1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
|
(* *********************************************************************)
(* *)
(* The Compcert verified compiler *)
(* *)
(* Xavier Leroy, INRIA Paris-Rocquencourt *)
(* *)
(* Copyright Institut National de Recherche en Informatique et en *)
(* Automatique. All rights reserved. This file is distributed *)
(* under the terms of the INRIA Non-Commercial License Agreement. *)
(* *)
(* *********************************************************************)
(* Register allocation by coloring of an interference graph *)
(* The algorithm in a nutshell:
- Split live ranges
- Convert from RTL to XTL
- Eliminate dead code
- Repeat:
. Construct interference graph
. Color interference graph using IRC algorithm
. Check for variables that were spilled and must be in registers
. If none, convert to LTL and exit.
. If some, insert spill and reload instructions and try again
End Repeat
*)
open Format
open Clflags
open Camlcoq
open Datatypes
open Coqlib
open Maps
open AST
open Memdata
open Kildall
open Registers
open Op
open Machregs
open Locations
open Conventions1
open Conventions
open IRC
open XTL
(* Detection of 2-address operations *)
let is_two_address op args =
if two_address_op op then
match args with
| [] -> assert false
| arg1 :: argl -> Some(arg1, argl)
else None
(* For tracing *)
let destination_alloctrace : string option ref = ref None
let pp = ref std_formatter
let init_trace () =
if !option_dalloctrace && !pp == std_formatter then begin
match !destination_alloctrace with
| None -> () (* should not happen *)
| Some f -> pp := formatter_of_out_channel (open_out f)
end
(**************** Initial conversion from RTL to XTL **************)
let vreg tyenv r = V(r, tyenv r)
let vregs tyenv rl = List.map (vreg tyenv) rl
let rec expand_regs tyenv = function
| [] -> []
| r :: rl ->
match tyenv r with
| Tlong -> V(r, Tint) :: V(twin_reg r, Tint) :: expand_regs tyenv rl
| ty -> V(r, ty) :: expand_regs tyenv rl
let constrain_reg v c =
match c with
| None -> v
| Some mr -> L(R mr)
let rec constrain_regs vl cl =
match vl, cl with
| [], _ -> []
| v1 :: vl', [] -> vl
| v1 :: vl', Some mr1 :: cl' -> L(R mr1) :: constrain_regs vl' cl'
| v1 :: vl', None :: cl' -> v1 :: constrain_regs vl' cl'
let move v1 v2 k =
if v1 = v2 then k else Xmove(v1, v2) :: k
let rec movelist vl1 vl2 k =
match vl1, vl2 with
| [], [] -> k
| v1 :: vl1, v2 :: vl2 -> move v1 v2 (movelist vl1 vl2 k)
| _, _ -> assert false
let xparmove srcs dsts k =
assert (List.length srcs = List.length dsts);
match srcs, dsts with
| [], [] -> k
| [src], [dst] -> Xmove(src, dst) :: k
| _, _ -> Xparmove(srcs, dsts, new_temp Tint, new_temp Tfloat) :: k
(* Return the XTL basic block corresponding to the given RTL instruction.
Move and parallel move instructions are introduced to honor calling
conventions and register constraints on some operations.
64-bit integer variables are split in two 32-bit halves. *)
let block_of_RTL_instr funsig tyenv = function
| RTL.Inop s ->
[Xbranch s]
| RTL.Iop(Omove, [arg], res, s) ->
if tyenv arg = Tlong then
[Xmove(V(arg, Tint), V(res, Tint));
Xmove(V(twin_reg arg, Tint), V(twin_reg res, Tint));
Xbranch s]
else
[Xmove(vreg tyenv arg, vreg tyenv res); Xbranch s]
| RTL.Iop(Omakelong, [arg1; arg2], res, s) ->
[Xmove(V(arg1, Tint), V(res, Tint));
Xmove(V(arg2, Tint), V(twin_reg res, Tint));
Xbranch s]
| RTL.Iop(Olowlong, [arg], res, s) ->
[Xmove(V(twin_reg arg, Tint), V(res, Tint)); Xbranch s]
| RTL.Iop(Ohighlong, [arg], res, s) ->
[Xmove(V(arg, Tint), V(res, Tint)); Xbranch s]
| RTL.Iop(op, args, res, s) ->
let (cargs, cres) = mregs_for_operation op in
let args1 = vregs tyenv args and res1 = vreg tyenv res in
let args2 = constrain_regs args1 cargs and res2 = constrain_reg res1 cres in
let (args3, res3) =
match is_two_address op args2 with
| None ->
(args2, res2)
| Some(arg, args2') ->
if arg = res2 || not (List.mem res2 args2') then
