summaryrefslogtreecommitdiff
path: root/backend
diff options
context:
space:
mode:
authorGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-05-19 09:54:40 +0000
committerGravatar xleroy <xleroy@fca1b0fc-160b-0410-b1d3-a4f43f01ea2e>2013-05-19 09:54:40 +0000
commitbe4d6e42dfa287b93b1a35ec820ab2a5aaf8c7ec (patch)
treec51b66e9154bc64cf4fd4191251f29d102928841 /backend
parent60e1fd71c7e97b2214daf574e0f41b55a3e0bceb (diff)
Merge of the float32 branch:
- added RTL type "Tsingle" - ABI-compatible passing of single-precision floats on ARM and x86 git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@2260 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e
Diffstat (limited to 'backend')
-rw-r--r--backend/Allocation.v134
-rw-r--r--backend/Allocproof.v314
-rw-r--r--backend/CMtypecheck.ml14
-rw-r--r--backend/CSEproof.v33
-rw-r--r--backend/IRC.ml12
-rw-r--r--backend/LTL.v4
-rw-r--r--backend/Linear.v2
-rw-r--r--backend/Lineartyping.v54
-rw-r--r--backend/Locations.v49
-rw-r--r--backend/Mach.v2
-rw-r--r--backend/PrintCminor.ml1
-rw-r--r--backend/PrintXTL.ml6
-rw-r--r--backend/RTLtyping.v834
-rw-r--r--backend/Regalloc.ml14
-rw-r--r--backend/Stackingproof.v81
15 files changed, 782 insertions, 772 deletions
diff --git a/backend/Allocation.v b/backend/Allocation.v
index e4d0972..a4dd3af 100644
--- a/backend/Allocation.v
+++ b/backend/Allocation.v
@@ -608,6 +608,20 @@ Definition subst_loc (l1 l2: loc) (e: eqs) : option eqs :=
(EqSet2.elements_between (select_loc_l l1) (select_loc_h l1) (eqs2 e))
(Some e).
+(** [loc_type_compat env l e] checks that for all equations [r = l] in [e],
+ the type [env r] of [r] is compatible with the type of [l]. *)
+
+Definition sel_type (k: equation_kind) (ty: typ) : typ :=
+ match k with
+ | Full => ty
+ | Low | High => Tint
+ end.
+
+Definition loc_type_compat (env: regenv) (l: loc) (e: eqs) : bool :=
+ EqSet2.for_all_between
+ (fun q => subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l))
+ (select_loc_l l) (select_loc_h l) (eqs2 e).
+
(** [add_equations [r1...rN] [m1...mN] e] adds to [e] the [N] equations
[ri = R mi [Full]]. Return [None] if the two lists have different lengths.
*)
@@ -628,7 +642,7 @@ Function add_equations_args (rl: list reg) (tyl: list typ) (ll: list loc) (e: eq
| nil, nil, nil => Some e
| r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
add_equations_args rl tyl ll (add_equation (Eq Low r1 l2) (add_equation (Eq High r1 l1) e))
- | r1 :: rl, (Tint|Tfloat) :: tyl, l1 :: ll =>
+ | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
add_equations_args rl tyl ll (add_equation (Eq Full r1 l1) e)
| _, _, _ => None
end.
@@ -752,9 +766,16 @@ Definition ros_compatible_tailcall (ros: mreg + ident) : bool :=
(** * The validator *)
Definition destroyed_by_move (src dst: loc) :=
- match src with
- | S sl ofs ty => destroyed_by_getstack sl
- | _ => destroyed_by_op Omove
+ match src, dst with
+ | S sl ofs ty, _ => destroyed_by_getstack sl
+ | _, S sl ofs ty => destroyed_by_setstack ty
+ | _, _ => destroyed_by_op Omove
+ end.
+
+Definition well_typed_move (env: regenv) (dst: loc) (e: eqs) : bool :=
+ match dst with
+ | R r => true
+ | S sl ofs ty => loc_type_compat env dst e
end.
(** Simulate the effect of a sequence of moves [mv] on a set of
@@ -763,14 +784,14 @@ Definition destroyed_by_move (src dst: loc) :=
must hold before the sequence of moves. Return [None] if the
set of equations [e] cannot hold after the sequence of moves. *)
-Fixpoint track_moves (mv: moves) (e: eqs) : option eqs :=
+Fixpoint track_moves (env: regenv) (mv: moves) (e: eqs) : option eqs :=
match mv with
| nil => Some e
| (src, dst) :: mv =>
- do e1 <- track_moves mv e;
- do e2 <- subst_loc dst src e1;
+ do e1 <- track_moves env mv e;
assertion (can_undef_except dst (destroyed_by_move src dst)) e1;
- Some e2
+ assertion (well_typed_move env dst e1);
+ subst_loc dst src e1
end.
(** [transfer_use_def args res args' res' undefs e] returns the set
@@ -802,89 +823,89 @@ Definition kind_second_word := if big_endian then Low else High.
equations that must hold "before" these instructions, or [None] if
impossible. *)
-Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option eqs :=
+Definition transfer_aux (f: RTL.function) (env: regenv) (shape: block_shape) (e: eqs) : option eqs :=
match shape with
| BSnop mv s =>
- track_moves mv e
+ track_moves env mv e
| BSmove src dst mv s =>
- track_moves mv (subst_reg dst src e)
+ track_moves env mv (subst_reg dst src e)
| BSmakelong src1 src2 dst mv s =>
let e1 := subst_reg_kind dst High src1 Full e in
let e2 := subst_reg_kind dst Low src2 Full e1 in
assertion (reg_unconstrained dst e2);
- track_moves mv e2
+ track_moves env mv e2
| BSlowlong src dst mv s =>
let e1 := subst_reg_kind dst Full src Low e in
assertion (reg_unconstrained dst e1);
- track_moves mv e1
+ track_moves env mv e1
| BShighlong src dst mv s =>
let e1 := subst_reg_kind dst Full src High e in
assertion (reg_unconstrained dst e1);
- track_moves mv e1
+ track_moves env mv e1
| BSop op args res mv1 args' res' mv2 s =>
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
do e2 <- transfer_use_def args res args' res' (destroyed_by_op op) e1;
- track_moves mv1 e2
+ track_moves env mv1 e2
| BSopdead op args res mv s =>
assertion (reg_unconstrained res e);
- track_moves mv e
+ track_moves env mv e
| BSload chunk addr args dst mv1 args' dst' mv2 s =>
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
do e2 <- transfer_use_def args dst args' dst' (destroyed_by_load chunk addr) e1;
- track_moves mv1 e2
+ track_moves env mv1 e2
| BSload2 addr addr' args dst mv1 args1' dst1' mv2 args2' dst2' mv3 s =>
- do e1 <- track_moves mv3 e;
+ do e1 <- track_moves env mv3 e;
let e2 := remove_equation (Eq kind_second_word dst (R dst2')) e1 in
assertion (loc_unconstrained (R dst2') e2);
assertion (can_undef (destroyed_by_load Mint32 addr') e2);
do e3 <- add_equations args args2' e2;
- do e4 <- track_moves mv2 e3;
+ do e4 <- track_moves env mv2 e3;
let e5 := remove_equation (Eq kind_first_word dst (R dst1')) e4 in
assertion (loc_unconstrained (R dst1') e5);
assertion (can_undef (destroyed_by_load Mint32 addr) e5);
assertion (reg_unconstrained dst e5);
do e6 <- add_equations args args1' e5;
- track_moves mv1 e6
+ track_moves env mv1 e6
| BSload2_1 addr args dst mv1 args' dst' mv2 s =>
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
let e2 := remove_equation (Eq kind_first_word dst (R dst')) e1 in
assertion (reg_loc_unconstrained dst (R dst') e2);
assertion (can_undef (destroyed_by_load Mint32 addr) e2);
do e3 <- add_equations args args' e2;
- track_moves mv1 e3
+ track_moves env mv1 e3
| BSload2_2 addr addr' args dst mv1 args' dst' mv2 s =>
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
let e2 := remove_equation (Eq kind_second_word dst (R dst')) e1 in
assertion (reg_loc_unconstrained dst (R dst') e2);
assertion (can_undef (destroyed_by_load Mint32 addr') e2);
do e3 <- add_equations args args' e2;
- track_moves mv1 e3
+ track_moves env mv1 e3
| BSloaddead chunk addr args dst mv s =>
assertion (reg_unconstrained dst e);
- track_moves mv e
+ track_moves env mv e
| BSstore chunk addr args src mv args' src' s =>
assertion (can_undef (destroyed_by_store chunk addr) e);
do e1 <- add_equations (src :: args) (src' :: args') e;
- track_moves mv e1
+ track_moves env mv e1
| BSstore2 addr addr' args src mv1 args1' src1' mv2 args2' src2' s =>
assertion (can_undef (destroyed_by_store Mint32 addr') e);
do e1 <- add_equations args args2'
(add_equation (Eq kind_second_word src (R src2')) e);
- do e2 <- track_moves mv2 e1;
+ do e2 <- track_moves env mv2 e1;
assertion (can_undef (destroyed_by_store Mint32 addr) e2);
do e3 <- add_equations args args1'
(add_equation (Eq kind_first_word src (R src1')) e2);
- track_moves mv1 e3
+ track_moves env mv1 e3
| BScall sg ros args res mv1 ros' mv2 s =>
let args' := loc_arguments sg in
let res' := map R (loc_result sg) in
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
do e2 <- remove_equations_res res (sig_res sg) res' e1;
assertion (forallb (fun l => reg_loc_unconstrained res l e2) res');
assertion (no_caller_saves e2);
do e3 <- add_equation_ros ros ros' e2;
do e4 <- add_equations_args args (sig_args sg) args' e3;
- track_moves mv1 e4
+ track_moves env mv1 e4
| BStailcall sg ros args mv1 ros' =>
let args' := loc_arguments sg in
assertion (tailcall_is_possible sg);
@@ -892,9 +913,9 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option
assertion (ros_compatible_tailcall ros');
do e1 <- add_equation_ros ros ros' empty_eqs;
do e2 <- add_equations_args args (sig_args sg) args' e1;
- track_moves mv1 e2
+ track_moves env mv1 e2
| BSbuiltin ef args res mv1 args' res' mv2 s =>
- do e1 <- track_moves mv2 e;
+ do e1 <- track_moves env mv2 e;
let args' := map R args' in
let res' := map R res' in
do e2 <- remove_equations_res res (sig_res (ef_sig ef)) res' e1;
@@ -902,23 +923,23 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option
assertion (forallb (fun l => loc_unconstrained l e2) res');
assertion (can_undef (destroyed_by_builtin ef) e2);
do e3 <- add_equations_args args (sig_args (ef_sig ef)) args' e2;
- track_moves mv1 e3
+ track_moves env mv1 e3
| BSannot txt typ args res mv1 args' s =>
do e1 <- add_equations_args args (annot_args_typ typ) args' e;
- track_moves mv1 e1
+ track_moves env mv1 e1
| BScond cond args mv args' s1 s2 =>
assertion (can_undef (destroyed_by_cond cond) e);
do e1 <- add_equations args args' e;
- track_moves mv e1
+ track_moves env mv e1
| BSjumptable arg mv arg' tbl =>
assertion (can_undef destroyed_by_jumptable e);
- track_moves mv (add_equation (Eq Full arg (R arg')) e)
+ track_moves env mv (add_equation (Eq Full arg (R arg')) e)
| BSreturn None mv =>
- track_moves mv empty_eqs
+ track_moves env mv empty_eqs
| BSreturn (Some arg) mv =>
let arg' := map R (loc_result (RTL.fn_sig f)) in
do e1 <- add_equations_res arg (sig_res (RTL.fn_sig f)) arg' empty_eqs;
- track_moves mv e1
+ track_moves env mv e1
end.
(** The main transfer function for the dataflow analysis. Like [transfer_aux],
@@ -926,7 +947,7 @@ Definition transfer_aux (f: RTL.function) (shape: block_shape) (e: eqs) : option
equations that must hold "after". It also handles error propagation
and reporting. *)
-Definition transfer (f: RTL.function) (shapes: PTree.t block_shape)
+Definition transfer (f: RTL.function) (env: regenv) (shapes: PTree.t block_shape)
(pc: node) (after: res eqs) : res eqs :=
match after with
| Error _ => after
@@ -934,7 +955,7 @@ Definition transfer (f: RTL.function) (shapes: PTree.t block_shape)
match shapes!pc with
| None => Error(MSG "At PC " :: POS pc :: MSG ": unmatched block" :: nil)
| Some shape =>
- match transfer_aux f shape e with
+ match transfer_aux f env shape e with
| None => Error(MSG "At PC " :: POS pc :: MSG ": invalid register allocation" :: nil)
| Some e' => OK e'
end
@@ -1082,8 +1103,8 @@ Definition successors_block_shape (bsh: block_shape) : list node :=
| BSreturn optarg mv => nil
end.
-Definition analyze (f: RTL.function) (bsh: PTree.t block_shape) :=
- DS.fixpoint (PTree.map1 successors_block_shape bsh) (transfer f bsh) nil.
+Definition analyze (f: RTL.function) (env: regenv) (bsh: PTree.t block_shape) :=
+ DS.fixpoint (PTree.map1 successors_block_shape bsh) (transfer f env bsh) nil.
(** * Validating and translating functions and programs *)
@@ -1107,7 +1128,7 @@ Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e
| nil, nil, nil => true
| r1 :: rl, Tlong :: tyl, l1 :: l2 :: ll =>
compat_left2 r1 l1 l2 e && compat_entry rl tyl ll e
- | r1 :: rl, (Tint|Tfloat) :: tyl, l1 :: ll =>
+ | r1 :: rl, (Tint|Tfloat|Tsingle) :: tyl, l1 :: ll =>
compat_left r1 l1 e && compat_entry rl tyl ll e
| _, _, _ => false
end.
@@ -1116,9 +1137,10 @@ Function compat_entry (rparams: list reg) (tys: list typ) (lparams: list loc) (e
point. We also check that the RTL and LTL functions agree in signature
and stack size. *)
-Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function) (e1: eqs) : option unit :=
+Definition check_entrypoints_aux (rtl: RTL.function) (ltl: LTL.function)
+ (env: regenv) (e1: eqs) : option unit :=
do mv <- pair_entrypoints rtl ltl;
- do e2 <- track_moves mv e1;
+ do e2 <- track_moves env mv e1;
assertion (compat_entry (RTL.fn_params rtl)
(sig_args (RTL.fn_sig rtl))
(loc_parameters (RTL.fn_sig rtl)) e2);
@@ -1131,10 +1153,10 @@ Local Close Scope option_monad_scope.
Local Open Scope error_monad_scope.
Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function)
- (bsh: PTree.t block_shape)
- (a: PMap.t LEq.t): res unit :=
- do e1 <- transfer rtl bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl);
- match check_entrypoints_aux rtl ltl e1 with
+ (env: regenv) (bsh: PTree.t block_shape)
+ (a: PMap.t LEq.t): res unit :=
+ do e1 <- transfer rtl env bsh (RTL.fn_entrypoint rtl) a!!(RTL.fn_entrypoint rtl);
+ match check_entrypoints_aux rtl ltl env e1 with
| None => Error (msg "invalid register allocation at entry point")
| Some _ => OK tt
end.
@@ -1143,11 +1165,11 @@ Definition check_entrypoints (rtl: RTL.function) (ltl: LTL.function)
a source RTL function and an LTL function generated by the external
register allocator. *)
-Definition check_function (rtl: RTL.function) (ltl: LTL.function) : res unit :=
+Definition check_function (rtl: RTL.function) (ltl: LTL.function) (env: regenv) : res unit :=
let bsh := pair_codes rtl ltl in
- match analyze rtl bsh with
+ match analyze rtl env bsh with
| None => Error (msg "allocation analysis diverges")
- | Some a => check_entrypoints rtl ltl bsh a
+ | Some a => check_entrypoints rtl ltl env bsh a
end.
(** [regalloc] is the external register allocator. It is written in OCaml
@@ -1160,10 +1182,10 @@ Parameter regalloc: RTL.function -> res LTL.function.
Definition transf_function (f: RTL.function) : res LTL.function :=
match type_function f with
| Error m => Error m
- | OK tyenv =>
+ | OK env =>
match regalloc f with
| Error m => Error m
- | OK tf => do x <- check_function f tf; OK tf
+ | OK tf => do x <- check_function f tf env; OK tf
end
end.
diff --git a/backend/Allocproof.v b/backend/Allocproof.v
index a4aa861..f05b05e 100644
--- a/backend/Allocproof.v
+++ b/backend/Allocproof.v
@@ -432,6 +432,7 @@ Proof.
eapply add_equation_satisf. eapply add_equation_satisf. eauto.
eapply add_equation_satisf. eauto.
eapply add_equation_satisf. eauto.
+ eapply add_equation_satisf. eauto.
congruence.
Qed.
@@ -464,6 +465,8 @@ Proof.
eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto.
- destruct H1. constructor; auto.
eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto.
+- destruct H1. constructor; auto.
+ eapply add_equation_lessdef with (q := Eq Full r1 l1). eapply add_equations_args_satisf; eauto.
- discriminate.
Qed.
@@ -635,15 +638,16 @@ Proof.
