diff options
author | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-05-19 09:54:40 +0000 |
---|---|---|
committer | xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e> | 2013-05-19 09:54:40 +0000 |
commit | be4d6e42dfa287b93b1a35ec820ab2a5aaf8c7ec (patch) | |
tree | c51b66e9154bc64cf4fd4191251f29d102928841 /backend | |
parent | 60e1fd71c7e97b2214daf574e0f41b55a3e0bceb (diff) |
Merge of the float32 branch:
- added RTL type "Tsingle"
- ABI-compatible passing of single-precision floats on ARM and x86
git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2260 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'backend')
-rw-r--r-- | backend/Allocation.v | 134 | ||||
-rw-r--r-- | backend/Allocproof.v | 314 | ||||
-rw-r--r-- | backend/CMtypecheck.ml | 14 | ||||
-rw-r--r-- | backend/CSEproof.v | 33 | ||||
-rw-r--r-- | backend/IRC.ml | 12 | ||||
-rw-r--r-- | backend/LTL.v | 4 | ||||
-rw-r--r-- | backend/Linear.v | 2 | ||||
-rw-r--r-- | backend/Lineartyping.v | 54 | ||||
-rw-r--r-- | backend/Locations.v | 49 | ||||
-rw-r--r-- | backend/Mach.v | 2 | ||||
-rw-r--r-- | backend/PrintCminor.ml | 1 | ||||
-rw-r--r-- | backend/PrintXTL.ml | 6 | ||||
-rw-r--r-- | backend/RTLtyping.v | 834 | ||||
-rw-r--r-- | backend/Regalloc.ml | 14 | ||||
-rw-r--r-- | backend/Stackingproof.v | 81 |
15 files changed, 782 insertions, 772 deletions
diff --git a/backend/Allocation.v b/backend/Allocation.v index e4d0972..a4dd3af 100644 --- a/backend/Allocation.v +++ b/backend/Allocation.v @@ -608,6 +608,20 @@ Definition subst_loc (l1 l2: loc) (e: eqs) : option eqs := (EqSet2.elements_between (select_loc_l l1) (select_loc_h l1) (eqs2 e)) (Some e). +(** [loc_type_compat env l e] checks that for all equations [r = l] in [e], + the type [env r] of [r] is compatible with the type of [l]. *) + +Definition sel_type (k: equation_kind) (ty: typ) : typ := + match k with + | Full => ty + | Low | High => Tint + end. + +Definition loc_type_compat (env: regenv) (l: loc) (e: eqs) : bool := + EqSet2.for_all_between + (fun q => subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l)) + (select_loc_l l) (select_loc_h l) (eqs2 e). + (** [add_equations [r1...rN] [m1...mN] e] adds to [e] the [N] equations [ri = R mi [Full]]. Return [None] if the two lists have different lengths. *) @@ -628,7 +642,7 @@ Function add_equations_args (rl: list reg) (tyl: list typ) (ll: list loc) (e: eq | nil, nil, nil => Some e | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll => add_equations_args rl tyl ll (add_equation (Eq Low r1 l2) (add_equation (Eq High r1 l1) e)) - | r1 :: rl, (Tint|Tfloat) :: tyl, l1 :: ll => + | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll => add_equations_args rl tyl ll (add_equation (Eq Full r1 l1) e) | _, _, _ => None end. @@ -752,9 +766,16 @@ Definition ros_compatible_tailcall (ros: mreg + ident) : bool := (** * The validator *) Definition destroyed_by_move (src dst: loc) := - match src with - | S sl ofs ty => destroyed_by_getstack sl - | _ => destroyed_by_op Omove + match src, dst with + | S sl ofs ty, _ => destroyed_by_getstack sl + | _, S sl ofs ty => destroyed_by_setstack ty + | _, _ => destroyed_by_op Omove + end. + +Definition well_typed_move (env: regenv) (dst: loc) (e: eqs) : bool := + match dst with + | R r => true + | S sl ofs ty => loc_type_compat env dst e end. (** Simulate the effect of a sequence of moves [mv] on a set of @@ -763,14 +784,14 @@ Definition destroyed_by_move (src dst: loc) := must hold before the sequence of moves. Return [None] if the set of equations [e] cannot hold after the sequence of moves. *) -Fixpoint track_moves (mv: moves) (e: eqs) : option eqs := +Fixpoint track_moves (env: regenv) (mv: moves) (e: eqs) : option eqs := match mv with | nil => Some e | (src, dst) :: mv => - do e1 <- track_moves mv e; - do e2 <- subst_loc dst src e1; + do e1 <- track_moves env mv e; assertion (can_undef_except dst (destroyed_by_move src dst)) e1; - Some e2 + assertion (well_typed_move env dst e1); + subst_loc dst src e1 end. (** [transfer_use_def args res args' res' undefs e] returns the set @@ -802,89 +823,89 @@ Definition kind_second_word := if big_endian then Low else High. equations that must hold "before" these instructions, or [None] if impossible. *) -Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option eqs := +Definition transfer_aux (f: RTL.function) (env: regenv) (shape: block_shape) (e: eqs) : option eqs := match shape with | BSnop mv s => - track_moves mv e + track_moves env mv e | BSmove src dst mv s => - track_moves mv (subst_reg dst src e) + track_moves env mv (subst_reg dst src e) | BSmakelong src1 src2 dst mv s => let e1 := subst_reg_kind dst High src1 Full e in let e2 := subst_reg_kind dst Low src2 Full e1 in assertion (reg_unconstrained dst e2); - track_moves mv e2 + track_moves env mv e2 | BSlowlong src dst mv s => let e1 := subst_reg_kind dst Full src Low e in assertion (reg_unconstrained dst e1); - track_moves mv e1 + track_moves env mv e1 | BShighlong src dst mv s => let e1 := subst_reg_kind dst Full src High e in assertion (reg_unconstrained dst e1); - track_moves mv e1 + track_moves env mv e1 | BSop op args res mv1 args' res' mv2 s => - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; do e2 <- transfer_use_def args res args' res' (destroyed_by_op op) e1; - track_moves mv1 e2 + track_moves env mv1 e2 | BSopdead op args res mv s => assertion (reg_unconstrained res e); - track_moves mv e + track_moves env mv e | BSload chunk addr args dst mv1 args' dst' mv2 s => - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; do e2 <- transfer_use_def args dst args' dst' (destroyed_by_load chunk addr) e1; - track_moves mv1 e2 + track_moves env mv1 e2 | BSload2 addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s => - do e1 <- track_moves mv3 e; + do e1 <- track_moves env mv3 e; let e2 := remove_equation (Eq kind_second_word dst (R dst2')) e1 in assertion (loc_unconstrained (R dst2') e2); assertion (can_undef (destroyed_by_load Mint32 addr') e2); do e3 <- add_equations args args2' e2; - do e4 <- track_moves mv2 e3; + do e4 <- track_moves env mv2 e3; let e5 := remove_equation (Eq kind_first_word dst (R dst1')) e4 in assertion (loc_unconstrained (R dst1') e5); assertion (can_undef (destroyed_by_load Mint32 addr) e5); assertion (reg_unconstrained dst e5); do e6 <- add_equations args args1' e5; - track_moves mv1 e6 + track_moves env mv1 e6 | BSload2_1 addr args dst mv1 args' dst' mv2 s => - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; let e2 := remove_equation (Eq kind_first_word dst (R dst')) e1 in assertion (reg_loc_unconstrained dst (R dst') e2); assertion (can_undef (destroyed_by_load Mint32 addr) e2); do e3 <- add_equations args args' e2; - track_moves mv1 e3 + track_moves env mv1 e3 | BSload2_2 addr addr' args dst mv1 args' dst' mv2 s => - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; let e2 := remove_equation (Eq kind_second_word dst (R dst')) e1 in assertion (reg_loc_unconstrained dst (R dst') e2); assertion (can_undef (destroyed_by_load Mint32 addr') e2); do e3 <- add_equations args args' e2; - track_moves mv1 e3 + track_moves env mv1 e3 | BSloaddead chunk addr args dst mv s => assertion (reg_unconstrained dst e); - track_moves mv e + track_moves env mv e | BSstore chunk addr args src mv args' src' s => assertion (can_undef (destroyed_by_store chunk addr) e); do e1 <- add_equations (src :: args) (src' :: args') e; - track_moves mv e1 + track_moves env mv e1 | BSstore2 addr addr' args src mv1 args1' src1' mv2 args2' src2' s => assertion (can_undef (destroyed_by_store Mint32 addr') e); do e1 <- add_equations args args2' (add_equation (Eq kind_second_word src (R src2')) e); - do e2 <- track_moves mv2 e1; + do e2 <- track_moves env mv2 e1; assertion (can_undef (destroyed_by_store Mint32 addr) e2); do e3 <- add_equations args args1' (add_equation (Eq kind_first_word src (R src1')) e2); - track_moves mv1 e3 + track_moves env mv1 e3 | BScall sg ros args res mv1 ros' mv2 s => let args' := loc_arguments sg in let res' := map R (loc_result sg) in - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; do e2 <- remove_equations_res res (sig_res sg) res' e1; assertion (forallb (fun l => reg_loc_unconstrained res l e2) res'); assertion (no_caller_saves e2); do e3 <- add_equation_ros ros ros' e2; do e4 <- add_equations_args args (sig_args sg) args' e3; - track_moves mv1 e4 + track_moves env mv1 e4 | BStailcall sg ros args mv1 ros' => let args' := loc_arguments sg in assertion (tailcall_is_possible sg); @@ -892,9 +913,9 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option assertion (ros_compatible_tailcall ros'); do e1 <- add_equation_ros ros ros' empty_eqs; do e2 <- add_equations_args args (sig_args sg) args' e1; - track_moves mv1 e2 + track_moves env mv1 e2 | BSbuiltin ef args res mv1 args' res' mv2 s => - do e1 <- track_moves mv2 e; + do e1 <- track_moves env mv2 e; let args' := map R args' in let res' := map R res' in do e2 <- remove_equations_res res (sig_res (ef_sig ef)) res' e1; @@ -902,23 +923,23 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option assertion (forallb (fun l => loc_unconstrained l e2) res'); assertion (can_undef (destroyed_by_builtin ef) e2); do e3 <- add_equations_args args (sig_args (ef_sig ef)) args' e2; - track_moves mv1 e3 + track_moves env mv1 e3 | BSannot txt typ args res mv1 args' s => do e1 <- add_equations_args args (annot_args_typ typ) args' e; - track_moves mv1 e1 + track_moves env mv1 e1 | BScond cond args mv args' s1 s2 => assertion (can_undef (destroyed_by_cond cond) e); do e1 <- add_equations args args' e; - track_moves mv e1 + track_moves env mv e1 | BSjumptable arg mv arg' tbl => assertion (can_undef destroyed_by_jumptable e); - track_moves mv (add_equation (Eq Full arg (R arg')) e) + track_moves env mv (add_equation (Eq Full arg (R arg')) e) | BSreturn None mv => - track_moves mv empty_eqs + track_moves env mv empty_eqs | BSreturn (Some arg) mv => let arg' := map R (loc_result (RTL.fn_sig f)) in do e1 <- add_equations_res arg (sig_res (RTL.fn_sig f)) arg' empty_eqs; - track_moves mv e1 + track_moves env mv e1 end. (** The main transfer function for the dataflow analysis. Like [transfer_aux], @@ -926,7 +947,7 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option equations that must hold "after". It also handles error propagation and reporting. *) -Definition transfer (f: RTL.function) (shapes: PTree.t block_shape) +Definition transfer (f: RTL.function) (env: regenv) (shapes: PTree.t block_shape) (pc: node) (after: res eqs) : res eqs := match after with | Error _ => after @@ -934,7 +955,7 @@ Definition transfer (f: RTL.function) (shapes: PTree.t block_shape) match shapes!pc with | None => Error(MSG "At PC " :: POS pc :: MSG ": unmatched block" :: nil) | Some shape => - match transfer_aux f shape e with + match transfer_aux f env shape e with | None => Error(MSG "At PC " :: POS pc :: MSG ": invalid register allocation" :: nil) | Some e' => OK e' end @@ -1082,8 +1103,8 @@ Definition successors_block_shape (bsh: block_shape) : list node := | BSreturn optarg mv => nil end. -Definition analyze (f: RTL.function) (bsh: PTree.t block_shape) := - DS.fixpoint (PTree.map1 successors_block_shape bsh) (transfer f bsh) nil. +Definition analyze (f: RTL.function) (env: regenv) (bsh: PTree.t block_shape) := + DS.fixpoint (PTree.map1 successors_block_shape bsh) (transfer f env bsh) nil. (** * Validating and translating functions and programs *) @@ -1107,7 +1128,7 @@ Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e | nil, nil, nil => true | r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll => compat_left2 r1 l1 l2 e && compat_entry rl tyl ll e - | r1 :: rl, (Tint|Tfloat) :: tyl, l1 :: ll => + | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll => compat_left r1 l1 e && compat_entry rl tyl ll e | _, _, _ => false end. @@ -1116,9 +1137,10 @@ Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e point. We also check that the RTL and LTL functions agree in signature and stack size. *) -Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function) (e1: eqs) : option unit := +Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function) + (env: regenv) (e1: eqs) : option unit := do mv <- pair_entrypoints rtl ltl; - do e2 <- track_moves mv e1; + do e2 <- track_moves env mv e1; assertion (compat_entry (RTL.fn_params rtl) (sig_args (RTL.fn_sig rtl)) (loc_parameters (RTL.fn_sig rtl)) e2); @@ -1131,10 +1153,10 @@ Local Close Scope option_monad_scope. Local Open Scope error_monad_scope. Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function) - (bsh: PTree.t block_shape) - (a: PMap.t LEq.t): res unit := - do e1 <- transfer rtl bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl); - match check_entrypoints_aux rtl ltl e1 with + (env: regenv) (bsh: PTree.t block_shape) + (a: PMap.t LEq.t): res unit := + do e1 <- transfer rtl env bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl); + match check_entrypoints_aux rtl ltl env e1 with | None => Error (msg "invalid register allocation at entry point") | Some _ => OK tt end. @@ -1143,11 +1165,11 @@ Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function) a source RTL function and an LTL function generated by the external register allocator. *) -Definition check_function (rtl: RTL.function) (ltl: LTL.function) : res unit := +Definition check_function (rtl: RTL.function) (ltl: LTL.function) (env: regenv) : res unit := let bsh := pair_codes rtl ltl in - match analyze rtl bsh with + match analyze rtl env bsh with | None => Error (msg "allocation analysis diverges") - | Some a => check_entrypoints rtl ltl bsh a + | Some a => check_entrypoints rtl ltl env bsh a end. (** [regalloc] is the external register allocator. It is written in OCaml @@ -1160,10 +1182,10 @@ Parameter regalloc: RTL.function -> res LTL.function. Definition transf_function (f: RTL.function) : res LTL.function := match type_function f with | Error m => Error m - | OK tyenv => + | OK env => match regalloc f with | Error m => Error m - | OK tf => do x <- check_function f tf; OK tf + | OK tf => do x <- check_function f tf env; OK tf end end. diff --git a/backend/Allocproof.v b/backend/Allocproof.v index a4aa861..f05b05e 100644 --- a/backend/Allocproof.v +++ b/backend/Allocproof.v @@ -432,6 +432,7 @@ Proof. eapply add_equation_satisf. eapply add_equation_satisf. eauto. eapply add_equation_satisf. eauto. eapply add_equation_satisf. eauto. + eapply add_equation_satisf. eauto. congruence. Qed. @@ -464,6 +465,8 @@ Proof. eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto. - destruct H1. constructor; auto. eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto. +- destruct H1. constructor; auto. + eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto. - discriminate. Qed. @@ -635,15 +638,16 @@ Proof. Qed. Lemma loc_unconstrained_satisf: - forall rs ls k r l e v, + forall rs ls k r mr e v, + let l := R mr in satisf rs ls (remove_equation (Eq k r l) e) -> - loc_unconstrained l (remove_equation (Eq k r l) e) = true -> + loc_unconstrained (R mr) (remove_equation (Eq k r l) e) = true -> Val.lessdef (sel_val k rs#r) v -> satisf rs (Locmap.set l v ls) e. Proof. intros; red; intros. destruct (OrderedEquation.eq_dec q (Eq k r l)). - subst q; simpl. rewrite Locmap.gss. auto. + subst q; simpl. unfold l; rewrite Locmap.gss_reg. auto. assert (EqSet.In q (remove_equation (Eq k r l) e)). simpl. ESD.fsetdec. rewrite Locmap.gso. apply H; auto. eapply loc_unconstrained_sound; eauto. @@ -660,15 +664,16 @@ Proof. Qed. Lemma parallel_assignment_satisf: - forall k r l e rs ls v v', + forall k r mr e rs ls v v', + let l := R mr in Val.lessdef (sel_val k v) v' -> - reg_loc_unconstrained r l (remove_equation (Eq k r l) e) = true -> + reg_loc_unconstrained r (R mr) (remove_equation (Eq k r l) e) = true -> satisf rs ls (remove_equation (Eq k r l) e) -> satisf (rs#r <- v) (Locmap.set l v' ls) e. Proof. intros; red; intros. destruct (OrderedEquation.eq_dec q (Eq k r l)). - subst q; simpl. rewrite Regmap.gss; rewrite Locmap.gss; auto. + subst q; simpl. unfold l; rewrite Regmap.gss; rewrite Locmap.gss_reg; auto. assert (EqSet.In q (remove_equation {| ekind := k; ereg := r; eloc := l |} e)). simpl. ESD.fsetdec. exploit reg_loc_unconstrained_sound; eauto. intros [A B]. @@ -676,7 +681,8 @@ Proof. Qed. Lemma parallel_assignment_satisf_2: - forall rs ls res res' oty e e' v v', + forall rs ls res mres' oty e e' v v', + let res' := map R mres' in remove_equations_res res oty res' e = Some e' -> satisf rs ls e' -> reg_unconstrained res e' = true -> @@ -685,17 +691,21 @@ Lemma parallel_assignment_satisf_2: satisf (rs#res <- v) (Locmap.setlist res' (encode_long oty v') ls) e. Proof. intros; red; intros. + assert (ISREG: forall l, In l res' -> exists mr, l = R mr). + { unfold res'; intros. exploit list_in_map_inv; eauto. intros [mr [A B]]. exists mr; auto. } functional inversion H. - (* Two 32-bit halves *) - subst. + subst. set (e' := remove_equation {| ekind := Low; ereg := res; eloc := l2 |} (remove_equation {| ekind := High; ereg := res; eloc := l1 |} e)) in *. - simpl in H2. InvBooleans. simpl. + rewrite <- H5 in H2. simpl in H2. InvBooleans. simpl. destruct (OrderedEquation.eq_dec q (Eq Low res l2)). - subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gss. + subst q; simpl. rewrite Regmap.gss. + destruct (ISREG l2) as [r2 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg. apply Val.loword_lessdef; auto. destruct (OrderedEquation.eq_dec q (Eq High res l1)). - subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gso by auto. rewrite Locmap.gss. + subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gso by auto. + destruct (ISREG l1) as [r1 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg. apply Val.hiword_lessdef; auto. assert (EqSet.In q e'). unfold e', remove_equation; simpl; ESD.fsetdec. rewrite Regmap.gso. rewrite ! Locmap.gso. auto. @@ -703,11 +713,13 @@ Proof. eapply loc_unconstrained_sound; eauto. eapply reg_unconstrained_sound; eauto. - (* One location *) - subst. simpl in H2. InvBooleans. + subst. rewrite <- H5 in H2. simpl in H2. InvBooleans. replace (encode_long oty v') with (v' :: nil). set (e' := remove_equation {| ekind := Full; ereg := res; eloc := l1 |} e) in *. destruct (OrderedEquation.eq_dec q (Eq Full res l1)). - subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gss. auto. + subst q; simpl. rewrite Regmap.gss. + destruct (ISREG l1) as [r1 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg. + auto. assert (EqSet.In q e'). unfold e', remove_equation; simpl. ESD.fsetdec. simpl. rewrite Regmap.gso. rewrite Locmap.gso. auto. eapply loc_unconstrained_sound; eauto. @@ -956,15 +968,70 @@ Proof. split. apply eqs_same; auto. auto. Qed. +Lemma loc_type_compat_charact: + forall env l e q, + loc_type_compat env l e = true -> + EqSet.In q e -> + subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l) = true \/ Loc.diff l (eloc q). +Proof. + unfold loc_type_compat; intros. + rewrite EqSet2.for_all_between_iff in H. + destruct (select_loc_l l q) eqn: LL. + destruct (select_loc_h l q) eqn: LH. + left; apply H; auto. apply eqs_same; auto. + right. apply select_loc_charact. auto. + right. apply select_loc_charact. auto. + intros; subst; auto. + exact (select_loc_l_monotone l). + exact (select_loc_h_monotone l). +Qed. + +Lemma well_typed_move_charact: + forall env l e k r rs, + well_typed_move env l e = true -> + EqSet.In (Eq k r l) e -> + wt_regset env rs -> + match l with + | R mr => True + | S sl ofs ty => Val.has_type (sel_val k rs#r) ty + end. +Proof. + unfold well_typed_move; intros. + destruct l as [mr | sl ofs ty]. + auto. + exploit loc_type_compat_charact; eauto. intros [A | A]. + simpl in A. eapply Val.has_subtype; eauto. + generalize (H1 r). destruct k; simpl; intros. + auto. + destruct (rs#r); exact I. + destruct (rs#r); exact I. + eelim Loc.diff_not_eq. eexact A. auto. +Qed. + +Remark val_lessdef_normalize: + forall v v' ty, + Val.has_type v ty -> Val.lessdef v v' -> + Val.lessdef v (Val.load_result (chunk_of_type ty) v'). +Proof. + intros. inv H0. rewrite Val.load_result_same; auto. auto. +Qed. + Lemma subst_loc_satisf: - forall src dst rs ls e e', + forall env src dst rs ls e e', subst_loc dst src e = Some e' -> + well_typed_move env dst e = true -> + wt_regset env rs -> satisf rs ls e' -> satisf rs (Locmap.set dst (ls src) ls) e. Proof. intros; red; intros. exploit in_subst_loc; eauto. intros [[A B] | [A B]]. - subst dst. rewrite Locmap.gss. apply (H0 _ B). + subst dst. rewrite Locmap.gss. + destruct q as [k r l]; simpl in *. + exploit well_typed_move_charact; eauto. + destruct l as [mr | sl ofs ty]; intros. + apply (H2 _ B). + apply val_lessdef_normalize; auto. apply (H2 _ B). rewrite Locmap.gso; auto. Qed. @@ -1011,15 +1078,22 @@ Proof. Qed. Lemma subst_loc_undef_satisf: - forall src dst rs ls ml e e', + forall env src dst rs ls ml e e', subst_loc dst src e = Some e' -> + well_typed_move env dst e = true -> can_undef_except dst ml e = true -> + wt_regset env rs -> satisf rs ls e' -> satisf rs (Locmap.set dst (ls src) (undef_regs ml ls)) e. Proof. intros; red; intros. exploit in_subst_loc; eauto. intros [[A B] | [A B]]. - rewrite A. rewrite Locmap.gss. apply (H1 _ B). + subst dst. rewrite Locmap.gss. + destruct q as [k r l]; simpl in *. + exploit well_typed_move_charact; eauto. + destruct l as [mr | sl ofs ty]; intros. + apply (H3 _ B). + apply val_lessdef_normalize; auto. apply (H3 _ B). rewrite Locmap.gso; auto. rewrite undef_regs_outside. eauto. eapply can_undef_except_sound; eauto. apply Loc.diff_sym; auto. Qed. @@ -1214,6 +1288,11 @@ Proof. red; intros. rewrite Regmap.gsspec. destruct (peq (ereg q) r1). exploit compat_left_sound; eauto. intros [A B]. rewrite A; rewrite B; auto. eapply IHb; eauto. +- (* a param of type Tsingle *) + InvBooleans. simpl in H0. inv H0. simpl. + red; intros. rewrite Regmap.gsspec. destruct (peq (ereg q) r1). + exploit compat_left_sound; eauto. intros [A B]. rewrite A; rewrite B; auto. + eapply IHb; eauto. - (* error case *) discriminate. Qed. @@ -1256,29 +1335,29 @@ Qed. (** * Properties of the dataflow analysis *) Lemma analyze_successors: - forall f bsh an pc bs s e, - analyze f bsh = Some an -> + forall f env bsh an pc bs s e, + analyze f env bsh = Some an -> bsh!pc = Some bs -> In s (successors_block_shape bs) -> an!!pc = OK e -> - exists e', transfer f bsh s an!!s = OK e' /\ EqSet.Subset e' e. + exists e', transfer f env bsh s an!!s = OK e' /\ EqSet.Subset e' e. Proof. unfold analyze; intros. exploit DS.fixpoint_solution; eauto. instantiate (1 := pc). instantiate (1 := s). unfold successors_list. rewrite PTree.gmap1. rewrite H0. simpl. auto. - rewrite H2. unfold DS.L.ge. destruct (transfer f bsh s an#s); intros. + rewrite H2. unfold DS.L.ge. destruct (transfer f env bsh s an#s); intros. exists e0; auto. contradiction. Qed. Lemma satisf_successors: - forall f bsh an pc bs s e rs ls, - analyze f bsh = Some an -> + forall f env bsh an pc bs s e rs ls, + analyze f env bsh = Some an -> bsh!pc = Some bs -> In s (successors_block_shape bs) -> an!!pc = OK e -> satisf rs ls e -> - exists e', transfer f bsh s an!!s = OK e' /\ satisf rs ls e'. + exists e', transfer f env bsh s an!!s = OK e' /\ satisf rs ls e'. Proof. intros. exploit analyze_successors; eauto. intros [e' [A B]]. exists e'; split; auto. eapply satisf_incr; eauto. @@ -1288,18 +1367,18 @@ Qed. Inductive transf_function_spec (f: RTL.function) (tf: LTL.function) : Prop := | transf_function_spec_intro: - forall tyenv an mv k e1 e2, - wt_function f tyenv -> - analyze f (pair_codes f tf) = Some an -> - (LTL.fn_code tf)!(LTL.fn_entrypoint tf) = Some(expand_moves mv (Lbranch (RTL.fn_entrypoint f) :: k)) -> - wf_moves mv -> - transfer f (pair_codes f tf) (RTL.fn_entrypoint f) an!!(RTL.fn_entrypoint f) = OK e1 -> - track_moves mv e1 = Some e2 -> - compat_entry (RTL.fn_params f) (sig_args (RTL.fn_sig f)) (loc_parameters (fn_sig tf)) e2 = true -> - can_undef destroyed_at_function_entry e2 = true -> - RTL.fn_stacksize f = LTL.fn_stacksize tf -> - RTL.fn_sig f = LTL.fn_sig tf -> - transf_function_spec f tf. + forall env an mv k e1 e2, + wt_function f env -> + analyze f env (pair_codes f tf) = Some an -> + (LTL.fn_code tf)!(LTL.fn_entrypoint tf) = Some(expand_moves mv (Lbranch (RTL.fn_entrypoint f) :: k)) -> + wf_moves mv -> + transfer f env (pair_codes f tf) (RTL.fn_entrypoint f) an!!(RTL.fn_entrypoint f) = OK e1 -> + track_moves env mv e1 = Some e2 -> + compat_entry (RTL.fn_params f) (sig_args (RTL.fn_sig f)) (loc_parameters (fn_sig tf)) e2 = true -> + can_undef destroyed_at_function_entry e2 = true -> + RTL.fn_stacksize f = LTL.fn_stacksize tf -> + RTL.fn_sig f = LTL.fn_sig tf -> + transf_function_spec f tf. Lemma transf_function_inv: forall f tf, @@ -1307,13 +1386,13 @@ Lemma transf_function_inv: transf_function_spec f tf. Proof. unfold transf_function; intros. - destruct (type_function f) as [tyenv|] eqn:TY; try discriminate. + destruct (type_function f) as [env|] eqn:TY; try discriminate. destruct (regalloc f); try discriminate. - destruct (check_function f f0) as [] eqn:?; inv H. + destruct (check_function f f0 env) as [] eqn:?; inv H. unfold check_function in Heqr. - destruct (analyze f (pair_codes f tf)) as [an|] eqn:?; try discriminate. + destruct (analyze f env (pair_codes f tf)) as [an|] eqn:?; try discriminate. monadInv Heqr. - destruct (check_entrypoints_aux f tf x) as [y|] eqn:?; try discriminate. + destruct (check_entrypoints_aux f tf env x) as [y|] eqn:?; try discriminate. unfold check_entrypoints_aux, pair_entrypoints in Heqo0. MonadInv. exploit extract_moves_sound; eauto. intros [A B]. subst b. exploit check_succ_sound; eauto. intros [k EQ1]. subst b0. @@ -1321,21 +1400,24 @@ Proof. Qed. Lemma invert_code: - forall f tf pc i opte e, + forall f env tf pc i opte e, + wt_function f env -> (RTL.fn_code f)!pc = Some i -> - transfer f (pair_codes f tf) pc opte = OK e -> + transfer f env (pair_codes f tf) pc opte = OK e -> exists eafter, exists bsh, exists bb, opte = OK eafter /\ (pair_codes f tf)!pc = Some bsh /\ (LTL.fn_code tf)!pc = Some bb /\ expand_block_shape bsh i bb /\ - transfer_aux f bsh eafter = Some e. + transfer_aux f env bsh eafter = Some e /\ + wt_instr f env i. Proof. - intros. destruct opte as [eafter|]; simpl in H0; try discriminate. exists eafter. + intros. destruct opte as [eafter|]; simpl in H1; try discriminate. exists eafter. destruct (pair_codes f tf)!pc as [bsh|] eqn:?; try discriminate. exists bsh. exploit matching_instr_block; eauto. intros [bb [A B]]. - destruct (transfer_aux f bsh eafter) as [e1|] eqn:?; inv H0. - exists bb. auto. + destruct (transfer_aux f env bsh eafter) as [e1|] eqn:?; inv H1. + exists bb. exploit wt_instr_at; eauto. + tauto. Qed. (** * Semantic preservation *) @@ -1409,10 +1491,11 @@ Proof. Qed. Lemma exec_moves: - forall mv rs s f sp bb m e e' ls, - track_moves mv e = Some e' -> + forall mv env rs s f sp bb m e e' ls, + track_moves env mv e = Some e' -> wf_moves mv -> satisf rs ls e' -> + wt_regset env rs -> exists ls', star step tge (Block s f sp (expand_moves mv bb) ls m) E0 (Block s f sp bb ls' m) @@ -1424,7 +1507,7 @@ Opaque destroyed_by_op. - unfold expand_moves; simpl. inv H. exists ls; split. apply star_refl. auto. (* step *) - destruct a as [src dst]. unfold expand_moves. simpl. - destruct (track_moves mv e) as [e1|] eqn:?; MonadInv. + destruct (track_moves env mv e) as [e1|] eqn:?; MonadInv. assert (wf_moves mv). red; intros. apply H0; auto with coqlib. destruct src as [rsrc | ssrc]; destruct dst as [rdst | sdst]. (* reg-reg *) @@ -1450,16 +1533,17 @@ Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> signa sg.