1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
class Termination {
method A(N: int)
requires 0 <= N;
{
var i := 0;
while (i < N)
invariant i <= N;
// this will be heuristically inferred: decreases N - i;
{
i := i + 1;
}
}
method B(N: int)
requires 0 <= N;
{
var i := N;
while (true)
invariant 0 <= i;
decreases i;
{
i := i - 1;
if (!(0 <= i)) {
break;
}
}
assert i == -1;
}
method Lex() {
call x := Update();
call y := Update();
while (!(x == 0 && y == 0))
invariant 0 <= x && 0 <= y;
decreases x, y;
{
if (0 < y) {
y := y - 1;
} else {
x := x - 1;
call y := Update();
}
}
}
method Update() returns (r: int)
ensures 0 <= r;
{
r := 8;
}
method M() {
var b := true;
var i := 500;
var r := new Termination;
var s := {12, 200};
var q := [5, 8, 13];
while (true)
decreases b, i, r;
// invariant b ==> 0 <= i;
decreases s, q;
{
if (12 in s) {
s := s - {12};
} else if (b) {
b := !b;
i := i + 1;
} else if (20 <= i) {
i := i - 20;
} else if (r != null) {
r := null;
} else if (|q| != 0) {
q := q[1..];
} else {
break;
}
}
}
method Q<T>(list: List<T>) {
var l := list;
while (l != List.Nil)
decreases l;
{
call x, l := Traverse(l);
}
}
method Traverse<T>(a: List<T>) returns (val: T, b: List<T>);
requires a != List.Nil;
ensures a == List.Cons(val, b);
}
datatype List<T> {
Nil;
Cons(T, List<T>);
}
method FailureToProveTermination0(N: int)
{
var n := N;
while (n < 100) { // error: may not terminate
n := n - 1;
}
}
method FailureToProveTermination1(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the heuristically chosen termination metric
{
n := n + 1;
}
}
method FailureToProveTermination2(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100) // error: cannot prove termination from the given (bad) termination metric
decreases n - x;
{
n := n + 1;
}
}
method FailureToProveTermination3(x: int, y: int, N: int)
{
var n := N;
while (x < y && n < 100)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination4(x: int, y: int, N: int)
{
var n := N;
while (n < 100 && x < y)
decreases 100 - n;
{
n := n + 1;
}
}
method FailureToProveTermination5(b: bool, N: int)
{
var n := N;
while (b && n < 100) // here, the heuristics are good enough to prove termination
{
n := n + 1;
}
}
class Node {
var next: Node;
var footprint: set<Node>;
function Valid(): bool
reads this, footprint;
// In a previous (and weaker) axiomatization of sets, there had been two problems
// with trying to prove the termination of this function. First, the default
// decreases clause (derived from the reads clause) had been done incorrectly for
// a list of expressions. Second, the set axiomatization had not been strong enough.
{
this in footprint && !(null in footprint) &&
(next != null ==> next in footprint &&
next.footprint < footprint &&
this !in next.footprint &&
next.Valid())
}
}
method DecreasesYieldsAnInvariant(z: int) {
var x := 100;
var y := 1;
var z := z; // make parameter into a local variable
while (x != y)
// inferred: decreases |x - y|;
invariant (0 < x && 0 < y) || (x < 0 && y < 0);
{
if (z == 52) {
break;
} else if (x < y) {
y := y - 1;
} else {
x := x - 1;
}
x := -x;
y := -y;
z := z + 1;
}
assert x - y < 100; // follows from the fact that no loop iteration increases what's in the 'decreases' clause
}
// ----------------------- top elements --------------------------------------
var count: int;
// Here is the old way that this had to be specified:
method OuterOld(a: int)
modifies this;
decreases a, true;
{
count := count + 1;
call InnerOld(a, count);
}
method InnerOld(a: int, b: int)
modifies this;
decreases a, false, b;
{
count := count + 1;
if (b == 0 && 1 <= a) {
call OuterOld(a - 1);
} else if (1 <= b) {
call InnerOld(a, b - 1);
}
}
// Now the default specifications ("decreases a;" and "decreases a, b;") suffice:
method Outer(a: int)
modifies this;
{
count := count + 1;
call Inner(a, count);
}
method Inner(a: int, b: int)
modifies this;
{
count := count + 1;
if (b == 0 && 1 <= a) {
call Outer(a - 1);
} else if (1 <= b) {
call Inner(a, b - 1);
}
}
// -------------------------- decrease either datatype value -----------------
function Zipper0<T>(a: List<T>, b: List<T>): List<T>
{
match a
case Nil => b
case Cons(x, c) => List.Cons(x, Zipper0(b, c)) // error: cannot prove termination
}
function Zipper1<T>(a: List<T>, b: List<T>, k: bool): List<T>
decreases if k then a else b, if k then b else a;
{
match a
case Nil => b
case Cons(x, c) => List.Cons(x, Zipper1(b, c, !k))
}
function Zipper2<T>(a: List<T>, b: List<T>): List<T>
decreases /* max(a,b) */ if a < b then b else a,
/* min(a,b) */ if a < b then a else b;
{
match a
case Nil => b
case Cons(x, c) => List.Cons(x, Zipper2(b, c))
}
// -------------------------- test translation of while (*) -----------------
method WhileStar0(n: int)
requires 2 <= n;
{
var m := n;
var k := 0;
while (*)
invariant 0 <= k && 0 <= m;
decreases *;
{
k := k + m;
m := m + k;
}
assert 0 <= k;
}
method WhileStar1()
{
var k := 0;
while (*) // error: failure to prove termination
{
k := k + 1;
if (k == 17) { break; }
}
}
method WhileStar2()
{
var k := 0;
while (*)
invariant k < 17;
decreases 17 - k;
{
k := k + 1;
if (k == 17) { break; }
}
}
// -----------------
function ReachBack(n: int): bool
requires 0 <= n;
ensures ReachBack(n);
{
// Turn off induction for this test, since that's not the point of
// the test case.
(forall m {:induction false} :: 0 <= m && m < n ==> ReachBack(m))
}
function ReachBack_Alt(n: int): bool
requires 0 <= n;
{
n == 0 || ReachBack_Alt(n-1)
}
ghost method Lemma_ReachBack()
{
assert (forall m :: 0 <= m ==> ReachBack_Alt(m));
}
|