Qed.
Lemma loc_unconstrained_satisf:
- forall rs ls k r l e v,
+ forall rs ls k r mr e v,
+ let l := R mr in
satisf rs ls (remove_equation (Eq k r l) e) ->
- loc_unconstrained l (remove_equation (Eq k r l) e) = true ->
+ loc_unconstrained (R mr) (remove_equation (Eq k r l) e) = true ->
Val.lessdef (sel_val k rs#r) v ->
satisf rs (Locmap.set l v ls) e.
Proof.
intros; red; intros.
destruct (OrderedEquation.eq_dec q (Eq k r l)).
- subst q; simpl. rewrite Locmap.gss. auto.
+ subst q; simpl. unfold l; rewrite Locmap.gss_reg. auto.
assert (EqSet.In q (remove_equation (Eq k r l) e)).
simpl. ESD.fsetdec.
rewrite Locmap.gso. apply H; auto. eapply loc_unconstrained_sound; eauto.
@@ -660,15 +664,16 @@ Proof.
Qed.
Lemma parallel_assignment_satisf:
- forall k r l e rs ls v v',
+ forall k r mr e rs ls v v',
+ let l := R mr in
Val.lessdef (sel_val k v) v' ->
- reg_loc_unconstrained r l (remove_equation (Eq k r l) e) = true ->
+ reg_loc_unconstrained r (R mr) (remove_equation (Eq k r l) e) = true ->
satisf rs ls (remove_equation (Eq k r l) e) ->
satisf (rs#r <- v) (Locmap.set l v' ls) e.
Proof.
intros; red; intros.
destruct (OrderedEquation.eq_dec q (Eq k r l)).
- subst q; simpl. rewrite Regmap.gss; rewrite Locmap.gss; auto.
+ subst q; simpl. unfold l; rewrite Regmap.gss; rewrite Locmap.gss_reg; auto.
assert (EqSet.In q (remove_equation {| ekind := k; ereg := r; eloc := l |} e)).
simpl. ESD.fsetdec.
exploit reg_loc_unconstrained_sound; eauto. intros [A B].
@@ -676,7 +681,8 @@ Proof.
Qed.
Lemma parallel_assignment_satisf_2:
- forall rs ls res res' oty e e' v v',
+ forall rs ls res mres' oty e e' v v',
+ let res' := map R mres' in
remove_equations_res res oty res' e = Some e' ->
satisf rs ls e' ->
reg_unconstrained res e' = true ->
@@ -685,17 +691,21 @@ Lemma parallel_assignment_satisf_2:
satisf (rs#res <- v) (Locmap.setlist res' (encode_long oty v') ls) e.
Proof.
intros; red; intros.
+ assert (ISREG: forall l, In l res' -> exists mr, l = R mr).
+ { unfold res'; intros. exploit list_in_map_inv; eauto. intros [mr [A B]]. exists mr; auto. }
functional inversion H.
- (* Two 32-bit halves *)
- subst.
+ subst.
set (e' := remove_equation {| ekind := Low; ereg := res; eloc := l2 |}
(remove_equation {| ekind := High; ereg := res; eloc := l1 |} e)) in *.
- simpl in H2. InvBooleans. simpl.
+ rewrite <- H5 in H2. simpl in H2. InvBooleans. simpl.
destruct (OrderedEquation.eq_dec q (Eq Low res l2)).
- subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gss.
+ subst q; simpl. rewrite Regmap.gss.
+ destruct (ISREG l2) as [r2 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg.
apply Val.loword_lessdef; auto.
destruct (OrderedEquation.eq_dec q (Eq High res l1)).
- subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gso by auto. rewrite Locmap.gss.
+ subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gso by auto.
+ destruct (ISREG l1) as [r1 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg.
apply Val.hiword_lessdef; auto.
assert (EqSet.In q e'). unfold e', remove_equation; simpl; ESD.fsetdec.
rewrite Regmap.gso. rewrite ! Locmap.gso. auto.
@@ -703,11 +713,13 @@ Proof.
eapply loc_unconstrained_sound; eauto.
eapply reg_unconstrained_sound; eauto.
- (* One location *)
- subst. simpl in H2. InvBooleans.
+ subst. rewrite <- H5 in H2. simpl in H2. InvBooleans.
replace (encode_long oty v') with (v' :: nil).
set (e' := remove_equation {| ekind := Full; ereg := res; eloc := l1 |} e) in *.
destruct (OrderedEquation.eq_dec q (Eq Full res l1)).
- subst q; simpl. rewrite Regmap.gss. rewrite Locmap.gss. auto.
+ subst q; simpl. rewrite Regmap.gss.
+ destruct (ISREG l1) as [r1 EQ]. rewrite <- H5; auto with coqlib. rewrite EQ. rewrite Locmap.gss_reg.
+ auto.
assert (EqSet.In q e'). unfold e', remove_equation; simpl. ESD.fsetdec.
simpl. rewrite Regmap.gso. rewrite Locmap.gso. auto.
eapply loc_unconstrained_sound; eauto.
@@ -956,15 +968,70 @@ Proof.
split. apply eqs_same; auto. auto.
Qed.
+Lemma loc_type_compat_charact:
+ forall env l e q,
+ loc_type_compat env l e = true ->
+ EqSet.In q e ->
+ subtype (sel_type (ekind q) (env (ereg q))) (Loc.type l) = true \/ Loc.diff l (eloc q).
+Proof.
+ unfold loc_type_compat; intros.
+ rewrite EqSet2.for_all_between_iff in H.
+ destruct (select_loc_l l q) eqn: LL.
+ destruct (select_loc_h l q) eqn: LH.
+ left; apply H; auto. apply eqs_same; auto.
+ right. apply select_loc_charact. auto.
+ right. apply select_loc_charact. auto.
+ intros; subst; auto.
+ exact (select_loc_l_monotone l).
+ exact (select_loc_h_monotone l).
+Qed.
+
+Lemma well_typed_move_charact:
+ forall env l e k r rs,
+ well_typed_move env l e = true ->
+ EqSet.In (Eq k r l) e ->
+ wt_regset env rs ->
+ match l with
+ | R mr => True
+ | S sl ofs ty => Val.has_type (sel_val k rs#r) ty
+ end.
+Proof.
+ unfold well_typed_move; intros.
+ destruct l as [mr | sl ofs ty].
+ auto.
+ exploit loc_type_compat_charact; eauto. intros [A | A].
+ simpl in A. eapply Val.has_subtype; eauto.
+ generalize (H1 r). destruct k; simpl; intros.
+ auto.
+ destruct (rs#r); exact I.
+ destruct (rs#r); exact I.
+ eelim Loc.diff_not_eq. eexact A. auto.
+Qed.
+
+Remark val_lessdef_normalize:
+ forall v v' ty,
+ Val.has_type v ty -> Val.lessdef v v' ->
+ Val.lessdef v (Val.load_result (chunk_of_type ty) v').
+Proof.
+ intros. inv H0. rewrite Val.load_result_same; auto. auto.
+Qed.
+
Lemma subst_loc_satisf:
- forall src dst rs ls e e',
+ forall env src dst rs ls e e',
subst_loc dst src e = Some e' ->
+ well_typed_move env dst e = true ->
+ wt_regset env rs ->
satisf rs ls e' ->
satisf rs (Locmap.set dst (ls src) ls) e.
Proof.
intros; red; intros.
exploit in_subst_loc; eauto. intros [[A B] | [A B]].
- subst dst. rewrite Locmap.gss. apply (H0 _ B).
+ subst dst. rewrite Locmap.gss.
+ destruct q as [k r l]; simpl in *.
+ exploit well_typed_move_charact; eauto.
+ destruct l as [mr | sl ofs ty]; intros.
+ apply (H2 _ B).
+ apply val_lessdef_normalize; auto. apply (H2 _ B).
rewrite Locmap.gso; auto.
Qed.
@@ -1011,15 +1078,22 @@ Proof.
Qed.
Lemma subst_loc_undef_satisf:
- forall src dst rs ls ml e e',
+ forall env src dst rs ls ml e e',
subst_loc dst src e = Some e' ->
+ well_typed_move env dst e = true ->
can_undef_except dst ml e = true ->
+ wt_regset env rs ->
satisf rs ls e' ->
satisf rs (Locmap.set dst (ls src) (undef_regs ml ls)) e.
Proof.
intros; red; intros.
exploit in_subst_loc; eauto. intros [[A B] | [A B]].
- rewrite A. rewrite Locmap.gss. apply (H1 _ B).
+ subst dst. rewrite Locmap.gss.
+ destruct q as [k r l]; simpl in *.
+ exploit well_typed_move_charact; eauto.
+ destruct l as [mr | sl ofs ty]; intros.
+ apply (H3 _ B).
+ apply val_lessdef_normalize; auto. apply (H3 _ B).
rewrite Locmap.gso; auto. rewrite undef_regs_outside. eauto.
eapply can_undef_except_sound; eauto. apply Loc.diff_sym; auto.
Qed.
@@ -1214,6 +1288,11 @@ Proof.
red; intros. rewrite Regmap.gsspec. destruct (peq (ereg q) r1).
exploit compat_left_sound; eauto. intros [A B]. rewrite A; rewrite B; auto.
eapply IHb; eauto.
+- (* a param of type Tsingle *)
+ InvBooleans. simpl in H0. inv H0. simpl.
+ red; intros. rewrite Regmap.gsspec. destruct (peq (ereg q) r1).
+ exploit compat_left_sound; eauto. intros [A B]. rewrite A; rewrite B; auto.
+ eapply IHb; eauto.
- (* error case *)
discriminate.
Qed.
@@ -1256,29 +1335,29 @@ Qed.
(** * Properties of the dataflow analysis *)
Lemma analyze_successors:
- forall f bsh an pc bs s e,
- analyze f bsh = Some an ->
+ forall f env bsh an pc bs s e,
+ analyze f env bsh = Some an ->
bsh!pc = Some bs ->
In s (successors_block_shape bs) ->
an!!pc = OK e ->
- exists e', transfer f bsh s an!!s = OK e' /\ EqSet.Subset e' e.
+ exists e', transfer f env bsh s an!!s = OK e' /\ EqSet.Subset e' e.
Proof.
unfold analyze; intros. exploit DS.fixpoint_solution; eauto.
instantiate (1 := pc). instantiate (1 := s).
unfold successors_list. rewrite PTree.gmap1. rewrite H0. simpl. auto.
- rewrite H2. unfold DS.L.ge. destruct (transfer f bsh s an#s); intros.
+ rewrite H2. unfold DS.L.ge. destruct (transfer f env bsh s an#s); intros.
exists e0; auto.
contradiction.
Qed.
Lemma satisf_successors:
- forall f bsh an pc bs s e rs ls,
- analyze f bsh = Some an ->
+ forall f env bsh an pc bs s e rs ls,
+ analyze f env bsh = Some an ->
bsh!pc = Some bs ->
In s (successors_block_shape bs) ->
an!!pc = OK e ->
satisf rs ls e ->
- exists e', transfer f bsh s an!!s = OK e' /\ satisf rs ls e'.
+ exists e', transfer f env bsh s an!!s = OK e' /\ satisf rs ls e'.
Proof.
intros. exploit analyze_successors; eauto. intros [e' [A B]].
exists e'; split; auto. eapply satisf_incr; eauto.
@@ -1288,18 +1367,18 @@ Qed.
Inductive transf_function_spec (f: RTL.function) (tf: LTL.function) : Prop :=
| transf_function_spec_intro:
- forall tyenv an mv k e1 e2,
- wt_function f tyenv ->
- analyze f (pair_codes f tf) = Some an ->
- (LTL.fn_code tf)!(LTL.fn_entrypoint tf) = Some(expand_moves mv (Lbranch (RTL.fn_entrypoint f) :: k)) ->
- wf_moves mv ->
- transfer f (pair_codes f tf) (RTL.fn_entrypoint f) an!!(RTL.fn_entrypoint f) = OK e1 ->
- track_moves mv e1 = Some e2 ->
- compat_entry (RTL.fn_params f) (sig_args (RTL.fn_sig f)) (loc_parameters (fn_sig tf)) e2 = true ->
- can_undef destroyed_at_function_entry e2 = true ->
- RTL.fn_stacksize f = LTL.fn_stacksize tf ->
- RTL.fn_sig f = LTL.fn_sig tf ->
- transf_function_spec f tf.
+ forall env an mv k e1 e2,
+ wt_function f env ->
+ analyze f env (pair_codes f tf) = Some an ->
+ (LTL.fn_code tf)!(LTL.fn_entrypoint tf) = Some(expand_moves mv (Lbranch (RTL.fn_entrypoint f) :: k)) ->
+ wf_moves mv ->
+ transfer f env (pair_codes f tf) (RTL.fn_entrypoint f) an!!(RTL.fn_entrypoint f) = OK e1 ->
+ track_moves env mv e1 = Some e2 ->
+ compat_entry (RTL.fn_params f) (sig_args (RTL.fn_sig f)) (loc_parameters (fn_sig tf)) e2 = true ->
+ can_undef destroyed_at_function_entry e2 = true ->
+ RTL.fn_stacksize f = LTL.fn_stacksize tf ->
+ RTL.fn_sig f = LTL.fn_sig tf ->
+ transf_function_spec f tf.
Lemma transf_function_inv:
forall f tf,
@@ -1307,13 +1386,13 @@ Lemma transf_function_inv:
transf_function_spec f tf.
Proof.
unfold transf_function; intros.
- destruct (type_function f) as [tyenv|] eqn:TY; try discriminate.
+ destruct (type_function f) as [env|] eqn:TY; try discriminate.
destruct (regalloc f); try discriminate.
- destruct (check_function f f0) as [] eqn:?; inv H.
+ destruct (check_function f f0 env) as [] eqn:?; inv H.
unfold check_function in Heqr.
- destruct (analyze f (pair_codes f tf)) as [an|] eqn:?; try discriminate.
+ destruct (analyze f env (pair_codes f tf)) as [an|] eqn:?; try discriminate.
monadInv Heqr.
- destruct (check_entrypoints_aux f tf x) as [y|] eqn:?; try discriminate.
+ destruct (check_entrypoints_aux f tf env x) as [y|] eqn:?; try discriminate.
unfold check_entrypoints_aux, pair_entrypoints in Heqo0. MonadInv.
exploit extract_moves_sound; eauto. intros [A B]. subst b.
exploit check_succ_sound; eauto. intros [k EQ1]. subst b0.
@@ -1321,21 +1400,24 @@ Proof.
Qed.
Lemma invert_code:
- forall f tf pc i opte e,
+ forall f env tf pc i opte e,
+ wt_function f env ->
(RTL.fn_code f)!pc = Some i ->
- transfer f (pair_codes f tf) pc opte = OK e ->
+ transfer f env (pair_codes f tf) pc opte = OK e ->
exists eafter, exists bsh, exists bb,
opte = OK eafter /\
(pair_codes f tf)!pc = Some bsh /\
(LTL.fn_code tf)!pc = Some bb /\
expand_block_shape bsh i bb /\
- transfer_aux f bsh eafter = Some e.
+ transfer_aux f env bsh eafter = Some e /\
+ wt_instr f env i.
Proof.
- intros. destruct opte as [eafter|]; simpl in H0; try discriminate. exists eafter.
+ intros. destruct opte as [eafter|]; simpl in H1; try discriminate. exists eafter.
destruct (pair_codes f tf)!pc as [bsh|] eqn:?; try discriminate. exists bsh.
exploit matching_instr_block; eauto. intros [bb [A B]].
- destruct (transfer_aux f bsh eafter) as [e1|] eqn:?; inv H0.
- exists bb. auto.
+ destruct (transfer_aux f env bsh eafter) as [e1|] eqn:?; inv H1.
+ exists bb. exploit wt_instr_at; eauto.
+ tauto.
Qed.
(** * Semantic preservation *)
@@ -1409,10 +1491,11 @@ Proof.
Qed.
Lemma exec_moves:
- forall mv rs s f sp bb m e e' ls,
- track_moves mv e = Some e' ->
+ forall mv env rs s f sp bb m e e' ls,
+ track_moves env mv e = Some e' ->
wf_moves mv ->
satisf rs ls e' ->
+ wt_regset env rs ->
exists ls',
star step tge (Block s f sp (expand_moves mv bb) ls m)
E0 (Block s f sp bb ls' m)
@@ -1424,7 +1507,7 @@ Opaque destroyed_by_op.
- unfold expand_moves; simpl. inv H. exists ls; split. apply star_refl. auto.
(* step *)
- destruct a as [src dst]. unfold expand_moves. simpl.
- destruct (track_moves mv e) as [e1|] eqn:?; MonadInv.
+ destruct (track_moves env mv e) as [e1|] eqn:?; MonadInv.
assert (wf_moves mv). red; intros. apply H0; auto with coqlib.
destruct src as [rsrc | ssrc]; destruct dst as [rdst | sdst].