(sig_res) = Some Tint -> match_stackframes nil nil sg | match_stackframes_cons: - forall res f sp pc rs s tf bb ls ts sg an e tyenv + forall res f sp pc rs s tf bb ls ts sg an e env (STACKS: match_stackframes s ts (fn_sig tf)) (FUN: transf_function f = OK tf) - (ANL: analyze f (pair_codes f tf) = Some an) - (EQ: transfer f (pair_codes f tf) pc an!!pc = OK e) - (WTF: wt_function f tyenv) - (WTRS: wt_regset tyenv rs) - (WTRES: tyenv res = proj_sig_res sg) + (ANL: analyze f env (pair_codes f tf) = Some an) + (EQ: transfer f env (pair_codes f tf) pc an!!pc = OK e) + (WTF: wt_function f env) + (WTRS: wt_regset env rs) + (WTRES: subtype (proj_sig_res sg) (env res) = true) (STEPS: forall v ls1 m, Val.lessdef_list (encode_long (sig_res sg) v) (map ls1 (map R (loc_result sg))) -> + Val.has_type v (env res) -> agree_callee_save ls ls1 -> exists ls2, star LTL.step tge (Block ts tf sp bb ls1 m) @@ -1472,15 +1556,15 @@ Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> signa Inductive match_states: RTL.state -> LTL.state -> Prop := | match_states_intro: - forall s f sp pc rs m ts tf ls m' an e tyenv + forall s f sp pc rs m ts tf ls m' an e env (STACKS: match_stackframes s ts (fn_sig tf)) (FUN: transf_function f = OK tf) - (ANL: analyze f (pair_codes f tf) = Some an) - (EQ: transfer f (pair_codes f tf) pc an!!pc = OK e) + (ANL: analyze f env (pair_codes f tf) = Some an) + (EQ: transfer f env (pair_codes f tf) pc an!!pc = OK e) (SAT: satisf rs ls e) (MEM: Mem.extends m m') - (WTF: wt_function f tyenv) - (WTRS: wt_regset tyenv rs), + (WTF: wt_function f env) + (WTRS: wt_regset env rs), match_states (RTL.State s f sp pc rs m) (LTL.State ts tf sp pc ls m') | match_states_call: @@ -1518,29 +1602,31 @@ Qed. Ltac UseShape := match goal with - | [ CODE: (RTL.fn_code _)!_ = Some _, EQ: transfer _ _ _ _ = OK _ |- _ ] => - destruct (invert_code _ _ _ _ _ _ CODE EQ) as (eafter & bsh & bb & AFTER & BSH & TCODE & EBS & TR); + | [ WT: wt_function _ _, CODE: (RTL.fn_code _)!_ = Some _, EQ: transfer _ _ _ _ _ = OK _ |- _ ] => + destruct (invert_code _ _ _ _ _ _ _ WT CODE EQ) as (eafter & bsh & bb & AFTER & BSH & TCODE & EBS & TR & WTI); inv EBS; unfold transfer_aux in TR; MonadInv end. -Ltac UseType := - match goal with - | [ CODE: (RTL.fn_code _)!_ = Some _, WTF: wt_function _ _ |- _ ] => - generalize (wt_instrs _ _ WTF _ _ CODE); intro WTI - end. - Remark addressing_not_long: forall env f addr args dst s r, - wt_instr env f (Iload Mint64 addr args dst s) -> + wt_instr f env (Iload Mint64 addr args dst s) -> In r args -> r <> dst. Proof. intros. assert (forall ty, In ty (type_of_addressing addr) -> ty = Tint). { intros. destruct addr; simpl in H1; intuition. } - inv H. + inv H. assert (env r = Tint). - { apply H1. rewrite <- H5. apply in_map; auto. } - simpl in H8; congruence. + { generalize args (type_of_addressing addr) H0 H1 H5. + induction args0; simpl; intros. + contradiction. + destruct l. discriminate. InvBooleans. + destruct H2. subst a. + assert (t = Tint) by auto with coqlib. subst t. + destruct (env r); auto || discriminate. + eauto with coqlib. + } + red; intros; subst r. rewrite H in H8; discriminate. Qed. (** The proof of semantic preservation is a simulation argument of the @@ -1551,7 +1637,7 @@ Lemma step_simulation: forall S1', match_states S1 S1' -> exists S2', plus LTL.step tge S1' t S2' /\ match_states S2 S2'. Proof. - induction 1; intros S1' MS; inv MS; try UseType; try UseShape. + induction 1; intros S1' MS; inv MS; try UseShape. (* nop *) exploit exec_moves; eauto. intros [ls1 [X Y]]. @@ -1563,7 +1649,8 @@ Proof. econstructor; eauto. (* op move *) -- simpl in H0. inv H0. +- generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'. + simpl in H0. inv H0. exploit (exec_moves mv); eauto. intros [ls1 [X Y]]. econstructor; split. eapply plus_left. econstructor; eauto. @@ -1572,7 +1659,6 @@ Proof. exploit satisf_successors; eauto. simpl; eauto. eapply subst_reg_satisf; eauto. intros [enext [U V]]. econstructor; eauto. - inv WTI. apply wt_regset_assign; auto. rewrite <- H2. apply WTRS. congruence. (* op makelong *) - generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'. @@ -1614,7 +1700,8 @@ Proof. econstructor; eauto. (* op regular *) -- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. +- generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'. + exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. exploit transfer_use_def_satisf; eauto. intros [X Y]. exploit eval_operation_lessdef; eauto. intros [v' [F G]]. exploit (exec_moves mv2); eauto. intros [ls2 [A2 B2]]. @@ -1627,7 +1714,6 @@ Proof. eauto. eauto. eauto. traceEq. exploit satisf_successors; eauto. simpl; eauto. intros [enext [U V]]. econstructor; eauto. - eapply wt_exec_Iop; eauto. (* op dead *) - exploit exec_moves; eauto. intros [ls1 [X Y]]. @@ -1642,7 +1728,8 @@ Proof. eapply wt_exec_Iop; eauto. (* load regular *) -- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. +- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'. + exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. exploit transfer_use_def_satisf; eauto. intros [X Y]. exploit eval_addressing_lessdef; eauto. intros [a' [F G]]. exploit Mem.loadv_extends; eauto. intros [v' [P Q]]. @@ -1656,10 +1743,10 @@ Proof. eauto. eauto. eauto. traceEq. exploit satisf_successors; eauto. simpl; eauto. intros [enext [U V]]. econstructor; eauto. - eapply wt_exec_Iload; eauto. (* load pair *) -- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). +- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'. + exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). set (v2' := if big_endian then v2 else v1) in *. set (v1' := if big_endian then v1 else v2) in *. exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. @@ -1710,10 +1797,10 @@ Proof. eauto. eauto. eauto. eauto. eauto. traceEq. exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]]. econstructor; eauto. - eapply wt_exec_Iload; eauto. (* load first word of a pair *) -- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). +- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'. + exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). set (v2' := if big_endian then v2 else v1) in *. set (v1' := if big_endian then v1 else v2) in *. exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. @@ -1741,10 +1828,10 @@ Proof. eauto. eauto. eauto. traceEq. exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]]. econstructor; eauto. - eapply wt_exec_Iload; eauto. (* load second word of a pair *) -- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). +- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'. + exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12). set (v2' := if big_endian then v2 else v1) in *. set (v1' := if big_endian then v1 else v2) in *. exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. @@ -1773,7 +1860,6 @@ Proof. eauto. eauto. eauto. traceEq. exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]]. econstructor; eauto. - eapply wt_exec_Iload; eauto. (* load dead *) - exploit exec_moves; eauto. intros [ls1 [X Y]]. @@ -1866,18 +1952,20 @@ Proof. econstructor; eauto. econstructor; eauto. inv WTI. rewrite SIG. auto. - intros. exploit (exec_moves mv2); eauto. + intros. exploit (exec_moves mv2). eauto. eauto. eapply function_return_satisf with (v := v) (ls_before := ls1) (ls_after := ls0); eauto. eapply add_equation_ros_satisf; eauto. eapply add_equations_args_satisf; eauto. - congruence. intros [ls2 [A2 B2]]. + congruence. + apply wt_regset_assign; auto. + intros [ls2 [A2 B2]]. exists ls2; split. eapply star_right. eexact A2. constructor. traceEq. apply satisf_incr with eafter; auto. rewrite SIG. eapply add_equations_args_lessdef; eauto. - inv WTI. rewrite <- H7. apply wt_regset_list; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. simpl. red; auto. - rewrite SIG. inv WTI. rewrite <- H7. apply wt_regset_list; auto. + inv WTI. rewrite SIG. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. (* tailcall *) - set (sg := RTL.funsig fd) in *. @@ -1898,15 +1986,16 @@ Proof. eapply match_stackframes_change_sig; eauto. rewrite SIG. rewrite e0. decEq. destruct (transf_function_inv _ _ FUN); auto. rewrite SIG. rewrite return_regs_arg_values; auto. eapply add_equations_args_lessdef; eauto. - inv WTI. rewrite <- H8. apply wt_regset_list; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. apply return_regs_agree_callee_save. - rewrite SIG. inv WTI. rewrite <- H8. apply wt_regset_list; auto. + rewrite SIG. inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. (* builtin *) -- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. +- assert (WTRS': wt_regset env (rs#res <- v)) by (eapply wt_exec_Ibuiltin; eauto). + exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]]. exploit external_call_mem_extends; eauto. eapply add_equations_args_lessdef; eauto. - inv WTI. rewrite <- H4. apply wt_regset_list; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. intros [v' [m'' [F [G [J K]]]]]. assert (E: map ls1 (map R args') = reglist ls1 args'). { unfold reglist. rewrite list_map_compose. auto. } @@ -1932,13 +2021,11 @@ Proof. exploit satisf_successors; eauto. simpl; eauto. intros [enext [U V]]. econstructor; eauto. - inv WTI. apply wt_regset_assign; auto. rewrite H9. - eapply external_call_well_typed; eauto. (* annot *) - exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]]. exploit external_call_mem_extends; eauto. eapply add_equations_args_lessdef; eauto. - inv WTI. simpl in H4. rewrite <- H4. apply wt_regset_list; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. intros [v' [m'' [F [G [J K]]]]]. assert (v = Vundef). red in H0; inv H0. auto. econstructor; split. @@ -1989,7 +2076,17 @@ Proof. (* return *) - destruct (transf_function_inv _ _ FUN). exploit Mem.free_parallel_extends; eauto. rewrite H10. intros [m'' [P Q]]. - destruct or as [r|]; MonadInv. + inv WTI; MonadInv. + (* without an argument *) ++ exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]]. + econstructor; split. + eapply plus_left. econstructor; eauto. + eapply star_right. eexact A1. + econstructor. eauto. eauto. traceEq. + simpl. econstructor; eauto. + unfold encode_long, loc_result. rewrite <- H11; rewrite H13. simpl; auto. + apply return_regs_agree_callee_save. + constructor. (* with an argument *) + exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]]. econstructor; split. @@ -2003,26 +2100,20 @@ Proof. rewrite !list_map_compose. apply list_map_exten; intros. unfold return_regs. apply pred_dec_true. eapply loc_result_caller_save; eauto. apply return_regs_agree_callee_save. - inv WTI. simpl in H13. unfold proj_sig_res. rewrite <- H11; rewrite <- H13. apply WTRS. - (* without an argument *) -+ exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]]. - econstructor; split. - eapply plus_left. econstructor; eauto. - eapply star_right. eexact A1. - econstructor. eauto. eauto. traceEq. - simpl. econstructor; eauto. - unfold encode_long, loc_result. destruct (sig_res (fn_sig tf)) as [[]|]; simpl; auto. - apply return_regs_agree_callee_save. - constructor. + unfold proj_sig_res. rewrite <- H11; rewrite H13. + eapply Val.has_subtype; eauto. (* internal function *) - monadInv FUN. simpl in *. destruct (transf_function_inv _ _ EQ). exploit Mem.alloc_extends; eauto. apply Zle_refl. rewrite H8; apply Zle_refl. intros [m'' [U V]]. + assert (WTRS: wt_regset env (init_regs args (fn_params f))). + { apply wt_init_regs. inv H0. eapply Val.has_subtype_list; eauto. congruence. } exploit (exec_moves mv). eauto. eauto. eapply can_undef_satisf; eauto. eapply compat_entry_satisf; eauto. - rewrite call_regs_param_values. rewrite H9. eexact ARGS. + rewrite call_regs_param_values. rewrite H9. eexact ARGS. + exact WTRS. intros [ls1 [A B]]. econstructor; split. eapply plus_left. econstructor; eauto. @@ -2031,7 +2122,6 @@ Proof. econstructor; eauto. eauto. eauto. traceEq. econstructor; eauto. - apply wt_init_regs. inv H0. rewrite wt_params. congruence. (* external function *) - exploit external_call_mem_extends; eauto. intros [v' [m'' [F [G [J K]]]]]. @@ -2059,11 +2149,11 @@ Proof. (* return *) - inv STACKS. - exploit STEPS; eauto. intros [ls2 [A B]]. + exploit STEPS; eauto. eapply Val.has_subtype; eauto. intros [ls2 [A B]]. econstructor; split. eapply plus_left. constructor. eexact A. traceEq. econstructor; eauto. - apply wt_regset_assign; auto. congruence. + apply wt_regset_assign; auto. eapply Val.has_subtype; eauto. Qed. Lemma initial_states_simulation: diff --git a/backend/CMtypecheck.ml b/backend/CMtypecheck.ml index 1a19f71..1ca13ff 100644 --- a/backend/CMtypecheck.ml +++ b/backend/CMtypecheck.ml @@ -15,25 +15,31 @@ (* A type-checker for Cminor *) +(* FIXME: proper support for type Tsingle *) + open Printf open Datatypes open Camlcoq open AST +open PrintAST open Integers open Cminor exception Error of string -let name_of_typ = function Tint -> "int" | Tfloat -> "float" | Tlong -> "long" - type ty = Base of typ | Var of ty option ref let newvar () = Var (ref None) let tint = Base Tint let tfloat = Base Tfloat let tlong = Base Tlong +let tsingle = Base Tsingle -let ty_of_typ = function Tint -> tint | Tfloat -> tfloat | Tlong -> tlong +let ty_of_typ = function + | Tint -> tint + | Tfloat -> tfloat + | Tlong -> tlong + | Tsingle -> tsingle let ty_of_sig_args tyl = List.map ty_of_typ tyl @@ -47,7 +53,7 @@ let unify t1 t2 = | Base b1, Base b2 -> if b1 <> b2 then raise (Error (sprintf "Expected type %s, actual type %s\n" - (name_of_typ b1) (name_of_typ b2))) + (name_of_type b1) (name_of_type b2))) | Base b, Var r -> r := Some (Base b) | Var r, Base b -> r := Some (Base b) | Var r1, Var r2 -> r1 := Some (Var r2) diff --git a/backend/CSEproof.v b/backend/CSEproof.v index 65f67ad..e0dbce8 100644 --- a/backend/CSEproof.v +++ b/backend/CSEproof.v @@ -661,7 +661,7 @@ Lemma add_store_satisfiable: numbering_satisfiable ge sp rs m n -> eval_addressing ge sp addr rs##args = Some a -> Mem.storev chunk m a (rs#src) = Some m' -> - Val.has_type (rs#src) (type_of_chunk chunk) -> + Val.has_type (rs#src) (type_of_chunk_use chunk) -> numbering_satisfiable ge sp rs m' (add_store n chunk addr args