1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
using System;
using System.Text;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using Microsoft.Contracts;
using Microsoft.Basetypes;
using Microsoft.Boogie.VCExprAST;
// different classes for erasing complex types in VCExprs, replacing them
// with axioms that can be handled by theorem provers and SMT solvers
namespace Microsoft.Boogie.TypeErasure
{
using Microsoft.Boogie.VCExprAST;
// some functionality that is needed in many places (and that should
// really be provided by the Spec# container classes; maybe one
// could integrate the functions in a nicer way?)
public class HelperFuns {
public static Function! BoogieFunction(string! name, List<TypeVariable!>! typeParams,
params Type[]! types)
requires types.Length > 0;
requires forall{int i in (0:types.Length); types[i] != null};
{
VariableSeq! args = new VariableSeq ();
for (int i = 0; i < types.Length - 1; ++i)
args.Add(new Formal (Token.NoToken,
new TypedIdent (Token.NoToken, "arg" + i, (!)types[i]),
true));
Formal! result = new Formal (Token.NoToken,
new TypedIdent (Token.NoToken, "res",
(!)types[types.Length - 1]),
false);
return new Function (Token.NoToken, name, ToSeq(typeParams), args, result);
}
public static Function! BoogieFunction(string! name, params Type[]! types) {
return BoogieFunction(name, new List<TypeVariable!> (), types);
}
// boogie function where all arguments and the result have the same type U
public static Function! UniformBoogieFunction(string! name, int arity, Type! U) {
Type[]! types = new Type [arity + 1];
for (int i = 0; i < arity + 1; ++i)
types[i] = U;
return BoogieFunction(name, types);
}
public static List<VCExprVar!>! GenVarsForInParams(Function! fun,
VCExpressionGenerator! gen) {
List<VCExprVar!>! arguments = new List<VCExprVar!> (fun.InParams.Length);
foreach (Formal! f in fun.InParams) {
VCExprVar! var = gen.Variable(f.Name, f.TypedIdent.Type);
arguments.Add(var);
}
return arguments;
}
public static List<T!>! ToList<T> (params T[]! args) {
List<T!>! res = new List<T!> (args.Length);
foreach (T t in args)
res.Add((!)t);
return res;
}
public static List<TypeVariable!>! ToList(TypeVariableSeq! seq) {
List<TypeVariable!>! res = new List<TypeVariable!> (seq.Length);
foreach (TypeVariable! var in seq)
res.Add(var);
return res;
}
public static TypeVariableSeq! ToSeq(List<TypeVariable!>! list) {
TypeVariableSeq! res = new TypeVariableSeq ();
foreach (TypeVariable! var in list)
res.Add(var);
return res;
}
public static List<T>! Intersect<T>(List<T>! a, List<T>! b) {
List<T>! res = new List<T> (Math.Min(a.Count, b.Count));
foreach (T x in a)
if (b.Contains(x))
res.Add(x);
res.TrimExcess();
return res;
}
public static List<KeyValuePair<T1, T2>>! ToPairList<T1, T2>(IDictionary<T1, T2>! dict) {
List<KeyValuePair<T1, T2>>! res = new List<KeyValuePair<T1, T2>> (dict);
return res;
}
public static void AddRangeWithoutDups<T>(IEnumerable<T>! fromList, List<T>! toList) {
foreach (T t in fromList)
if (!toList.Contains(t))
toList.Add(t);
}
public static void AddFreeVariablesWithoutDups(Type! type, List<TypeVariable!>! toList) {
foreach (TypeVariable! var in type.FreeVariables) {
if (!toList.Contains(var))
toList.Add(var);
}
}
public static List<VCExpr!>! ToVCExprList(List<VCExprVar!>! list) {
List<VCExpr!>! res = new List<VCExpr!> (list.Count);
foreach (VCExprVar! var in list)
res.Add(var);
return res;
}
public static List<VCExprVar!>! VarVector(string! baseName, int num, Type! type,
VCExpressionGenerator! gen) {
List<VCExprVar!>! res = new List<VCExprVar!> (num);
for (int i = 0; i < num; ++i)
res.Add(gen.Variable(baseName + i, type));
return res;
}
public static List<VCExprVar!>! VarVector(string! baseName, List<Type!>! types,
VCExpressionGenerator! gen) {
List<VCExprVar!>! res = new List<VCExprVar!> (types.Count);
for (int i = 0; i < types.Count; ++i)
res.Add(gen.Variable(baseName + i, types[i]));
return res;
}
}
//////////////////////////////////////////////////////////////////////////////
internal struct TypeCtorRepr {
// function that represents the application of the type constructor
// to smaller types
public readonly Function! Ctor;
// left-inverse functions that extract the subtypes of a compound type
public readonly List<Function!>! Dtors;
public TypeCtorRepr(Function! ctor, List<Function!>! dtors)
requires ctor.InParams.Length == dtors.Count; {
this.Ctor = ctor;
this.Dtors = dtors;
}
}
//////////////////////////////////////////////////////////////////////////////
// The class responsible for creating and keeping track of all
// axioms related to the type system. This abstract class is made
// concrete in two subclasses, one for type erasure with type
// premisses in quantifiers (the semantic approach), and one for
// type erasure with explicit type arguments of polymorphic
// functions (the syntacted approach).
