1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using Microsoft.Contracts;
using Microsoft.Boogie.VCExprAST;
// Class for constructing and collecting the axioms of the partial
// order <:. The class also manages "unique" attributes of constants
// and generated the necessary assumptions for the theorem prover.
// TODO: there should be an interface so that different ways to handle
// ordering relations can be accessed uniformly
namespace Microsoft.Boogie
{
public class OrderingAxiomBuilder {
private readonly VCExpressionGenerator! Gen;
private readonly Boogie2VCExprTranslator! Translator;
public OrderingAxiomBuilder(VCExpressionGenerator! gen,
Boogie2VCExprTranslator! translator) {
this.Gen = gen;
this.Translator = translator;
OneStepFuns = new Dictionary<Type!, Function!> ();
Constants = new List<Constant!> ();
CompleteConstantsOpen = new List<Constant!> ();
AllAxioms = new List<VCExpr!> ();
IncAxioms = new List<VCExpr!> ();
}
public OrderingAxiomBuilder(VCExpressionGenerator! gen,
Boogie2VCExprTranslator! translator,
OrderingAxiomBuilder! builder) {
this.Gen = gen;
this.Translator = translator;
OneStepFuns = new Dictionary<Type!, Function!> (builder.OneStepFuns);
Constants = new List<Constant!> (builder.Constants);
CompleteConstantsOpen = new List<Constant!> (builder.CompleteConstantsOpen);
AllAxioms = new List<VCExpr!> (builder.AllAxioms);
IncAxioms = new List<VCExpr!> (builder.IncAxioms);
}
////////////////////////////////////////////////////////////////////////////
// Used to axiomatise the disjoint-sub-dag specs that are
// described by parents with the "unique" flag
private readonly IDictionary<Type!, Function!>! OneStepFuns;
private Function! OneStepFunFor(Type! t) {
Function res;
if (!OneStepFuns.TryGetValue(t, out res)) {
VariableSeq! args = new VariableSeq ();
args.Add(new Formal (Token.NoToken,
new TypedIdent (Token.NoToken, "arg0", t),
true));
args.Add(new Formal (Token.NoToken,
new TypedIdent (Token.NoToken, "arg1", t),
true));
Formal! result = new Formal (Token.NoToken,
new TypedIdent (Token.NoToken, "res", t),
false);
res = new Function (Token.NoToken, "oneStep",
new TypeVariableSeq (), args, result);
OneStepFuns.Add(t, res);
}
return (!)res;
}
////////////////////////////////////////////////////////////////////////////
private readonly List<Constant!>! Constants = new List<Constant!> ();
// A list to handle constants whose direct children are fully
// specified (the "complete" keyword). Constants are removed from
// the list as soon as the corresponding axiom has been generated,
// which means that from this point on no further children can be
// added
private readonly List<Constant!>! CompleteConstantsOpen = new List<Constant!> ();
// list in which all axioms are collected
private readonly List<VCExpr!>! AllAxioms = new List<VCExpr!> ();
// list in which axioms are incrementally collected
private readonly List<VCExpr!>! IncAxioms = new List<VCExpr!> ();
private void AddAxiom(VCExpr! axiom) {
if (axiom.Equals(VCExpressionGenerator.True))
return;
AllAxioms.Add(axiom);
IncAxioms.Add(axiom);
}
// Return all axioms that were added since the last time NewAxioms
// was called
public VCExpr! GetNewAxioms() {
CloseChildrenCompleteConstants();
VCExpr! res = Gen.NAry(VCExpressionGenerator.AndOp, IncAxioms);
IncAxioms.Clear();
return res;
}
// return all axioms
public VCExpr! Axioms { get {
CloseChildrenCompleteConstants();
return Gen.NAry(VCExpressionGenerator.AndOp, AllAxioms);
} }
////////////////////////////////////////////////////////////////////////////
// Generate the normal axioms for a partial order relation
public void Setup() {
TypeVariable! alpha = new TypeVariable(Token.NoToken, "alpha");
List<TypeVariable!>! typeParams = new List<TypeVariable!> ();
typeParams.Add(alpha);
List<VCTrigger!>! triggers = new List<VCTrigger!> ();
VCExprVar! x = Gen.Variable("x", alpha);
VCExprVar! y = Gen.Variable("y", alpha);
VCExprVar! z = Gen.Variable("z", alpha);
List<VCExprVar!>! boundVars = new List<VCExprVar!> ();
// reflexivity
boundVars.Add(x);
AddAxiom(Gen.Forall(typeParams, boundVars, triggers,
new VCQuantifierInfos ("bg:subtype-refl", -1, false, null),
Gen.AtMost(x, x)));
// transitivity
boundVars = new List<VCExprVar!> ();
boundVars.Add(x); boundVars.Add(y); boundVars.Add(z);
triggers = new List<VCTrigger!> ();
triggers.Add(Gen.Trigger(true, Gen.AtMost(x, y), Gen.AtMost(y, z)));