(args2, res2)
else
let t = new_temp (tyenv res) in (t :: args2', t) in
movelist args1 args3 (Xop(op, args3, res3) :: move res3 res1 [Xbranch s])
| RTL.Iload(chunk, addr, args, dst, s) ->
if chunk = Mint64 then begin
match offset_addressing addr (coqint_of_camlint 4l) with
| None -> assert false
| Some addr' ->
[Xload(Mint32, addr, vregs tyenv args,
V((if big_endian then dst else twin_reg dst), Tint));
Xload(Mint32, addr', vregs tyenv args,
V((if big_endian then twin_reg dst else dst), Tint));
Xbranch s]
end else
[Xload(chunk, addr, vregs tyenv args, vreg tyenv dst); Xbranch s]
| RTL.Istore(chunk, addr, args, src, s) ->
if chunk = Mint64 then begin
match offset_addressing addr (coqint_of_camlint 4l) with
| None -> assert false
| Some addr' ->
[Xstore(Mint32, addr, vregs tyenv args,
V((if big_endian then src else twin_reg src), Tint));
Xstore(Mint32, addr', vregs tyenv args,
V((if big_endian then twin_reg src else src), Tint));
Xbranch s]
end else
[Xstore(chunk, addr, vregs tyenv args, vreg tyenv src); Xbranch s]
| RTL.Icall(sg, ros, args, res, s) ->
let args' = vlocs (loc_arguments sg)
and res' = vmregs (loc_result sg) in
xparmove (expand_regs tyenv args) args'
(Xcall(sg, sum_left_map (vreg tyenv) ros, args', res') ::
xparmove res' (expand_regs tyenv [res])
[Xbranch s])
| RTL.Itailcall(sg, ros, args) ->
let args' = vlocs (loc_arguments sg) in
xparmove (expand_regs tyenv args) args'
[Xtailcall(sg, sum_left_map (vreg tyenv) ros, args')]
| RTL.Ibuiltin(ef, args, res, s) ->
let (cargs, cres) = mregs_for_builtin ef in
let args1 = expand_regs tyenv args and res1 = expand_regs tyenv [res] in
let args2 = constrain_regs args1 cargs and res2 = constrain_regs res1 cres in
movelist args1 args2
(Xbuiltin(ef, args2, res2) :: movelist res2 res1 [Xbranch s])
| RTL.Icond(cond, args, s1, s2) ->
[Xcond(cond, vregs tyenv args, s1, s2)]
| RTL.Ijumptable(arg, tbl) ->
[Xjumptable(vreg tyenv arg, tbl)]
| RTL.Ireturn None ->
[Xreturn []]
| RTL.Ireturn (Some arg) ->
let args' = vmregs (loc_result funsig) in
xparmove (expand_regs tyenv [arg]) args' [Xreturn args']
(* One above the [pc] nodes of the given RTL function *)
let next_pc f =
PTree.fold
(fun npc pc i -> if P.lt pc npc then npc else P.succ pc)
f.RTL.fn_code P.one
(* Translate an RTL function to an XTL function *)
let function_of_RTL_function f tyenv =
let xc = PTree.map1 (block_of_RTL_instr f.RTL.fn_sig tyenv) f.RTL.fn_code in
(* Add moves for function parameters *)
let pc_entrypoint = next_pc f in
let b_entrypoint =
xparmove (vlocs (loc_parameters f.RTL.fn_sig))
(expand_regs tyenv f.RTL.fn_params)
[Xbranch f.RTL.fn_entrypoint] in
{ fn_sig = f.RTL.fn_sig;
fn_stacksize = f.RTL.fn_stacksize;
fn_entrypoint = pc_entrypoint;
fn_code = PTree.set pc_entrypoint b_entrypoint xc }
(***************** Liveness analysis *****************)
let vset_removelist vl after = List.fold_right VSet.remove vl after
let vset_addlist vl after = List.fold_right VSet.add vl after
let vset_addros vos after =
match vos with Coq_inl v -> VSet.add v after | Coq_inr id -> after
let live_before instr after =
match instr with
| Xmove(src, dst) | Xspill(src, dst) | Xreload(src, dst) ->
if VSet.mem dst after
then VSet.add src (VSet.remove dst after)
else after
| Xparmove(srcs, dsts, itmp, ftmp) ->
vset_addlist srcs (vset_removelist dsts after)
| Xop(op, args, res) ->
if VSet.mem res after
then vset_addlist args (VSet.remove res after)
else after
| Xload(chunk, addr, args, dst) ->
if VSet.mem dst after
then vset_addlist args (VSet.remove dst after)
else after
| Xstore(chunk, addr, args, src) ->
vset_addlist args (VSet.add src after)
| Xcall(sg, ros, args, res) ->
vset_addlist args (vset_addros ros (vset_removelist res after))
| Xtailcall(sg, ros, args) ->
vset_addlist args (vset_addros ros VSet.empty)
| Xbuiltin(ef, args, res) ->
vset_addlist args (vset_removelist res after)
| Xbranch s ->
after
| Xcond(cond, args, s1, s2) ->