public abstract class TypeAxiomBuilder : ICloneable {
protected readonly VCExpressionGenerator! Gen;
internal abstract MapTypeAbstractionBuilder! MapTypeAbstracter { get; }
///////////////////////////////////////////////////////////////////////////
// Type Axioms
// list in which all typed axioms are collected
private readonly List<VCExpr!>! AllTypeAxioms;
// list in which type axioms are incrementally collected
private readonly List<VCExpr!>! IncTypeAxioms;
internal void AddTypeAxiom(VCExpr! axiom) {
AllTypeAxioms.Add(axiom);
IncTypeAxioms.Add(axiom);
}
// Return all axioms that were added since the last time NewAxioms
// was called
public VCExpr! GetNewAxioms() {
VCExpr! res = Gen.NAry(VCExpressionGenerator.AndOp, IncTypeAxioms);
IncTypeAxioms.Clear();
return res;
}
// mapping from a type to its constructor number/index
private readonly Function! Ctor;
private BigNum CurrentCtorNum;
private VCExpr! GenCtorAssignment(VCExpr! typeRepr) {
if (CommandLineOptions.Clo.TypeEncodingMethod
== CommandLineOptions.TypeEncoding.None)
return VCExpressionGenerator.True;
VCExpr! res = Gen.Eq(Gen.Function(Ctor, typeRepr),
Gen.Integer(CurrentCtorNum));
CurrentCtorNum = CurrentCtorNum + BigNum.ONE;
return res;
}
private VCExpr! GenCtorAssignment(Function! typeRepr) {
if (CommandLineOptions.Clo.TypeEncodingMethod
== CommandLineOptions.TypeEncoding.None)
return VCExpressionGenerator.True;
List<VCExprVar!>! quantifiedVars = HelperFuns.GenVarsForInParams(typeRepr, Gen);
VCExpr! eq =
GenCtorAssignment(Gen.Function(typeRepr,
HelperFuns.ToVCExprList(quantifiedVars)));
if (typeRepr.InParams.Length == 0)
return eq;
return Gen.Forall(quantifiedVars, new List<VCTrigger!> (),
"ctor:" + typeRepr.Name, eq);
}
// generate an axiom (forall x0, x1, ... :: invFun(fun(x0, x1, ...) == xi)
protected VCExpr! GenLeftInverseAxiom(Function! fun, Function! invFun, int dtorNum) {
List<VCExprVar!>! quantifiedVars = HelperFuns.GenVarsForInParams(fun, Gen);
VCExpr! funApp = Gen.Function(fun, HelperFuns.ToVCExprList(quantifiedVars));
VCExpr! lhs = Gen.Function(invFun, funApp);
VCExpr! rhs = quantifiedVars[dtorNum];
VCExpr! eq = Gen.Eq(lhs, rhs);
List<VCTrigger!>! triggers = HelperFuns.ToList(Gen.Trigger(true, HelperFuns.ToList(funApp)));
return Gen.Forall(quantifiedVars, triggers, "typeInv:" + invFun.Name, eq);
}
///////////////////////////////////////////////////////////////////////////
// the type of everything that is not int, bool, or a type
private readonly TypeCtorDecl! UDecl;
public readonly Type! U;
// the type of types
private readonly TypeCtorDecl! TDecl;
public readonly Type! T;
public abstract Type! TypeAfterErasure(Type! type);
public abstract bool UnchangedType(Type! type);
///////////////////////////////////////////////////////////////////////////
// Symbols for representing types
private readonly IDictionary<Type!, VCExpr!>! BasicTypeReprs;
private VCExpr! GetBasicTypeRepr(Type! type)
requires type.IsBasic || type.IsBv; {
VCExpr res;
if (!BasicTypeReprs.TryGetValue(type, out res)) {
res = Gen.Function(HelperFuns.BoogieFunction(type.ToString() + "Type", T));
