succ_le.
rewrite Zabs_Zmult.
rewrite (Zabs_eq (beta ^ Z_of_nat p)) by apply Zpower_ge_0.
apply Zmult_le_compat_r. 2: apply Zpower_ge_0.
apply Zlt_succ_le.
assert (forall u v, Zabs (Zdigit u v) < Zsucc (beta -  1))%Z.
clear ; intros n k.
assert (0 < beta)%Z.
apply Zlt_le_trans with 2%Z.
apply refl_equal.
apply Zle_bool_imp_le.
apply beta.
replace (Zsucc (beta - 1)) with (Zabs beta).
apply ZOmod_lt.
now apply Zgt_not_eq.
rewrite Zabs_eq.
apply Zsucc_pred.
now apply Zlt_le_weak.
assert (0 <= Z_of_nat p < n)%Z.
split.
apply Zle_0_nat.
apply Zgt_lt.
now apply Zle_succ_gt.
destruct (Hd (Z_of_nat p) H0) as [K|K] ; rewrite K.
apply H.
rewrite Zplus_0_r.
apply H.
unfold Zsucc.
ring_simplify.
rewrite Zpower_plus.
change (beta ^1)%Z with (beta * 1)%Z.
now rewrite Zmult_1_r.
apply Zle_0_nat.
easy.
destruct n as [|n|n] ; try easy.
now rewrite 3!ZOmod_0_r.
Qed.

Theorem ZOdiv_plus_pow_digit :
  forall u v n, (0 <= u * v)%Z ->
  (forall k, (0 <= k < n)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  ZOdiv (u + v) (Zpower beta n) = (ZOdiv u (Zpower beta n) + ZOdiv v (Zpower beta n))%Z.
Proof.
intros u v n Huv Hd.
rewrite <- (Zplus_0_r (ZOdiv u (Zpower beta n) + ZOdiv v (Zpower beta n))).
rewrite ZOdiv_plus with (1 := Huv).
rewrite <- ZOmod_plus_pow_digit by assumption.
apply f_equal.
destruct (Zle_or_lt 0 n) as [Hn|Hn].
apply ZOdiv_small_abs.
rewrite <- Zabs_eq.
apply ZOmod_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
apply Zpower_ge_0.
clear -Hn.
destruct n as [|n|n] ; try easy.
apply ZOdiv_0_r.
Qed.

Theorem Zdigit_plus :
  forall u v, (0 <= u * v)%Z ->
  (forall k, (0 <= k)%Z -> Zdigit u k = Z0 \/ Zdigit v k = Z0) ->
  forall k,
  Zdigit (u + v) k = (Zdigit u k + Zdigit v k)%Z.
Proof.
intros u v Huv Hd k.
destruct (Zle_or_lt 0 k) as [Hk|Hk].
unfold Zdigit.
rewrite ZOdiv_plus_pow_digit with (1 := Huv).
rewrite <- (Zmult_1_r beta) at 3 5 7.
change (beta * 1)%Z with (beta ^1)%Z.
apply ZOmod_plus_pow_digit.
apply Zsame_sign_trans_weak with v.
intros Zv ; rewrite Zv.
apply ZOdiv_0_l.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with u.
intros Zu ; rewrite Zu.
apply ZOdiv_0_l.
now rewrite Zmult_comm.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
intros k' (Hk1,Hk2).
rewrite 2!Zdigit_div_pow by assumption.
apply Hd.
now apply Zplus_le_0_compat.
intros k' (Hk1,Hk2).
now apply Hd.
now rewrite 3!Zdigit_lt.
Qed.

Definition Zscale n k :=
  if Zle_bool 0 k then (n * Zpower beta k)%Z else ZOdiv n (Zpower beta (-k)).

Theorem Zdigit_scale :
  forall n k k', (0 <= k')%Z ->
  Zdigit (Zscale n k) k' = Zdigit n (k' - k).
Proof.
intros n k k' Hk'.
unfold Zscale.
case Zle_bool_spec ; intros Hk.
now apply Zdigit_mul_pow.
apply Zdigit_div_pow with (1 := Hk').
omega.
Qed.

Theorem Zscale_0 :
  forall k,
  Zscale 0 k = Z0.
Proof.
intros k.
unfold Zscale.
case Zle_bool.
apply Zmult_0_l.
apply ZOdiv_0_l.
Qed.

Theorem Zsame_sign_scale :
  forall n k,
  (0 <= n * Zscale n k)%Z.
Proof.
intros n k.
unfold Zscale.
case Zle_bool_spec ; intros Hk.
rewrite Zmult_assoc.
apply Zmult_le_0_compat.
apply Zsame_sign_imp ; apply Zlt_le_weak.
apply Zpower_ge_0.
apply Zsame_sign_odiv.
apply Zpower_ge_0.
Qed.