(* reg-reg *)
@@ -1450,16 +1533,17 @@ Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> signa
sg.(sig_res) = Some Tint ->
match_stackframes nil nil sg
| match_stackframes_cons:
- forall res f sp pc rs s tf bb ls ts sg an e tyenv
+ forall res f sp pc rs s tf bb ls ts sg an e env
(STACKS: match_stackframes s ts (fn_sig tf))
(FUN: transf_function f = OK tf)
- (ANL: analyze f (pair_codes f tf) = Some an)
- (EQ: transfer f (pair_codes f tf) pc an!!pc = OK e)
- (WTF: wt_function f tyenv)
- (WTRS: wt_regset tyenv rs)
- (WTRES: tyenv res = proj_sig_res sg)
+ (ANL: analyze f env (pair_codes f tf) = Some an)
+ (EQ: transfer f env (pair_codes f tf) pc an!!pc = OK e)
+ (WTF: wt_function f env)
+ (WTRS: wt_regset env rs)
+ (WTRES: subtype (proj_sig_res sg) (env res) = true)
(STEPS: forall v ls1 m,
Val.lessdef_list (encode_long (sig_res sg) v) (map ls1 (map R (loc_result sg))) ->
+ Val.has_type v (env res) ->
agree_callee_save ls ls1 ->
exists ls2,
star LTL.step tge (Block ts tf sp bb ls1 m)
@@ -1472,15 +1556,15 @@ Inductive match_stackframes: list RTL.stackframe -> list LTL.stackframe -> signa
Inductive match_states: RTL.state -> LTL.state -> Prop :=
| match_states_intro:
- forall s f sp pc rs m ts tf ls m' an e tyenv
+ forall s f sp pc rs m ts tf ls m' an e env
(STACKS: match_stackframes s ts (fn_sig tf))
(FUN: transf_function f = OK tf)
- (ANL: analyze f (pair_codes f tf) = Some an)
- (EQ: transfer f (pair_codes f tf) pc an!!pc = OK e)
+ (ANL: analyze f env (pair_codes f tf) = Some an)
+ (EQ: transfer f env (pair_codes f tf) pc an!!pc = OK e)
(SAT: satisf rs ls e)
(MEM: Mem.extends m m')
- (WTF: wt_function f tyenv)
- (WTRS: wt_regset tyenv rs),
+ (WTF: wt_function f env)
+ (WTRS: wt_regset env rs),
match_states (RTL.State s f sp pc rs m)
(LTL.State ts tf sp pc ls m')
| match_states_call:
@@ -1518,29 +1602,31 @@ Qed.
Ltac UseShape :=
match goal with
- | [ CODE: (RTL.fn_code _)!_ = Some _, EQ: transfer _ _ _ _ = OK _ |- _ ] =>
- destruct (invert_code _ _ _ _ _ _ CODE EQ) as (eafter & bsh & bb & AFTER & BSH & TCODE & EBS & TR);
+ | [ WT: wt_function _ _, CODE: (RTL.fn_code _)!_ = Some _, EQ: transfer _ _ _ _ _ = OK _ |- _ ] =>
+ destruct (invert_code _ _ _ _ _ _ _ WT CODE EQ) as (eafter & bsh & bb & AFTER & BSH & TCODE & EBS & TR & WTI);
inv EBS; unfold transfer_aux in TR; MonadInv
end.
-Ltac UseType :=
- match goal with
- | [ CODE: (RTL.fn_code _)!_ = Some _, WTF: wt_function _ _ |- _ ] =>
- generalize (wt_instrs _ _ WTF _ _ CODE); intro WTI
- end.
-
Remark addressing_not_long:
forall env f addr args dst s r,
- wt_instr env f (Iload Mint64 addr args dst s) ->
+ wt_instr f env (Iload Mint64 addr args dst s) ->
In r args -> r <> dst.
Proof.
intros.
assert (forall ty, In ty (type_of_addressing addr) -> ty = Tint).
{ intros. destruct addr; simpl in H1; intuition. }
- inv H.
+ inv H.
assert (env r = Tint).
- { apply H1. rewrite <- H5. apply in_map; auto. }
- simpl in H8; congruence.
+ { generalize args (type_of_addressing addr) H0 H1 H5.
+ induction args0; simpl; intros.
+ contradiction.
+ destruct l. discriminate. InvBooleans.
+ destruct H2. subst a.
+ assert (t = Tint) by auto with coqlib. subst t.
+ destruct (env r); auto || discriminate.
+ eauto with coqlib.
+ }
+ red; intros; subst r. rewrite H in H8; discriminate.
Qed.
(** The proof of semantic preservation is a simulation argument of the
@@ -1551,7 +1637,7 @@ Lemma step_simulation:
forall S1', match_states S1 S1' ->
exists S2', plus LTL.step tge S1' t S2' /\ match_states S2 S2'.
Proof.
- induction 1; intros S1' MS; inv MS; try UseType; try UseShape.
+ induction 1; intros S1' MS; inv MS; try UseShape.
(* nop *)
exploit exec_moves; eauto. intros [ls1 [X Y]].
@@ -1563,7 +1649,8 @@ Proof.
econstructor; eauto.
(* op move *)
-- simpl in H0. inv H0.
+- generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'.
+ simpl in H0. inv H0.
exploit (exec_moves mv); eauto. intros [ls1 [X Y]].
econstructor; split.
eapply plus_left. econstructor; eauto.
@@ -1572,7 +1659,6 @@ Proof.
exploit satisf_successors; eauto. simpl; eauto. eapply subst_reg_satisf; eauto.
intros [enext [U V]].
econstructor; eauto.
- inv WTI. apply wt_regset_assign; auto. rewrite <- H2. apply WTRS. congruence.
(* op makelong *)
- generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'.
@@ -1614,7 +1700,8 @@ Proof.
econstructor; eauto.
(* op regular *)
-- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
+- generalize (wt_exec_Iop _ _ _ _ _ _ _ _ _ _ _ WTI H0 WTRS). intros WTRS'.
+ exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
exploit transfer_use_def_satisf; eauto. intros [X Y].
exploit eval_operation_lessdef; eauto. intros [v' [F G]].
exploit (exec_moves mv2); eauto. intros [ls2 [A2 B2]].
@@ -1627,7 +1714,6 @@ Proof.
eauto. eauto. eauto. traceEq.
exploit satisf_successors; eauto. simpl; eauto. intros [enext [U V]].
econstructor; eauto.
- eapply wt_exec_Iop; eauto.
(* op dead *)
- exploit exec_moves; eauto. intros [ls1 [X Y]].
@@ -1642,7 +1728,8 @@ Proof.
eapply wt_exec_Iop; eauto.
(* load regular *)
-- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
+- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'.
+ exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
exploit transfer_use_def_satisf; eauto. intros [X Y].
exploit eval_addressing_lessdef; eauto. intros [a' [F G]].
exploit Mem.loadv_extends; eauto. intros [v' [P Q]].
@@ -1656,10 +1743,10 @@ Proof.
eauto. eauto. eauto. traceEq.
exploit satisf_successors; eauto. simpl; eauto. intros [enext [U V]].
econstructor; eauto.
- eapply wt_exec_Iload; eauto.
(* load pair *)
-- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
+- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'.
+ exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
set (v2' := if big_endian then v2 else v1) in *.
set (v1' := if big_endian then v1 else v2) in *.
exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
@@ -1710,10 +1797,10 @@ Proof.
eauto. eauto. eauto. eauto. eauto. traceEq.
exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]].
econstructor; eauto.
- eapply wt_exec_Iload; eauto.
(* load first word of a pair *)
-- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
+- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'.
+ exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
set (v2' := if big_endian then v2 else v1) in *.
set (v1' := if big_endian then v1 else v2) in *.
exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
@@ -1741,10 +1828,10 @@ Proof.
eauto. eauto. eauto. traceEq.
exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]].
econstructor; eauto.
- eapply wt_exec_Iload; eauto.
(* load second word of a pair *)
-- exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
+- generalize (wt_exec_Iload _ _ _ _ _ _ _ _ _ _ _ WTI H1 WTRS). intros WTRS'.
+ exploit Mem.loadv_int64_split; eauto. intros (v1 & v2 & LOAD1 & LOAD2 & V12).
set (v2' := if big_endian then v2 else v1) in *.
set (v1' := if big_endian then v1 else v2) in *.
exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
@@ -1773,7 +1860,6 @@ Proof.
eauto. eauto. eauto. traceEq.
exploit satisf_successors; eauto. simpl; eauto. intros [enext [W Z]].
econstructor; eauto.
- eapply wt_exec_Iload; eauto.
(* load dead *)
- exploit exec_moves; eauto. intros [ls1 [X Y]].
@@ -1866,18 +1952,20 @@ Proof.
econstructor; eauto.
econstructor; eauto.
inv WTI. rewrite SIG. auto.
- intros. exploit (exec_moves mv2); eauto.
+ intros. exploit (exec_moves mv2). eauto. eauto.
eapply function_return_satisf with (v := v) (ls_before := ls1) (ls_after := ls0); eauto.
eapply add_equation_ros_satisf; eauto.
eapply add_equations_args_satisf; eauto.
- congruence. intros [ls2 [A2 B2]].
+ congruence.
+ apply wt_regset_assign; auto.
+ intros [ls2 [A2 B2]].
exists ls2; split.
eapply star_right. eexact A2. constructor. traceEq.
apply satisf_incr with eafter; auto.
rewrite SIG. eapply add_equations_args_lessdef; eauto.
- inv WTI. rewrite <- H7. apply wt_regset_list; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
simpl. red; auto.
- rewrite SIG. inv WTI. rewrite <- H7. apply wt_regset_list; auto.
+ inv WTI. rewrite SIG. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
(* tailcall *)
- set (sg := RTL.funsig fd) in *.
@@ -1898,15 +1986,16 @@ Proof.
eapply match_stackframes_change_sig; eauto. rewrite SIG. rewrite e0. decEq.
destruct (transf_function_inv _ _ FUN); auto.
rewrite SIG. rewrite return_regs_arg_values; auto. eapply add_equations_args_lessdef; eauto.
- inv WTI. rewrite <- H8. apply wt_regset_list; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
apply return_regs_agree_callee_save.
- rewrite SIG. inv WTI. rewrite <- H8. apply wt_regset_list; auto.
+ rewrite SIG. inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
(* builtin *)
-- exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
+- assert (WTRS': wt_regset env (rs#res <- v)) by (eapply wt_exec_Ibuiltin; eauto).
+ exploit (exec_moves mv1); eauto. intros [ls1 [A1 B1]].
exploit external_call_mem_extends; eauto.
eapply add_equations_args_lessdef; eauto.
- inv WTI. rewrite <- H4. apply wt_regset_list; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
intros [v' [m'' [F [G [J K]]]]].
assert (E: map ls1 (map R args') = reglist ls1 args').
{ unfold reglist. rewrite list_map_compose. auto. }
@@ -1932,13 +2021,11 @@ Proof.
exploit satisf_successors; eauto. simpl; eauto.
intros [enext [U V]].
econstructor; eauto.
- inv WTI. apply wt_regset_assign; auto. rewrite H9.
- eapply external_call_well_typed; eauto.
(* annot *)
- exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]].
exploit external_call_mem_extends; eauto. eapply add_equations_args_lessdef; eauto.
- inv WTI. simpl in H4. rewrite <- H4. apply wt_regset_list; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
intros [v' [m'' [F [G [J K]]]]].
assert (v = Vundef). red in H0; inv H0. auto.
econstructor; split.
@@ -1989,7 +2076,17 @@ Proof.
(* return *)
- destruct (transf_function_inv _ _ FUN).
exploit Mem.free_parallel_extends; eauto. rewrite H10. intros [m'' [P Q]].
- destruct or as [r|]; MonadInv.
+ inv WTI; MonadInv.
+ (* without an argument *)
++ exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]].
+ econstructor; split.
+ eapply plus_left. econstructor; eauto.
+ eapply star_right. eexact A1.
+ econstructor. eauto. eauto. traceEq.
+ simpl. econstructor; eauto.
+ unfold encode_long, loc_result. rewrite <- H11; rewrite H13. simpl; auto.
+ apply return_regs_agree_callee_save.
+ constructor.
(* with an argument *)
+ exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]].
econstructor; split.
@@ -2003,26 +2100,20 @@ Proof.
rewrite !list_map_compose. apply list_map_exten; intros.
unfold return_regs. apply pred_dec_true. eapply loc_result_caller_save; eauto.
apply return_regs_agree_callee_save.
- inv WTI. simpl in H13. unfold proj_sig_res. rewrite <- H11; rewrite <- H13. apply WTRS.
- (* without an argument *)
-+ exploit (exec_moves mv); eauto. intros [ls1 [A1 B1]].
- econstructor; split.
- eapply plus_left. econstructor; eauto.
- eapply star_right. eexact A1.
- econstructor. eauto. eauto. traceEq.
- simpl. econstructor; eauto.
- unfold encode_long, loc_result. destruct (sig_res (fn_sig tf)) as [[]|]; simpl; auto.
- apply return_regs_agree_callee_save.
- constructor.
+ unfold proj_sig_res. rewrite <- H11; rewrite H13.
+ eapply Val.has_subtype; eauto.
(* internal function *)
- monadInv FUN. simpl in *.
destruct (transf_function_inv _ _ EQ).
exploit Mem.alloc_extends; eauto. apply Zle_refl. rewrite H8; apply Zle_refl.
intros [m'' [U V]].
+ assert (WTRS: wt_regset env (init_regs args (fn_params f))).
+ { apply wt_init_regs. inv H0. eapply Val.has_subtype_list; eauto. congruence. }
exploit (exec_moves mv). eauto. eauto.
eapply can_undef_satisf; eauto. eapply compat_entry_satisf; eauto.
- rewrite call_regs_param_values. rewrite H9. eexact ARGS.
+ rewrite call_regs_param_values. rewrite H9. eexact ARGS.
+ exact WTRS.
intros [ls1 [A B]].
econstructor; split.
eapply plus_left. econstructor; eauto.
@@ -2031,7 +2122,6 @@ Proof.
econstructor; eauto.
eauto. eauto. traceEq.
econstructor; eauto.
- apply wt_init_regs. inv H0. rewrite wt_params. congruence.
(* external function *)
- exploit external_call_mem_extends; eauto. intros [v' [m'' [F [G [J K]]]]].
@@ -2059,11 +2149,11 @@ Proof.
(* return *)
- inv STACKS.
- exploit STEPS; eauto. intros [ls2 [A B]].
+ exploit STEPS; eauto. eapply Val.has_subtype; eauto. intros [ls2 [A B]].
econstructor; split.
eapply plus_left. constructor. eexact A. traceEq.
econstructor; eauto.
- apply wt_regset_assign; auto. congruence.
+ apply wt_regset_assign; auto. eapply Val.has_subtype; eauto.
Qed.
Lemma initial_states_simulation:
diff --git a/backend/CMtypecheck.ml b/backend/CMtypecheck.ml
index 1a19f71..1ca13ff 100644
--- a/backend/CMtypecheck.ml
+++ b/backend/CMtypecheck.ml
@@ -15,25 +15,31 @@
(* A type-checker for Cminor *)
+(* FIXME: proper support for type Tsingle *)
+
open Printf
open Datatypes
open Camlcoq
open AST
+open PrintAST
open Integers
open Cminor
exception Error of string
-let name_of_typ = function Tint -> "int" | Tfloat -> "float" | Tlong -> "long"
-
type ty = Base of typ | Var of ty option ref
let newvar () = Var (ref None)
let tint = Base Tint
let tfloat = Base Tfloat
let tlong = Base Tlong
+let tsingle = Base Tsingle
-let ty_of_typ = function Tint -> tint | Tfloat -> tfloat | Tlong -> tlong
+let ty_of_typ = function
+ | Tint -> tint
+ | Tfloat -> tfloat
+ | Tlong -> tlong
+ | Tsingle -> tsingle
let ty_of_sig_args tyl = List.map ty_of_typ tyl
@@ -47,7 +53,7 @@ let unify t1 t2 =
| Base b1, Base b2 ->
if b1 <> b2 then
raise (Error (sprintf "Expected type %s, actual type %s\n"
- (name_of_typ b1) (name_of_typ b2)))
+ (name_of_type b1) (name_of_type b2)))
| Base b, Var r -> r := Some (Base b)
| Var r, Base b -> r := Some (Base b)
| Var r1, Var r2 -> r1 := Some (Var r2)
diff --git a/backend/CSEproof.v b/backend/CSEproof.v
index 65f67ad..e0dbce8 100644
--- a/backend/CSEproof.v
+++ b/backend/CSEproof.v
@@ -661,7 +661,7 @@ Lemma add_store_satisfiable:
numbering_satisfiable ge sp rs m n ->
eval_addressing ge sp addr rs##args = Some a ->
Mem.storev chunk m a (rs#src) = Some m' ->
- Val.has_type (rs#src) (type_of_chunk chunk) ->
+ Val.has_type (rs#src) (type_of_chunk_use chunk) ->
numbering_satisfiable ge sp rs m' (add_store n chunk addr args src).
Proof.
intros. unfold add_store. destruct H0 as [valu A].