AddTypeAxiom(GenCtorAssignment(res));
BasicTypeReprs.Add(type, res);
}
return (!)res;
}
private readonly IDictionary<TypeCtorDecl!, TypeCtorRepr>! TypeCtorReprs;
internal TypeCtorRepr GetTypeCtorReprStruct(TypeCtorDecl! decl) {
TypeCtorRepr reprSet;
if (!TypeCtorReprs.TryGetValue(decl, out reprSet)) {
Function! ctor = HelperFuns.UniformBoogieFunction(decl.Name + "Type", decl.Arity, T);
AddTypeAxiom(GenCtorAssignment(ctor));
List<Function!>! dtors = new List<Function!>(decl.Arity);
for (int i = 0; i < decl.Arity; ++i) {
Function! dtor = HelperFuns.UniformBoogieFunction(decl.Name + "TypeInv" + i, 1, T);
dtors.Add(dtor);
AddTypeAxiom(GenLeftInverseAxiom(ctor, dtor, i));
}
reprSet = new TypeCtorRepr(ctor, dtors);
TypeCtorReprs.Add(decl, reprSet);
}
return reprSet;
}
public Function! GetTypeCtorRepr(TypeCtorDecl! decl) {
return GetTypeCtorReprStruct(decl).Ctor;
}
public Function! GetTypeDtor(TypeCtorDecl! decl, int num) {
return GetTypeCtorReprStruct(decl).Dtors[num];
}
// mapping from free type variables to VCExpr variables
private readonly IDictionary<TypeVariable!, VCExprVar!>! TypeVariableMapping;
public VCExprVar! Typed2Untyped(TypeVariable! var) {
VCExprVar res;
if (!TypeVariableMapping.TryGetValue(var, out res)) {
res = new VCExprVar (var.Name, T);
TypeVariableMapping.Add(var, res);
}
return (!)res;
}
////////////////////////////////////////////////////////////////////////////
// Symbols for representing variables and constants
// Globally defined variables
private readonly IDictionary<VCExprVar!, VCExprVar!>! Typed2UntypedVariables;
// This method must only be used for free (unbound) variables
public VCExprVar! Typed2Untyped(VCExprVar! var) {
VCExprVar res;
if (!Typed2UntypedVariables.TryGetValue(var, out res)) {
res = Gen.Variable(var.Name, TypeAfterErasure(var.Type));
Typed2UntypedVariables.Add(var, res);
AddVarTypeAxiom(res, var.Type);
}
return (!)res;
}
protected abstract void AddVarTypeAxiom(VCExprVar! var, Type! originalType);
///////////////////////////////////////////////////////////////////////////
// Translation function from types to their term representation
public VCExpr! Type2Term(Type! type,
IDictionary<TypeVariable!, VCExpr!>! varMapping) {
//
if (type.IsBasic || type.IsBv) {
//
return GetBasicTypeRepr(type);
//
} else if (type.IsCtor) {
//
CtorType ctype = type.AsCtor;
Function! repr = GetTypeCtorRepr(ctype.Decl);
List<VCExpr!>! args = new List<VCExpr!> (ctype.Arguments.Length);
foreach (Type! t in ctype.Arguments)
args.Add(Type2Term(t, varMapping));
return Gen.Function(repr, args);
//
} else if (type.IsVariable) {
//
VCExpr res;
if (!varMapping.TryGetValue(type.AsVariable, out res))
// then the variable is free and we bind it at this point to a term
// variable
res = Typed2Untyped(type.AsVariable);
return (!)res;
//
} else if (type.IsMap) {
//
return Type2Term(MapTypeAbstracter.AbstractMapType(type.AsMap), varMapping);
//
} else {
System.Diagnostics.Debug.Fail("Don't know how to handle this type: " + type);
assert false; // please the compiler
}
}
////////////////////////////////////////////////////////////////////////////