Theorem Zscale_mul_pow :
  forall n k k', (0 <= k)%Z ->
  Zscale (n * Zpower beta k) k' = Zscale n (k + k').
Proof.
intros n k k' Hk.
unfold Zscale.
case Zle_bool_spec ; intros Hk'.
rewrite Zle_bool_true.
rewrite <- Zmult_assoc.
apply f_equal.
now rewrite Zpower_plus.
now apply Zplus_le_0_compat.
case Zle_bool_spec ; intros Hk''.
pattern k at 1 ; replace k with (k + k' + -k')%Z by ring.
assert (0 <= -k')%Z by omega.
rewrite Zpower_plus by easy.
rewrite Zmult_assoc, ZO_div_mult.
apply refl_equal.
apply Zgt_not_eq.
now apply Zpower_gt_0.
replace (-k')%Z with (-(k+k') + k)%Z by ring.
rewrite Zpower_plus with (2 := Hk).
apply ZOdiv_mult_cancel_r.
apply Zgt_not_eq.
now apply Zpower_gt_0.
omega.
Qed.

Theorem Zscale_scale :
  forall n k k', (0 <= k)%Z ->
  Zscale (Zscale n k) k' = Zscale n (k + k').
Proof.
intros n k k' Hk.
unfold Zscale at 2.
rewrite Zle_bool_true with (1 := Hk).
now apply Zscale_mul_pow.
Qed.

Definition Zslice n k1 k2 :=
  if Zle_bool 0 k2 then ZOmod (Zscale n (-k1)) (Zpower beta k2) else Z0.

Theorem Zdigit_slice :
  forall n k1 k2 k, (0 <= k < k2)%Z ->
  Zdigit (Zslice n k1 k2) k = Zdigit n (k1 + k).
Proof.
intros n k1 k2 k Hk.
unfold Zslice.
rewrite Zle_bool_true.
rewrite Zdigit_mod_pow by apply Hk.
rewrite Zdigit_scale by apply Hk.
unfold Zminus.
now rewrite Zopp_involutive, Zplus_comm.
omega.
Qed.

Theorem Zdigit_slice_out :
  forall n k1 k2 k, (k2 <= k)%Z ->
  Zdigit (Zslice n k1 k2) k = Z0.
Proof.
intros n k1 k2 k Hk.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
apply Zdigit_mod_pow_out.
now split.
apply Zdigit_0.
Qed.

Theorem Zslice_0 :
  forall k k',
  Zslice 0 k k' = Z0.
Proof.
intros k k'.
unfold Zslice.
case Zle_bool.
rewrite Zscale_0.
apply ZOmod_0_l.
apply refl_equal.
Qed.

Theorem Zsame_sign_slice :
  forall n k k',
  (0 <= n * Zslice n k k')%Z.
Proof.
intros n k k'.
unfold Zslice.
case Zle_bool.
apply Zsame_sign_trans_weak with (Zscale n (-k)).
intros H ; rewrite H.
apply ZOmod_0_l.
apply Zsame_sign_scale.
rewrite Zmult_comm.
apply ZOmod_sgn2.
now rewrite Zmult_0_r.
Qed.

Theorem Zslice_slice :
  forall n k1 k2 k1' k2', (0 <= k1' <= k2)%Z ->
  Zslice (Zslice n k1 k2) k1' k2' = Zslice n (k1 + k1') (Zmin (k2 - k1') k2').
Proof.
intros n k1 k2 k1' k2' Hk1'.
destruct (Zle_or_lt 0 k2') as [Hk2'|Hk2'].
apply Zdigit_ext.
intros k Hk.
destruct (Zle_or_lt (Zmin (k2 - k1') k2') k) as [Hk'|Hk'].
rewrite (Zdigit_slice_out n (k1 + k1')) with (1 := Hk').
destruct (Zle_or_lt k2' k) as [Hk''|Hk''].
now apply Zdigit_slice_out.
rewrite Zdigit_slice by now split.
apply Zdigit_slice_out.
zify ; omega.
rewrite Zdigit_slice by (zify ; omega).
rewrite (Zdigit_slice n (k1 + k1')) by now split.
rewrite Zdigit_slice.
now rewrite Zplus_assoc.
zify ; omega.
unfold Zslice.
rewrite Zmin_r.
now rewrite Zle_bool_false.
omega.
Qed.

Theorem Zslice_mul_pow :
  forall n k k1 k2, (0 <= k)%Z ->
  Zslice (n * Zpower beta k) k1 k2 = Zslice n (k1 - k) k2.
Proof.
intros n k k1 k2 Hk.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
2: apply refl_equal.
rewrite Zscale_mul_pow with (1 := Hk).
now replace (- (k1 - k))%Z with (k + -k1)%Z by ring.
Qed.

