summaryrefslogtreecommitdiff
path: root/Test/dafny0/SmallTests.dfy
blob: ac7286e9baa53a16e7b83f78c8c233ebba1cb3d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
class Node {
  var next: Node;

  function IsList(r: set<Node>): bool
    reads r;
  {
    this in r &&
    (next != null  ==>  next.IsList(r - {this}))
  }

  method Test(n: Node, nodes: set<Node>) 
  {
    assume nodes == nodes - {n};
    // the next line needs the Set extensionality axiom, the antecedent of
    // which is supplied by the previous line
    assert IsList(nodes) == IsList(nodes - {n});
  }

  method Create()
    modifies this;
  {
    next := null;
    var tmp: Node;
    tmp := new Node;
    assert tmp != this;  // was once a bug in the Dafny checker
  }

  method SequenceUpdateOutOfBounds(s: seq<set<int>>, j: int) returns (t: seq<set<int>>)
  {
    t := s[j := {}];  // error: j is possibly out of bounds
  }

  method Sequence(s: seq<bool>, j: int, b: bool, c: bool) returns (t: seq<bool>)
    requires 10 <= |s|;
    requires 8 <= j && j < |s|;
    ensures |t| == |s|;
    ensures t[8] == s[8] || t[9] == s[9];
    ensures t[j] == b;
  {
    if (c) {
      t := s[j := b];
    } else {
      t := s[..j] + [b] + s[j+1..];
    }
  }

  method Max0(x: int, y: int) returns (r: int)
    ensures r == (if x < y then y else x);
  {
    if (x < y) { r := y; } else { r := x; }
  }

  method Max1(x: int, y: int) returns (r: int)
    ensures r == x || r == y;
    ensures x <= r && y <= r;
  {
    r := if x < y then y else x;
  }

  function PoorlyDefined(x: int): int
    requires if next == null then 5/x < 20 else true;  // error: ill-defined then branch
    requires if next == null then true else 0 <= 5/x;  // error: ill-defined then branch
    requires if next.next == null then true else true;  // error: ill-defined guard
    requires 10/x != 8;  // this is well-defined, because we get here only if x is non-0
    reads this;
  {
    12
  }
}

// ------------------ modifies clause tests ------------------------

class Modifies {
  var x: int;
  var next: Modifies;

  method A(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)
      decreases 75 - p.x;  // error: not defined (null deref) at top of each iteration (there's good reason
    {                      // to insist on this; for example, the decrement check could not be performed
      p.x := p.x + 1;      // at the end of the loop body if p were set to null in the loop body)
    }
  }

  method Aprime(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)
      decreases if p != null then 75 - p.x else 0;  // given explicitly (but see Adoubleprime below)
    {
      p.x := p.x + 1;
    }
  }

  method Adoubleprime(p: Modifies)
    modifies this, p;
  {
    x := x + 1;
    while (p != null && p.x < 75)  // here, the decreases clause is heuristically inferred (to be the
    {                              // same as the one in Aprime above)
      p.x := p.x + 1;
    }
  }

  method B(p: Modifies)
    modifies this;
  {
    A(this);
    if (p == this) {
      p.A(p);
    }
    A(p);  // error: may violate modifies clause
  }

  method C(b: bool)
    modifies this;
    ensures !b ==> x == old(x) && next == old(next);
  {
  }

  method D(p: Modifies, y: int)
    requires p != null;
  {
    if (y == 3) {
      p.C(true);  // error: may violate modifies clause
    } else {
      p.C(false);  // error: may violation modifies clause (the check is done without regard
                        // for the postcondition, which also makes sense, since there may, in
                        // principle, be other fields of the object that are not constrained by the
                        // postcondition)
    }
  }

  method E()
    modifies this;
  {
    A(null);  // allowed
  }

  method F(s: set<Modifies>)
    modifies s;
  {
    foreach (m in s | 2 <= m.x) {
      m.x := m.x + 1;
    }
    if (this in s) {
      x := 2 * x;
    }
  }

  method G(s: set<Modifies>)
    modifies this;
  {
    var m := 3;  // this is a different m

    foreach (m in s | m == this) {
      m.x := m.x + 1;
    }
    if (s <= {this}) {
      foreach (m in s) {
        m.x := m.x + 1;
      }
      F(s);
    }
    foreach (m in s) {
      assert m.x < m.x + 10;  // nothing wrong with asserting something
      m.x := m.x + 1;  // error: may violate modifies clause
    }
  }

  method SetConstruction() {
    var s := {1};
    assert s != {};
    if (*) {
      assert s != {0,1};
    } else {
      assert s != {1,0};
    }
  }
}