src). Proof. intros. unfold add_store. destruct H0 as [valu A]. @@ -916,7 +916,7 @@ Inductive match_stackframes: list stackframe -> list stackframe -> typ -> Prop : (ANALYZE: analyze f = Some approx) (WTF: wt_function f tyenv) (WTREGS: wt_regset tyenv rs) - (TYRES: tyenv res = ty) + (TYRES: subtype ty (tyenv res) = true) (SAT: forall v m, numbering_satisfiable ge sp (rs#res <- v) m approx!!pc) (STACKS: match_stackframes s s' (proj_sig_res (fn_sig f))), match_stackframes @@ -998,7 +998,7 @@ Proof. rewrite <- RES. apply eval_operation_preserved. exact symbols_preserved. (* state matching *) econstructor; eauto. - eapply wt_exec_Iop; eauto. eapply wt_instrs; eauto. + eapply wt_exec_Iop; eauto. eapply wt_instr_at; eauto. eapply analysis_correct_1; eauto. simpl; auto. unfold transfer; rewrite H. eapply add_op_satisfiable; eauto. eapply wf_analyze; eauto. @@ -1025,7 +1025,7 @@ Proof. eapply exec_Iload; eauto. (* state matching *) econstructor; eauto. - eapply wt_exec_Iload; eauto. eapply wt_instrs; eauto. + eapply wt_exec_Iload; eauto. eapply wt_instr_at; eauto. eapply analysis_correct_1; eauto. simpl; auto. unfold transfer; rewrite H. eapply add_load_satisfiable; eauto. eapply wf_analyze; eauto. @@ -1048,42 +1048,40 @@ Proof. eapply analysis_correct_1; eauto. simpl; auto. unfold transfer; rewrite H. eapply add_store_satisfiable; eauto. eapply wf_analyze; eauto. - generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI. - rewrite <- H8. auto. + exploit wt_instr_at; eauto. intros WTI; inv WTI. + eapply Val.has_subtype; eauto. (* Icall *) exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']]. econstructor; split. eapply exec_Icall; eauto. apply sig_preserved; auto. - generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI. + exploit wt_instr_at; eauto. intros WTI; inv WTI. econstructor; eauto. econstructor; eauto. intros. eapply analysis_correct_1; eauto. simpl; auto. unfold transfer; rewrite H. apply empty_numbering_satisfiable. - rewrite <- H7. apply wt_regset_list; auto. + eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. (* Itailcall *) exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']]. econstructor; split. eapply exec_Itailcall; eauto. apply sig_preserved; auto. - generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI. + exploit wt_instr_at; eauto. intros WTI; inv WTI. econstructor; eauto. replace (proj_sig_res (funsig fd)) with (proj_sig_res (fn_sig f)). auto. unfold proj_sig_res. rewrite H6; auto. - rewrite <- H7. apply wt_regset_list; auto. + eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto. (* Ibuiltin *) econstructor; split. eapply exec_Ibuiltin; eauto. eapply external_call_symbols_preserved; eauto. exact symbols_preserved. exact varinfo_preserved. - generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI. econstructor; eauto. - apply wt_regset_assign; auto. - rewrite H6. eapply external_call_well_typed; eauto. + eapply wt_exec_Ibuiltin; eauto. eapply wt_instr_at; eauto. eapply analysis_correct_1; eauto. simpl; auto. unfold transfer; rewrite H. assert (CASE1: numbering_satisfiable ge sp (rs#res <- v) m' empty_numbering). @@ -1124,8 +1122,9 @@ Proof. econstructor; split. eapply exec_Ireturn; eauto. econstructor; eauto. - generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI. - unfold proj_sig_res. rewrite <- H2. destruct or; simpl; auto. + exploit wt_instr_at; eauto. intros WTI; inv WTI; simpl. + auto. + unfold proj_sig_res; rewrite H2. eapply Val.has_subtype; eauto. (* internal function *) monadInv H7. unfold transf_function in EQ. @@ -1135,7 +1134,7 @@ Proof. econstructor; split. eapply exec_function_internal; eauto. simpl. econstructor; eauto. - apply wt_init_regs. inv WTF. rewrite wt_params; auto. + apply wt_init_regs. inv WTF. eapply Val.has_subtype_list; eauto. apply analysis_correct_entry; auto. (* external function *) @@ -1152,7 +1151,7 @@ Proof. econstructor; split. eapply exec_return; eauto. econstructor; eauto. - apply wt_regset_assign; auto. + apply wt_regset_assign; auto. eapply Val.has_subtype; eauto. Qed. Lemma transf_initial_states: diff --git a/backend/IRC.ml b/backend/IRC.ml index 573c3d7..79d66b9 100644 --- a/backend/IRC.ml +++ b/backend/IRC.ml @@ -245,7 +245,13 @@ type graph = { let num_register_classes = 2 -let class_of_type = function Tint -> 0 | Tfloat -> 1 | Tlong -> assert false +let class_of_type = function + | Tint -> 0 + | Tfloat | Tsingle -> 1 + | Tlong -> assert false + +let type_of_class c = + if c = 0 then Tint else Tfloat let reserved_registers = ref ([]: mreg list) @@ -860,7 +866,7 @@ let assign_color g n = n.color <- Some loc | None -> (* Last, pick a Local stack slot *) - n.color <- Some (find_slot slot_conflicts n.typ) + n.color <- Some (find_slot slot_conflicts (type_of_class n.regclass)) (* Extract the location of a variable *) @@ -877,7 +883,7 @@ let location_of_var g v = with Not_found -> match ty with | Tint -> R dummy_int_reg - | Tfloat -> R dummy_float_reg + | Tfloat | Tsingle -> R dummy_float_reg | Tlong -> assert false (* The exported interface *) diff --git a/backend/LTL.v b/backend/LTL.v index 27fee8a..d1db2c5 100644 --- a/backend/LTL.v +++ b/backend/LTL.v @@ -172,7 +172,7 @@ Fixpoint undef_regs (rl: list mreg) (rs: locset) : locset := | r1 :: rl => Locmap.set (R r1) Vundef (undef_regs rl rs) end. -Definition destroyed_by_getstack (s: slot) : list mreg := +Definition destroyed_by_getstack (s: slot): list mreg := match s with | Incoming => temp_for_parent_frame :: nil | _ => nil @@ -218,7 +218,7 @@ Inductive step: state -> trace -> state -> Prop := step (Block s f sp (Lgetstack sl ofs ty dst :: bb) rs m) E0 (Block s f sp bb rs' m) | exec_Lsetstack: forall s f sp src sl ofs ty bb rs m rs', - rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_op Omove) rs) -> + rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_setstack ty) rs) -> step (Block s f sp (Lsetstack src sl ofs ty :: bb) rs m) E0 (Block s f sp bb rs' m) | exec_Lstore: forall s f sp chunk addr args src bb rs m a rs' m', diff --git a/backend/Linear.v b/backend/Linear.v index bdb08b4..3c52436 100644 --- a/backend/Linear.v +++ b/backend/Linear.v @@ -160,7 +160,7 @@ Inductive step: state -> trace -> state -> Prop := E0 (State s f sp b rs' m) | exec_Lsetstack: forall s f sp src sl ofs ty b rs m rs', - rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_op Omove) rs) -> + rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_setstack ty) rs) -> step (State s f sp (Lsetstack src sl ofs ty :: b) rs m) E0 (State s f sp b rs' m) | exec_Lop: diff --git a/backend/Lineartyping.v b/backend/Lineartyping.v index c51db6f..73c5453 100644 --- a/backend/Lineartyping.v +++ b/backend/Lineartyping.v @@ -45,7 +45,7 @@ Definition slot_valid (sl: slot) (ofs: Z) (ty: typ): bool := | Incoming => In_dec Loc.eq (S Incoming ofs ty) (loc_parameters funct.(fn_sig)) end && match ty with - | Tint | Tfloat => true + | Tint | Tfloat | Tsingle => true | Tlong => false end. @@ -66,23 +66,23 @@ Definition loc_valid (l: loc) : bool := Definition wt_instr (i: instruction) : bool := match i with | Lgetstack sl ofs ty r => - typ_eq ty (mreg_type r) && slot_valid sl ofs ty + subtype ty (mreg_type r) && slot_valid sl ofs ty | Lsetstack r sl ofs ty => - typ_eq ty (mreg_type r) && slot_valid sl ofs ty && slot_writable sl + slot_valid sl ofs ty && slot_writable sl | Lop op args res => match is_move_operation op args with | Some arg => - typ_eq (mreg_type arg) (mreg_type res) + subtype (mreg_type arg) (mreg_type res) | None => let (targs, tres) := type_of_operation op in - typ_eq (mreg_type res) tres + subtype tres (mreg_type res) end | Lload chunk addr args dst => - typ_eq (mreg_type dst) (type_of_chunk chunk) + subtype (type_of_chunk chunk) (mreg_type dst) | Ltailcall sg ros => zeq (size_arguments sg) 0 | Lbuiltin ef args res => - list_typ_eq (map mreg_type res) (proj_sig_res' (ef_sig ef)) + subtype_list (proj_sig_res' (ef_sig ef)) (map mreg_type res) | Lannot ef args => forallb loc_valid args | _ => @@ -104,28 +104,35 @@ Require Import Values. Definition wt_locset (ls: locset) : Prop := forall l, Val.has_type (ls l) (Loc.type l). -Lemma wt_setloc: - forall ls l v, - Val.has_type v (Loc.type l) -> wt_locset ls -> wt_locset (Locmap.set l v ls). +Lemma wt_setreg: + forall ls r v, + Val.has_type v (mreg_type r) -> wt_locset ls -> wt_locset (Locmap.set (R r) v ls). Proof. intros; red; intros. unfold Locmap.set. - destruct (Loc.eq l l0). congruence. - destruct (Loc.diff_dec l l0). auto. red. auto. + destruct (Loc.eq (R r) l). + subst l; auto. + destruct (Loc.diff_dec (R r) l). auto. red. auto. Qed. -Lemma wt_setlocs: - forall ll vl ls, - Val.has_type_list vl (map Loc.type ll) -> wt_locset ls -> wt_locset (Locmap.setlist ll vl ls). +Lemma wt_setstack: + forall ls sl ofs ty v, + wt_locset ls -> wt_locset (Locmap.set (S sl ofs ty) v ls). Proof. - induction ll; destruct vl; simpl; intuition. - apply IHll; auto. apply wt_setloc; auto. + intros; red; intros. + unfold Locmap.set. + destruct (Loc.eq (S sl ofs ty) l). + subst l. simpl. + generalize (Val.load_result_type (chunk_of_type ty) v). + replace (type_of_chunk (chunk_of_type ty)) with ty. auto. + destruct ty; reflexivity. + destruct (Loc.diff_dec (S sl ofs ty) l). auto. red. auto. Qed. Lemma wt_undef_regs: forall rs ls, wt_locset ls -> wt_locset (undef_regs rs ls). Proof. - induction rs; simpl; intros. auto. apply wt_setloc; auto. red; auto. + induction rs; simpl; intros. auto. apply wt_setreg; auto. red; auto. Qed. Lemma wt_call_regs: @@ -161,10 +168,11 @@ Lemma wt_setlist_result: Proof. unfold loc_result, encode_long, proj_sig_res; intros. destruct (sig_res sg) as [[] | ]; simpl. - apply wt_setloc; auto. - apply wt_setloc; auto. - destruct v; simpl in H; try contradiction; - simpl; apply wt_setloc; auto; apply wt_setloc; auto. - apply wt_setloc; auto. +- apply wt_setreg; auto. +- apply wt_setreg; auto. +- destruct v; simpl in H; try contradiction; + simpl; apply wt_setreg; auto; apply wt_setreg; auto. +- apply wt_setreg; auto. apply Val.has_subtype with Tsingle; auto. +- apply wt_setreg; auto. Qed. diff --git a/backend/Locations.v b/backend/Locations.v index f7fb607..43ce210 100644 --- a/backend/Locations.v +++ b/backend/Locations.v @@ -69,7 +69,7 @@ Defined. Open Scope Z_scope. Definition typesize (ty: typ) : Z := - match ty with Tint => 1 | Tlong => 2 | Tfloat => 2 end. + match ty with Tint => 1 | Tlong => 2 | Tfloat => 2 | Tsingle => 1 end. Lemma typesize_pos: forall (ty: typ), typesize ty > 0. @@ -292,17 +292,38 @@ Module Locmap. maps location [l] to value [v], locations that overlap with [l] to [Vundef], and locations that are different (and non-overlapping) from [l] to their previous values in [m]. This is apparent in the - ``good variables'' properties [Locmap.gss] and [Locmap.gso]. *) + ``good variables'' properties [Locmap.gss] and [Locmap.gso]. + + Additionally, the [set] operation also anticipates the fact that + abstract stack slots are mapped to concrete memory locations + in the [Stacking] phase. Hence, values stored in stack slots + are normalized according to the type of the slot. *) Definition set (l: loc) (v: val) (m: t) : t := fun (p: loc) => - if Loc.eq l p then v else if Loc.diff_dec l p then m p else Vundef. + if Loc.eq l p then + match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end + else if Loc.diff_dec l p then + m p + else Vundef. + + Lemma gss: forall l v m, + (set l v m) l = + match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end. + Proof. + intros. unfold set. apply dec_eq_true. + Qed. - Lemma gss: forall l v m, (set l v m) l = v. + Lemma gss_reg: forall r v m, (set (R r) v m) (R r) = v. Proof. intros. unfold set. rewrite dec_eq_true. auto. Qed. + Lemma gss_typed: forall l v m, Val.has_type v (Loc.type l) -> (set l v m) l = v. + Proof. + intros. rewrite gss. destruct l. auto. apply Val.load_result_same; auto. + Qed. + Lemma gso: forall l v m p, Loc.diff l p -> (set l v m) p = m p. Proof. intros. unfold set. destruct (Loc.eq l p). @@ -328,10 +349,11 @@ Module Locmap. Proof. assert (P: forall ll l m, m l = Vundef -> (undef ll m) l = Vundef). induction ll; simpl; intros. auto. apply IHll. - unfold set. destruct (Loc.eq a l); auto. + unfold set. destruct (Loc.eq a l). + destruct a. auto. destruct ty; reflexivity. destruct (Loc.diff_dec a l); auto. induction ll; simpl; intros. contradiction. - destruct H. apply P. subst a. apply gss. + destruct H. apply P. subst a. apply gss_typed. exact I. auto. Qed. @@ -355,7 +377,12 @@ End Locmap. Module IndexedTyp <: INDEXED_TYPE. Definition t := typ. Definition index (x: t) := - match x with Tint => 1%positive | Tfloat => 2%positive | Tlong => 3%positive end. + match x with + | Tint => 1%positive + | Tsingle => 2%positive + | Tfloat => 3%positive + | Tlong => 4%positive + end. Lemma index_inj: forall x y, index x = index y -> x = y. Proof. destruct x; destruct y; simpl; congruence. Qed. Definition eq := typ_eq. @@ -467,9 +494,9 @@ Module OrderedLoc <: OrderedType. destruct H. right. destruct H0. right. generalize (RANGE ty'); omega. destruct H0. - assert (ty' = Tint). - { unfold OrderedTyp.lt in H1. destruct ty'; compute in H1; congruence. } - subst ty'. right. simpl typesize. omega. + assert (ty' = Tint \/ ty' = Tsingle). + { unfold OrderedTyp.lt in H1. destruct ty'; auto; compute in H1; congruence. } + right. destruct H2; subst ty'; simpl typesize; omega. + destruct H. left. apply OrderedSlot.lt_not_eq; auto. destruct H. right. destruct H0. left; omega. @@ -494,6 +521,8 @@ Module OrderedLoc <: OrderedType. right; split. omega. compute. auto. left; omega. left; omega. + destruct (zlt ofs' (ofs - 1)). left; auto. + right; split. omega. compute. auto. Qed. End OrderedLoc. diff --git a/backend/Mach.v b/backend/Mach.v index ec48195..316e788 100644 --- a/backend/Mach.v +++ b/backend/Mach.v @@ -296,7 +296,7 @@ Inductive step: state -> trace -> state -> Prop := | exec_Msetstack: forall s f sp src ofs ty c rs m