@@ -916,7 +916,7 @@ Inductive match_stackframes: list stackframe -> list stackframe -> typ -> Prop :
(ANALYZE: analyze f = Some approx)
(WTF: wt_function f tyenv)
(WTREGS: wt_regset tyenv rs)
- (TYRES: tyenv res = ty)
+ (TYRES: subtype ty (tyenv res) = true)
(SAT: forall v m, numbering_satisfiable ge sp (rs#res <- v) m approx!!pc)
(STACKS: match_stackframes s s' (proj_sig_res (fn_sig f))),
match_stackframes
@@ -998,7 +998,7 @@ Proof.
rewrite <- RES. apply eval_operation_preserved. exact symbols_preserved.
(* state matching *)
econstructor; eauto.
- eapply wt_exec_Iop; eauto. eapply wt_instrs; eauto.
+ eapply wt_exec_Iop; eauto. eapply wt_instr_at; eauto.
eapply analysis_correct_1; eauto. simpl; auto.
unfold transfer; rewrite H.
eapply add_op_satisfiable; eauto. eapply wf_analyze; eauto.
@@ -1025,7 +1025,7 @@ Proof.
eapply exec_Iload; eauto.
(* state matching *)
econstructor; eauto.
- eapply wt_exec_Iload; eauto. eapply wt_instrs; eauto.
+ eapply wt_exec_Iload; eauto. eapply wt_instr_at; eauto.
eapply analysis_correct_1; eauto. simpl; auto.
unfold transfer; rewrite H.
eapply add_load_satisfiable; eauto. eapply wf_analyze; eauto.
@@ -1048,42 +1048,40 @@ Proof.
eapply analysis_correct_1; eauto. simpl; auto.
unfold transfer; rewrite H.
eapply add_store_satisfiable; eauto. eapply wf_analyze; eauto.
- generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI.
- rewrite <- H8. auto.
+ exploit wt_instr_at; eauto. intros WTI; inv WTI.
+ eapply Val.has_subtype; eauto.
(* Icall *)
exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']].
econstructor; split.
eapply exec_Icall; eauto.
apply sig_preserved; auto.
- generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI.
+ exploit wt_instr_at; eauto. intros WTI; inv WTI.
econstructor; eauto.
econstructor; eauto.
intros. eapply analysis_correct_1; eauto. simpl; auto.
unfold transfer; rewrite H.
apply empty_numbering_satisfiable.
- rewrite <- H7. apply wt_regset_list; auto.
+ eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
(* Itailcall *)
exploit find_function_translated; eauto. intros [tf [FIND' TRANSF']].
econstructor; split.
eapply exec_Itailcall; eauto.
apply sig_preserved; auto.
- generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI.
+ exploit wt_instr_at; eauto. intros WTI; inv WTI.
econstructor; eauto.
replace (proj_sig_res (funsig fd)) with (proj_sig_res (fn_sig f)). auto.
unfold proj_sig_res. rewrite H6; auto.
- rewrite <- H7. apply wt_regset_list; auto.
+ eapply Val.has_subtype_list; eauto. apply wt_regset_list; auto.
(* Ibuiltin *)
econstructor; split.
eapply exec_Ibuiltin; eauto.
eapply external_call_symbols_preserved; eauto.
exact symbols_preserved. exact varinfo_preserved.
- generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI.
econstructor; eauto.
- apply wt_regset_assign; auto.
- rewrite H6. eapply external_call_well_typed; eauto.
+ eapply wt_exec_Ibuiltin; eauto. eapply wt_instr_at; eauto.
eapply analysis_correct_1; eauto. simpl; auto.
unfold transfer; rewrite H.
assert (CASE1: numbering_satisfiable ge sp (rs#res <- v) m' empty_numbering).
@@ -1124,8 +1122,9 @@ Proof.
econstructor; split.
eapply exec_Ireturn; eauto.
econstructor; eauto.
- generalize (wt_instrs _ _ WTF pc _ H); intro WTI; inv WTI.
- unfold proj_sig_res. rewrite <- H2. destruct or; simpl; auto.
+ exploit wt_instr_at; eauto. intros WTI; inv WTI; simpl.
+ auto.
+ unfold proj_sig_res; rewrite H2. eapply Val.has_subtype; eauto.
(* internal function *)
monadInv H7. unfold transf_function in EQ.
@@ -1135,7 +1134,7 @@ Proof.
econstructor; split.
eapply exec_function_internal; eauto.
simpl. econstructor; eauto.
- apply wt_init_regs. inv WTF. rewrite wt_params; auto.
+ apply wt_init_regs. inv WTF. eapply Val.has_subtype_list; eauto.
apply analysis_correct_entry; auto.
(* external function *)
@@ -1152,7 +1151,7 @@ Proof.
econstructor; split.
eapply exec_return; eauto.
econstructor; eauto.
- apply wt_regset_assign; auto.
+ apply wt_regset_assign; auto. eapply Val.has_subtype; eauto.
Qed.
Lemma transf_initial_states:
diff --git a/backend/IRC.ml b/backend/IRC.ml
index 573c3d7..79d66b9 100644
--- a/backend/IRC.ml
+++ b/backend/IRC.ml
@@ -245,7 +245,13 @@ type graph = {
let num_register_classes = 2
-let class_of_type = function Tint -> 0 | Tfloat -> 1 | Tlong -> assert false
+let class_of_type = function
+ | Tint -> 0
+ | Tfloat | Tsingle -> 1
+ | Tlong -> assert false
+
+let type_of_class c =
+ if c = 0 then Tint else Tfloat
let reserved_registers = ref ([]: mreg list)
@@ -860,7 +866,7 @@ let assign_color g n =
n.color <- Some loc
| None ->
(* Last, pick a Local stack slot *)
- n.color <- Some (find_slot slot_conflicts n.typ)
+ n.color <- Some (find_slot slot_conflicts (type_of_class n.regclass))
(* Extract the location of a variable *)
@@ -877,7 +883,7 @@ let location_of_var g v =
with Not_found ->
match ty with
| Tint -> R dummy_int_reg
- | Tfloat -> R dummy_float_reg
+ | Tfloat | Tsingle -> R dummy_float_reg
| Tlong -> assert false
(* The exported interface *)
diff --git a/backend/LTL.v b/backend/LTL.v
index 27fee8a..d1db2c5 100644
--- a/backend/LTL.v
+++ b/backend/LTL.v
@@ -172,7 +172,7 @@ Fixpoint undef_regs (rl: list mreg) (rs: locset) : locset :=
| r1 :: rl => Locmap.set (R r1) Vundef (undef_regs rl rs)
end.
-Definition destroyed_by_getstack (s: slot) : list mreg :=
+Definition destroyed_by_getstack (s: slot): list mreg :=
match s with
| Incoming => temp_for_parent_frame :: nil
| _ => nil
@@ -218,7 +218,7 @@ Inductive step: state -> trace -> state -> Prop :=
step (Block s f sp (Lgetstack sl ofs ty dst :: bb) rs m)
E0 (Block s f sp bb rs' m)
| exec_Lsetstack: forall s f sp src sl ofs ty bb rs m rs',
- rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_op Omove) rs) ->
+ rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_setstack ty) rs) ->
step (Block s f sp (Lsetstack src sl ofs ty :: bb) rs m)
E0 (Block s f sp bb rs' m)
| exec_Lstore: forall s f sp chunk addr args src bb rs m a rs' m',
diff --git a/backend/Linear.v b/backend/Linear.v
index bdb08b4..3c52436 100644
--- a/backend/Linear.v
+++ b/backend/Linear.v
@@ -160,7 +160,7 @@ Inductive step: state -> trace -> state -> Prop :=
E0 (State s f sp b rs' m)
| exec_Lsetstack:
forall s f sp src sl ofs ty b rs m rs',
- rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_op Omove) rs) ->
+ rs' = Locmap.set (S sl ofs ty) (rs (R src)) (undef_regs (destroyed_by_setstack ty) rs) ->
step (State s f sp (Lsetstack src sl ofs ty :: b) rs m)
E0 (State s f sp b rs' m)
| exec_Lop:
diff --git a/backend/Lineartyping.v b/backend/Lineartyping.v
index c51db6f..73c5453 100644
--- a/backend/Lineartyping.v
+++ b/backend/Lineartyping.v
@@ -45,7 +45,7 @@ Definition slot_valid (sl: slot) (ofs: Z) (ty: typ): bool :=
| Incoming => In_dec Loc.eq (S Incoming ofs ty) (loc_parameters funct.(fn_sig))
end &&
match ty with
- | Tint | Tfloat => true
+ | Tint | Tfloat | Tsingle => true
| Tlong => false
end.
@@ -66,23 +66,23 @@ Definition loc_valid (l: loc) : bool :=
Definition wt_instr (i: instruction) : bool :=
match i with
| Lgetstack sl ofs ty r =>
- typ_eq ty (mreg_type r) && slot_valid sl ofs ty
+ subtype ty (mreg_type r) && slot_valid sl ofs ty
| Lsetstack r sl ofs ty =>
- typ_eq ty (mreg_type r) && slot_valid sl ofs ty && slot_writable sl
+ slot_valid sl ofs ty && slot_writable sl
| Lop op args res =>
match is_move_operation op args with
| Some arg =>
- typ_eq (mreg_type arg) (mreg_type res)
+ subtype (mreg_type arg) (mreg_type res)
| None =>
let (targs, tres) := type_of_operation op in
- typ_eq (mreg_type res) tres
+ subtype tres (mreg_type res)
end
| Lload chunk addr args dst =>
- typ_eq (mreg_type dst) (type_of_chunk chunk)
+ subtype (type_of_chunk chunk) (mreg_type dst)
| Ltailcall sg ros =>
zeq (size_arguments sg) 0
| Lbuiltin ef args res =>
- list_typ_eq (map mreg_type res) (proj_sig_res' (ef_sig ef))
+ subtype_list (proj_sig_res' (ef_sig ef)) (map mreg_type res)
| Lannot ef args =>
forallb loc_valid args
| _ =>
@@ -104,28 +104,35 @@ Require Import Values.
Definition wt_locset (ls: locset) : Prop :=
forall l, Val.has_type (ls l) (Loc.type l).
-Lemma wt_setloc:
- forall ls l v,
- Val.has_type v (Loc.type l) -> wt_locset ls -> wt_locset (Locmap.set l v ls).
+Lemma wt_setreg:
+ forall ls r v,
+ Val.has_type v (mreg_type r) -> wt_locset ls -> wt_locset (Locmap.set (R r) v ls).
Proof.
intros; red; intros.
unfold Locmap.set.
- destruct (Loc.eq l l0). congruence.
- destruct (Loc.diff_dec l l0). auto. red. auto.
+ destruct (Loc.eq (R r) l).
+ subst l; auto.
+ destruct (Loc.diff_dec (R r) l). auto. red. auto.
Qed.
-Lemma wt_setlocs:
- forall ll vl ls,
- Val.has_type_list vl (map Loc.type ll) -> wt_locset ls -> wt_locset (Locmap.setlist ll vl ls).
+Lemma wt_setstack:
+ forall ls sl ofs ty v,
+ wt_locset ls -> wt_locset (Locmap.set (S sl ofs ty) v ls).
Proof.
- induction ll; destruct vl; simpl; intuition.
- apply IHll; auto. apply wt_setloc; auto.
+ intros; red; intros.
+ unfold Locmap.set.
+ destruct (Loc.eq (S sl ofs ty) l).
+ subst l. simpl.
+ generalize (Val.load_result_type (chunk_of_type ty) v).
+ replace (type_of_chunk (chunk_of_type ty)) with ty. auto.
+ destruct ty; reflexivity.
+ destruct (Loc.diff_dec (S sl ofs ty) l). auto. red. auto.
Qed.
Lemma wt_undef_regs:
forall rs ls, wt_locset ls -> wt_locset (undef_regs rs ls).
Proof.
- induction rs; simpl; intros. auto. apply wt_setloc; auto. red; auto.
+ induction rs; simpl; intros. auto. apply wt_setreg; auto. red; auto.
Qed.
Lemma wt_call_regs:
@@ -161,10 +168,11 @@ Lemma wt_setlist_result:
Proof.
unfold loc_result, encode_long, proj_sig_res; intros.
destruct (sig_res sg) as [[] | ]; simpl.
- apply wt_setloc; auto.
- apply wt_setloc; auto.
- destruct v; simpl in H; try contradiction;
- simpl; apply wt_setloc; auto; apply wt_setloc; auto.
- apply wt_setloc; auto.
+- apply wt_setreg; auto.
+- apply wt_setreg; auto.
+- destruct v; simpl in H; try contradiction;
+ simpl; apply wt_setreg; auto; apply wt_setreg; auto.
+- apply wt_setreg; auto. apply Val.has_subtype with Tsingle; auto.
+- apply wt_setreg; auto.
Qed.
diff --git a/backend/Locations.v b/backend/Locations.v
index f7fb607..43ce210 100644
--- a/backend/Locations.v
+++ b/backend/Locations.v
@@ -69,7 +69,7 @@ Defined.
Open Scope Z_scope.
Definition typesize (ty: typ) : Z :=
- match ty with Tint => 1 | Tlong => 2 | Tfloat => 2 end.
+ match ty with Tint => 1 | Tlong => 2 | Tfloat => 2 | Tsingle => 1 end.
Lemma typesize_pos:
forall (ty: typ), typesize ty > 0.
@@ -292,17 +292,38 @@ Module Locmap.
maps location [l] to value [v], locations that overlap with [l]
to [Vundef], and locations that are different (and non-overlapping)
from [l] to their previous values in [m]. This is apparent in the
- ``good variables'' properties [Locmap.gss] and [Locmap.gso]. *)
+ ``good variables'' properties [Locmap.gss] and [Locmap.gso].
+
+ Additionally, the [set] operation also anticipates the fact that
+ abstract stack slots are mapped to concrete memory locations
+ in the [Stacking] phase. Hence, values stored in stack slots
+ are normalized according to the type of the slot. *)
Definition set (l: loc) (v: val) (m: t) : t :=
fun (p: loc) =>
- if Loc.eq l p then v else if Loc.diff_dec l p then m p else Vundef.
+ if Loc.eq l p then
+ match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end
+ else if Loc.diff_dec l p then
+ m p
+ else Vundef.
+
+ Lemma gss: forall l v m,
+ (set l v m) l =
+ match l with R r => v | S sl ofs ty => Val.load_result (chunk_of_type ty) v end.
+ Proof.
+ intros. unfold set. apply dec_eq_true.
+ Qed.
- Lemma gss: forall l v m, (set l v m) l = v.
+ Lemma gss_reg: forall r v m, (set (R r) v m) (R r) = v.
Proof.
intros. unfold set. rewrite dec_eq_true. auto.
Qed.
+ Lemma gss_typed: forall l v m, Val.has_type v (Loc.type l) -> (set l v m) l = v.
+ Proof.
+ intros. rewrite gss. destruct l. auto. apply Val.load_result_same; auto.
+ Qed.
+
Lemma gso: forall l v m p, Loc.diff l p -> (set l v m) p = m p.
Proof.
intros. unfold set. destruct (Loc.eq l p).
@@ -328,10 +349,11 @@ Module Locmap.
Proof.
assert (P: forall ll l m, m l = Vundef -> (undef ll m) l = Vundef).
induction ll; simpl; intros. auto. apply IHll.
- unfold set. destruct (Loc.eq a l); auto.
+ unfold set. destruct (Loc.eq a l).
+ destruct a. auto. destruct ty; reflexivity.
destruct (Loc.diff_dec a l); auto.
induction ll; simpl; intros. contradiction.
- destruct H. apply P. subst a. apply gss.
+ destruct H. apply P. subst a. apply gss_typed. exact I.
auto.
Qed.
@@ -355,7 +377,12 @@ End Locmap.
Module IndexedTyp <: INDEXED_TYPE.
Definition t := typ.
Definition index (x: t) :=
- match x with Tint => 1%positive | Tfloat => 2%positive | Tlong => 3%positive end.
+ match x with
+ | Tint => 1%positive
+ | Tsingle => 2%positive
+ | Tfloat => 3%positive
+ | Tlong => 4%positive
+ end.
Lemma index_inj: forall x y, index x = index y -> x = y.
Proof. destruct x; destruct y; simpl; congruence. Qed.
Definition eq := typ_eq.
@@ -467,9 +494,9 @@ Module OrderedLoc <: OrderedType.
destruct H. right.
destruct H0. right. generalize (RANGE ty'); omega.
destruct H0.
- assert (ty' = Tint).
- { unfold OrderedTyp.lt in H1. destruct ty'; compute in H1; congruence. }
- subst ty'. right. simpl typesize. omega.
+ assert (ty' = Tint \/ ty' = Tsingle).
+ { unfold OrderedTyp.lt in H1. destruct ty'; auto; compute in H1; congruence. }
+ right. destruct H2; subst ty'; simpl typesize; omega.
+ destruct H. left. apply OrderedSlot.lt_not_eq; auto.
destruct H. right.
destruct H0. left; omega.
@@ -494,6 +521,8 @@ Module OrderedLoc <: OrderedType.
right; split. omega. compute. auto.
left; omega.
left; omega.
+ destruct (zlt ofs' (ofs - 1)). left; auto.
+ right; split. omega. compute. auto.
Qed.