List.fold_right VSet.add args after
| Xjumptable(arg, tbl) ->
VSet.add arg after
| Xreturn args ->
vset_addlist args VSet.empty
let rec live_before_block blk after =
match blk with
| [] -> after
| instr :: blk -> live_before instr (live_before_block blk after)
let transfer_live f pc after =
match PTree.get pc f.fn_code with
| None -> VSet.empty
| Some blk -> live_before_block blk after
module VSetLat = struct
type t = VSet.t
let beq = VSet.equal
let bot = VSet.empty
let lub = VSet.union
end
module Liveness_Solver = Backward_Dataflow_Solver(VSetLat)(NodeSetBackward)
let liveness_analysis f =
match Liveness_Solver.fixpoint (successors f) (transfer_live f) [] with
| None -> assert false
| Some lv -> lv
(* Pair the instructions of a block with their live-before sets *)
let pair_block_live blk after =
let rec pair_rec accu after = function
| [] -> accu
| instr :: blk ->
let before = live_before instr after in
pair_rec ((instr, before) :: accu) before blk in
pair_rec [] after (List.rev blk)
(**************** Dead code elimination **********************)
(* Eliminate pure instructions whose results are not used later. *)
let rec dce_parmove srcs dsts after =
match srcs, dsts with
| [], [] -> [], []
| src1 :: srcs, dst1 :: dsts ->
let (srcs', dsts') = dce_parmove srcs dsts after in
if VSet.mem dst1 after
then (src1 :: srcs', dst1 :: dsts')
else (srcs', dsts')
| _, _ -> assert false
let dce_instr instr after k =
match instr with
| Xmove(src, dst) ->
if VSet.mem dst after
then instr :: k
else k
| Xparmove(srcs, dsts, itmp, ftmp) ->
begin match dce_parmove srcs dsts after with
| ([], []) -> k
| ([src], [dst]) -> Xmove(src, dst) :: k
| (srcs', dsts') -> Xparmove(srcs', dsts', itmp, ftmp) :: k
end
| Xop(op, args, res) ->
if VSet.mem res after
then instr :: k
else k
| Xload(chunk, addr, args, dst) ->
if VSet.mem dst after
then instr :: k
else k
| _ ->
instr :: k
let rec dce_block blk after =
match blk with
| [] -> (after, [])
| instr :: blk' ->
let (after', tblk') = dce_block blk' after in
(live_before instr after', dce_instr instr after' tblk')
let dead_code_elimination f liveness =
{ f with fn_code =
PTree.map (fun pc blk -> snd(dce_block blk (PMap.get pc liveness)))
f.fn_code }
(*********************** Spill costs ****************************)
(* Estimate spill costs and count other statistics for every variable.
Variables that must not be spilled are given infinite costs. *)
let spill_costs f =
let costs = ref PTree.empty in
let get_stats r =
match PTree.get r !costs with
| Some st -> st
| None ->
let st = {cost = 0; usedefs = 0} in
costs := PTree.set r st !costs;
st in
let charge amount uses v =
match v with
| L l -> ()
| V(r, ty) ->
let st = get_stats r in
let c1 = st.cost + amount in
let c2 = if c1 >= 0 then c1 else max_int (* overflow *) in
st.cost <- c2;
st.usedefs <- st.usedefs + uses in
let charge_list amount uses vl =
List.iter (charge amount uses) vl in
let charge_ros amount ros =
match ros with Coq_inl v -> charge amount 1 v | Coq_inr id -> () in
let charge_instr = function
| Xmove(src, dst) ->
charge 1 1 src; charge 1 1 dst
| Xreload(src, dst) ->
charge 1 1 src; charge max_int 1 dst
(* dest must not be spilled! *)
| Xspill(src, dst) ->
charge max_int 1 src; charge 1 1 dst
(* source must not be spilled! *)
| Xparmove(srcs, dsts, itmp, ftmp) ->
charge_list 1 1 srcs; charge_list 1 1 dsts;
charge max_int 0 itmp; charge max_int 0 ftmp
(* temps must not be spilled *)
| Xop(op, args, res) ->
charge_list 10 1 args; charge 10 1 res
| Xload(chunk, addr, args, dst) ->
charge_list 10 1 args; charge 10 1 dst
| Xstore(chunk, addr, args, src) ->
charge_list 10 1 args; charge 10 1 src
| Xcall(sg, vos, args, res) ->
charge_ros 10 vos
| Xtailcall(sg, vos, args) ->
charge_ros 10 vos
| Xbuiltin(ef, args, res) ->
begin match ef with
| EF_vstore _ | EF_vstore_global _ | EF_memcpy _ ->
(* result is not used but should not be spilled *)
charge_list 10 1 args; charge_list max_int 0 res