public TypeAxiomBuilder(VCExpressionGenerator! gen) {
this.Gen = gen;
AllTypeAxioms = new List<VCExpr!> ();
IncTypeAxioms = new List<VCExpr!> ();
BasicTypeReprs = new Dictionary<Type!, VCExpr!> ();
CurrentCtorNum = BigNum.ZERO;
TypeCtorReprs = new Dictionary<TypeCtorDecl!, TypeCtorRepr> ();
TypeVariableMapping = new Dictionary<TypeVariable!, VCExprVar!> ();
Typed2UntypedVariables = new Dictionary<VCExprVar!, VCExprVar!> ();
TypeCtorDecl! uDecl = new TypeCtorDecl(Token.NoToken, "U", 0);
UDecl = uDecl;
Type! u = new CtorType (Token.NoToken, uDecl, new TypeSeq ());
U = u;
TypeCtorDecl! tDecl = new TypeCtorDecl(Token.NoToken, "T", 0);
TDecl = tDecl;
Type! t = new CtorType (Token.NoToken, tDecl, new TypeSeq ());
T = t;
Ctor = HelperFuns.BoogieFunction("Ctor", t, Type.Int);
}
public virtual void Setup() {
GetBasicTypeRepr(Type.Int);
GetBasicTypeRepr(Type.Bool);
}
// constructor to allow cloning
internal TypeAxiomBuilder(TypeAxiomBuilder! builder) {
Gen = builder.Gen;
AllTypeAxioms = new List<VCExpr!> (builder.AllTypeAxioms);
IncTypeAxioms = new List<VCExpr!> (builder.IncTypeAxioms);
UDecl = builder.UDecl;
U = builder.U;
TDecl = builder.TDecl;
T = builder.T;
Ctor = builder.Ctor;
CurrentCtorNum = builder.CurrentCtorNum;
BasicTypeReprs = new Dictionary<Type!, VCExpr!> (builder.BasicTypeReprs);
TypeCtorReprs = new Dictionary<TypeCtorDecl!, TypeCtorRepr> (builder.TypeCtorReprs);
TypeVariableMapping =
new Dictionary<TypeVariable!, VCExprVar!> (builder.TypeVariableMapping);
Typed2UntypedVariables =
new Dictionary<VCExprVar!, VCExprVar!> (builder.Typed2UntypedVariables);
}
public abstract Object! Clone();
}
//////////////////////////////////////////////////////////////////////////////
// Subclass of the TypeAxiomBuilder that provides all functionality
// to deal with native sorts of a theorem prover (that are the only
// types left after erasing all other types). Currently, these are:
//
// U ... sort of all individuals/objects/values
// T ... sort of all types
// int ... integers
// bool ... booleans
public abstract class TypeAxiomBuilderIntBoolU : TypeAxiomBuilder {
public TypeAxiomBuilderIntBoolU(VCExpressionGenerator! gen) {
base(gen);
TypeCasts = new Dictionary<Type!, TypeCastSet> ();
}
// constructor to allow cloning
internal TypeAxiomBuilderIntBoolU(TypeAxiomBuilderIntBoolU! builder) {
base(builder);
TypeCasts = new Dictionary<Type!, TypeCastSet> (builder.TypeCasts);
}
public override void Setup() {
base.Setup();
GetTypeCasts(Type.Int);
GetTypeCasts(Type.Bool);
}
// generate inverse axioms for casts (castToU(castFromU(x)) = x, under certain premisses)
protected abstract VCExpr! GenReverseCastAxiom(Function! castToU, Function! castFromU);
protected VCExpr! GenReverseCastEq(Function! castToU, Function! castFromU,
out VCExprVar! var, out List<VCTrigger!>! triggers) {
var = Gen.Variable("x", U);
VCExpr inner = Gen.Function(castFromU, var);
VCExpr lhs = Gen.Function(castToU, inner);
triggers = HelperFuns.ToList(Gen.Trigger(true, HelperFuns.ToList(inner)));
return Gen.Eq(lhs, var);
}
protected abstract VCExpr! GenCastTypeAxioms(Function! castToU, Function! castFromU);