End OrderedLoc.
diff --git a/backend/Mach.v b/backend/Mach.v
index ec48195..316e788 100644
--- a/backend/Mach.v
+++ b/backend/Mach.v
@@ -296,7 +296,7 @@ Inductive step: state -> trace -> state -> Prop :=
| exec_Msetstack:
forall s f sp src ofs ty c rs m m' rs',
store_stack m sp ty ofs (rs src) = Some m' ->
- rs' = undef_regs (destroyed_by_op Omove) rs ->
+ rs' = undef_regs (destroyed_by_setstack ty) rs ->
step (State s f sp (Msetstack src ofs ty :: c) rs m)
E0 (State s f sp c rs' m')
| exec_Mgetparam:
diff --git a/backend/PrintCminor.ml b/backend/PrintCminor.ml
index 8612b73..4fbc600 100644
--- a/backend/PrintCminor.ml
+++ b/backend/PrintCminor.ml
@@ -168,6 +168,7 @@ let name_of_type = function
| Tint -> "int"
| Tfloat -> "float"
| Tlong -> "long"
+ | Tsingle -> "single"
let rec print_sig p = function
| {sig_args = []; sig_res = None} -> fprintf p "void"
diff --git a/backend/PrintXTL.ml b/backend/PrintXTL.ml
index 756fc58..258baba 100644
--- a/backend/PrintXTL.ml
+++ b/backend/PrintXTL.ml
@@ -29,7 +29,11 @@ let mreg pp r =
| Some s -> fprintf pp "%s" s
| None -> fprintf pp "<unknown machreg>"
-let short_name_of_type = function Tint -> 'i' | Tfloat -> 'f' | Tlong -> 'l'
+let short_name_of_type = function
+ | Tint -> 'i'
+ | Tfloat -> 'f'
+ | Tlong -> 'l'
+ | Tsingle -> 's'
let loc pp = function
| R r -> mreg pp r
diff --git a/backend/RTLtyping.v b/backend/RTLtyping.v
index 7ed7344..b4702cf 100644
--- a/backend/RTLtyping.v
+++ b/backend/RTLtyping.v
@@ -12,9 +12,9 @@
(** Typing rules and a type inference algorithm for RTL. *)
-Require Import Recdef.
Require Import Coqlib.
Require Import Errors.
+Require Import Subtyping.
Require Import Maps.
Require Import AST.
Require Import Op.
@@ -32,9 +32,11 @@ Require Import Conventions.
(** Like Cminor and all intermediate languages, RTL can be equipped with
a simple type system that statically guarantees that operations
and addressing modes are applied to the right number of arguments
- and that the arguments are of the correct types. The type algebra
- is trivial, consisting of the two types [Tint] (for integers and pointers)
- and [Tfloat] (for floats).
+ and that the arguments are of the correct types. The type algebra
+ is very simple, consisting of the four types [Tint] (for integers
+ and pointers), [Tfloat] (for double-precision floats), [Tlong]
+ (for 64-bit integers) and [Tsingle] (for single-precision floats).
+ The only subtlety is that [Tsingle] is a subtype of [Tfloat].
Additionally, we impose that each pseudo-register has the same type
throughout the function. This requirement helps with register allocation,
@@ -58,8 +60,8 @@ Definition regenv := reg -> typ.
Section WT_INSTR.
-Variable env: regenv.
Variable funct: function.
+Variable env: regenv.
Definition valid_successor (s: node) : Prop :=
exists i, funct.(fn_code)!s = Some i.
@@ -71,63 +73,68 @@ Inductive wt_instr : instruction -> Prop :=
wt_instr (Inop s)
| wt_Iopmove:
forall r1 r s,
- env r1 = env r ->
+ subtype (env r1) (env r) = true ->
valid_successor s ->
wt_instr (Iop Omove (r1 :: nil) r s)
| wt_Iop:
forall op args res s,
op <> Omove ->
- (List.map env args, env res) = type_of_operation op ->
+ subtype_list (map env args) (fst (type_of_operation op)) = true ->
+ subtype (snd (type_of_operation op)) (env res) = true ->
valid_successor s ->
wt_instr (Iop op args res s)
| wt_Iload:
forall chunk addr args dst s,
- List.map env args = type_of_addressing addr ->
- env dst = type_of_chunk chunk ->
+ subtype_list (map env args) (type_of_addressing addr) = true ->
+ subtype (type_of_chunk chunk) (env dst) = true ->
valid_successor s ->
wt_instr (Iload chunk addr args dst s)
| wt_Istore:
forall chunk addr args src s,
- List.map env args = type_of_addressing addr ->
- env src = type_of_chunk chunk ->
+ subtype_list (map env args) (type_of_addressing addr) = true ->
+ subtype (env src) (type_of_chunk_use chunk) = true ->
valid_successor s ->
wt_instr (Istore chunk addr args src s)
| wt_Icall:
forall sig ros args res s,
- match ros with inl r => env r = Tint | inr s => True end ->
- List.map env args = sig.(sig_args) ->
- env res = proj_sig_res sig ->
+ match ros with inl r => subtype (env r) Tint = true | inr s => True end ->
+ subtype_list (map env args) sig.(sig_args) = true ->
+ subtype (proj_sig_res sig) (env res) = true ->
valid_successor s ->
wt_instr (Icall sig ros args res s)
| wt_Itailcall:
forall sig ros args,
- match ros with inl r => env r = Tint | inr s => True end ->
+ match ros with inl r => subtype (env r) Tint = true | inr s => True end ->
sig.(sig_res) = funct.(fn_sig).(sig_res) ->
- List.map env args = sig.(sig_args) ->
+ subtype_list (map env args) sig.(sig_args) = true ->
tailcall_possible sig ->
wt_instr (Itailcall sig ros args)
| wt_Ibuiltin:
forall ef args res s,
- List.map env args = (ef_sig ef).(sig_args) ->
- env res = proj_sig_res (ef_sig ef) ->
+ subtype_list (map env args) (ef_sig ef).(sig_args) = true ->
+ subtype (proj_sig_res (ef_sig ef)) (env res) = true ->
valid_successor s ->
wt_instr (Ibuiltin ef args res s)
| wt_Icond:
forall cond args s1 s2,
- List.map env args = type_of_condition cond ->
+ subtype_list (map env args) (type_of_condition cond) = true ->
valid_successor s1 ->
valid_successor s2 ->
wt_instr (Icond cond args s1 s2)
| wt_Ijumptable:
forall arg tbl,
- env arg = Tint ->
+ subtype (env arg) Tint = true ->
(forall s, In s tbl -> valid_successor s) ->
list_length_z tbl * 4 <= Int.max_unsigned ->
wt_instr (Ijumptable arg tbl)
- | wt_Ireturn:
- forall optres,
- option_map env optres = funct.(fn_sig).(sig_res) ->
- wt_instr (Ireturn optres).
+ | wt_Ireturn_none:
+ funct.(fn_sig).(sig_res) = None ->
+ wt_instr (Ireturn None)
+ | wt_Ireturn_some:
+ forall arg ty,
+ funct.(fn_sig).(sig_res) = Some ty ->
+ subtype (env arg) ty = true ->
+ wt_instr (Ireturn (Some arg)).
End WT_INSTR.
@@ -139,12 +146,12 @@ End WT_INSTR.
Record wt_function (f: function) (env: regenv): Prop :=
mk_wt_function {
wt_params:
- List.map env f.(fn_params) = f.(fn_sig).(sig_args);
+ subtype_list f.(fn_sig).(sig_args) (map env f.(fn_params)) = true;
wt_norepet:
list_norepet f.(fn_params);
wt_instrs:
forall pc instr,
- f.(fn_code)!pc = Some instr -> wt_instr env f instr;
+ f.(fn_code)!pc = Some instr -> wt_instr f env instr;
wt_entrypoint:
valid_successor f f.(fn_entrypoint)
}.
@@ -161,66 +168,138 @@ Definition wt_program (p: program): Prop :=
(** * Type inference *)
-Section INFERENCE.
+(** Type inference reuses the generic solver for subtyping constraints
+ defined in module [Subtyping]. *)
-Local Open Scope error_monad_scope.
+Module RTLtypes <: TYPE_ALGEBRA.
-Variable f: function.
+Definition t := typ.
+Definition eq := typ_eq.
+Definition default := Tint.
-(** The type inference engine operates over a state that has two components:
-- [te_typ]: a partial map from pseudoregisters to types, for
- pseudoregs whose types are already determined from their uses;
-- [te_eqs]: a list of pairs [(r1,r2)] of pseudoregisters, indicating that
- [r1] and [r2] must have the same type because they are involved in a move
- [r1 := r2] or [r2 := r1], but this type is not yet determined.
-*)
+Definition sub (t1 t2: typ): Prop := subtype t1 t2 = true.
-Record typenv : Type := Typenv {
- te_typ: PTree.t typ; (**r mapping reg -> known type *)
- te_eqs: list (reg * reg) (**r pairs of regs that must have same type *)
-}.
+Lemma sub_refl: forall ty, sub ty ty.
+Proof. unfold sub; destruct ty; auto. Qed.
-(** Determine that [r] must have type [ty]. *)
+Lemma sub_trans: forall ty1 ty2 ty3, sub ty1 ty2 -> sub ty2 ty3 -> sub ty1 ty3.
+Proof.
+ unfold sub; intros. destruct ty1; destruct ty2; try discriminate; destruct ty3; auto; discriminate.
+Qed.
-Definition type_reg (e: typenv) (r: reg) (ty: typ) : res typenv :=
- match e.(te_typ)!r with
- | None => OK {| te_typ := PTree.set r ty e.(te_typ); te_eqs := e.(te_eqs) |}
- | Some ty' => if typ_eq ty ty' then OK e else Error (MSG "bad type for variable " :: POS r :: nil)
- end.
+Definition sub_dec: forall ty1 ty2, {sub ty1 ty2} + {~sub ty1 ty2}.
+Proof.
+ unfold sub; intros. destruct (subtype ty1 ty2). left; auto. right; congruence.
+Defined.
-Fixpoint type_regs (e: typenv) (rl: list reg) (tyl: list typ) {struct rl}: res typenv :=
- match rl, tyl with
- | nil, nil => OK e
- | r1::rs, ty1::tys => do e1 <- type_reg e r1 ty1; type_regs e1 rs tys
- | _, _ => Error (msg "arity mismatch")
+Definition lub (ty1 ty2: typ) :=
+ match ty1, ty2 with
+ | Tint, Tint => Tint
+ | Tlong, Tlong => Tlong
+ | Tfloat, Tfloat => Tfloat
+ | Tsingle, Tsingle => Tsingle
+ | Tfloat, Tsingle => Tfloat
+ | Tsingle, Tfloat => Tfloat
+ | _, _ => default
end.
-Definition type_ros (e: typenv) (ros: reg + ident) : res typenv :=
- match ros with
- | inl r => type_reg e r Tint
- | inr s => OK e
- end.
+Lemma lub_left: forall x y z, sub x z -> sub y z -> sub x (lub x y).
+Proof.
+ unfold sub, lub; intros. destruct x; destruct y; auto; destruct z; discriminate.
+Qed.
-(** Determine that [r1] and [r2] must have the same type. If none of
- [r1] and [r2] has known type, just record an equality constraint.
- The boolean result is [true] if one of the types of [r1] and [r2]
- was previously unknown and could be determined because the other type is
- known. Otherwise, [te_typ] does not change and [false] is returned. *)
-
-Function type_move (e: typenv) (r1 r2: reg) : res (bool * typenv) :=
- match e.(te_typ)!r1, e.(te_typ)!r2 with
- | None, None =>
- OK (false, {| te_typ := e.(te_typ); te_eqs := (r1, r2) :: e.(te_eqs) |})
- | Some ty1, None =>
- OK (true, {| te_typ := PTree.set r2 ty1 e.(te_typ); te_eqs := e.(te_eqs) |})
- | None, Some ty2 =>
- OK (true, {| te_typ := PTree.set r1 ty2 e.(te_typ); te_eqs := e.(te_eqs) |})
- | Some ty1, Some ty2 =>
- if typ_eq ty1 ty2
- then OK (false, e)
- else Error(MSG "ill-typed move between " :: POS r1 :: MSG " and " :: POS r2 :: nil)
+Lemma lub_right: forall x y z, sub x z -> sub y z -> sub y (lub x y).
+Proof.
+ unfold sub, lub; intros. destruct x; destruct y; auto; destruct z; discriminate.
+Qed.
+
+Lemma lub_min: forall x y z, sub x z -> sub y z -> sub (lub x y) z.
+Proof.
+ unfold sub, lub; intros. destruct x; destruct z; try discriminate; destruct y; auto; discriminate.
+Qed.
+
+Definition glb (ty1 ty2: typ) :=
+ match ty1, ty2 with
+ | Tint, Tint => Tint
+ | Tlong, Tlong => Tlong
+ | Tfloat, Tfloat => Tfloat
+ | Tsingle, Tsingle => Tsingle
+ | Tfloat, Tsingle => Tsingle
+ | Tsingle, Tfloat => Tsingle
+ | _, _ => default
end.
+Lemma glb_left: forall x y z, sub z x -> sub z y -> sub (glb x y) x.
+Proof.
+ unfold sub, glb; intros. destruct x; destruct y; auto; destruct z; discriminate.
+Qed.
+
+Lemma glb_right: forall x y z, sub z x -> sub z y -> sub (glb x y) y.
+Proof.
+ unfold sub, glb; intros. destruct x; destruct y; auto; destruct z; discriminate.
+Qed.
+
+Lemma glb_max: forall x y z, sub z x -> sub z y -> sub z (glb x y).
+Proof.
+ unfold sub, glb; intros. destruct x; destruct z; try discriminate; destruct y; auto; discriminate.
+Qed.
+
+Definition low_bound (ty: typ) :=
+ match ty with Tfloat => Tsingle | _ => ty end.
+
+Definition high_bound (ty: typ) :=
+ match ty with Tsingle => Tfloat | _ => ty end.
+
+Lemma low_bound_sub: forall t, sub (low_bound t) t.
+Proof.
+ unfold sub; destruct t0; auto.
+Qed.
+
+Lemma low_bound_minorant: forall x y, sub x y -> sub (low_bound y) x.
+Proof.
+ unfold sub; intros. destruct x; destruct y; auto; discriminate.
+Qed.
+
+Lemma high_bound_sub: forall t, sub t (high_bound t).
+Proof.
+ unfold sub; destruct t0; auto.
+Qed.
+
+Lemma high_bound_majorant: forall x y, sub x y -> sub y (high_bound x).
+Proof.
+ unfold sub; intros. destruct x; destruct y; auto; discriminate.
+Qed.
+
+Definition weight (t: typ) :=
+ match t with Tfloat => 1%nat | _ => 0%nat end.
+
+Definition max_weight := 1%nat.
+
+Lemma weight_range: forall t, (weight t <= max_weight)%nat.
+Proof.
+ unfold max_weight; destruct t0; simpl; omega.
+Qed.
+
+Lemma weight_sub: forall x y, sub x y -> (weight x <= weight y)%nat.
+Proof.
+ unfold sub; intros. destruct x; destruct y; simpl; discriminate || omega.
+Qed.
+
+Lemma weight_sub_strict: forall x y, sub x y -> x <> y -> (weight x < weight y)%nat.
+Proof.
+ unfold sub, subtype; intros. destruct x; destruct y; simpl; congruence || omega.
+Qed.
+
+End RTLtypes.
+
+Module S := SubSolver(RTLtypes).
+
+Section INFERENCE.
+
+Local Open Scope error_monad_scope.
+
+Variable f: function.
+
(** Checking the validity of successor nodes. *)
Definition check_successor (s: node): res unit :=
@@ -235,15 +314,18 @@ Fixpoint check_successors (sl: list node): res unit :=
| s1 :: sl' => do x <- check_successor s1; check_successors sl'
end.
+(** Check structural constraints and process / record all type constraints. *)
+
+Definition type_ros (e: S.typenv) (ros: reg + ident) : res S.typenv :=
+ match ros with
+ | inl r => S.type_use e r Tint
+ | inr s => OK e
+ end.
+
Definition is_move (op: operation) : bool :=
match op with Omove => true | _ => false end.
-(** First pass: check structural constraints and process all type constraints
- of the form [typeof(r) = ty] arising from the RTL instructions.