| EF_annot _ ->
(* arguments are not actually used, so don't charge;
result is never used but should not be spilled *)
charge_list max_int 0 res
| EF_annot_val _ ->
(* like a move *)
charge_list 1 1 args; charge_list 1 1 res
| _ ->
charge_list 10 1 args; charge_list 10 1 res
end
| Xbranch _ -> ()
| Xcond(cond, args, _, _) ->
charge_list 10 1 args
| Xjumptable(arg, _) ->
charge 10 1 arg
| Xreturn optarg ->
() in
let charge_block blk = List.iter charge_instr blk in
PTree.fold
(fun () pc blk -> charge_block blk)
f.fn_code ();
if !option_dalloctrace then begin
fprintf !pp "------------------ Unspillable variables --------------@ @.";
fprintf !pp "@[<hov 1>";
PTree.fold
(fun () r st ->
if st.cost = max_int then fprintf !pp "@ x%ld" (P.to_int32 r))
!costs ();
fprintf !pp "@]@ @."
end;
(* Result is cost function: pseudoreg -> stats *)
get_stats
(********* Construction and coloring of the interference graph **************)
let add_interfs_def g res live =
VSet.iter (fun v -> if v <> res then IRC.add_interf g v res) live
let add_interfs_move g src dst live =
VSet.iter (fun v -> if v <> src && v <> dst then IRC.add_interf g v dst) live
let add_interfs_destroyed g live mregs =
List.iter
(fun mr -> VSet.iter (IRC.add_interf g (L (R mr))) live)
mregs
let add_interfs_live g live v =
VSet.iter (fun v' -> IRC.add_interf g v v') live
let add_interfs_list g v vl =
List.iter (IRC.add_interf g v) vl
let rec add_interfs_pairwise g = function
| [] -> ()
| v1 :: vl -> add_interfs_list g v1 vl; add_interfs_pairwise g vl
let add_interfs_instr g instr live =
match instr with
| Xmove(src, dst) | Xspill(src, dst) | Xreload(src, dst) ->
IRC.add_pref g src dst;
add_interfs_move g src dst live
| Xparmove(srcs, dsts, itmp, ftmp) ->
List.iter2 (IRC.add_pref g) srcs dsts;
(* Interferences with live across *)
let across = vset_removelist dsts live in
List.iter (add_interfs_live g across) dsts;
add_interfs_live g across itmp; add_interfs_live g across ftmp;
(* All destinations must be pairwise different *)
add_interfs_pairwise g dsts;
(* The temporaries must be different from sources and dests *)
add_interfs_list g itmp srcs; add_interfs_list g itmp dsts;
add_interfs_list g ftmp srcs; add_interfs_list g ftmp dsts;
(* Take into account destroyed reg when accessing Incoming param *)
if List.exists (function (L(S(Incoming, _, _))) -> true | _ -> false) srcs
then add_interfs_list g (vmreg temp_for_parent_frame) dsts
| Xop(op, args, res) ->
begin match is_two_address op args with
| None ->
add_interfs_def g res live;
| Some(arg1, argl) ->
(* Treat as "res := arg1; res := op(res, argl)" *)
add_interfs_def g res live;
IRC.add_pref g arg1 res;
add_interfs_move g arg1 res
(vset_addlist (res :: argl) (VSet.remove res live))
end;
add_interfs_destroyed g (VSet.remove res live) (destroyed_by_op op);
| Xload(chunk, addr, args, dst) ->
add_interfs_def g dst live;
add_interfs_destroyed g (VSet.remove dst live)
(destroyed_by_load chunk addr)
| Xstore(chunk, addr, args, src) ->
add_interfs_destroyed g live (destroyed_by_store chunk addr)
| Xcall(sg, vos, args, res) ->
add_interfs_destroyed g (vset_removelist res live) destroyed_at_call
| Xtailcall(sg, Coq_inl v, args) ->
List.iter (fun r -> IRC.add_interf g (vmreg r) v) int_callee_save_regs
| Xtailcall(sg, Coq_inr id, args) ->
()
| Xbuiltin(ef, args, res) ->
(* Interferences with live across *)
let across = vset_removelist res live in
List.iter (add_interfs_live g across) res;
(* All results must be pairwise different *)
add_interfs_pairwise g res;
add_interfs_destroyed g across (destroyed_by_builtin ef);
begin match ef, args, res with
| EF_annot_val _, [arg], [res] -> IRC.add_pref g arg res (* like a move *)
| _ -> ()
end
| Xbranch s ->
()
| Xcond(cond, args, s1, s2) ->
add_interfs_destroyed g live (destroyed_by_cond cond)
| Xjumptable(arg, tbl) ->
add_interfs_destroyed g live destroyed_by_jumptable
| Xreturn optarg ->
()