///////////////////////////////////////////////////////////////////////////
// storage of type casts for types that are supposed to be left over in the
// VCs (like int, bool, bitvectors)
private readonly IDictionary<Type!, TypeCastSet>! TypeCasts;
private TypeCastSet GetTypeCasts(Type! type) {
TypeCastSet res;
if (!TypeCasts.TryGetValue(type, out res)) {
Function! castToU = HelperFuns.BoogieFunction(type.ToString() + "_2_U", type, U);
Function! castFromU = HelperFuns.BoogieFunction("U_2_" + type.ToString(), U, type);
AddTypeAxiom(GenLeftInverseAxiom(castToU, castFromU, 0));
AddTypeAxiom(GenReverseCastAxiom(castToU, castFromU));
AddTypeAxiom(GenCastTypeAxioms(castToU, castFromU));
res = new TypeCastSet (castToU, castFromU);
TypeCasts.Add(type, res);
}
return res;
}
public Function! CastTo(Type! type)
requires UnchangedType(type); {
return GetTypeCasts(type).CastFromU;
}
public Function! CastFrom(Type! type)
requires UnchangedType(type); {
return GetTypeCasts(type).CastToU;
}
private struct TypeCastSet {
public readonly Function! CastToU;
public readonly Function! CastFromU;
public TypeCastSet(Function! castToU, Function! castFromU) {
CastToU = castToU;
CastFromU = castFromU;
}
}
public bool IsCast(Function! fun) {
if (fun.InParams.Length != 1)
return false;
Type! inType = ((!)fun.InParams[0]).TypedIdent.Type;
if (inType.Equals(U)) {
Type! outType = ((!)fun.OutParams[0]).TypedIdent.Type;
if (!TypeCasts.ContainsKey(outType))
return false;
return fun.Equals(CastTo(outType));
} else {
if (!TypeCasts.ContainsKey(inType))
return false;
Type! outType = ((!)fun.OutParams[0]).TypedIdent.Type;
if (!outType.Equals(U))
return false;
return fun.Equals(CastFrom(inType));
}
}
////////////////////////////////////////////////////////////////////////////
// the only types that we allow in "untyped" expressions are U,
// Type.Int, and Type.Bool
public override Type! TypeAfterErasure(Type! type) {
if (UnchangedType(type))
// these types are kept
return type;
else
// all other types are replaced by U
return U;
}
[Pure]
public override bool UnchangedType(Type! type) {
return type.IsInt || type.IsBool || type.IsBv || (type.IsMap && CommandLineOptions.Clo.UseArrayTheory);
}
public VCExpr! Cast(VCExpr! expr, Type! toType)
requires expr.Type.Equals(U) || UnchangedType(expr.Type);
requires toType.Equals(U) || UnchangedType(toType);
{
if (expr.Type.Equals(toType))
return expr;
if (toType.Equals(U)) {
return Gen.Function(CastFrom(expr.Type), expr);
} else {
assert expr.Type.Equals(U);
return Gen.Function(CastTo(toType), expr);
}
}
public List<VCExpr!>! CastSeq(List<VCExpr!>! exprs, Type! toType) {
List<VCExpr!>! res = new List<VCExpr!> (exprs.Count);
foreach (VCExpr! expr in exprs)
res.Add(Cast(expr, toType));
return res;
}
}
//////////////////////////////////////////////////////////////////////////////
// Class for computing most general abstractions of map types. An abstraction
// of a map type t is a maptype t' in which closed proper subtypes have been replaced
// with type variables. E.g., an abstraction of <a>[C a, int]a would be <a>[C a, b]a.