- Simultaneously, record equations [typeof(r1) = typeof(r2)] arising
- from move instructions that cannot be immediately resolved. *)
-
-Definition type_instr (e: typenv) (i: instruction) : res typenv :=
+Definition type_instr (e: S.typenv) (i: instruction) : res S.typenv :=
match i with
| Inop s =>
do x <- check_successor s; OK e
@@ -251,28 +333,28 @@ Definition type_instr (e: typenv) (i: instruction) : res typenv :=
do x <- check_successor s;
if is_move op then
match args with
- | arg :: nil => do (changed, e') <- type_move e arg res; OK e'
+ | arg :: nil => do (changed, e') <- S.type_move e arg res; OK e'
| _ => Error (msg "ill-formed move")
end
else
(let (targs, tres) := type_of_operation op in
- do e1 <- type_regs e args targs; type_reg e1 res tres)
+ do e1 <- S.type_uses e args targs; S.type_def e1 res tres)
| Iload chunk addr args dst s =>
do x <- check_successor s;
- do e1 <- type_regs e args (type_of_addressing addr);
- type_reg e1 dst (type_of_chunk chunk)
+ do e1 <- S.type_uses e args (type_of_addressing addr);
+ S.type_def e1 dst (type_of_chunk chunk)
| Istore chunk addr args src s =>
do x <- check_successor s;
- do e1 <- type_regs e args (type_of_addressing addr);
- type_reg e1 src (type_of_chunk chunk)
+ do e1 <- S.type_uses e args (type_of_addressing addr);
+ S.type_use e1 src (type_of_chunk_use chunk)
| Icall sig ros args res s =>
do x <- check_successor s;
do e1 <- type_ros e ros;
- do e2 <- type_regs e1 args sig.(sig_args);
- type_reg e2 res (proj_sig_res sig)
+ do e2 <- S.type_uses e1 args sig.(sig_args);
+ S.type_def e2 res (proj_sig_res sig)
| Itailcall sig ros args =>
do e1 <- type_ros e ros;
- do e2 <- type_regs e1 args sig.(sig_args);
+ do e2 <- S.type_uses e1 args sig.(sig_args);
if opt_typ_eq sig.(sig_res) f.(fn_sig).(sig_res) then
if tailcall_is_possible sig
then OK e2
@@ -281,25 +363,25 @@ Definition type_instr (e: typenv) (i: instruction) : res typenv :=
| Ibuiltin ef args res s =>
let sig := ef_sig ef in
do x <- check_successor s;
- do e1 <- type_regs e args sig.(sig_args);
- type_reg e1 res (proj_sig_res sig)
+ do e1 <- S.type_uses e args sig.(sig_args);
+ S.type_def e1 res (proj_sig_res sig)
| Icond cond args s1 s2 =>
do x1 <- check_successor s1;
do x2 <- check_successor s2;
- type_regs e args (type_of_condition cond)
+ S.type_uses e args (type_of_condition cond)
| Ijumptable arg tbl =>
do x <- check_successors tbl;
- do e1 <- type_reg e arg Tint;
+ do e1 <- S.type_use e arg Tint;
if zle (list_length_z tbl * 4) Int.max_unsigned then OK e1 else Error(msg "jumptable too big")
| Ireturn optres =>
match optres, f.(fn_sig).(sig_res) with
| None, None => OK e
- | Some r, Some t => type_reg e r t
+ | Some r, Some t => S.type_use e r t
| _, _ => Error(msg "bad return")
end
end.
-Definition type_code (e: typenv): res typenv :=
+Definition type_code (e: S.typenv): res S.typenv :=
PTree.fold
(fun re pc i =>
match re with
@@ -312,179 +394,38 @@ Definition type_code (e: typenv): res typenv :=
end)
f.(fn_code) (OK e).
-(** Second pass: iteratively process the remaining equality constraints
- arising out of "move" instructions *)
-
-Definition equations := list (reg * reg).
-
-Fixpoint solve_rec (e: typenv) (changed: bool) (q: equations) : res (typenv * bool) :=
- match q with
- | nil =>
- OK (e, changed)
- | (r1, r2) :: q' =>
- do (changed1, e1) <- type_move e r1 r2; solve_rec e1 (changed || changed1) q'
- end.
-
-Lemma type_move_length:
- forall e r1 r2 changed e',
- type_move e r1 r2 = OK (changed, e') ->
- if changed
- then List.length e'.(te_eqs) = List.length e.(te_eqs)
- else (List.length e'.(te_eqs) <= S (List.length e.(te_eqs)))%nat.
-Proof.
- intros. functional inversion H; subst; simpl; omega.
-Qed.
-
-Lemma solve_rec_length:
- forall q e changed e' changed',
- solve_rec e changed q = OK (e', changed') ->
- (List.length e'.(te_eqs) <= List.length e.(te_eqs) + List.length q)%nat.
-Proof.
- induction q; simpl; intros.
-- inv H. omega.
-- destruct a as [r1 r2]. monadInv H.
- assert (length (te_eqs x0) <= S (length (te_eqs e)))%nat.
- {
- exploit type_move_length; eauto. destruct x; omega.
- }
- exploit IHq; eauto.
- omega.
-Qed.
-
-Lemma solve_rec_shorter:
- forall q e e',
- solve_rec e false q = OK (e', true) ->
- (List.length e'.(te_eqs) < List.length e.(te_eqs) + List.length q)%nat.
-Proof.
- induction q; simpl; intros.
-- discriminate.
-- destruct a as [r1 r2]; monadInv H.
- exploit type_move_length; eauto. destruct x; intros.
- exploit solve_rec_length; eauto. omega.
- exploit IHq; eauto. omega.
-Qed.
-
-Definition length_typenv (e: typenv) := length e.(te_eqs).
-
-Function solve_equations (e: typenv) {measure length_typenv e} : res typenv :=
- match solve_rec {| te_typ := e.(te_typ); te_eqs := nil |} false e.(te_eqs) with
- | OK (e', false) => OK e (**r no progress made: terminate *)
- | OK (e', true) => solve_equations e' (**r at least one type changed: iterate *)
- | Error msg => Error msg
- end.
-Proof.
- intros. exploit solve_rec_shorter; eauto.
-Qed.
-
-(** The final type assignment aribtrarily gives type [Tint] to the
- pseudoregs that are still unconstrained at the end of type inference. *)
-
-Definition make_regenv (e: typenv) : regenv :=
- fun r => match e.(te_typ)!r with Some ty => ty | None => Tint end.
+(** S remaining constraints *)
Definition check_params_norepet (params: list reg): res unit :=
if list_norepet_dec Reg.eq params then OK tt else Error(msg "duplicate parameters").
Definition type_function : res regenv :=
- do e1 <- type_code {| te_typ := PTree.empty typ; te_eqs := nil |};
- do e2 <- type_regs e1 f.(fn_params) f.(fn_sig).(sig_args);
- do e3 <- solve_equations e2;
+ do e1 <- type_code S.initial;
+ do e2 <- S.type_defs e1 f.(fn_params) f.(fn_sig).(sig_args);
+ do te <- S.solve e2;
do x1 <- check_params_norepet f.(fn_params);
do x2 <- check_successor f.(fn_entrypoint);
- OK (make_regenv e3).
+ OK te.
(** ** Soundness proof *)
-(** What it means for a final type assignment [te] to satisfy the constraints
- collected so far in the [e] state. *)
-
-Definition satisf (te: regenv) (e: typenv) : Prop :=
- (forall r ty, e.(te_typ)!r = Some ty -> te r = ty)
- /\ (forall r1 r2, In (r1, r2) e.(te_eqs) -> te r1 = te r2).
-
-Remark type_reg_incr:
- forall e r ty e' te, type_reg e r ty = OK e' -> satisf te e' -> satisf te e.
-Proof.
- unfold type_reg; intros; destruct (e.(te_typ)!r) eqn:E.
- destruct (typ_eq ty t); inv H. auto.
- inv H. destruct H0 as [A B]. split; intros.
- apply A. simpl. rewrite PTree.gso; auto. congruence.
- apply B. simpl; auto.
-Qed.
-
-Hint Resolve type_reg_incr: ty.
-
-Remark type_regs_incr:
- forall rl tyl e e' te, type_regs e rl tyl = OK e' -> satisf te e' -> satisf te e.
-Proof.
- induction rl; simpl; intros; destruct tyl; try discriminate.
- inv H; eauto with ty.
- monadInv H. eauto with ty.
-Qed.
-
-Hint Resolve type_regs_incr: ty.
-
Remark type_ros_incr:
- forall e ros e' te, type_ros e ros = OK e' -> satisf te e' -> satisf te e.
+ forall e ros e' te, type_ros e ros = OK e' -> S.satisf te e' -> S.satisf te e.
Proof.
unfold type_ros; intros. destruct ros. eauto with ty. inv H; auto with ty.
Qed.
Hint Resolve type_ros_incr: ty.
-Remark type_move_incr:
- forall e r1 r2 changed e' te,
- type_move e r1 r2 = OK (changed, e') ->
- satisf te e' -> satisf te e.
-Proof.
- intros. destruct H0 as [A B]. functional inversion H; subst; simpl in *.
-- split; auto.
-- split; intros. apply A. rewrite PTree.gso; auto. congruence. auto.
-- split; intros. apply A. rewrite PTree.gso; auto. congruence. auto.
-- split; auto.
-Qed.
-
-Hint Resolve type_move_incr: ty.
-
-Lemma type_reg_sound:
- forall e r ty e' te, type_reg e r ty = OK e' -> satisf te e' -> te r = ty.
-Proof.
- unfold type_reg; intros. destruct H0 as [A B].
- destruct (e.(te_typ)!r) as [t|] eqn:E.
- destruct (typ_eq ty t); inv H. apply A; auto.
- inv H. apply A. simpl. apply PTree.gss.
-Qed.
-
-Lemma type_regs_sound:
- forall rl tyl e e' te, type_regs e rl tyl = OK e' -> satisf te e' -> map te rl = tyl.
-Proof.
- induction rl; simpl; intros; destruct tyl; try discriminate.
-- auto.
-- monadInv H. f_equal; eauto. eapply type_reg_sound. eauto. eauto with ty.
-Qed.
-
Lemma type_ros_sound:
- forall e ros e' te, type_ros e ros = OK e' -> satisf te e' ->
- match ros with inl r => te r = Tint | inr s => True end.
+ forall e ros e' te, type_ros e ros = OK e' -> S.satisf te e' ->
+ match ros with inl r => subtype (te r) Tint = true | inr s => True end.
Proof.
unfold type_ros; intros. destruct ros.
- eapply type_reg_sound; eauto.
+ eapply S.type_use_sound; eauto.
auto.
Qed.
-Lemma type_move_sound:
- forall e r1 r2 changed e' te,
- type_move e r1 r2 = OK (changed, e') -> satisf te e' -> te r1 = te r2.
-Proof.
- intros. destruct H0 as [A B]. functional inversion H; subst; simpl in *.
-- apply B; auto.
-- rewrite (A r1 ty1). rewrite (A r2 ty1). auto.
- apply PTree.gss. rewrite PTree.gso; auto. congruence.
-- rewrite (A r1 ty2). rewrite (A r2 ty2). auto.
- rewrite PTree.gso; auto. congruence. apply PTree.gss.
-- erewrite ! A; eauto.
-Qed.
-
Lemma check_successor_sound:
forall s x, check_successor s = OK x -> valid_successor f s.
Proof.
@@ -502,9 +443,20 @@ Proof.
monadInv H. destruct H0. subst a; eauto with ty. eauto.
Qed.
+Remark subtype_list_charact:
+ forall tyl1 tyl2,
+ subtype_list tyl1 tyl2 = true <-> list_forall2 RTLtypes.sub tyl1 tyl2.
+Proof.
+ unfold RTLtypes.sub; intros; split; intros.
+ revert tyl1 tyl2 H. induction tyl1; destruct tyl2; simpl; intros; try discriminate.
+ constructor.
+ InvBooleans. constructor; auto.
+ revert tyl1 tyl2 H. induction 1; simpl. auto. rewrite H; rewrite IHlist_forall2; auto.
+Qed.
+
Lemma type_instr_incr:
forall e i e' te,
- type_instr e i = OK e' -> satisf te e' -> satisf te e.
+ type_instr e i = OK e' -> S.satisf te e' -> S.satisf te e.
Proof.
intros; destruct i; try (monadInv H); eauto with ty.
- (* op *)
@@ -526,7 +478,7 @@ Qed.
Lemma type_instr_sound:
forall e i e' te,
- type_instr e i = OK e' -> satisf te e' -> wt_instr te f i.
+ type_instr e i = OK e' -> S.satisf te e' -> wt_instr f te i.
Proof.
intros; destruct i; try (monadInv H); simpl.
- (* nop *)
@@ -537,25 +489,28 @@ Proof.
+ assert (o = Omove) by (unfold is_move in ISMOVE; destruct o; congruence).
subst o.
destruct l; try discriminate. destruct l; monadInv EQ0.
- constructor. eapply type_move_sound; eauto. eauto with ty.
+ constructor. eapply S.type_move_sound; eauto. eauto with ty.
+ destruct (type_of_operation o) as [targs tres] eqn:TYOP. monadInv EQ0.
apply wt_Iop.
unfold is_move in ISMOVE; destruct o; congruence.
- rewrite TYOP. f_equal. eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto.
+ rewrite TYOP. rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
+ rewrite TYOP. eapply S.type_def_sound; eauto with ty.
eauto with ty.
- (* load *)
constructor.
- eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
+ eapply S.type_def_sound; eauto with ty.
eauto with ty.
- (* store *)
constructor.
- eapply type_regs_sound; eauto with ty. eapply type_reg_sound; eauto.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
+ eapply S.type_use_sound; eauto with ty.
eauto with ty.
- (* call *)
constructor.
- eapply type_ros_sound; eauto with ty.
- eapply type_regs_sound; eauto with ty.
- eapply type_reg_sound; eauto.
+ eapply type_ros_sound; eauto with ty.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
+ eapply S.type_def_sound; eauto with ty.
eauto with ty.
- (* tailcall *)
destruct (opt_typ_eq (sig_res s) (sig_res (fn_sig f))); try discriminate.
@@ -563,206 +518,86 @@ Proof.
constructor.
eapply type_ros_sound; eauto with ty.
auto.
- eapply type_regs_sound; eauto with ty.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
apply tailcall_is_possible_correct; auto.
- (* builtin *)
constructor.
- eapply type_regs_sound; eauto with ty.
- eapply type_reg_sound; eauto.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
+ eapply S.type_def_sound; eauto with ty.
eauto with ty.
- (* cond *)
constructor.
- eapply type_regs_sound; eauto with ty.
+ rewrite subtype_list_charact. eapply S.type_uses_sound; eauto with ty.
eauto with ty.
eauto with ty.
- (* jumptable *)
destruct (zle (list_length_z l * 4) Int.max_unsigned); inv EQ2.
constructor.
- eapply type_reg_sound; eauto.
+ eapply S.type_use_sound; eauto.
eapply check_successors_sound; eauto.
auto.
- (* return *)
simpl in H. destruct o as [r|] eqn: RET; destruct (sig_res (fn_sig f)) as [t|] eqn: RES; try discriminate.
- constructor. simpl. rewrite RES. f_equal. eapply type_reg_sound; eauto.
- inv H. constructor. rewrite RES; auto.
+ econstructor. eauto. eapply S.type_use_sound; eauto with ty.
+ inv H. constructor. auto.
Qed.
Lemma type_code_sound:
- forall e e' te,
+ forall pc i e e' te,
type_code e = OK e' ->
- forall pc i, f.(fn_code)!pc = Some i -> satisf te e' -> wt_instr te f i.
+ f.(fn_code)!pc = Some i -> S.satisf te e' -> wt_instr f te i.
Proof.
- intros e0 e1 te TCODE.
+ intros pc i e0 e1 te TCODE.
set (P := fun c opte =>
match opte with
| Error _ => True
- | OK e' => forall pc i, c!pc = Some i -> satisf te e' -> wt_instr te f i
+ | OK e' => c!pc = Some i -> S.satisf te e' -> wt_instr f te i
end).
- assert (P f.(fn_code) (OK e1)).
- {
- rewrite <- TCODE. unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros.
- - (* extensionality *)
- destruct a; auto. intros. rewrite <- H in H1. eapply H0; eauto.
- - (* base case *)
- rewrite PTree.gempty in H; discriminate.
- - (* inductive case *)
- destruct a as [e|?]; auto.
- destruct (type_instr e v) as [e'|?] eqn:TYINSTR; auto.
- intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
- inv H2. eapply type_instr_sound; eauto.
- eapply H1; eauto. eapply type_instr_incr; eauto.
- }
- intros; eapply H; eauto.
-Qed.
-
-Lemma solve_rec_incr:
- forall te q e changed e' changed',
- solve_rec e changed q = OK (e', changed') -> satisf te e' -> satisf te e.
-Proof.
- induction q; simpl; intros.
-- inv H; auto.
-- destruct a as [r1 r2]; monadInv H. eauto with ty.
-Qed.
-
-Lemma solve_rec_sound:
- forall r1 r2 te q e changed e' changed',
- solve_rec e changed q = OK (e', changed') -> satisf te e' -> In (r1, r2) q -> te r1 = te r2.
-Proof.
- induction q; simpl; intros.
-- contradiction.
-- destruct a as [r3 r4]; monadInv H. destruct H1 as [A|A].
- inv A. eapply type_move_sound; eauto. eapply solve_rec_incr; eauto.
- eapply IHq; eauto.
-Qed.
-
-Lemma solve_rec_false:
- forall q e changed e',
- solve_rec e changed q = OK (e', false) -> changed = false.
-Proof.
- induction q; simpl; intros.
-- inv H; auto.
-- destruct a as [r1 r2]; monadInv H. exploit IHq; eauto. rewrite orb_false_iff. tauto.
-Qed.
-
-Lemma solve_rec_solved:
- forall r1 r2 q e changed e',
- solve_rec e changed q = OK (e', false) ->
- In (r1, r2) q -> make_regenv e r1 = make_regenv e r2.
-Proof.
- induction q; simpl; intros.
-- contradiction.
-- destruct a as [r3 r4]; monadInv H.
- assert (x = false).