let rec add_interfs_block g blk live =
match blk with
| [] -> live
| instr :: blk' ->
let live' = add_interfs_block g blk' live in
add_interfs_instr g instr live';
live_before instr live'
let find_coloring f liveness =
(*type_function f; (* for debugging *)*)
let g = IRC.init (spill_costs f) in
PTree.fold
(fun () pc blk -> ignore (add_interfs_block g blk (PMap.get pc liveness)))
f.fn_code ();
add_interfs_destroyed g
(transfer_live f f.fn_entrypoint (PMap.get f.fn_entrypoint liveness))
destroyed_at_function_entry;
IRC.coloring g
(*********** Determination of variables that need spill code insertion *****)
let is_reg alloc v =
match alloc v with R _ -> true | S _ -> false
let add_tospill alloc v ts =
match alloc v with R _ -> ts | S _ -> VSet.add v ts
let addlist_tospill alloc vl ts =
List.fold_right (add_tospill alloc) vl ts
let addros_tospill alloc ros ts =
match ros with Coq_inl v -> add_tospill alloc v ts | Coq_inr s -> ts
let tospill_instr alloc instr ts =
match instr with
| Xmove(src, dst) ->
if is_reg alloc src || is_reg alloc dst || alloc src = alloc dst
then ts
else VSet.add src (VSet.add dst ts)
| Xreload(src, dst) ->
assert (is_reg alloc dst);
ts
| Xspill(src, dst) ->
assert (is_reg alloc src);
ts
| Xparmove(srcs, dsts, itmp, ftmp) ->
assert (is_reg alloc itmp && is_reg alloc ftmp);
ts
| Xop(op, args, res) ->
addlist_tospill alloc args (add_tospill alloc res ts)
| Xload(chunk, addr, args, dst) ->
addlist_tospill alloc args (add_tospill alloc dst ts)
| Xstore(chunk, addr, args, src) ->
addlist_tospill alloc args (add_tospill alloc src ts)
| Xcall(sg, vos, args, res) ->
addros_tospill alloc vos ts
| Xtailcall(sg, vos, args) ->
addros_tospill alloc vos ts
| Xbuiltin(ef, args, res) ->
begin match ef with
| EF_annot _ -> ts
| _ -> addlist_tospill alloc args (addlist_tospill alloc res ts)
end
| Xbranch s ->
ts
| Xcond(cond, args, s1, s2) ->
addlist_tospill alloc args ts
| Xjumptable(arg, tbl) ->
add_tospill alloc arg ts
| Xreturn optarg ->
ts
let rec tospill_block alloc blk ts =
match blk with
| [] -> ts
| instr :: blk' -> tospill_block alloc blk' (tospill_instr alloc instr ts)
let tospill_function f alloc =
PTree.fold
(fun ts pc blk -> tospill_block alloc blk ts)
f.fn_code VSet.empty
(********************* Spilling ***********************)
(* We follow a semi-naive spilling strategy. By default, we spill at
every definition of a variable that could not be allocated a register,
and we reload before every use. However, we also maintain a list of
equations of the form [spilled-var = temp] that keep track of
variables that were recently spilled or reloaded. Based on these
equations, we can avoid reloading a spilled variable if its value
is still available in a temporary register. *)
let rec find_reg_containing v = function
| [] -> None
| (var, temp, date) :: eqs ->
if var = v then Some temp else find_reg_containing v eqs
let add v t eqs = (v, t, 0) :: eqs
let kill x eqs =
List.filter (fun (v, t, date) -> v <> x && t <> x) eqs
let reload_var tospill eqs v =
if not (VSet.mem v tospill) then
(v, [], eqs)
else
match find_reg_containing v eqs with
| Some t ->
(*printf "Reusing %a for %a@ @." PrintXTL.var t PrintXTL.var v;*)
(t, [], eqs)
| None ->
let t = new_temp (typeof v) in (t, [Xreload(v, t)], add v t eqs)
let rec reload_vars tospill eqs vl =
match vl with
| [] -> ([], [], eqs)
| v1 :: vs ->
let (t1, c1, eqs1) = reload_var tospill eqs v1 in
let (ts, cs, eqs2) = reload_vars tospill eqs1 vs in
(t1 :: ts, c1 @ cs, eqs2)
let save_var tospill eqs v =
if not (VSet.mem v tospill) then
(v, [], kill v eqs)
else begin
let t = new_temp (typeof v) in
(t, [Xspill(t, v)], add v t (kill v eqs))
end
let rec save_vars tospill eqs vl =
match vl with
| [] -> ([], [], eqs)
| v1 :: vs ->
let (t1, c1, eqs1) = save_var tospill eqs v1 in
let (ts, cs, eqs2) = save_vars tospill eqs1 vs in
(t1 :: ts, c1 @ cs, eqs2)
(* Trimming equations when we have too many or when they are too old.