VCExpr! body = Gen.Implies(Gen.And(Gen.AtMost(x, y), Gen.AtMost(y, z)),
Gen.AtMost(x, z));
AddAxiom(Gen.Forall(typeParams, boundVars, triggers,
new VCQuantifierInfos ("bg:subtype-trans", -1, false, null),
body));
// anti-symmetry
boundVars = new List<VCExprVar!> ();
boundVars.Add(x); boundVars.Add(y);
triggers = new List<VCTrigger!> ();
triggers.Add(Gen.Trigger(true, Gen.AtMost(x, y), Gen.AtMost(y, x)));
body = Gen.Implies(Gen.And(Gen.AtMost(x, y), Gen.AtMost(y, x)),
Gen.Eq(x, y));
AddAxiom(Gen.Forall(typeParams, boundVars, triggers,
new VCQuantifierInfos ("bg:subtype-antisymm", -1, false, null),
body));
}
////////////////////////////////////////////////////////////////////////////
public void AddConstant(Constant! c) {
AddAxiom(GenParentConstraints(c));
Constants.Add(c);
if (c.ChildrenComplete)
CompleteConstantsOpen.Add(c);
// ensure that no further children are added to closed
// children-complete constants
assert !(c.Parents != null &&
exists{ConstantParent! p in c.Parents;
((Constant!)p.Parent.Decl).ChildrenComplete &&
!CompleteConstantsOpen.Contains((Constant)p.Parent.Decl)});
}
// Generate the constraints telling that parents of a constant are
// strictly greater than the constant itself, and are the minimal
// elements with this property
private VCExpr! GenParentConstraints(Constant! c) {
VCExpr! res = VCExpressionGenerator.True;
if (c.Parents == null)
return res;
VCExprVar! cAsVar = Translator.LookupVariable(c);
VCExprVar! w = Gen.Variable("w", c.TypedIdent.Type);
// Parents of c are proper ancestors of c
foreach (ConstantParent! p in c.Parents) {
VCExprVar! par = Translator.LookupVariable((!)p.Parent.Decl);
res = Gen.AndSimp(res, Gen.Neq(cAsVar, par));
res = Gen.AndSimp(res, Gen.AtMost(cAsVar, par));
}
// Parents are direct ancestors of c (no other elements are in
// between c and a parent)
foreach (ConstantParent! p in c.Parents) {
VCExprVar! par = Translator.LookupVariable((!)p.Parent.Decl);
VCExpr! antecedent1 = Gen.AtMost(cAsVar, w);
VCExpr! antecedent2 = Gen.AtMost(w, par);
VCExpr! body = Gen.Implies(Gen.And(antecedent1, antecedent2),
Gen.Or(Gen.Eq(cAsVar, w), Gen.Eq(par, w)));
res = Gen.AndSimp(res,
Gen.Forall(w,
Gen.Trigger(true, antecedent1, antecedent2),
body));
}
// Ancestors of c are only c itself and the ancestors of the
// parents of c
VCExpr! minAncestors = Gen.Eq(cAsVar, w);
foreach (ConstantParent! p in c.Parents)
minAncestors =
Gen.Or(minAncestors,
Gen.AtMost(Translator.LookupVariable((!)p.Parent.Decl), w));
VCExpr! antecedent = Gen.AtMost(cAsVar, w);
res = Gen.AndSimp(res,
Gen.Forall(w,
Gen.Trigger(true, antecedent),
Gen.Implies(antecedent, minAncestors)));
// Constraints for unique child-parent edges
foreach (ConstantParent! p in c.Parents) {
if (p.Unique)
res =
Gen.AndSimp(res,
GenUniqueParentConstraint(c, (Constant!)p.Parent.Decl));
}
return res;
}
// Generate axioms that state that all direct children of c are
// specified; this is the dual of the axiom stating that all direct
// ancestors of a constant are known
private VCExpr! GenCompleteChildrenConstraints(Constant! c)
requires c.ChildrenComplete; {
VCExprVar! cAsVar = Translator.LookupVariable(c);
VCExprVar! w = Gen.Variable("w", c.TypedIdent.Type);
VCExpr! maxDescendants = Gen.Eq(cAsVar, w);
foreach (Constant! d in Constants) {
if (d.Parents != null &&
exists{ConstantParent! p in d.Parents; c.Equals(p.Parent.Decl)})
maxDescendants = Gen.Or(maxDescendants,
Gen.AtMost(w, Translator.LookupVariable(d)));
}
VCExpr! antecedent = Gen.AtMost(w, cAsVar);
return Gen.Forall(w,
Gen.Trigger(true, antecedent),
Gen.Implies(antecedent, maxDescendants));
}
private void CloseChildrenCompleteConstants() {
foreach (Constant! c in CompleteConstantsOpen)
AddAxiom(GenCompleteChildrenConstraints(c));
CompleteConstantsOpen.Clear();
}
// Generate the axiom ensuring that the sub-dags underneath unique
// child-parent edges are all disjoint
private VCExpr! GenUniqueParentConstraint(Constant! child, Constant! parent)
requires child.TypedIdent.Type.Equals(parent.TypedIdent.Type); {
VCExprVar! w = Gen.Variable("w", child.TypedIdent.Type);
VCExpr! antecedent =
Gen.AtMost(w, Translator.LookupVariable(child));
VCExpr! succedent =
Gen.Eq(Gen.Function(OneStepFunFor(child.TypedIdent.Type),
Translator.LookupVariable(parent), w),
Translator.LookupVariable(child));
return Gen.Forall(w,
Gen.Trigger(true, antecedent),
Gen.Implies(antecedent, succedent));
}
}
}
|