- { exploit solve_rec_false; eauto. rewrite orb_false_iff. tauto. }
- subst x. functional inversion EQ.
- + destruct H0 as [A|A].
- inv A. unfold make_regenv. rewrite H1; rewrite H2; auto.
- subst x0. exploit IHq; eauto.
- + destruct H0 as [A|A].
- inv A. unfold make_regenv. rewrite H1; rewrite H2; auto.
- subst x0. exploit IHq; eauto.
-Qed.
-
-Lemma solve_equations_incr:
- forall te e e', solve_equations e = OK e' -> satisf te e' -> satisf te e.
-Proof.
- intros te e0; functional induction (solve_equations e0); intros.
-- inv H. auto.
-- exploit solve_rec_incr; eauto. intros [A B]. split; intros.
- apply A; auto.
- eapply solve_rec_sound; eauto.
-- discriminate.
-Qed.
-
-Lemma solve_equations_sound:
- forall e e', solve_equations e = OK e' -> satisf (make_regenv e') e'.
-Proof.
- intros e0; functional induction (solve_equations e0); intros.
-- inv H. split; intros.
- unfold make_regenv; rewrite H; auto.
- exploit solve_rec_solved; eauto.
-- eauto.
-- discriminate.
+ change (P f.(fn_code) (OK e1)).
+ rewrite <- TCODE. unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros.
+ - (* extensionality *)
+ destruct a; auto; intros. rewrite <- H in H1. eapply H0; eauto.
+ - (* base case *)
+ rewrite PTree.gempty in H; discriminate.
+ - (* inductive case *)
+ destruct a as [e|?]; auto.
+ destruct (type_instr e v) as [e'|?] eqn:TYINSTR; auto.
+ intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
+ inv H2. eapply type_instr_sound; eauto.
+ eapply H1; eauto. eapply type_instr_incr; eauto.
Qed.
Theorem type_function_correct:
forall env, type_function = OK env -> wt_function f env.
Proof.
- unfold type_function; intros. monadInv H.
- exploit solve_equations_sound; eauto. intros SAT1.
- exploit solve_equations_incr; eauto. intros SAT0.
- exploit type_regs_incr; eauto. intros SAT.
+ unfold type_function; intros. monadInv H.
+ assert (SAT0: S.satisf env x0) by (eapply S.solve_sound; eauto).
+ assert (SAT1: S.satisf env x) by (eauto with ty).
constructor.
- (* type of parameters *)
- eapply type_regs_sound; eauto.
+ rewrite subtype_list_charact. eapply S.type_defs_sound; eauto.
- (* parameters are unique *)
unfold check_params_norepet in EQ2.
destruct (list_norepet_dec Reg.eq (fn_params f)); inv EQ2; auto.
- (* instructions are well typed *)
- intros; eapply type_code_sound; eauto.
+ intros. eapply type_code_sound; eauto.
- (* entry point is valid *)
eauto with ty.
Qed.
(** ** Completeness proof *)
-Lemma type_reg_complete:
- forall te e r ty,
- satisf te e -> te r = ty -> exists e', type_reg e r ty = OK e' /\ satisf te e'.
-Proof.
- intros. unfold type_reg.
- destruct ((te_typ e)!r) as [ty'|] eqn: E.
- exists e; split; auto. replace ty' with ty. apply dec_eq_true.
- exploit (proj1 H); eauto. congruence.
- econstructor; split. reflexivity.
- destruct H as [A B]; split; simpl; intros; auto.
- rewrite PTree.gsspec in H. destruct (peq r0 r); auto. congruence.
-Qed.
-
-Lemma type_regs_complete:
- forall te rl tyl e,
- satisf te e -> map te rl = tyl -> exists e', type_regs e rl tyl = OK e' /\ satisf te e'.
-Proof.
- induction rl; simpl; intros; subst tyl.
- exists e; auto.
- destruct (type_reg_complete te e a (te a)) as [e1 [A B]]; auto.
- exploit IHrl; eauto. intros [e' [C D]].
- exists e'; split; auto. rewrite A; simpl; rewrite C; auto.
-Qed.
-
Lemma type_ros_complete:
forall te ros e,
- satisf te e ->
- match ros with inl r => te r = Tint | inr s => True end ->
- exists e', type_ros e ros = OK e' /\ satisf te e'.
+ S.satisf te e ->
+ match ros with inl r => subtype (te r) Tint = true | inr s => True end ->
+ exists e', type_ros e ros = OK e' /\ S.satisf te e'.
Proof.
intros; destruct ros; simpl.
- eapply type_reg_complete; eauto.
+ eapply S.type_use_complete; eauto.
exists e; auto.
Qed.
-Lemma type_move_complete:
- forall te r1 r2 e,
- satisf te e ->
- te r1 = te r2 ->
- exists changed e', type_move e r1 r2 = OK (changed, e') /\ satisf te e'.
-Proof.
- intros. functional induction (type_move e r1 r2).
-- econstructor; econstructor; split; eauto.
- destruct H as [A B]; split; simpl; intros; auto.
- destruct H; auto. congruence.
-- econstructor; econstructor; split; eauto.
- destruct H as [A B]; split; simpl; intros; auto.
- rewrite PTree.gsspec in H. destruct (peq r r2); auto.
- subst. exploit A; eauto. congruence.
-- econstructor; econstructor; split; eauto.
- destruct H as [A B]; split; simpl; intros; auto.
- rewrite PTree.gsspec in H. destruct (peq r r1); auto.
- subst. exploit A; eauto. congruence.
-- econstructor; econstructor; split; eauto.
-- destruct H as [A B]. apply A in e0. apply A in e1. congruence.
-Qed.
-
Lemma check_successor_complete:
forall s, valid_successor f s -> check_successor s = OK tt.
Proof.
@@ -772,46 +607,51 @@ Qed.
Lemma type_instr_complete:
forall te e i,
- satisf te e ->
- wt_instr te f i ->
- exists e', type_instr e i = OK e' /\ satisf te e'.
+ S.satisf te e ->
+ wt_instr f te i ->
+ exists e', type_instr e i = OK e' /\ S.satisf te e'.
Proof.
induction 2; simpl.
- (* nop *)
econstructor; split. rewrite check_successor_complete; simpl; eauto. auto.
- (* move *)
- exploit type_move_complete; eauto. intros (changed & e' & A & B).
+ exploit S.type_move_complete; eauto. intros (changed & e' & A & B).
exists e'; split. rewrite check_successor_complete by auto; simpl. rewrite A; auto. auto.
- (* other op *)
- destruct (type_of_operation op) as [targ tres]. injection H1; clear H1; intros.
- exploit type_regs_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]].
+ destruct (type_of_operation op) as [targ tres]. simpl in *.
+ rewrite subtype_list_charact in H1.
+ exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]].
+ exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]].
exists e2; split; auto.
rewrite check_successor_complete by auto; simpl.
replace (is_move op) with false. rewrite A; simpl; rewrite C; auto.
destruct op; reflexivity || congruence.
- (* load *)
- exploit type_regs_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]].
+ rewrite subtype_list_charact in H0.
+ exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]].
+ exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]].
exists e2; split; auto.
rewrite check_successor_complete by auto; simpl.
rewrite A; simpl; rewrite C; auto.
- (* store *)
- exploit type_regs_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]].
+ rewrite subtype_list_charact in H0.
+ exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]].
+ exploit S.type_use_complete. eexact B. eauto. intros [e2 [C D]].
exists e2; split; auto.
rewrite check_successor_complete by auto; simpl.
rewrite A; simpl; rewrite C; auto.
- (* call *)
exploit type_ros_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_regs_complete. eauto. eauto. intros [e2 [C D]].
- exploit type_reg_complete. eexact D. eauto. intros [e3 [E F]].
+ rewrite subtype_list_charact in H1.
+ exploit S.type_uses_complete. eauto. eauto. intros [e2 [C D]].
+ exploit S.type_def_complete. eexact D. eauto. intros [e3 [E F]].
exists e3; split; auto.
rewrite check_successor_complete by auto; simpl.
rewrite A; simpl; rewrite C; simpl; rewrite E; auto.
- (* tailcall *)
exploit type_ros_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_regs_complete. eauto. eauto. intros [e2 [C D]].
+ rewrite subtype_list_charact in H2.
+ exploit S.type_uses_complete. eauto. eauto. intros [e2 [C D]].
exists e2; split; auto.
rewrite A; simpl; rewrite C; simpl.
rewrite H1; rewrite dec_eq_true.
@@ -821,41 +661,43 @@ Proof.
exploit (H3 a); auto. intros. destruct a; try contradiction. apply IHl.
intros; apply H3; auto.
- (* builtin *)
- exploit type_regs_complete. eauto. eauto. intros [e1 [A B]].
- exploit type_reg_complete. eexact B. eauto. intros [e2 [C D]].
+ rewrite subtype_list_charact in H0.
+ exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]].
+ exploit S.type_def_complete. eexact B. eauto. intros [e2 [C D]].
exists e2; split; auto.
rewrite check_successor_complete by auto; simpl.
rewrite A; simpl; rewrite C; auto.
- (* cond *)
- exploit type_regs_complete. eauto. eauto. intros [e1 [A B]].
+ rewrite subtype_list_charact in H0.
+ exploit S.type_uses_complete. eauto. eauto. intros [e1 [A B]].
exists e1; split; auto.
rewrite check_successor_complete by auto; simpl.
rewrite check_successor_complete by auto; simpl.
auto.
- (* jumptbl *)
- exploit type_reg_complete. eauto. eauto. intros [e1 [A B]].
+ exploit S.type_use_complete. eauto. eauto. intros [e1 [A B]].
exists e1; split; auto.
replace (check_successors tbl) with (OK tt). simpl.
rewrite A; simpl. apply zle_true; auto.
revert H1. generalize tbl. induction tbl0; simpl; intros. auto.
rewrite check_successor_complete by auto; simpl.
apply IHtbl0; intros; auto.
-- (* return *)
- rewrite <- H0. destruct optres; simpl.
- apply type_reg_complete; auto.
- exists e; auto.
+- (* return none *)
+ rewrite H0. exists e; auto.
+- (* return some *)
+ rewrite H0. apply S.type_use_complete; auto.
Qed.
Lemma type_code_complete:
forall te e,
- (forall pc instr, f.(fn_code)!pc = Some instr -> wt_instr te f instr) ->
- satisf te e ->
- exists e', type_code e = OK e' /\ satisf te e'.
+ (forall pc instr, f.(fn_code)!pc = Some instr -> wt_instr f te instr) ->
+ S.satisf te e ->
+ exists e', type_code e = OK e' /\ S.satisf te e'.
Proof.
intros te e0 WTC SAT0.
set (P := fun c res =>
- (forall pc i, c!pc = Some i -> wt_instr te f i) ->
- exists e', res = OK e' /\ satisf te e').
+ (forall pc i, c!pc = Some i -> wt_instr f te i) ->
+ exists e', res = OK e' /\ S.satisf te e').
assert (P f.(fn_code) (type_code e0)).
{
unfold type_code. apply PTree_Properties.fold_rec; unfold P; intros.
@@ -871,49 +713,16 @@ Proof.
apply H; auto.
Qed.
-Lemma solve_rec_complete:
- forall te q e changed,
- satisf te e ->
- (forall r1 r2, In (r1, r2) q -> te r1 = te r2) ->
- exists e' changed', solve_rec e changed q = OK(e', changed') /\ satisf te e'.
-Proof.
- induction q; simpl; intros.
-- exists e; exists changed; auto.
-- destruct a as [r3 r4].
- exploit type_move_complete. eauto. apply H0. left; eauto.
- intros (changed1 & e1 & A & B).
- destruct (IHq e1 (changed || changed1)) as (e2 & changed2 & C & D); auto.
- exists e2; exists changed2; split; auto. rewrite A; simpl; rewrite C; auto.
-Qed.
-
-Lemma solve_equations_complete:
- forall te e,
- satisf te e ->
- exists e', solve_equations e = OK e' /\ satisf te e'.
-Proof.
- intros te e0. functional induction (solve_equations e0); intros.
-- exists e; auto.
-- destruct (solve_rec_complete te (te_eqs e) {| te_typ := te_typ e; te_eqs := nil |} false)
- as (e1 & changed1 & A & B).
- destruct H; split; intros. apply H; auto. contradiction.
- exact (proj2 H).
- rewrite e0 in A. inv A. auto.
-- destruct (solve_rec_complete te (te_eqs e) {| te_typ := te_typ e; te_eqs := nil |} false)
- as (e1 & changed1 & A & B).
- destruct H; split; intros. apply H; auto. contradiction.
- exact (proj2 H).
- congruence.
-Qed.
-
Theorem type_function_complete:
forall te, wt_function f te -> exists te, type_function = OK te.
Proof.
intros. destruct H.
- destruct (type_code_complete te {| te_typ := PTree.empty typ; te_eqs := nil |}) as (e1 & A & B).
- auto. split; simpl; intros. rewrite PTree.gempty in H; congruence. contradiction.
- destruct (type_regs_complete te f.(fn_params) f.(fn_sig).(sig_args) e1) as (e2 & C & D); auto.
- destruct (solve_equations_complete te e2) as (e3 & E & F); auto.
- exists (make_regenv e3); unfold type_function.
+ destruct (type_code_complete te S.initial) as (e1 & A & B).
+ auto. apply S.satisf_initial.
+ destruct (S.type_defs_complete te f.(fn_params) f.(fn_sig).(sig_args) e1) as (e2 & C & D); auto.
+ rewrite <- subtype_list_charact; auto.
+ destruct (S.solve_complete te e2) as (te' & E); auto.
+ exists te'; unfold type_function.
rewrite A; simpl. rewrite C; simpl. rewrite E; simpl.
unfold check_params_norepet. rewrite pred_dec_true; auto. simpl.
rewrite check_successor_complete by auto. auto.
@@ -973,32 +782,52 @@ Qed.
Lemma wt_exec_Iop:
forall (ge: genv) env f sp op args res s rs m v,
- wt_instr env f (Iop op args res s) ->
+ wt_instr f env (Iop op args res s) ->
eval_operation ge sp op rs##args m = Some v ->
wt_regset env rs ->
wt_regset env (rs#res <- v).
Proof.
intros. inv H.
- simpl in H0. inv H0. apply wt_regset_assign; auto. rewrite <- H4; apply H1.
- apply wt_regset_assign; auto.
- replace (env res) with (snd (type_of_operation op)).
+ simpl in H0. inv H0. apply wt_regset_assign; auto.
+ eapply Val.has_subtype; eauto.
+ apply wt_regset_assign; auto.
+ eapply Val.has_subtype; eauto.
eapply type_of_operation_sound; eauto.
- rewrite <- H7; auto.
Qed.
Lemma wt_exec_Iload:
forall env f chunk addr args dst s m a v rs,
- wt_instr env f (Iload chunk addr args dst s) ->
+ wt_instr f env (Iload chunk addr args dst s) ->
Mem.loadv chunk m a = Some v ->
wt_regset env rs ->
wt_regset env (rs#dst <- v).
Proof.
- intros. destruct a; simpl in H0; try discriminate.
+ intros. destruct a; simpl in H0; try discriminate. inv H.
apply wt_regset_assign; auto.
- inv H. rewrite H8.
+ eapply Val.has_subtype; eauto.
eapply Mem.load_type; eauto.
Qed.
+Lemma wt_exec_Ibuiltin:
+ forall env f ef (ge: genv) args res s vargs m t vres m' rs,
+ wt_instr f env (Ibuiltin ef args res s) ->
+ external_call ef ge vargs m t vres m' ->
+ wt_regset env rs ->
+ wt_regset env (rs#res <- vres).
+Proof.
+ intros. inv H.
+ apply wt_regset_assign; auto.
+ eapply Val.has_subtype; eauto.
+ eapply external_call_well_typed; eauto.
+Qed.
+
+Lemma wt_instr_at:
+ forall f env pc i,
+ wt_function f env -> f.(fn_code)!pc = Some i -> wt_instr f env i.
+Proof.
+ intros. inv H. eauto.
+Qed.
+
Inductive wt_stackframes: list stackframe -> option typ -> Prop :=
| wt_stackframes_nil:
wt_stackframes nil (Some Tint)
@@ -1006,7 +835,7 @@ Inductive wt_stackframes: list stackframe -> option typ -> Prop :=
forall s res f sp pc rs env tyres,
wt_function f env ->
wt_regset env rs ->
- env res = match tyres with None => Tint | Some t => t end ->
+ subtype (match tyres with None => Tint | Some t => t end) (env res) = true ->
wt_stackframes s (sig_res (fn_sig f)) ->
wt_stackframes (Stackframe res f sp pc rs :: s) tyres.
@@ -1042,24 +871,13 @@ Lemma subject_reduction:
forall (WT: wt_state st1), wt_state st2.
Proof.
induction 1; intros; inv WT;
- try (generalize (wt_instrs _ _ WT_FN pc _ H);
- intro WT_INSTR;
- inv WT_INSTR).
+ try (generalize (wt_instrs _ _ WT_FN pc _ H); intros WTI).
(* Inop *)
econstructor; eauto.
(* Iop *)
- econstructor; eauto.
- apply wt_regset_assign. auto.