m' rs', store_stack m sp ty ofs (rs src) = Some m' -> - rs' = undef_regs (destroyed_by_op Omove) rs -> + rs' = undef_regs (destroyed_by_setstack ty) rs -> step (State s f sp (Msetstack src ofs ty :: c) rs m) E0 (State s f sp c rs' m') | exec_Mgetparam: diff --git a/backend/PrintCminor.ml b/backend/PrintCminor.ml index 8612b73..4fbc600 100644 --- a/backend/PrintCminor.ml +++ b/backend/PrintCminor.ml @@ -168,6 +168,7 @@ let name_of_type = function | Tint -> "int" | Tfloat -> "float" | Tlong -> "long" + | Tsingle -> "single" let rec print_sig p = function | {sig_args = []; sig_res = None} -> fprintf p "void" diff --git a/backend/PrintXTL.ml b/backend/PrintXTL.ml index 756fc58..258baba 100644 --- a/backend/PrintXTL.ml +++ b/backend/PrintXTL.ml @@ -29,7 +29,11 @@ let mreg pp r = | Some s -> fprintf pp "%s" s | None -> fprintf pp "<unknown machreg>" -let short_name_of_type = function Tint -> 'i' | Tfloat -> 'f' | Tlong -> 'l' +let short_name_of_type = function + | Tint -> 'i' + | Tfloat -> 'f' + | Tlong -> 'l' + | Tsingle -> 's' let loc pp = function | R r -> mreg pp r diff --git a/backend/RTLtyping.v b/backend/RTLtyping.v index 7ed7344..b4702cf 100644 --- a/backend/RTLtyping.v +++ b/backend/RTLtyping.v @@ -12,9 +12,9 @@ (** Typing rules and a type inference algorithm for RTL. *) -Require Import Recdef. Require Import Coqlib. Require Import Errors. +Require Import Subtyping. Require Import Maps. Require Import AST. Require Import Op. @@ -32,9 +32,11 @@ Require Import Conventions. (** Like Cminor and all intermediate languages, RTL can be equipped with a simple type system that statically guarantees that operations and addressing modes are applied to the right number of arguments - and that the arguments are of the correct types. The type algebra - is trivial, consisting of the two types [Tint] (for integers and pointers) - and [Tfloat] (for floats). + and that the arguments are of the correct types. The type algebra + is very simple, consisting of the four types [Tint] (for integers + and pointers), [Tfloat] (for double-precision floats), [Tlong] + (for 64-bit integers) and [Tsingle] (for single-precision floats). + The only subtlety is that [Tsingle] is a subtype of [Tfloat]. Additionally, we impose that each pseudo-register has the same type throughout the function. This requirement helps with register allocation, @@ -58,8 +60,8 @@ Definition regenv := reg -> typ. Section WT_INSTR. -Variable env: regenv. Variable funct: function. +Variable env: regenv. Definition valid_successor (s: node) : Prop := exists i, funct.(fn_code)!s = Some i. @@ -71,63 +73,68 @@ Inductive wt_instr : instruction -> Prop := wt_instr (Inop s) | wt_Iopmove: forall r1 r s, - env r1 = env r -> + subtype (env r1) (env r) = true -> valid_successor s -> wt_instr (Iop Omove (r1 :: nil) r s) | wt_Iop: forall op args res s, op <> Omove -> - (List.map env args, env res) = type_of_operation op -> + subtype_list (map env args) (fst (type_of_operation op)) = true -> + subtype (snd (type_of_operation op)) (env res) = true -> valid_successor s -> wt_instr (Iop op args res s) | wt_Iload: forall chunk addr args dst s, - List.map env args = type_of_addressing addr -> - env dst = type_of_chunk chunk -> + subtype_list (map env args) (type_of_addressing addr) = true -> + subtype (type_of_chunk chunk) (env dst) = true -> valid_successor s -> wt_instr (Iload chunk addr args dst s) | wt_Istore: forall chunk addr args src s, - List.map env args = type_of_addressing addr -> - env src = type_of_chunk chunk -> + subtype_list (map env args) (type_of_addressing addr) = true -> + subtype (env src) (type_of_chunk_use chunk) = true -> valid_successor s -> wt_instr (Istore chunk addr args src s) | wt_Icall: forall sig ros args res s, - match ros with inl r => env r = Tint | inr s => True end -> - List.map env args = sig.(sig_args) -> - env res = proj_sig_res sig -> + match ros with inl r => subtype (env r) Tint = true | inr s => True end -> + subtype_list (map env args) sig.(sig_args) = true -> + subtype (proj_sig_res sig) (env res) = true -> valid_successor s -> wt_instr (Icall sig ros args res s) | wt_Itailcall: forall sig ros args, - match ros with inl r => env r = Tint | inr s => True end -> + match ros with inl r => subtype (env r) Tint = true | inr s => True end -> sig.(sig_res) = funct.(fn_sig).(sig_res) -> - List.map env args = sig.(sig_args) -> + subtype_list (map env args) sig.(sig_args) = true -> tailcall_possible sig -> wt_instr (Itailcall sig ros args) | wt_Ibuiltin: forall ef args res s, - List.map env args = (ef_sig ef).(sig_args) -> - env res = proj_sig_res (ef_sig ef) -> + subtype_list (map env args) (ef_sig ef).(sig_args) = true -> + subtype (proj_sig_res (ef_sig ef)) (env res) = true -> valid_successor s -> wt_instr (Ibuiltin ef args res s) | wt_Icond: forall cond args s1 s2, - List.map env args = type_of_condition cond -> + subtype_list (map env args) (type_of_condition cond) = true -> valid_successor s1 -> valid_successor s2 -> wt_instr (Icond cond args s1 s2) | wt_Ijumptable: forall arg tbl, - env arg = Tint -> + subtype (env arg) Tint = true -> (forall s, In s tbl -> valid_successor s) -> list_length_z tbl * 4 <= Int.max_unsigned -> wt_instr (Ijumptable arg tbl) - | wt_Ireturn: - forall optres, - option_map env optres = funct.(fn_sig).(sig_res) -> - wt_instr (Ireturn optres). + | wt_Ireturn_none: + funct.(fn_sig).(sig_res) = None -> + wt_instr (Ireturn None) + | wt_Ireturn_some: + forall arg ty, + funct.(fn_sig).(sig_res) = Some ty -> + subtype (env arg) ty = true -> + wt_instr (Ireturn (Some arg)). End WT_INSTR. @@ -139,12 +146,12 @@ End WT_INSTR. Record wt_function (f: function) (env: regenv): Prop := mk_wt_function { wt_params: - List.map env f.(fn_params) = f.(fn_sig).(sig_args); + subtype_list f.(fn_sig).(sig_args) (map env f.(fn_params)) = true; wt_norepet: list_norepet f.(fn_params); wt_instrs: forall pc instr, - f.(fn_code)!pc = Some instr -> wt_instr env f instr; + f.(fn_code)!pc = Some instr -> wt_instr f env instr; wt_entrypoint: valid_successor f f.(fn_entrypoint) }. @@ -161,66 +168,138 @@ Definition wt_program (p: program): Prop := (** * Type inference *) -Section INFERENCE. +(** Type inference reuses the generic solver for subtyping constraints + defined in module [Subtyping]. *) -Local Open Scope error_monad_scope. +Module RTLtypes <: TYPE_ALGEBRA. -Variable f: function. +Definition t := typ. +Definition eq := typ_eq. +Definition default := Tint. -(** The type inference engine operates over a state that has two components: -- [te_typ]: a partial map from pseudoregisters to types, for - pseudoregs whose types are already determined from their uses; -- [te_eqs]: a list of pairs [(r1,r2)] of pseudoregisters, indicating that - [r1] and [r2] must have the same type because they are involved in a move - [r1 := r2] or [r2 := r1], but this type is not yet determined. -*) +Definition sub (t1 t2: typ): Prop := subtype t1 t2 = true. -Record typenv : Type := Typenv { - te_typ: PTree.t typ; (**r mapping reg -> known type *) - te_eqs: list (reg * reg) (**r pairs of regs that must have same type *) -}. +Lemma sub_refl: forall ty, sub ty ty. +Proof. unfold sub; destruct ty; auto. Qed. -(** Determine that [r] must have type [ty]. *) +Lemma sub_trans: forall ty1 ty2 ty3, sub ty1 ty2 -> sub ty2 ty3 -> sub ty1 ty3. +Proof. + unfold sub; intros. destruct ty1; destruct ty2; try discriminate; destruct ty3; auto; discriminate. +Qed. -Definition type_reg (e: typenv) (r: reg) (ty: typ) : res typenv := - match e.(te_typ)!r with - | None => OK {| te_typ := PTree.set r ty e.(te_typ); te_eqs := e.(te_eqs) |} - | Some ty' => if typ_eq ty ty' then OK e else Error (MSG "bad type for variable " :: POS r :: nil) - end. +Definition sub_dec: forall ty1 ty2, {sub ty1 ty2} + {~sub ty1 ty2}. +Proof. + unfold sub; intros. destruct (subtype ty1 ty2). left; auto. right; congruence. +Defined. -Fixpoint type_regs (e: typenv) (rl: list reg) (tyl: list typ) {struct rl}: res typenv := - match rl, tyl with - | nil, nil => OK e - | r1::rs, ty1::tys => do e1 <- type_reg e r1 ty1; type_regs e1 rs tys - | _, _ => Error (msg "arity mismatch") +Definition lub (ty1 ty2: typ) := + match ty1, ty2 with + | Tint, Tint => Tint + | Tlong, Tlong => Tlong + | Tfloat, Tfloat => Tfloat + | Tsingle, Tsingle => Tsingle + | Tfloat, Tsingle => Tfloat + | Tsingle, Tfloat => Tfloat + | _, _ => default end. -Definition type_ros (e: typenv) (ros: reg + ident) : res typenv := - match ros with - | inl r => type_reg e r Tint - | inr s => OK e - end. +Lemma lub_left: forall x y z, sub x z -> sub y z -> sub x (lub x y). +Proof. + unfold sub, lub; intros. destruct x; destruct y; auto; destruct z; discriminate. +Qed. -(** Determine that [r1] and [r2] must have the same type. If none of - [r1] and [r2] has known type, just record an equality constraint. - The boolean result is [true] if one of the types of [r1] and [r2] - was previously unknown and could be determined because the other type is - known. Otherwise, [te_typ] does not change and [false] is returned. *) - -Function type_move (e: typenv) (r1 r2: reg) : res (bool * typenv) := - match e.(te_typ)!r1, e.(te_typ)!r2 with - | None, None => - OK (false, {| te_typ := e.(te_typ); te_eqs := (r1, r2) :: e.(te_eqs) |}) - | Some ty1, None => - OK (true, {| te_typ := PTree.set r2 ty1 e.(te_typ); te_eqs := e.(te_eqs) |}) - | None, Some ty2 => - OK (true, {| te_typ := PTree.set r1 ty2 e.(te_typ); te_eqs := e.(te_eqs) |}) - | Some ty1, Some ty2 => - if typ_eq ty1 ty2 - then OK (false, e) - else Error(MSG "ill-typed move between " :: POS r1 :: MSG " and " :: POS r2 :: nil) +Lemma lub_right: forall x y z, sub x z -> sub y z -> sub y (lub x y). +Proof. + unfold sub, lub; intros. destruct x; destruct y; auto; destruct z; discriminate. +Qed. + +Lemma lub_min: forall x y z, sub x z -> sub y z -> sub (lub x y) z. +Proof. + unfold sub, lub; intros. destruct x; destruct z; try discriminate; destruct y; auto; discriminate. +Qed. + +Definition glb (ty1 ty2: typ) := + match ty1, ty2 with + | Tint, Tint => Tint + | Tlong, Tlong => Tlong + | Tfloat, Tfloat => Tfloat + | Tsingle, Tsingle => Tsingle + | Tfloat, Tsingle => Tsingle + | Tsingle, Tfloat => Tsingle + | _, _ => default end. +Lemma glb_left: forall x y z, sub z x -> sub z y -> sub (glb x y) x. +Proof. + unfold sub, glb; intros. destruct x; destruct y; auto; destruct z; discriminate. +Qed. + +Lemma glb_right: forall x y z, sub z x -> sub z y -> sub (glb x y) y. +Proof. + unfold sub, glb; intros. destruct x; destruct y; auto; destruct z; discriminate. +Qed. + +Lemma glb_max: forall x y z, sub z x -> sub z y -> sub z (glb x y). +Proof. + unfold sub, glb; intros. destruct x; destruct z; try discriminate; destruct y; auto; discriminate. +Qed. + +Definition low_bound (ty: typ) := + match ty with Tfloat => Tsingle | _ => ty end. + +Definition high_bound (ty: typ) := + match ty with Tsingle => Tfloat | _ => ty end. + +Lemma low_bound_sub: forall t, sub (low_bound t) t. +Proof. + unfold sub; destruct t0; auto. +Qed. + +Lemma low_bound_minorant: forall x y, sub x y -> sub (low_bound y) x. +Proof. + unfold sub; intros. destruct x; destruct y; auto; discriminate. +Qed. + +Lemma high_bound_sub: forall t, sub t (high_bound t). +Proof. + unfold sub; destruct t0; auto. +Qed. + +Lemma high_bound_majorant: forall x y, sub x y -> sub y (high_bound x). +Proof. + unfold sub; intros. destruct x; destruct y; auto; discriminate. +Qed. + +Definition weight (t: typ) := + match t with Tfloat => 1%nat | _ => 0%nat end. + +Definition max_weight := 1%nat. + +Lemma weight_range: forall t, (weight t <= max_weight)%nat. +Proof. + unfold max_weight; destruct t0; simpl; omega. +Qed. + +Lemma weight_sub: forall x y, sub x y -> (weight x <= weight y)%nat. +Proof. + unfold sub; intros. destruct x; destruct y; simpl; discriminate || omega. +Qed. + +Lemma weight_sub_strict: forall x y, sub x y -> x <> y -> (weight x < weight y)%nat. +Proof. + unfold sub, subtype; intros. destruct x; destruct y; simpl; congruence || omega. +Qed. + +End RTLtypes. + +Module S := SubSolver(RTLtypes). + +Section INFERENCE. + +Local Open Scope error_monad_scope. + +Variable f: function. + (** Checking the validity of successor nodes. *) Definition check_successor (s: node): res unit := @@ -235,15 +314,18 @@ Fixpoint check_successors (sl: list node): res unit := | s1 :: sl' => do x <- check_successor s1; check_successors sl' end. +(** Check structural constraints and process / record all type constraints. *) + +Definition type_ros (e: S.typenv) (ros: reg + ident) : res S.typenv := + match ros with + | inl r => S.type_use e r Tint + | inr s => OK e + end. + Definition is_move (op: operation) : bool := match op with Omove => true | _ => false end. -(** First pass: check structural constraints and process all type constraints - of the form [typeof(r) = ty] arising from the RTL instructions. - Simultaneously, record equations [typeof(r1) = typeof(r2)] arising - from move instructions that cannot be immediately resolved. *) - -Definition type_instr (e: typenv) (i: instruction) : res typenv := +Definition type_instr (e: S.typenv) (i: instruction) : res S.typenv := match i with | Inop s => do x <- check_successor s; OK e @@ -251,28 +333,28 @@ Definition type_instr (e: typenv) (i: instruction) : res typenv := do x <- check_successor s; if is_move op then match args with - | arg :: nil => do (changed, e') <- type_move e arg res; OK e' + | arg :: nil => do (changed, e') <- S.type_move e arg res; OK e' | _ => Error (msg "ill-formed move") end else (let (targs, tres) := type_of_operation op in - do e1 <- type_regs e args targs; type_reg e1 res tres) + do e1 <- S.type_uses e args targs; S.type_def e1 res tres) | Iload chunk addr args dst s => do x <- check_successor s; - do e1 <- type_regs e args (type_of_addressing addr); - type_reg e1 dst (type_of_chunk chunk) + do e1 <- S.type_uses e args (type_of_addressing addr); + S.type_def e1 dst (type_of_chunk chunk) | Istore chunk addr args src s => do x <- check_successor s; - do e1 <- type_regs e args (type_of_addressing addr); - type_reg e1 src (type_of_chunk chunk) + do e1 <- S.type_uses e args (type_of_addressing addr); + S.type_use e1 src (type_of_chunk_use chunk) | Icall sig ros args res s => do x <- check_successor s; do e1 <- type_ros e ros; - do e2 <- type_regs e1 args sig.