// ------------------ allocated --------------------------------------------------

class AllocatedTests {
  method M(r: AllocatedTests, k: Node, S: set<Node>, d: Lindgren)
  {
    assert allocated(r);
    
    var n := new Node;
    var t := S + {n};
    assert allocated(t);

    assert allocated(d);
    if (*) {
      assert old(allocated(n));  // error: n was not allocated in the initial state
    } else {
      assert !old(allocated(n));  // correct
    }

    var U := {k,n};
    if (*) {
      assert old(allocated(U));  // error: n was not allocated initially
    } else {
      assert !old(allocated(U));  // correct (note, the assertion does NOT say: everything was unallocated in the initial state)
    }

    assert allocated(6);
    assert allocated(6);
    assert allocated(null);
    assert allocated(Lindgren.HerrNilsson);

    match (d) {
      case Pippi(n) => assert allocated(n);
      case Longstocking(q, dd) => assert allocated(q); assert allocated(dd);
      case HerrNilsson => assert old(allocated(d));
    }
    var ls := Lindgren.Longstocking([], d);
    assert allocated(ls);
    assert old(allocated(ls));

    assert old(allocated(Lindgren.Longstocking([r], d)));
    assert old(allocated(Lindgren.Longstocking([n], d)));  // error, because n was not allocated initially
  }
}

datatype Lindgren =
  Pippi(Node) |
  Longstocking(seq<object>, Lindgren) |
  HerrNilsson;

// --------------------------------------------------

class InitCalls {
  var z: int;
  var p: InitCalls;

  method Init(y: int)
    modifies this;
    ensures z == y;
  {
    z := y;
  }

  method InitFromReference(q: InitCalls)
    requires q != null && 15 <= q.z;
    modifies this;
    ensures p == q;
  {
    p := q;
  }

  method TestDriver()
  {
    var c: InitCalls;
    c := new InitCalls.Init(15);
    var d := new InitCalls.Init(17);
    var e: InitCalls := new InitCalls.Init(18);
    var f: object := new InitCalls.Init(19);
    assert c.z + d.z + e.z == 50;
    // poor man's type cast:
    ghost var g: InitCalls;
    assert f == g ==> g.z == 19;

    // test that the call is done before the assignment to the LHS
    var r := c;
    r := new InitCalls.InitFromReference(r);  // fine, since r.z==15
    r := new InitCalls.InitFromReference(r);  // error, since r.z is unknown
  }
}

// --------------- some tests with quantifiers and ranges ----------------------

method QuantifierRange0<T>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N && N <= |a|;
  requires forall k | 0 <= k && k < N :: a[k] != x;
  requires exists k | 0 <= k && k < N :: a[k] == y;
  ensures forall k :: 0 <= k && k < N ==> a[k] != x;  // same as the precondition, but using ==> instead of |
  ensures exists k :: 0 <= k && k < N && a[k] == y;  // same as the precondition, but using && instead of |
{
  assert x != y;
}

method QuantifierRange1<T>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N && N <= |a|;
  requires forall k :: 0 <= k && k < N ==> a[k] != x;
  requires exists k :: 0 <= k && k < N && a[k] == y;
  ensures forall k | 0 <= k && k < N :: a[k] != x;  // same as the precondition, but using | instead of ==>
  ensures exists k | 0 <= k && k < N :: a[k] == y;  // same as the precondition, but using | instead of &&
{
  assert x != y;
}

method QuantifierRange2<T>(a: seq<T>, x: T, y: T, N: int)
  requires 0 <= N && N <= |a|;
  requires exists k | 0 <= k && k < N :: a[k] == y;
  ensures forall k | 0 <= k && k < N :: a[k] == y;  // error
{
  assert N != 0;
  if (N == 1) {
    assert forall k | a[if 0 <= k && k < N then k else 0] != y :: k < 0 || N <= k;  // in this case, the precondition holds trivially
  }
  if (forall k | 0 <= k && k < N :: a[k] == x) {
    assert x == y;
  }
}

// ----------------------- tests that involve sequences of boxes --------

ghost method M(zeros: seq<bool>, Z: bool)
  requires 1 <= |zeros| && Z == false;
  requires forall k :: 0 <= k && k < |zeros| ==> zeros[k] == Z;
{
  var x := [Z];
  assert zeros[0..1] == [Z];
}

class SomeType
{
  var x: int;
  method DoIt(stack: seq<SomeType>)
    modifies stack;
  {
    // the following line once gave rise to a crash in the translation
    foreach (n in stack) {
      n.x := 10;
    }
  }
}