The goal is to limit the live range of unspillable temporaries.
By setting [max_age] to zero, we can effectively deactivate
the reuse strategy and fall back to a naive "reload at every use"
strategy. *)
let max_age = ref 3
let max_num_eqs = ref 3
let rec trim count eqs =
if count <= 0 then [] else
match eqs with
| [] -> []
| (v, t, date) :: eqs' ->
if date <= !max_age
then (v, t, date + 1) :: trim (count - 1) eqs'
else []
(* Insertion of spill and reload instructions. *)
let spill_instr tospill eqs instr =
let eqs = trim !max_num_eqs eqs in
match instr with
| Xmove(src, dst) ->
if VSet.mem src tospill && VSet.mem dst tospill then begin
let (src', c1, eqs1) = reload_var tospill eqs src in
(c1 @ [Xspill(src', dst)], add dst src' (kill dst eqs1))
end else begin
([instr], kill dst eqs)
end
| Xreload(src, dst) ->
assert false
| Xspill(src, dst) ->
assert false
| Xparmove(srcs, dsts, itmp, ftmp) ->
([instr], List.fold_right kill dsts eqs)
| Xop(op, args, res) ->
begin match is_two_address op args with
| None ->
let (args', c1, eqs1) = reload_vars tospill eqs args in
let (res', c2, eqs2) = save_var tospill eqs1 res in
(c1 @ Xop(op, args', res') :: c2, eqs2)
| Some(arg1, argl) ->
begin match VSet.mem res tospill, VSet.mem arg1 tospill with
| false, false ->
let (argl', c1, eqs1) = reload_vars tospill eqs argl in
(c1 @ [Xop(op, arg1 :: argl', res)], kill res eqs1)
| true, false ->
let tmp = new_temp (typeof res) in
let (argl', c1, eqs1) = reload_vars tospill eqs argl in
(c1 @ [Xmove(arg1, tmp); Xop(op, tmp :: argl', tmp); Xspill(tmp, res)],
add res tmp (kill res eqs1))
| false, true ->
let eqs1 = add arg1 res (kill res eqs) in
let (argl', c1, eqs2) = reload_vars tospill eqs1 argl in
(Xreload(arg1, res) :: c1 @ [Xop(op, res :: argl', res)],
kill res eqs2)
| true, true ->
let tmp = new_temp (typeof res) in
let eqs1 = add arg1 tmp eqs in
let (argl', c1, eqs2) = reload_vars tospill eqs1 argl in
(Xreload(arg1, tmp) :: c1 @ [Xop(op, tmp :: argl', tmp); Xspill(tmp, res)],
add res tmp (kill tmp (kill res eqs2)))
end
end
| Xload(chunk, addr, args, dst) ->
let (args', c1, eqs1) = reload_vars tospill eqs args in
let (dst', c2, eqs2) = save_var tospill eqs1 dst in
(c1 @ Xload(chunk, addr, args', dst') :: c2, eqs2)
| Xstore(chunk, addr, args, src) ->
let (args', c1, eqs1) = reload_vars tospill eqs args in
let (src', c2, eqs2) = reload_var tospill eqs1 src in
(c1 @ c2 @ [Xstore(chunk, addr, args', src')], eqs2)
| Xcall(sg, Coq_inl v, args, res) ->
let (v', c1, eqs1) = reload_var tospill eqs v in
(c1 @ [Xcall(sg, Coq_inl v', args, res)], [])
| Xcall(sg, Coq_inr id, args, res) ->
([instr], [])
| Xtailcall(sg, Coq_inl v, args) ->
let (v', c1, eqs1) = reload_var tospill eqs v in
(c1 @ [Xtailcall(sg, Coq_inl v', args)], [])
| Xtailcall(sg, Coq_inr id, args) ->
([instr], [])
| Xbuiltin(ef, args, res) ->
begin match ef with
| EF_annot _ ->
([instr], eqs)
| _ ->
let (args', c1, eqs1) = reload_vars tospill eqs args in
let (res', c2, eqs2) = save_vars tospill eqs1 res in
(c1 @ Xbuiltin(ef, args', res') :: c2, eqs2)
end
| Xbranch s ->
([instr], eqs)
| Xcond(cond, args, s1, s2) ->
let (args', c1, eqs1) = reload_vars tospill eqs args in
(c1 @ [Xcond(cond, args', s1, s2)], eqs1)
| Xjumptable(arg, tbl) ->
let (arg', c1, eqs1) = reload_var tospill eqs arg in