Theorem Zslice_div_pow :
  forall n k k1 k2, (0 <= k)%Z -> (0 <= k1)%Z ->
  Zslice (ZOdiv n (Zpower beta k)) k1 k2 = Zslice n (k1 + k) k2.
Proof.
intros n k k1 k2 Hk Hk1.
unfold Zslice.
case Zle_bool_spec ; intros Hk2.
2: apply refl_equal.
apply (f_equal (fun x => ZOmod x (beta ^ k2))).
unfold Zscale.
case Zle_bool_spec ; intros Hk1'.
replace k1 with Z0 by omega.
case Zle_bool_spec ; intros Hk'.
replace k with Z0 by omega.
simpl.
now rewrite ZOdiv_1_r.
rewrite Zopp_involutive.
apply Zmult_1_r.
rewrite Zle_bool_false by omega.
rewrite 2!Zopp_involutive, Zplus_comm.
rewrite Zpower_plus by assumption.
apply ZOdiv_ZOdiv.
Qed.

Theorem Zslice_scale :
  forall n k k1 k2, (0 <= k1)%Z ->
  Zslice (Zscale n k) k1 k2 = Zslice n (k1 - k) k2.
Proof.
intros n k k1 k2 Hk1.
unfold Zscale.
case Zle_bool_spec; intros Hk.
now apply Zslice_mul_pow.
apply Zslice_div_pow with (2 := Hk1).
omega.
Qed.

Theorem Zslice_div_pow_scale :
  forall n k k1 k2, (0 <= k)%Z ->
  Zslice (ZOdiv n (Zpower beta k)) k1 k2 = Zscale (Zslice n k (k1 + k2)) (-k1).
Proof.
intros n k k1 k2 Hk.
apply Zdigit_ext.
intros k' Hk'.
rewrite Zdigit_scale with (1 := Hk').
unfold Zminus.
rewrite (Zplus_comm k'), Zopp_involutive.
destruct (Zle_or_lt k2 k') as [Hk2|Hk2].
rewrite Zdigit_slice_out with (1 := Hk2).
apply sym_eq.
apply Zdigit_slice_out.
now apply Zplus_le_compat_l.
rewrite Zdigit_slice by now split.
destruct (Zle_or_lt 0 (k1 + k')) as [Hk1'|Hk1'].
rewrite Zdigit_slice by omega.
rewrite Zdigit_div_pow by assumption.
apply f_equal.
ring.
now rewrite 2!Zdigit_lt.
Qed.

Theorem Zplus_slice :
  forall n k l1 l2, (0 <= l1)%Z -> (0 <= l2)%Z ->
  (Zslice n k l1 + Zscale (Zslice n (k + l1) l2) l1)%Z = Zslice n k (l1 + l2).
Proof.
intros n k1 l1 l2 Hl1 Hl2.
clear Hl1.
apply Zdigit_ext.
intros k Hk.
rewrite Zdigit_plus.
rewrite Zdigit_scale with (1 := Hk).
destruct (Zle_or_lt (l1 + l2) k) as [Hk2|Hk2].
rewrite Zdigit_slice_out with (1 := Hk2).
now rewrite 2!Zdigit_slice_out by omega.
rewrite Zdigit_slice with (1 := conj Hk Hk2).
destruct (Zle_or_lt l1 k) as [Hk1|Hk1].
rewrite Zdigit_slice_out with (1 := Hk1).
rewrite Zdigit_slice by omega.
simpl ; apply f_equal.
ring.
rewrite Zdigit_slice with (1 := conj Hk Hk1).
rewrite (Zdigit_lt _ (k - l1)) by omega.
apply Zplus_0_r.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with n.
intros H ; rewrite H.
apply Zslice_0.
rewrite Zmult_comm.
apply Zsame_sign_trans_weak with (Zslice n (k1 + l1) l2).
intros H ; rewrite H.
apply Zscale_0.
apply Zsame_sign_slice.
apply Zsame_sign_scale.
apply Zsame_sign_slice.
clear k Hk ; intros k Hk.
rewrite Zdigit_scale with (1 := Hk).
destruct (Zle_or_lt l1 k) as [Hk1|Hk1].
left.
now apply Zdigit_slice_out.
right.
apply Zdigit_lt.
omega.
Qed.

Section digits_aux.

Variable p : Z.
Hypothesis Hp : (0 <= p)%Z.

Fixpoint Zdigits_aux (nb pow : Z) (n : nat) { struct n } : Z :=
  match n with
  | O => nb
  | S n => if Zlt_bool p pow then nb else Zdigits_aux (nb + 1) (Zmult beta pow) n
  end.

End digits_aux.
(** Number of digits of an integer *)
Definition Zdigits n :=
  match n with
  | Z0 => Z0
  | Zneg p => Zdigits_aux (Zpos p) 1 beta (digits2_Pnat p)
  | Zpos p => Zdigits_aux n 1 beta (digits2_Pnat p)
  end.