(sig_args); - type_reg e2 res (proj_sig_res sig) + do e2 <- S.type_uses e1 args sig.(sig_args); + S.type_def e2 res (proj_sig_res sig) | Itailcall sig ros args => do e1 <- type_ros e ros; - do e2 <- type_regs e1 args sig.(sig_args); + do e2 <- S.type_uses e1 args sig.(sig_args); if opt_typ_eq sig.(sig_res) f.(fn_sig).(sig_res) then if tailcall_is_possible sig then OK e2 @@ -281,25 +363,25 @@ Definition type_instr (e: typenv) (i: instruction) : res typenv := | Ibuiltin ef args res s => let sig := ef_sig ef in do x <- check_successor s; - do e1 <- type_regs e args sig.(sig_args); - type_reg e1 res (proj_sig_res sig) + do e1 <- S.type_uses e args sig.(sig_args); + S.type_def e1 res (proj_sig_res sig) | Icond cond args s1 s2 => do x1 <- check_successor s1; do x2 <- check_successor s2; - type_regs e args (type_of_condition cond) + S.type_uses e args (type_of_condition cond) | Ijumptable arg tbl => do x <- check_successors tbl; - do e1 <- type_reg e arg Tint; + do e1 <- S.type_use e arg Tint; if zle (list_length_z tbl * 4) Int.max_unsigned then OK e1 else Error(msg "jumptable too big") | Ireturn optres => match optres, f.(fn_sig).(sig_res) with | None, None => OK e - | Some r, Some t => type_reg e r t + | Some r, Some t => S.type_use e r t | _, _ => Error(msg "bad return") end end. -Definition type_code (e: typenv): res typenv := +Definition type_code (e: S.typenv): res S.typenv := PTree.fold (fun re pc i => match re with @@ -312,179 +394,38 @@ Definition type_code (e: typenv): res typenv := end) f.(fn_code) (OK e). -(** Second pass: iteratively process the remaining equality constraints - arising out of "move" instructions *) - -Definition equations := list (reg * reg). - -Fixpoint solve_rec (e: typenv) (changed: bool) (q: equations) : res (typenv * bool) := - match q with - | nil => - OK (e, changed) - | (r1, r2) :: q' => - do (changed1, e1) <- type_move e r1 r2; solve_rec e1 (changed || changed1) q' - end. - -Lemma type_move_length: - forall e r1 r2 changed e', - type_move e r1 r2 = OK (changed, e') -> - if changed - then List.length e'.(te_eqs) = List.length e.(te_eqs) - else (List.length e'.(te_eqs) <= S (List.length e.(te_eqs)))%nat. -Proof. - intros. functional inversion H; subst; simpl; omega. -Qed. - -Lemma solve_rec_length: - forall q e changed e' changed', - solve_rec e changed q = OK (e', changed') -> - (List.length e'.(te_eqs) <= List.length e.(te_eqs) + List.length q)%nat. -Proof. - induction q; simpl; intros. -- inv H. omega. -- destruct a as [r1 r2]. monadInv H. - assert (length (te_eqs x0) <= S (length (te_eqs e)))%nat. - { - exploit type_move_length; eauto. destruct x; omega. - } - exploit IHq; eauto. - omega. -Qed. - -Lemma solve_rec_shorter: - forall q e e', - solve_rec e false q = OK (e', true) -> - (List.length e'.(te_eqs) < List.length e.(te_eqs) + List.length q)%nat. -Proof. - induction q; simpl; intros. -- discriminate. -- destruct a as [r1 r2]; monadInv H. - exploit type_move_length; eauto. destruct x; intros. - exploit solve_rec_length; eauto. omega. - exploit IHq; eauto. omega. -Qed. - -Definition length_typenv (e: typenv) := length e.(te_eqs). - -Function solve_equations (e: typenv) {measure length_typenv e} : res typenv := - match solve_rec {| te_typ := e.(te_typ); te_eqs := nil |} false e.(te_eqs) with - | OK (e', false) => OK e (**r no progress made: terminate *) - | OK (e', true) => solve_equations e' (**r at least one type changed: iterate *) - | Error msg => Error msg - end. -Proof. - intros. exploit solve_rec_shorter; eauto. -Qed. - -(** The final type assignment aribtrarily gives type [Tint] to the - pseudoregs that are still unconstrained at the end of type inference. *) - -Definition make_regenv (e: typenv) : regenv := - fun r => match e.(te_typ)!r with Some ty => ty | None => Tint end. +(** S remaining constraints *) Definition check_params_norepet (params: list reg): res unit := if list_norepet_dec Reg.eq params then OK tt else Error(msg "duplicate parameters"). Definition type_function : res regenv := - do e1 <- type_code {| te_typ := PTree.empty typ; te_eqs := nil |}; - do e2 <- type_regs e1 f.(fn_params) f.(fn_sig).(sig_args); - do e3 <- solve_equations e2; + do e1 <- type_code S.initial; + do e2 <- S.type_defs e1 f.(fn_params) f.(fn_sig).(sig_args); + do te <- S.solve e2; do x1 <- check_params_norepet f.(fn_params); do x2 <- check_successor f.(fn_entrypoint); - OK (make_regenv e3). + OK te. (** ** Soundness proof *) -(** What it means for a final type assignment [te] to satisfy the constraints - collected so far in the [e] state. *) - -Definition satisf (te: regenv) (e: typenv) : Prop := - (forall r ty, e.(te_typ)!r = Some ty -> te r = ty) - /\ (forall r1 r2, In (r1, r2) e.(te_eqs) -> te r1 = te r2). - -Remark type_reg_incr: - forall e r ty e' te, type_reg e r ty = OK e' -> satisf te e' -> satisf te e. -Proof. - unfold type_reg; intros; destruct (e.(te_typ)!r) eqn:E. - destruct (typ_eq ty t); inv H. auto. - inv H. destruct H0 as [A B]. split; intros. - apply A. simpl. rewrite PTree.gso; auto. congruence. - apply B. simpl; auto. -Qed. - -Hint Resolve type_reg_incr: ty. - -Remark type_regs_incr: - forall rl tyl e e' te, type_regs e rl tyl = OK e' -> satisf te e' -> satisf te e. -Proof. - induction rl; simpl; intros; destruct tyl; try discriminate. - inv H; eauto with ty. - monadInv H. eauto with ty. -Qed. - -Hint Resolve type_regs_incr: ty. - Remark type_ros_incr: - forall e ros e' te, type_ros e ros = OK e' -> satisf te e' -> satisf te e. + forall e ros e' te, type_ros e ros = OK e' -> S.satisf te e' -> S.satisf te e. Proof. unfold type_ros; intros. destruct ros. eauto with ty. inv H; auto with ty. Qed. Hint Resolve type_ros_incr: ty. -Remark type_move_incr: - forall e r1 r2 changed e' te, - type_move e r1 r2 = OK (changed, e') -> - satisf te e' -> satisf te e. -Proof. - intros. destruct H0 as [A B]. functional inversion H; subst; simpl in *. -- split; auto. -- split; intros. apply A. rewrite PTree.gso; auto. congruence. auto. -- split; intros. apply A. rewrite PTree.gso; auto. congruence. auto. -- split; auto. -Qed. - -Hint Resolve type_move_incr: ty. - -Lemma type_reg_sound: - forall e r ty e' te, type_reg e r ty = OK e' -> satisf te e' -> te r = ty. -Proof. - unfold type_reg; intros. destruct H0 as [A B]. - destruct (e.(te_typ)!r) as [t|] eqn:E. - destruct (typ_eq ty t); inv H. apply A; auto. - inv H. apply A. simpl. apply PTree.gss. -Qed. - -Lemma type_regs_sound: - forall rl tyl e e' te, type_regs e rl tyl = OK e' -> satisf te e' -> map te rl = tyl. -Proof. - induction rl; simpl; intros; destruct tyl; try discriminate. -- auto. -- monadInv H. f_equal; eauto. eapply type_reg_sound. eauto. eauto with ty. -Qed. - Lemma type_ros_sound: - forall e ros e' te, type_ros e ros = OK e' -> satisf te e' -> - match ros with inl r => te r = Tint | inr s => True end. + forall e ros e' te, type_ros e ros = OK e' -> S.satisf te e' -> + match ros with inl r => subtype (te r) Tint = true | inr s => True end. Proof. unfold type_ros; intros. destruct ros. - eapply type_reg_sound; eauto. + eapply S.type_use_sound; eauto. auto. Qed. -Lemma type_move_sound: - forall e r1 r2 changed e' te, - type_move e r1 r2 = OK (changed, e') -> satisf te e' -> te r1 = te r2. -Proof. - intros. destruct H0 as [A B]. functional inversion H; subst; simpl in *. -- apply B; auto. -- rewrite (A r1 ty1). rewrite (A r2 ty1). auto. - apply PTree.gss. rewrite PTree.gso; auto. congruence. -- rewrite (A r1 ty2). rewrite (A r2 ty2). auto. - rewrite PTree.gso; auto. congruence. apply PTree.gss. -- erewrite ! A; eauto. -Qed. - Lemma check_successor_sound: forall s x, check_successor s = OK x -> valid_successor f s. Proof. @@ -502,9 +443,20 @@ Proof. monadInv H. destruct H0. subst a; eauto with ty. eauto. Qed. +Remark subtype_list_charact: + forall tyl1 tyl2, + subtype_list tyl1 tyl2 = true <-> list_forall2 RTLtypes.sub tyl1 tyl2. +Proof. + unfold RTLtypes.sub; intros; split; intros. + revert tyl1 tyl2 H. induction tyl1; destruct tyl2; simpl; intros; try discriminate. + constructor. + InvBooleans. constructor; auto. + revert tyl1 tyl2 H. induction 1; simpl. auto. rewrite H; rewrite IHlist_forall2; auto. +Qed. + Lemma type_instr_incr: forall e i e' te, - type_instr e i = OK e' -> satisf te e' -> satisf te e. + type_instr e i = OK e' -> S.satisf te e' -> S.satisf te e. Proof. intros; destruct i; try (monadInv H); eauto with ty. - (* op *) @@ -526,7 +478,7 @@ Qed. Lemma type_instr_sound: forall e i e' te, - type_instr e i = OK e' -> satisf te e' -> wt_instr te f i. + type_instr e i = OK e' -> S.satisf te e' -> wt_instr f te i. Proof. intros; destruct i; try (monadInv H); simpl. - (* nop *) @@ -537,25 +489,28 @@ Proof. + assert (o = Omove) by (unfold is_move in ISMOVE; destruct o; congruence). subst o. destruct l; try discriminate. destruct l; monadInv EQ0. - constructor. eapply type_move_sound; eauto. eauto with ty. + constructor. eapply S.type_move_sound; eauto. eauto with ty. + destruct (type_of_operation o) as [targs tres] eqn:TYOP. monadInv EQ0. apply wt_Iop. unfold is_move in ISMOVE; destruct o; congruence. - rewrite TYOP. f_equal. eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto. + rewrite TYOP. rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. + rewrite TYOP. eapply S.type_def_sound; eauto with ty. eauto with ty. - (* load *) constructor. - eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. + eapply S.type_def_sound; eauto with ty. eauto with ty. - (* store *) constructor. - eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. + eapply S.type_use_sound; eauto with ty. eauto with ty. - (* call *) constructor. - eapply type_ros_sound; eauto with ty. - eapply type_regs_sound; eauto with ty. - eapply type_reg_sound; eauto. + eapply type_ros_sound; eauto with ty. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. + eapply S.type_def_sound; eauto with ty. eauto with ty. - (* tailcall *) destruct (opt_typ_eq (sig_res s) (sig_res (fn_sig f))); try discriminate. @@ -563,206 +518,86 @@ Proof. constructor. eapply type_ros_sound; eauto with ty. auto. - eapply type_regs_sound; eauto with ty. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. apply tailcall_is_possible_correct; auto. - (* builtin *) constructor. - eapply type_regs_sound; eauto with ty. - eapply type_reg_sound; eauto. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. + eapply S.type_def_sound; eauto with ty. eauto with ty. - (* cond *) constructor. - eapply type_regs_sound; eauto with ty. + rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty. eauto with ty. eauto with ty. - (* jumptable *) destruct (zle (list_length_z l * 4) Int.max_unsigned); inv EQ2. constructor. - eapply type_reg_sound; eauto. + eapply S.type_use_sound; eauto. eapply check_successors_sound; eauto. auto. - (* return *) simpl in H. destruct o as [r|] eqn: RET; destruct (sig_res (fn_sig f)) as [t|] eqn: RES; try discriminate. - constructor. simpl. rewrite RES. f_equal. eapply type_reg_sound; eauto. - inv H. constructor. rewrite RES; auto. + econstructor. eauto. eapply S.type_use_sound; eauto with ty. + inv H. constructor. auto. Qed. Lemma type_code_sound: - forall e e' te, + forall pc i e e' te, type_code e = OK e' -> - forall pc i, f.(fn_code)!pc = Some i -> satisf te e' -> wt_instr te f i. + f.(fn_code)!pc = Some i -> S.satisf te e' -> wt_instr f te i. Proof. - intros e0 e1 te TCODE. + intros pc i e0 e1 te TCODE. set (P := fun c opte => match opte with | Error _ => True - | OK e' => forall pc i, c!pc = Some i -> satisf te e' -> wt_instr te f i + | OK e' => c!pc = Some i -> S.satisf te e' -> wt_instr f te i end). - assert (P f.(fn_code) (OK e1)). - { - rewrite <- TCODE. unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros. - - (* extensionality *) - destruct a; auto. intros. rewrite <- H in H1. eapply H0; eauto. - - (* base case *) - rewrite PTree.gempty in H; discriminate. - - (* inductive case *) - destruct a as [e|?]; auto. - destruct (type_instr e v) as [e'|?] eqn:TYINSTR; auto. - intros. rewrite PTree.gsspec in H2. destruct (peq pc k). - inv H2. eapply type_instr_sound; eauto. - eapply H1; eauto. eapply type_instr_incr; eauto. - } - intros; eapply H; eauto. -Qed. - -Lemma solve_rec_incr: - forall te q e changed e' changed', - solve_rec e changed q = OK (e', changed') -> satisf te e' -> satisf te e. -Proof. - induction q; simpl; intros. -- inv H; auto. -- destruct a as [r1 r2]; monadInv H. eauto with ty. -Qed. - -Lemma solve_rec_sound: - forall r1 r2 te q e changed e' changed', - solve_rec e changed q = OK (e', changed') -> satisf te e' -> In (r1, r2) q -> te r1 = te r2. -Proof. - induction q; simpl; intros. -- contradiction. -- destruct a as [r3 r4]; monadInv H. destruct H1 as [A|A]. - inv A. eapply type_move_sound; eauto. eapply solve_rec_incr; eauto. - eapply IHq; eauto. -Qed. - -Lemma solve_rec_false: - forall q e changed e', - solve_rec e changed q = OK (e', false) -> changed = false. -Proof. - induction q; simpl; intros. -- inv H; auto. -- destruct a as [r1 r2]; monadInv H. exploit IHq; eauto. rewrite orb_false_iff. tauto. -Qed. - -Lemma solve_rec_solved: - forall r1 r2 q e changed e', - solve_rec e changed q = OK (e', false) -> - In (r1, r2) q -> make_regenv e r1 = make_regenv e r2. -Proof. - induction q; simpl; intros. -- contradiction. -- destruct a as [r3 r4]; monadInv H. - assert (x = false). - { exploit solve_rec_false; eauto. rewrite orb_false_iff. tauto. } - subst x. functional inversion EQ. - + destruct H0 as [A|A]. - inv A. unfold make_regenv. rewrite H1; rewrite H2; auto. - subst x0. exploit IHq; eauto. - + destruct H0 as [A|A]. - inv A. unfold make_regenv. rewrite H1; rewrite H2; auto. - subst x0. exploit IHq; eauto. -Qed. - -Lemma solve_equations_incr: - forall te e e', solve_equations e = OK e' -> satisf te e' -> satisf te e. -Proof. - intros te e0; functional induction (solve_equations e0); intros. -- inv H. auto. -- exploit solve_rec_incr; eauto. intros [A B]. split; intros. - apply A; auto. - eapply solve_rec_sound; eauto. -- discriminate. -Qed. - -Lemma solve_equations_sound: - forall e e', solve_equations e = OK e' -> satisf (make_regenv e') e'. -Proof. - intros e0; functional induction (solve_equations e0); intros. -- inv H. split; intros. - unfold make_regenv; rewrite H; auto. - exploit solve_rec_solved; eauto. -- eauto. -- discriminate. + change (P f.