(c1 @ [Xjumptable(arg', tbl)], eqs1)
| Xreturn optarg ->
([instr], [])
let rec spill_block tospill pc blk eqs =
match blk with
| [] -> ([], eqs)
| instr :: blk' ->
let (c1, eqs1) = spill_instr tospill eqs instr in
let (c2, eqs2) = spill_block tospill pc blk' eqs1 in
(c1 @ c2, eqs2)
(*
let spill_block tospill pc blk eqs =
printf "@[<hov 2>spill_block: at %ld: " (camlint_of_positive pc);
List.iter (fun (x,y,d) -> printf "@ %a=%a" PrintXTL.var x PrintXTL.var y) eqs;
printf "@]@.";
spill_block tospill pc blk eqs
*)
let spill_function f tospill round =
max_num_eqs := 3;
max_age := (if round <= 10 then 3 else if round <= 20 then 1 else 0);
transform_basic_blocks (spill_block tospill) [] f
(***************** Generation of LTL from XTL ***********************)
(** Apply a register allocation to an XTL function, producing an LTL function.
Raise [Bad_LTL] if some pseudoregisters were mapped to stack locations
while machine registers were expected, or in other words if spilling
and reloading code must be inserted. *)
exception Bad_LTL
let mreg_of alloc v = match alloc v with R mr -> mr | S _ -> raise Bad_LTL
let mregs_of alloc vl = List.map (mreg_of alloc) vl
let mros_of alloc vos = sum_left_map (mreg_of alloc) vos
let make_move src dst k =
match src, dst with
| R rsrc, R rdst ->
if rsrc = rdst then k else LTL.Lop(Omove, [rsrc], rdst) :: k
| R rsrc, S(sl, ofs, ty) ->
LTL.Lsetstack(rsrc, sl, ofs, ty) :: k
| S(sl, ofs, ty), R rdst ->
LTL.Lgetstack(sl, ofs, ty, rdst) :: k
| S _, S _ ->
if src = dst then k else raise Bad_LTL
type parmove_status = To_move | Being_moved | Moved
let make_parmove srcs dsts itmp ftmp k =
let src = Array.of_list srcs
and dst = Array.of_list dsts in
let n = Array.length src in
assert (Array.length dst = n);
let status = Array.make n To_move in
let temp_for =
function Tint -> itmp | Tfloat -> ftmp | Tlong -> assert false in
let code = ref [] in
let add_move s d =
match s, d with
| R rs, R rd ->
code := LTL.Lop(Omove, [rs], rd) :: !code
| R rs, S(sl, ofs, ty) ->
code := LTL.Lsetstack(rs, sl, ofs, ty) :: !code
| S(sl, ofs, ty), R rd ->
code := LTL.Lgetstack(sl, ofs, ty, rd) :: !code
| S(sls, ofss, tys), S(sld, ofsd, tyd) ->
let tmp = temp_for tys in
(* code will be reversed at the end *)
code := LTL.Lsetstack(tmp, sld, ofsd, tyd) ::
LTL.Lgetstack(sls, ofss, tys, tmp) :: !code
in
let rec move_one i =
if src.(i) <> dst.(i) then begin
status.(i) <- Being_moved;
for j = 0 to n - 1 do
if src.(j) = dst.(i) then
match status.(j) with
| To_move ->
move_one j
| Being_moved ->
let tmp = R (temp_for (Loc.coq_type src.(j))) in
add_move src.(j) tmp;
src.(j) <- tmp
| Moved ->
()
done;
add_move src.(i) dst.(i);
status.(i) <- Moved
end in
for i = 0 to n - 1 do
if status.(i) = To_move then move_one i
done;
List.rev_append !code k
let transl_instr alloc instr k =
match instr with
| Xmove(src, dst) | Xreload(src, dst) | Xspill(src, dst) ->
make_move (alloc src) (alloc dst) k
| Xparmove(srcs, dsts, itmp, ftmp) ->
make_parmove (List.map alloc srcs) (List.map alloc dsts)
(mreg_of alloc itmp) (mreg_of alloc ftmp) k
| Xop(op, args, res) ->
let rargs = mregs_of alloc args
and rres = mreg_of alloc res in
begin match is_two_address op rargs with
| None ->
LTL.Lop(op, rargs, rres) :: k
| Some(rarg1, rargl) ->