Theorem Zdigits_correct :
  forall n,
  (Zpower beta (Zdigits n - 1) <= Zabs n < Zpower beta (Zdigits n))%Z.
Proof.
cut (forall p, Zpower beta (Zdigits (Zpos p) - 1) <= Zpos p < Zpower beta (Zdigits (Zpos p)))%Z.
intros H [|n|n] ; try exact (H n).
now split.
intros n.
simpl.
(* *)
assert (U: (Zpos n < Zpower beta (Z_of_nat (S (digits2_Pnat n))))%Z).
apply Zlt_le_trans with (1 := proj2 (digits2_Pnat_correct n)).
rewrite Zpower_Zpower_nat.
rewrite Zabs_nat_Z_of_nat.
induction (S (digits2_Pnat n)).
easy.
rewrite 2!(Zpower_nat_S).
apply Zmult_le_compat with (2 := IHn0).
apply Zle_bool_imp_le.
apply beta.
easy.
rewrite <- (Zabs_nat_Z_of_nat n0).
rewrite <- Zpower_Zpower_nat.
apply (Zpower_ge_0 (Build_radix 2 (refl_equal true))).
apply Zle_0_nat.
apply Zle_0_nat.
(* *)
revert U.
rewrite inj_S.
unfold Zsucc.
generalize (digits2_Pnat n).
intros u U.
pattern (radix_val beta) at 2 4 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r.
assert (V: (Zpower beta (1 - 1) <= Zpos n)%Z).
now apply (Zlt_le_succ 0).
generalize (conj V U).
clear.
generalize (Zle_refl 1).
generalize 1%Z at 2 3 5 6 7 9 10.
(* *)
induction u.
easy.
rewrite inj_S; unfold Zsucc.
simpl Zdigits_aux.
intros v Hv U.
case Zlt_bool_spec ; intros K.
now split.
pattern (radix_val beta) at 2 5 ; replace (radix_val beta) with (Zpower beta 1) by apply Zmult_1_r.
rewrite <- Zpower_plus.
rewrite Zplus_comm.
apply IHu.
clear -Hv ; omega.
split.
now ring_simplify (1 + v - 1)%Z.
now rewrite Zplus_assoc.
easy.
apply Zle_succ_le with (1 := Hv).
Qed.

Theorem Zdigits_abs :
  forall n, Zdigits (Zabs n) = Zdigits n.
Proof.
now intros [|n|n].
Qed.

Theorem Zdigits_gt_0 :
  forall n, n <> Z0 -> (0 < Zdigits n)%Z.
Proof.
intros n Zn.
rewrite <- (Zdigits_abs n).
assert (Hn: (0 < Zabs n)%Z).
destruct n ; try easy.
now elim Zn.
destruct (Zabs n) as [|p|p] ; try easy ; clear.
simpl.
generalize 1%Z (radix_val beta) (refl_equal Lt : (0 < 1)%Z).
induction (digits2_Pnat p).
easy.
simpl.
intros.
case Zlt_bool.
exact H.
apply IHn.
now apply Zlt_lt_succ.
Qed.

Theorem Zdigits_ge_0 :
  forall n, (0 <= Zdigits n)%Z.
Proof.
intros n.
destruct (Z_eq_dec n 0) as [H|H].
now rewrite H.
apply Zlt_le_weak.
now apply Zdigits_gt_0.
Qed.

Theorem Zdigit_out :
  forall n k, (Zdigits n <= k)%Z ->
  Zdigit n k = Z0.
Proof.
intros n k Hk.
apply Zdigit_ge_Zpower with (2 := Hk).
apply Zdigits_correct.
Qed.

Theorem Zdigit_digits :
  forall n, n <> Z0 ->
  Zdigit n (Zdigits n - 1) <> Z0.
Proof.
intros n Zn.
apply Zdigit_not_0.
apply Zlt_0_le_0_pred.
now apply Zdigits_gt_0.
ring_simplify (Zdigits n - 1 + 1)%Z.
apply Zdigits_correct.
Qed.

Theorem Zdigits_slice :
  forall n k l, (0 <= l)%Z ->
  (Zdigits (Zslice n k l) <= l)%Z.
Proof.
intros n k l Hl.
unfold Zslice.
rewrite Zle_bool_true with (1 := Hl).
destruct (Zdigits_correct (ZOmod (Zscale n (- k)) (Zpower beta l))) as (H1,H2).
apply Zpower_lt_Zpower with beta.
apply Zle_lt_trans with (1 := H1).
rewrite <- (Zabs_eq (beta ^ l)) at 2 by apply Zpower_ge_0.
apply ZOmod_lt.
apply Zgt_not_eq.
now apply Zpower_gt_0.
Qed.

End Fcore_digits.