(fn_code) (OK e1)). + rewrite <- TCODE. unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros. + - (* extensionality *) + destruct a; auto; intros. rewrite <- H in H1. eapply H0; eauto. + - (* base case *) + rewrite PTree.gempty in H; discriminate. + - (* inductive case *) + destruct a as [e|?]; auto. + destruct (type_instr e v) as [e'|?] eqn:TYINSTR; auto. + intros. rewrite PTree.gsspec in H2. destruct (peq pc k). + inv H2. eapply type_instr_sound; eauto. + eapply H1; eauto. eapply type_instr_incr; eauto. Qed. Theorem type_function_correct: forall env, type_function = OK env -> wt_function f env. Proof. - unfold type_function; intros. monadInv H. - exploit solve_equations_sound; eauto. intros SAT1. - exploit solve_equations_incr; eauto. intros SAT0. - exploit type_regs_incr; eauto. intros SAT. + unfold type_function; intros. monadInv H. + assert (SAT0: S.satisf env x0) by (eapply S.solve_sound; eauto). + assert (SAT1: S.satisf env x) by (eauto with ty). constructor. - (* type of parameters *) - eapply type_regs_sound; eauto. + rewrite subtype_list_charact. eapply S.type_defs_sound; eauto. - (* parameters are unique *) unfold check_params_norepet in EQ2. destruct (list_norepet_dec Reg.eq (fn_params f)); inv EQ2; auto. - (* instructions are well typed *) - intros; eapply type_code_sound; eauto. + intros. eapply type_code_sound; eauto. - (* entry point is valid *) eauto with ty. Qed. (** ** Completeness proof *) -Lemma type_reg_complete: - forall te e r ty, - satisf te e -> te r = ty -> exists e', type_reg e r ty = OK e' /\ satisf te e'. -Proof. - intros. unfold type_reg. - destruct ((te_typ e)!r) as [ty'|] eqn: E. - exists e; split; auto. replace ty' with ty. apply dec_eq_true. - exploit (proj1 H); eauto. congruence. - econstructor; split. reflexivity. - destruct H as [A B]; split; simpl; intros; auto. - rewrite PTree.gsspec in H. destruct (peq r0 r); auto. congruence. -Qed. - -Lemma type_regs_complete: - forall te rl tyl e, - satisf te e -> map te rl = tyl -> exists e', type_regs e rl tyl = OK e' /\ satisf te e'. -Proof. - induction rl; simpl; intros; subst tyl. - exists e; auto. - destruct (type_reg_complete te e a (te a)) as [e1 [A B]]; auto. - exploit IHrl; eauto. intros [e' [C D]]. - exists e'; split; auto. rewrite A; simpl; rewrite C; auto. -Qed. - Lemma type_ros_complete: forall te ros e, - satisf te e -> - match ros with inl r => te r = Tint | inr s => True end -> - exists e', type_ros e ros = OK e' /\ satisf te e'. + S.satisf te e -> + match ros with inl r => subtype (te r) Tint = true | inr s => True end -> + exists e', type_ros e ros = OK e' /\ S.satisf te e'. Proof. intros; destruct ros; simpl. - eapply type_reg_complete; eauto. + eapply S.type_use_complete; eauto. exists e; auto. Qed. -Lemma type_move_complete: - forall te r1 r2 e, - satisf te e -> - te r1 = te r2 -> - exists changed e', type_move e r1 r2 = OK (changed, e') /\ satisf te e'. -Proof. - intros. functional induction (type_move e r1 r2). -- econstructor; econstructor; split; eauto. - destruct H as [A B]; split; simpl; intros; auto. - destruct H; auto. congruence. -- econstructor; econstructor; split; eauto. - destruct H as [A B]; split; simpl; intros; auto. - rewrite PTree.gsspec in H. destruct (peq r r2); auto. - subst. exploit A; eauto. congruence. -- econstructor; econstructor; split; eauto. - destruct H as [A B]; split; simpl; intros; auto. - rewrite PTree.gsspec in H. destruct (peq r r1); auto. - subst. exploit A; eauto. congruence. -- econstructor; econstructor; split; eauto. -- destruct H as [A B]. apply A in e0. apply A in e1. congruence. -Qed. - Lemma check_successor_complete: forall s, valid_successor f s -> check_successor s = OK tt. Proof. @@ -772,46 +607,51 @@ Qed. Lemma type_instr_complete: forall te e i, - satisf te e -> - wt_instr te f i -> - exists e', type_instr e i = OK e' /\ satisf te e'. + S.satisf te e -> + wt_instr f te i -> + exists e', type_instr e i = OK e' /\ S.satisf te e'. Proof. induction 2; simpl. - (* nop *) econstructor; split. rewrite check_successor_complete; simpl; eauto. auto. - (* move *) - exploit type_move_complete; eauto. intros (changed & e' & A & B). + exploit S.type_move_complete; eauto. intros (changed & e' & A & B). exists e'; split. rewrite check_successor_complete by auto; simpl. rewrite A; auto. auto. - (* other op *) - destruct (type_of_operation op) as [targ tres]. injection H1; clear H1; intros. - exploit type_regs_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]]. + destruct (type_of_operation op) as [targ tres]. simpl in *. + rewrite subtype_list_charact in H1. + exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]]. + exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]]. exists e2; split; auto. rewrite check_successor_complete by auto; simpl. replace (is_move op) with false. rewrite A; simpl; rewrite C; auto. destruct op; reflexivity || congruence. - (* load *) - exploit type_regs_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]]. + rewrite subtype_list_charact in H0. + exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]]. + exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]]. exists e2; split; auto. rewrite check_successor_complete by auto; simpl. rewrite A; simpl; rewrite C; auto. - (* store *) - exploit type_regs_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]]. + rewrite subtype_list_charact in H0. + exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]]. + exploit S.type_use_complete. eexact B. eauto. intros [e2 [C D]]. exists e2; split; auto. rewrite check_successor_complete by auto; simpl. rewrite A; simpl; rewrite C; auto. - (* call *) exploit type_ros_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_regs_complete. eauto. eauto. intros [e2 [C D]]. - exploit type_reg_complete. eexact D. eauto. intros [e3 [E F]]. + rewrite subtype_list_charact in H1. + exploit S.type_uses_complete. eauto. eauto. intros [e2 [C D]]. + exploit S.type_def_complete. eexact D. eauto. intros [e3 [E F]]. exists e3; split; auto. rewrite check_successor_complete by auto; simpl. rewrite A; simpl; rewrite C; simpl; rewrite E; auto. - (* tailcall *) exploit type_ros_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_regs_complete. eauto. eauto. intros [e2 [C D]]. + rewrite subtype_list_charact in H2. + exploit S.type_uses_complete. eauto. eauto. intros [e2 [C D]]. exists e2; split; auto. rewrite A; simpl; rewrite C; simpl. rewrite H1; rewrite dec_eq_true. @@ -821,41 +661,43 @@ Proof. exploit (H3 a); auto. intros. destruct a; try contradiction. apply IHl. intros; apply H3; auto. - (* builtin *) - exploit type_regs_complete. eauto. eauto. intros [e1 [A B]]. - exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]]. + rewrite subtype_list_charact in H0. + exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]]. + exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]]. exists e2; split; auto. rewrite check_successor_complete by auto; simpl. rewrite A; simpl; rewrite C; auto. - (* cond *) - exploit type_regs_complete. eauto. eauto. intros [e1 [A B]]. + rewrite subtype_list_charact in H0. + exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]]. exists e1; split; auto. rewrite check_successor_complete by auto; simpl. rewrite check_successor_complete by auto; simpl. auto. - (* jumptbl *) - exploit type_reg_complete. eauto. eauto. intros [e1 [A B]]. + exploit S.type_use_complete. eauto. eauto. intros [e1 [A B]]. exists e1; split; auto. replace (check_successors tbl) with (OK tt). simpl. rewrite A; simpl. apply zle_true; auto. revert H1. generalize tbl. induction tbl0; simpl; intros. auto. rewrite check_successor_complete by auto; simpl. apply IHtbl0; intros; auto. -- (* return *) - rewrite <- H0. destruct optres; simpl. - apply type_reg_complete; auto. - exists e; auto. +- (* return none *) + rewrite H0. exists e; auto. +- (* return some *) + rewrite H0. apply S.type_use_complete; auto. Qed. Lemma type_code_complete: forall te e, - (forall pc instr, f.(fn_code)!pc = Some instr -> wt_instr te f instr) -> - satisf te e -> - exists e', type_code e = OK e' /\ satisf te e'. + (forall pc instr, f.(fn_code)!pc = Some instr -> wt_instr f te instr) -> + S.satisf te e -> + exists e', type_code e = OK e' /\ S.satisf te e'. Proof. intros te e0 WTC SAT0. set (P := fun c res => - (forall pc i, c!pc = Some i -> wt_instr te f i) -> - exists e', res = OK e' /\ satisf te e'). + (forall pc i, c!pc = Some i -> wt_instr f te i) -> + exists e', res = OK e' /\ S.satisf te e'). assert (P f.(fn_code) (type_code e0)). { unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros. @@ -871,49 +713,16 @@ Proof. apply H; auto. Qed. -Lemma solve_rec_complete: - forall te q e changed, - satisf te e -> - (forall r1 r2, In (r1, r2) q -> te r1 = te r2) -> - exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'. -Proof. - induction q; simpl; intros. -- exists e; exists changed; auto. -- destruct a as [r3 r4]. - exploit type_move_complete. eauto. apply H0. left; eauto. - intros (changed1 & e1 & A & B). - destruct (IHq e1 (changed || changed1)) as (e2 & changed2 & C & D); auto. - exists e2; exists changed2; split; auto. rewrite A; simpl; rewrite C; auto. -Qed. - -Lemma solve_equations_complete: - forall te e, - satisf te e -> - exists e', solve_equations e = OK e' /\ satisf te e'. -Proof. - intros te e0. functional induction (solve_equations e0); intros. -- exists e; auto. -- destruct (solve_rec_complete te (te_eqs e) {| te_typ := te_typ e; te_eqs := nil |} false) - as (e1 & changed1 & A & B). - destruct H; split; intros. apply H; auto. contradiction. - exact (proj2 H). - rewrite e0 in A. inv A. auto. -- destruct (solve_rec_complete te (te_eqs e) {| te_typ := te_typ e; te_eqs := nil |} false) - as (e1 & changed1 & A & B). - destruct H; split; intros. apply H; auto. contradiction. - exact (proj2 H). - congruence. -Qed. - Theorem type_function_complete: forall te, wt_function f te -> exists te, type_function = OK te. Proof. intros. destruct H. - destruct (type_code_complete te {| te_typ := PTree.empty typ; te_eqs := nil |}) as (e1 & A & B). - auto. split; simpl; intros. rewrite PTree.gempty in H; congruence. contradiction. - destruct (type_regs_complete te f.(fn_params) f.(fn_sig).(sig_args) e1) as (e2 & C & D); auto. - destruct (solve_equations_complete te e2) as (e3 & E & F); auto. - exists (make_regenv e3); unfold type_function. + destruct (type_code_complete te S.initial) as (e1 & A & B). + auto. apply S.satisf_initial. + destruct (S.type_defs_complete te f.(fn_params) f.(fn_sig).(sig_args) e1) as (e2 & C & D); auto. + rewrite <- subtype_list_charact; auto. + destruct (S.solve_complete te e2) as (te' & E); auto. + exists te'; unfold type_function. rewrite A; simpl. rewrite C; simpl. rewrite E; simpl. unfold check_params_norepet. rewrite pred_dec_true; auto. simpl. rewrite check_successor_complete by auto. auto. @@ -973,32 +782,52 @@ Qed. Lemma wt_exec_Iop: forall (ge: genv) env f sp op args res s rs m v, - wt_instr env f (Iop op args res s) -> + wt_instr f env (Iop op args res s) -> eval_operation ge sp op rs##args m = Some v -> wt_regset env rs -> wt_regset env (rs#res <- v). Proof. intros. inv H. - simpl in H0. inv H0. apply wt_regset_assign; auto. rewrite <- H4; apply H1. - apply wt_regset_assign; auto. - replace (env res) with (snd (type_of_operation op)). + simpl in H0. inv H0. apply wt_regset_assign; auto. + eapply Val.has_subtype; eauto. + apply wt_regset_assign; auto. + eapply Val.has_subtype; eauto. eapply type_of_operation_sound; eauto. - rewrite <- H7; auto. Qed. Lemma wt_exec_Iload: forall env f chunk addr args dst s m a v rs, - wt_instr env f (Iload chunk addr args dst s) -> + wt_instr f env (Iload chunk addr args dst s) -> Mem.loadv chunk m a = Some v -> wt_regset env rs -> wt_regset env (rs#dst <- v). Proof. - intros. destruct a; simpl in H0; try discriminate. + intros. destruct a; simpl in H0; try discriminate. inv H. apply wt_regset_assign; auto. - inv H. rewrite H8. + eapply Val.has_subtype; eauto. eapply Mem.load_type; eauto. Qed. +Lemma wt_exec_Ibuiltin: + forall env f ef (ge: genv) args res s vargs m t vres m' rs, + wt_instr f env (Ibuiltin ef args res s) -> + external_call ef ge vargs m t vres m' -> + wt_regset env rs -> + wt_regset env (rs#res <- vres). +Proof. + intros. inv H. + apply wt_regset_assign; auto. + eapply Val.has_subtype; eauto. + eapply external_call_well_typed; eauto. +Qed. + +Lemma wt_instr_at: + forall f env pc i, + wt_function f env -> f.