if rarg1 = rres then
LTL.Lop(op, rargs, rres) :: k
else
LTL.Lop(Omove, [rarg1], rres) ::
LTL.Lop(op, rres :: rargl, rres) :: k
end
| Xload(chunk, addr, args, dst) ->
LTL.Lload(chunk, addr, mregs_of alloc args, mreg_of alloc dst) :: k
| Xstore(chunk, addr, args, src) ->
LTL.Lstore(chunk, addr, mregs_of alloc args, mreg_of alloc src) :: k
| Xcall(sg, vos, args, res) ->
LTL.Lcall(sg, mros_of alloc vos) :: k
| Xtailcall(sg, vos, args) ->
LTL.Ltailcall(sg, mros_of alloc vos) :: []
| Xbuiltin(ef, args, res) ->
begin match ef with
| EF_annot _ ->
LTL.Lannot(ef, List.map alloc args) :: k
| _ ->
LTL.Lbuiltin(ef, mregs_of alloc args, mregs_of alloc res) :: k
end
| Xbranch s ->
LTL.Lbranch s :: []
| Xcond(cond, args, s1, s2) ->
LTL.Lcond(cond, mregs_of alloc args, s1, s2) :: []
| Xjumptable(arg, tbl) ->
LTL.Ljumptable(mreg_of alloc arg, tbl) :: []
| Xreturn optarg ->
LTL.Lreturn :: []
let rec transl_block alloc blk =
match blk with
| [] -> []
| instr :: blk' -> transl_instr alloc instr (transl_block alloc blk')
let transl_function fn alloc =
{ LTL.fn_sig = fn.fn_sig;
LTL.fn_stacksize = fn.fn_stacksize;
LTL.fn_entrypoint = fn.fn_entrypoint;
LTL.fn_code = PTree.map1 (transl_block alloc) fn.fn_code
}
(******************* All together *********************)
exception Timeout
let rec first_round f liveness =
let alloc = find_coloring f liveness in
if !option_dalloctrace then begin
fprintf !pp "-------------- After initial register allocation@ @.";
PrintXTL.print_function !pp ~alloc: alloc ~live: liveness f
end;
let ts = tospill_function f alloc in
if VSet.is_empty ts then success f alloc else more_rounds f ts 1
and more_rounds f ts count =
if count >= 40 then raise Timeout;
let f' = spill_function f ts count in
let liveness = liveness_analysis f' in
let alloc = find_coloring f' liveness in
if !option_dalloctrace then begin
fprintf !pp "-------------- After register allocation (round %d)@ @." count;
PrintXTL.print_function !pp ~alloc: alloc ~live: liveness f'
end;
let ts' = tospill_function f' alloc in
if VSet.is_empty ts'
then success f' alloc
else begin
if !option_dalloctrace then begin
fprintf !pp "--- Remain to be spilled:@ @.";
VSet.iter (fun v -> fprintf !pp "%a " PrintXTL.var v) ts';
fprintf !pp "@ @."
end;
more_rounds f (VSet.union ts ts') (count + 1)
end
and success f alloc =
let f' = transl_function f alloc in
if !option_dalloctrace then begin
fprintf !pp "-------------- Candidate allocation@ @.";
PrintLTL.print_function !pp P.one f'
end;
f'
open Errors
let regalloc f =
init_trace();
reset_temps();
let f1 = Splitting.rename_function f in
match RTLtyping.type_function f1 with
| Error msg ->
Error(MSG (coqstring_of_camlstring "RTL code after splitting is ill-typed:") :: msg)
| OK tyenv ->
let f2 = function_of_RTL_function f1 tyenv in
let liveness = liveness_analysis f2 in
let f3 = dead_code_elimination f2 liveness in
if !option_dalloctrace then begin
fprintf !pp "-------------- Initial XTL@ @.";
PrintXTL.print_function !pp f3
end;
try
OK(first_round f3 liveness)
with
| Timeout ->
Error(msg (coqstring_of_camlstring "Spilling fails to converge"))
| Type_error_at pc ->
Error [MSG(coqstring_of_camlstring "Ill-typed XTL code at PC ");
POS pc]
| Bad_LTL ->
Error(msg (coqstring_of_camlstring "Bad LTL after spilling"))
|