- simpl in H0. inv H0. rewrite <- H3. apply WT_RS.
- econstructor; eauto.
- apply wt_regset_assign. auto.
- replace (env res) with (snd (type_of_operation op)).
- eapply type_of_operation_sound; eauto.
- rewrite <- H6. reflexivity.
+ econstructor; eauto. eapply wt_exec_Iop; eauto.
(* Iload *)
- econstructor; eauto.
- apply wt_regset_assign. auto. rewrite H8.
- eapply type_of_chunk_correct; eauto.
+ econstructor; eauto. eapply wt_exec_Iload; eauto.
(* Istore *)
econstructor; eauto.
(* Icall *)
@@ -1072,8 +890,8 @@ Proof.
exact wt_p. exact H0.
discriminate.
econstructor; eauto.
- econstructor; eauto.
- rewrite <- H7. apply wt_regset_list. auto.
+ econstructor; eauto. inv WTI; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list. auto.
(* Itailcall *)
assert (wt_fundef fd).
destruct ros; simpl in H0.
@@ -1084,32 +902,28 @@ Proof.
exact wt_p. exact H0.
discriminate.
econstructor; eauto.
- rewrite H6; auto.
- rewrite <- H7. apply wt_regset_list. auto.
+ inv WTI. rewrite H7; auto.
+ inv WTI. eapply Val.has_subtype_list; eauto. apply wt_regset_list. auto.
(* Ibuiltin *)
- econstructor; eauto.
- apply wt_regset_assign. auto.
- rewrite H6. eapply external_call_well_typed; eauto.
+ econstructor; eauto. eapply wt_exec_Ibuiltin; eauto.
(* Icond *)
econstructor; eauto.
(* Ijumptable *)
econstructor; eauto.
(* Ireturn *)
econstructor; eauto.
- destruct or; simpl in *.
- rewrite <- H2. apply WT_RS. exact I.
+ inv WTI; simpl. auto. rewrite H2. eapply Val.has_subtype; eauto.
(* internal function *)
- simpl in *. inv H5. inversion H1; subst.
+ simpl in *. inv H5.
econstructor; eauto.
- apply wt_init_regs; auto. rewrite wt_params0; auto.
+ inv H1. apply wt_init_regs; auto. eapply Val.has_subtype_list; eauto.
(* external function *)
- simpl in *. inv H5.
- econstructor; eauto.
+ econstructor; eauto. simpl.
change (Val.has_type res (proj_sig_res (ef_sig ef))).
eapply external_call_well_typed; eauto.
(* return *)
- inv H1. econstructor; eauto.
- apply wt_regset_assign; auto. congruence.
+ inv H1. econstructor; eauto.
+ apply wt_regset_assign; auto. eapply Val.has_subtype; eauto.
Qed.
End SUBJECT_REDUCTION.
diff --git a/backend/Regalloc.ml b/backend/Regalloc.ml
index 179b2cc..f8cd561 100644
--- a/backend/Regalloc.ml
+++ b/backend/Regalloc.ml
@@ -481,7 +481,17 @@ let add_interfs_instr g instr live =
add_interfs_list g ftmp srcs; add_interfs_list g ftmp dsts;
(* Take into account destroyed reg when accessing Incoming param *)
if List.exists (function (L(S(Incoming, _, _))) -> true | _ -> false) srcs
- then add_interfs_list g (vmreg temp_for_parent_frame) dsts
+ then add_interfs_list g (vmreg temp_for_parent_frame) dsts;
+ (* Take into account destroyed reg when initializing Outgoing
+ arguments of type Tsingle *)
+ if List.exists
+ (function (L(S(Outgoing, _, Tsingle))) -> true | _ -> false) dsts
+ then
+ List.iter
+ (fun mr ->
+ add_interfs_list g (vmreg mr) srcs;
+ IRC.add_interf g (vmreg mr) ftmp)
+ (destroyed_by_setstack Tsingle)
| Xop(op, args, res) ->
begin match is_two_address op args with
| None ->
@@ -825,7 +835,7 @@ let make_parmove srcs dsts itmp ftmp k =
assert (Array.length dst = n);
let status = Array.make n To_move in
let temp_for =
- function Tint -> itmp | Tfloat -> ftmp | Tlong -> assert false in
+ function Tint -> itmp | (Tfloat|Tsingle) -> ftmp | Tlong -> assert false in
let code = ref [] in
let add_move s d =
match s, d with
diff --git a/backend/Stackingproof.v b/backend/Stackingproof.v
index 1808402..dfa81d8 100644
--- a/backend/Stackingproof.v
+++ b/backend/Stackingproof.v
@@ -413,7 +413,8 @@ Lemma gss_index_contains:
Proof.
intros. exploit gss_index_contains_base; eauto. intros [v' [A B]].
assert (v' = v).
- destruct v; destruct (type_of_index idx); simpl in *; intuition congruence.
+ destruct v; destruct (type_of_index idx); simpl in *;
+ try contradiction; auto. rewrite Floats.Float.singleoffloat_of_single in B; auto.
subst v'. auto.
Qed.
@@ -513,6 +514,20 @@ Proof.
intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]].
exists v''; split; auto.
inv H2; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto.
+ rewrite Floats.Float.singleoffloat_of_single; auto.
+ econstructor; eauto.
+Qed.
+
+Lemma gss_index_contains_inj':
+ forall j idx m m' sp v v',
+ Mem.store (chunk_of_type (type_of_index idx)) m sp (offset_of_index fe idx) v' = Some m' ->
+ index_valid idx ->
+ val_inject j v v' ->
+ index_contains_inj j m' sp idx (Val.load_result (chunk_of_type (type_of_index idx)) v).
+Proof.
+ intros. exploit gss_index_contains_base; eauto. intros [v'' [A B]].
+ exists v''; split; auto.
+ inv H1; destruct (type_of_index idx); simpl in *; try contradiction; subst; auto.
econstructor; eauto.
Qed.
@@ -783,7 +798,7 @@ Lemma agree_frame_set_reg:
Proof.
intros. inv H; constructor; auto; intros.
rewrite Locmap.gso. auto. red. intuition congruence.
- apply wt_setloc; auto.
+ apply wt_setreg; auto.
Qed.
Lemma agree_frame_set_regs:
@@ -838,17 +853,16 @@ Lemma agree_frame_set_local:
agree_frame j ls ls0 m sp m' sp' parent retaddr ->
slot_within_bounds b Local ofs ty -> slot_valid f Local ofs ty = true ->
val_inject j v v' ->
- Val.has_type v ty ->
Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_local ofs ty)) v' = Some m'' ->
agree_frame j (Locmap.set (S Local ofs ty) v ls) ls0 m sp m'' sp' parent retaddr.
Proof.
intros. inv H.
- change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_local ofs ty))) in H4.
+ change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_local ofs ty))) in H3.
constructor; auto; intros.
(* local *)
unfold Locmap.set.
destruct (Loc.eq (S Local ofs ty) (S Local ofs0 ty0)).
- inv e. eapply gss_index_contains_inj; eauto with stacking.
+ inv e. eapply gss_index_contains_inj'; eauto with stacking.
destruct (Loc.diff_dec (S Local ofs ty) (S Local ofs0 ty0)).
eapply gso_index_contains_inj. eauto. eauto with stacking. eauto.
simpl. simpl in d. intuition.
@@ -870,7 +884,7 @@ Proof.
(* perm *)
red; intros. eapply Mem.perm_store_1; eauto.
(* wt *)
- apply wt_setloc; auto.
+ apply wt_setstack; auto.
Qed.
(** Preservation by assignment to outgoing slot *)
@@ -880,19 +894,18 @@ Lemma agree_frame_set_outgoing:
agree_frame j ls ls0 m sp m' sp' parent retaddr ->
slot_within_bounds b Outgoing ofs ty -> slot_valid f Outgoing ofs ty = true ->
val_inject j v v' ->
- Val.has_type v ty ->
Mem.store (chunk_of_type ty) m' sp' (offset_of_index fe (FI_arg ofs ty)) v' = Some m'' ->
agree_frame j (Locmap.set (S Outgoing ofs ty) v ls) ls0 m sp m'' sp' parent retaddr.
Proof.
intros. inv H.
- change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_arg ofs ty))) in H4.
+ change (chunk_of_type ty) with (chunk_of_type (type_of_index (FI_arg ofs ty))) in H3.
constructor; auto; intros.
(* local *)
rewrite Locmap.gso. eapply gso_index_contains_inj; eauto with stacking. red; auto.
red; left; congruence.
(* outgoing *)
unfold Locmap.set. destruct (Loc.eq (S Outgoing ofs ty) (S Outgoing ofs0 ty0)).
- inv e. eapply gss_index_contains_inj; eauto with stacking.
+ inv e. eapply gss_index_contains_inj'; eauto with stacking.
destruct (Loc.diff_dec (S Outgoing ofs ty) (S Outgoing ofs0 ty0)).
eapply gso_index_contains_inj; eauto with stacking.
red. red in d. intuition.
@@ -911,7 +924,7 @@ Proof.
(* perm *)
red; intros. eapply Mem.perm_store_1; eauto.
(* wt *)
- apply wt_setloc; auto.
+ apply wt_setstack; auto.
Qed.
(** General invariance property with respect to memory changes. *)
@@ -1131,6 +1144,12 @@ Proof.
apply check_mreg_list_incl; compute; auto.
Qed.
+Remark destroyed_by_setstack_caller_save:
+ forall ty, incl (destroyed_by_setstack ty) destroyed_at_call.
+Proof.
+ destruct ty; apply check_mreg_list_incl; compute; auto.
+Qed.
+
Remark destroyed_at_function_entry_caller_save:
incl destroyed_at_function_entry destroyed_at_call.
Proof.
@@ -1226,7 +1245,7 @@ Hypothesis csregs_typ:
forall r, In r csregs -> mreg_type r = ty.
Hypothesis ls_temp_undef:
- forall r, In r (destroyed_by_op Omove) -> ls (R r) = Vundef.
+ forall r, In r (destroyed_by_setstack ty) -> ls (R r) = Vundef.
Hypothesis wt_ls: wt_locset ls.
@@ -1269,10 +1288,10 @@ Proof.
(* a store takes place *)
exploit store_index_succeeds. apply (mkindex_valid a); auto with coqlib.
eauto. instantiate (1 := rs a). intros [m1 ST].
- exploit (IHl k (undef_regs (destroyed_by_op Omove) rs) m1). auto with coqlib. auto.
+ exploit (IHl k (undef_regs (destroyed_by_setstack ty) rs) m1). auto with coqlib. auto.
red; eauto with mem.
apply agree_regs_exten with ls rs. auto.
- intros. destruct (In_dec mreg_eq r (destroyed_by_op Omove)).
+ intros. destruct (In_dec mreg_eq r (destroyed_by_setstack ty)).
left. apply ls_temp_undef; auto.
right; split. auto. apply undef_regs_other; auto.
intros [rs' [m' [A [B [C [D [E F]]]]]]].
@@ -1370,7 +1389,8 @@ Proof.
intros; congruence.
intros; simpl. destruct idx; auto. congruence.
intros. apply int_callee_save_type. auto.
- auto.
+Local Transparent destroyed_by_setstack.
+ simpl. tauto.
auto.
apply incl_refl.
apply int_callee_save_norepet.
@@ -1388,8 +1408,8 @@ Proof.
intros; congruence.
intros; simpl. destruct idx; auto. congruence.
intros. apply float_callee_save_type. auto.
+ simpl. tauto.
auto.
- auto.
apply incl_refl.
apply float_callee_save_norepet.
eexact E.
@@ -2491,7 +2511,7 @@ Proof.
eapply index_contains_load_stack; eauto.
econstructor; eauto with coqlib.
apply agree_regs_set_reg; auto.
- apply agree_frame_set_reg; auto. simpl. rewrite <- H. eapply agree_wt_ls; eauto.
+ apply agree_frame_set_reg; auto. simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto.
(* Lgetstack, incoming *)
unfold slot_valid in H0. InvBooleans.
exploit incoming_slot_in_parameters; eauto. intros IN_ARGS.
@@ -2517,7 +2537,7 @@ Proof.
eapply agree_frame_set_reg; eauto. eapply agree_frame_set_reg; eauto.
apply caller_save_reg_within_bounds.
apply temp_for_parent_frame_caller_save.
- subst ty. simpl. eapply agree_wt_ls; eauto.
+ simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto.
(* Lgetstack, outgoing *)
exploit agree_outgoing; eauto. intros [v [A B]].
econstructor; split.
@@ -2525,7 +2545,8 @@ Proof.
eapply index_contains_load_stack; eauto.
econstructor; eauto with coqlib.
apply agree_regs_set_reg; auto.
- apply agree_frame_set_reg; auto. simpl; rewrite <- H; eapply agree_wt_ls; eauto.
+ apply agree_frame_set_reg; auto.
+ simpl. eapply Val.has_subtype; eauto. eapply agree_wt_ls; eauto.
(* Lsetstack *)
set (idx := match sl with
@@ -2548,23 +2569,21 @@ Proof.
econstructor.
eapply Mem.store_outside_inject; eauto.
intros. exploit agree_inj_unique; eauto. intros [EQ1 EQ2]; subst b' delta.
- rewrite size_type_chunk in H5.
+ rewrite size_type_chunk in H4.
exploit offset_of_index_disj_stack_data_2; eauto.
exploit agree_bounds. eauto. apply Mem.perm_cur_max. eauto.
omega.
apply match_stacks_change_mach_mem with m'; auto.
- eauto with mem. eauto with mem. intros. rewrite <- H4; eapply Mem.load_store_other; eauto. left; unfold block; omega.
+ eauto with mem. eauto with mem. intros. rewrite <- H3; eapply Mem.load_store_other; eauto. left; unfold block; omega.
eauto. eauto. auto.
apply agree_regs_set_slot. apply agree_regs_undef_regs; auto.
destruct sl.
eapply agree_frame_set_local. eapply agree_frame_undef_locs; eauto.
- apply destroyed_by_op_caller_save. auto. auto. apply AGREGS.
- rewrite H; eapply agree_wt_ls; eauto.
+ apply destroyed_by_setstack_caller_save. auto. auto. apply AGREGS.
assumption.
simpl in H0; discriminate.
eapply agree_frame_set_outgoing. eapply agree_frame_undef_locs; eauto.
- apply destroyed_by_op_caller_save. auto. auto. apply AGREGS.
- rewrite H; eapply agree_wt_ls; eauto.
+ apply destroyed_by_setstack_caller_save. auto. auto. apply AGREGS.
assumption.
eauto with coqlib.
@@ -2572,12 +2591,14 @@ Proof.
assert (Val.has_type v (mreg_type res)).
destruct (is_move_operation op args) as [arg|] eqn:?.
exploit is_move_operation_correct; eauto. intros [EQ1 EQ2]; subst op args.
- InvBooleans. simpl in H. inv H. rewrite <- H0. eapply agree_wt_ls; eauto.
- replace (mreg_type res) with (snd (type_of_operation op)).
+ eapply Val.has_subtype; eauto. simpl in H; inv H. eapply agree_wt_ls; eauto.
+ destruct (type_of_operation op) as [targs tres] eqn:TYOP.
+ eapply Val.has_subtype; eauto.
+ replace tres with (snd (type_of_operation op)).
eapply type_of_operation_sound; eauto.
red; intros. subst op. simpl in Heqo.
destruct args; simpl in H. discriminate. destruct args. discriminate. simpl in H. discriminate.
- destruct (type_of_operation op) as [targs tres]. InvBooleans. auto.
+ rewrite TYOP; auto.
assert (exists v',
eval_operation ge (Vptr sp' Int.zero) (transl_op (make_env (function_bounds f)) op) rs0##args m' = Some v'
/\ val_inject j v v').
@@ -2602,7 +2623,7 @@ Proof.
eapply eval_addressing_inject; eauto.
eapply match_stacks_preserves_globals; eauto.
eapply agree_inj; eauto. eapply agree_reglist; eauto.
- destruct H2 as [a' [A B]].
+ destruct H1 as [a' [A B]].
exploit Mem.loadv_inject; eauto. intros [v' [C D]].
econstructor; split.
apply plus_one. econstructor.
@@ -2612,7 +2633,7 @@ Proof.
apply agree_regs_set_reg. rewrite transl_destroyed_by_load. apply agree_regs_undef_regs; auto. auto.
apply agree_frame_set_reg. apply agree_frame_undef_locs; auto.
apply destroyed_by_load_caller_save. auto.
- simpl. rewrite H1. destruct a; simpl in H0; try discriminate. eapply Mem.load_type; eauto.
+ simpl. eapply Val.has_subtype; eauto. destruct a; simpl in H0; try discriminate. eapply Mem.load_type; eauto.
(* Lstore *)
assert (exists a',
@@ -2698,7 +2719,7 @@ Proof.
eapply agree_valid_mach; eauto.
simpl. rewrite list_map_compose.
change (fun x => Loc.type (R x)) with mreg_type.
- rewrite H0. eapply external_call_well_typed'; eauto.
+ eapply Val.has_subtype_list; eauto. eapply external_call_well_typed'; eauto.
(* Lannot *)
exploit transl_annot_params_correct; eauto.