(fn_code)!pc = Some i -> wt_instr f env i. +Proof. + intros. inv H. eauto. +Qed. + Inductive wt_stackframes: list stackframe -> option typ -> Prop := | wt_stackframes_nil: wt_stackframes nil (Some Tint) @@ -1006,7 +835,7 @@ Inductive wt_stackframes: list stackframe -> option typ -> Prop := forall s res f sp pc rs env tyres, wt_function f env -> wt_regset env rs -> - env res = match tyres with None => Tint | Some t => t end -> + subtype (match tyres with None => Tint | Some t => t end) (env res) = true -> wt_stackframes s (sig_res (fn_sig f)) -> wt_stackframes (Stackframe res f sp pc rs :: s) tyres. @@ -1042,24 +871,13 @@ Lemma subject_reduction: forall (WT: wt_state st1), wt_state st2. Proof. induction 1; intros; inv WT; - try (generalize (wt_instrs _ _ WT_FN pc _ H); - intro WT_INSTR; - inv WT_INSTR). + try (generalize (wt_instrs _ _ WT_FN pc _ H); intros WTI). (* Inop *) econstructor; eauto. (* Iop *) - econstructor; eauto. - apply wt_regset_assign. auto. - simpl in H0. inv H0. rewrite <- H3. apply WT_RS. - econstructor; eauto. - apply wt_regset_assign. auto. - replace (env res) with (snd (type_of_operation op)). - eapply type_of_operation_sound; eauto. - rewrite <- H6. reflexivity. + econstructor; eauto. eapply wt_exec_Iop; eauto. (* Iload *) - econstructor; eauto. - apply wt_regset_assign. auto. rewrite H8. - eapply type_of_chunk_correct; eauto. + econstructor; eauto. eapply wt_exec_Iload; eauto. (* Istore *) econstructor; eauto. (* Icall *) @@ -1072,8 +890,8 @@ Proof. exact wt_p. exact H0. discriminate. econstructor; eauto. - econstructor; eauto. - rewrite <- H7. apply wt_regset_list. auto. + econstructor; eauto. inv WTI; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list. auto. (* Itailcall *) assert (wt_fundef fd). destruct ros; simpl in H0. @@ -1084,32 +902,28 @@ Proof. exact wt_p. exact H0. discriminate. econstructor; eauto. - rewrite H6; auto. - rewrite <- H7. apply wt_regset_list. auto. + inv WTI. rewrite H7; auto. + inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list. auto. (* Ibuiltin *) - econstructor; eauto. - apply wt_regset_assign. auto. - rewrite H6. eapply external_call_well_typed; eauto. + econstructor; eauto. eapply wt_exec_Ibuiltin; eauto. (* Icond *) econstructor; eauto. (* Ijumptable *) econstructor; eauto. (* Ireturn *) econstructor; eauto. - destruct or; simpl in *. - rewrite <- H2. apply WT_RS. exact I. + inv WTI; simpl. auto. rewrite H2. eapply Val.has_subtype; eauto. (* internal function *) - simpl in *. inv H5. inversion H1; subst. + simpl in *. inv H5. econstructor; eauto. - apply wt_init_regs; auto. rewrite wt_params0; auto. + inv H1. apply wt_init_regs; auto. eapply Val.has_subtype_list; eauto. (* external function *) - simpl in *. inv H5. - econstructor; eauto. + econstructor; eauto. simpl. change (Val.has_type res (proj_sig_res (ef_sig ef))). eapply external_call_well_typed; eauto. (* return *) - inv H1. econstructor; eauto. - apply wt_regset_assign; auto. congruence. + inv H1. econstructor; eauto. + apply wt_regset_assign; auto. eapply Val.has_subtype; eauto. Qed. End SUBJECT_REDUCTION. diff --git a/backend/Regalloc.ml b/backend/Regalloc.ml index 179b2cc..f8cd561 100644 --- a/backend/Regalloc.ml +++ b/backend/Regalloc.ml @@ -481,7 +481,17 @@ let add_interfs_instr g instr live = add_interfs_list g ftmp srcs; add_interfs_list g ftmp dsts; (* Take into account destroyed reg when accessing Incoming param *) if List.exists (function (L(S(Incoming, _, _))) -> true | _ -> false) srcs - then add_interfs_list g (vmreg temp_for_parent_frame) dsts + then add_interfs_list g (vmreg temp_for_parent_frame) dsts; + (* Take into account destroyed reg when initializing Outgoing + arguments of type Tsingle *) + if List.exists + (function (L(S(Outgoing, _, Tsingle))) -> true | _ -> false) dsts + then + List.iter + (fun mr -> + add_interfs_list g (vmreg mr) srcs; + IRC.add_interf g (vmreg mr) ftmp) + (destroyed_by_setstack Tsingle) | Xop(op, args, res) -> begin match is_two_address op args with | None -> @@ -825,7 +835,7 @@ let make_parmove srcs dsts itmp ftmp k = assert (Array.length dst = n); let status = Array.make n To_move in let temp_for = - function Tint -> itmp | Tfloat -> ftmp | Tlong -> assert false in + function Tint -> itmp | (Tfloat|Tsingle) -> ftmp | Tlong -> assert false in let code = ref [] in let add_move s d = match s, d with diff --git a/backend/Stackingproof.v b/backend/Stackingproof.v index 1808402..dfa81d8 100644 --- a/backend/Stackingproof.v +++ b/backend/Stackingproof.v @@ -413,7 +413,8 @@ Lemma gss_index_contains: Proof. intros. exploit gss_index_contains_base; eauto. intros [v' [A B]]. assert (v' = v). - destruct v; destruct (type_of_index idx); simpl in *; intuition congruence. + destruct v; destruct (type_of_index idx); simpl in *; + try contradiction; auto. rewrite Floats.Float.singleoffloat_of_single in B; auto. subst v'. auto. Qed. @@ -513,6 +514,20 @@ Proof. intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]]. exists v''; split; auto. inv H2; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto. + rewrite Floats.Float.singleoffloat_of_single; auto. + econstructor; eauto. +Qed. + +Lemma gss_index_contains_inj': + forall j idx m m' sp v v', + Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v' = Some m' -> + index_valid idx -> + val_inject j v v' -> + index_contains_inj j m' sp idx (Val.load_result (chunk_of_type (type_of_index idx)) v). +Proof. + intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]]. + exists v''; split; auto. + inv H1; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto. econstructor; eauto. Qed. @@ -783,7 +798,7 @@ Lemma agree_frame_set_reg: Proof. intros. inv H; constructor; auto; intros. rewrite Locmap.gso. auto. red. intuition congruence. - apply wt_setloc; auto. + apply wt_setreg; auto. Qed. Lemma agree_frame_set_regs: @@ -838,17 +853,16 @@ Lemma agree_frame_set_local: agree_frame j ls ls0 m sp m' sp' parent retaddr -> slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true -> val_inject j v v' -> - Val.has_type v ty -> Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_local ofs ty)) v' = Some m'' -> agree_frame j (Locmap.set (S Local ofs ty) v ls) ls0 m sp m'' sp' parent retaddr. Proof. intros. inv H. - change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_local ofs ty))) in H4. + change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_local ofs ty))) in H3. constructor; auto; intros. (* local *) unfold Locmap.set. destruct (Loc.eq (S Local ofs ty) (S Local ofs0 ty0)). - inv e. eapply gss_index_contains_inj; eauto with stacking. + inv e. eapply gss_index_contains_inj'; eauto with stacking. destruct (Loc.diff_dec (S Local ofs ty) (S Local ofs0 ty0)). eapply gso_index_contains_inj. eauto. eauto with stacking. eauto. simpl. simpl in d. intuition. @@ -870,7 +884,7 @@ Proof. (* perm *) red; intros. eapply Mem.perm_store_1; eauto. (* wt *) - apply wt_setloc; auto. + apply wt_setstack; auto. Qed. (** Preservation by assignment to outgoing slot *) @@ -880,19 +894,18 @@ Lemma agree_frame_set_outgoing: agree_frame j ls ls0 m sp m' sp' parent retaddr -> slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true -> val_inject j v v' -> - Val.has_type v ty -> Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_arg ofs ty)) v' = Some m'' -> agree_frame j (Locmap.set (S Outgoing ofs ty) v ls) ls0 m sp m'' sp' parent retaddr. Proof. intros. inv H. - change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_arg ofs ty))) in H4. + change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_arg ofs ty))) in H3. constructor; auto; intros. (* local *) rewrite Locmap.gso. eapply gso_index_contains_inj; eauto with stacking. red; auto. red; left; congruence. (* outgoing *) unfold Locmap.set. destruct (Loc.eq (S Outgoing ofs ty) (S Outgoing ofs0 ty0)). - inv e. eapply gss_index_contains_inj; eauto with stacking. + inv e. eapply gss_index_contains_inj'; eauto with stacking. destruct (Loc.diff_dec (S Outgoing ofs ty) (S Outgoing ofs0 ty0)). eapply gso_index_contains_inj; eauto with stacking. red. red in d. intuition. @@ -911,7 +924,7 @@ Proof. (* perm *) red; intros. eapply Mem.perm_store_1; eauto. (* wt *) - apply wt_setloc; auto. + apply wt_setstack; auto. Qed. (** General invariance property with respect to memory changes. *) @@ -1131,6 +1144,12 @@ Proof. apply check_mreg_list_incl; compute; auto. Qed. +Remark destroyed_by_setstack_caller_save: + forall ty, incl (destroyed_by_setstack ty) destroyed_at_call. +Proof. + destruct ty; apply check_mreg_list_incl; compute; auto. +Qed. + Remark destroyed_at_function_entry_caller_save: incl destroyed_at_function_entry destroyed_at_call. Proof. @@ -1226,7 +1245,7 @@ Hypothesis csregs_typ: forall r, In r csregs -> mreg_type r = ty. Hypothesis ls_temp_undef: - forall r, In r (destroyed_by_op Omove) -> ls (R r) = Vundef. + forall r, In r (destroyed_by_setstack ty) -> ls (R r) = Vundef. Hypothesis wt_ls: wt_locset ls. @@ -1269,10 +1288,10 @@ Proof. (* a store takes place *) exploit store_index_succeeds. apply (mkindex_valid a); auto with coqlib. eauto. instantiate (1 := rs a). intros [m1 ST]. - exploit (IHl k (undef_regs (destroyed_by_op Omove) rs) m1). auto with coqlib. auto. + exploit (IHl k (undef_regs (destroyed_by_setstack ty) rs) m1). auto with coqlib. auto. red; eauto with mem. apply agree_regs_exten with ls rs. auto. - intros. destruct (In_dec mreg_eq r (destroyed_by_op Omove)). + intros. destruct (In_dec mreg_eq r (destroyed_by_setstack ty)). left. apply ls_temp_undef; auto. right; split. auto. apply undef_regs_other; auto. intros [rs' [m' [A [B [C [D [E F]]]]]]]. @@ -1370,7 +1389,8 @@ Proof. intros; congruence. intros; simpl. destruct idx; auto. congruence. intros. apply int_callee_save_type. auto. - auto. +Local Transparent destroyed_by_setstack. + simpl. tauto. auto. apply incl_refl. apply int_callee_save_norepet. @@ -1388,8 +1408,8 @@ Proof. intros; congruence. intros; simpl. destruct idx; auto. congruence. intros. apply float_callee_save_type. auto. + simpl. tauto. auto. - auto. apply incl_refl. apply float_callee_save_norepet. eexact E. @@ -2491,7 +2511,7 @@ Proof. eapply index_contains_load_stack; eauto. econstructor; eauto with coqlib. apply agree_regs_set_reg; auto. - apply agree_frame_set_reg; auto. simpl. rewrite <- H. eapply agree_wt_ls; eauto. + apply agree_frame_set_reg; auto. simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto. (* Lgetstack, incoming *) unfold slot_valid in H0. InvBooleans. exploit incoming_slot_in_parameters; eauto. intros IN_ARGS. @@ -2517,7 +2537,7 @@ Proof. eapply agree_frame_set_reg; eauto. eapply agree_frame_set_reg; eauto. apply caller_save_reg_within_bounds. apply temp_for_parent_frame_caller_save. - subst ty. simpl. eapply agree_wt_ls; eauto. + simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto. (* Lgetstack, outgoing *) exploit agree_outgoing; eauto. intros [v [A B]]. econstructor; split. @@ -2525,7 +2545,8 @@ Proof. eapply index_contains_load_stack; eauto. econstructor; eauto with coqlib. apply agree_regs_set_reg; auto. - apply agree_frame_set_reg; auto. simpl; rewrite <- H; eapply agree_wt_ls; eauto. + apply agree_frame_set_reg; auto. + simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto. (* Lsetstack *) set (idx := match sl with @@ -2548,23 +2569,21 @@ Proof. econstructor. eapply Mem.store_outside_inject; eauto. intros. exploit agree_inj_unique; eauto. intros [EQ1 EQ2]; subst b' delta. - rewrite size_type_chunk in H5. + rewrite size_type_chunk in H4. exploit offset_of_index_disj_stack_data_2; eauto. exploit agree_bounds. eauto. apply Mem.perm_cur_max. eauto. omega. apply match_stacks_change_mach_mem with m'; auto. - eauto with mem. eauto with mem. intros. rewrite <- H4; eapply Mem.load_store_other; eauto. left; unfold block; omega. + eauto with mem. eauto with mem. intros. rewrite <- H3; eapply Mem.load_store_other; eauto. left; unfold block; omega. eauto. eauto. auto. apply agree_regs_set_slot. apply agree_regs_undef_regs; auto. destruct sl. eapply agree_frame_set_local. eapply agree_frame_undef_locs; eauto. - apply destroyed_by_op_caller_save. auto. auto. apply AGREGS. - rewrite H; eapply agree_wt_ls; eauto. + apply destroyed_by_setstack_caller_save. auto. auto. apply AGREGS. assumption. simpl in H0; discriminate. eapply agree_frame_set_outgoing. eapply agree_frame_undef_locs; eauto. - apply destroyed_by_op_caller_save. auto. auto. apply AGREGS. - rewrite H; eapply agree_wt_ls; eauto. + apply destroyed_by_setstack_caller_save. auto. auto. apply AGREGS. assumption. eauto with coqlib. @@ -2572,12 +2591,14 @@ Proof. assert (Val.has_type v (mreg_type res)). destruct (is_move_operation op args) as [arg|] eqn:?. exploit is_move_operation_correct; eauto. intros [EQ1 EQ2]; subst op args. - InvBooleans. simpl in H. inv H. rewrite <- H0. eapply agree_wt_ls; eauto. - replace (mreg_type res) with (snd (type_of_operation op)). + eapply Val.has_subtype; eauto. simpl in H; inv H. eapply agree_wt_ls; eauto. + destruct (type_of_operation op) as [targs tres] eqn:TYOP. + eapply Val.has_subtype; eauto. + replace tres with (snd (type_of_operation op)). eapply type_of_operation_sound; eauto. red; intros. subst op. simpl in Heqo. destruct args; simpl in H. discriminate. destruct args. discriminate. simpl in H. discriminate. - destruct (type_of_operation op) as [targs tres]. InvBooleans. auto. + rewrite TYOP; auto. assert (exists v', eval_operation ge (Vptr sp' Int.zero) (transl_op (make_env (function_bounds f)) op) rs0##args m' = Some v' /\ val_inject j v v'). @@ -2602,7 +2623,7 @@ Proof. eapply eval_addressing_inject; eauto. eapply match_stacks_preserves_globals; eauto. eapply agree_inj; eauto. eapply agree_reglist; eauto. - destruct H2 as [a' [A B]]. + destruct H1 as [a' [A B]]. exploit Mem.loadv_inject; eauto. intros [v' [C D]]. econstructor; split. apply plus_one. econstructor. @@ -2612,7 +2633,7 @@ Proof. apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto. apply agree_frame_set_reg. apply agree_frame_undef_locs; auto. apply destroyed_by_load_caller_save. auto. - simpl. rewrite H1. destruct a; simpl in H0; try discriminate. eapply Mem.load_type; eauto. + simpl. eapply Val.has_subtype; eauto. destruct a; simpl in H0; try discriminate. eapply Mem.load_type; eauto. (* Lstore *) assert (exists a', @@ -2698,7 +2719,7 @@ Proof. eapply agree_valid_mach; eauto. simpl. rewrite list_map_compose. change (fun x => Loc.type (R x)) with mreg_type. - rewrite H0. eapply external_call_well_typed'; eauto. + eapply Val.has_subtype_list; eauto. eapply external_call_well_typed'; eauto. (* Lannot *) exploit transl_annot_params_correct; eauto. |