// We subsequently consider most general abstractions as ordinary parametrised types,
// i.e., "<a>[C a, b]a" would be considered as a type "M b" with polymorphically typed
// access functions
//
// select<a,b>(M b, C a, b) returns (a)
// store<a,b>(M b, C a, b, a) returns (M b)
internal abstract class MapTypeAbstractionBuilder {
protected readonly TypeAxiomBuilder! AxBuilder;
protected readonly VCExpressionGenerator! Gen;
internal MapTypeAbstractionBuilder(TypeAxiomBuilder! axBuilder,
VCExpressionGenerator! gen) {
this.AxBuilder = axBuilder;
this.Gen = gen;
AbstractionVariables = new List<TypeVariable!> ();
ClassRepresentations = new Dictionary<MapType!, MapTypeClassRepresentation> ();
}
// constructor for cloning
internal MapTypeAbstractionBuilder(TypeAxiomBuilder! axBuilder,
VCExpressionGenerator! gen,
MapTypeAbstractionBuilder! builder) {
this.AxBuilder = axBuilder;
this.Gen = gen;
AbstractionVariables =
new List<TypeVariable!> (builder.AbstractionVariables);
ClassRepresentations =
new Dictionary<MapType!, MapTypeClassRepresentation> (builder.ClassRepresentations);
}
///////////////////////////////////////////////////////////////////////////
// Type variables used in the abstractions. We use the same variables in the
// same order in all abstractions in order to obtain comparable abstractions
// (equals, hashcode)
private readonly List<TypeVariable!>! AbstractionVariables;
private TypeVariable! AbstractionVariable(int num)
requires num >= 0; {
while (AbstractionVariables.Count <= num)
AbstractionVariables.Add(new TypeVariable (Token.NoToken,
"aVar" + AbstractionVariables.Count));
return AbstractionVariables[num];
}
///////////////////////////////////////////////////////////////////////////
// The untyped representation of a class of map types, i.e., of a map type
// <a0, a1, ...>[A0, A1, ...] R, where the argument types and the result type
// possibly contain free type variables. For each such class, a separate type
// constructor and separate select/store functions are introduced.
protected struct MapTypeClassRepresentation {
public readonly TypeCtorDecl! RepresentingType;
public readonly Function! Select;
public readonly Function! Store;
public MapTypeClassRepresentation(TypeCtorDecl! representingType,
Function! select, Function! store) {
this.RepresentingType = representingType;
this.Select = select;
this.Store = store;
}
}
private readonly IDictionary<MapType!, MapTypeClassRepresentation>! ClassRepresentations;
protected MapTypeClassRepresentation GetClassRepresentation(MapType! abstractedType) {
MapTypeClassRepresentation res;
if (!ClassRepresentations.TryGetValue(abstractedType, out res)) {
int num = ClassRepresentations.Count;
TypeCtorDecl! synonym =
new TypeCtorDecl(Token.NoToken, "MapType" + num, abstractedType.FreeVariables.Length);
Function! select, store;
GenSelectStoreFunctions(abstractedType, synonym, out select, out store);
res = new MapTypeClassRepresentation(synonym, select, store);
ClassRepresentations.Add(abstractedType, res);
}
return res;
}
// the actual select and store functions are generated by the
// concrete subclasses of this class
protected abstract void GenSelectStoreFunctions(MapType! abstractedType,
TypeCtorDecl! synonymDecl,
out Function! select, out Function! store);
///////////////////////////////////////////////////////////////////////////
public Function! Select(MapType! rawType, out TypeSeq! instantiations) {
return AbstractAndGetRepresentation(rawType, out instantiations).Select;
}
public Function! Store(MapType! rawType, out TypeSeq! instantiations) {
return AbstractAndGetRepresentation(rawType, out instantiations).Store;
}
private MapTypeClassRepresentation
AbstractAndGetRepresentation(MapType! rawType, out TypeSeq! instantiations) {
instantiations = new TypeSeq ();
MapType! abstraction = ThinOutMapType(rawType, instantiations);
return GetClassRepresentation(abstraction);
}
public CtorType! AbstractMapType(MapType! rawType) {
TypeSeq! instantiations = new TypeSeq ();
MapType! abstraction = ThinOutMapType(rawType, instantiations);
MapTypeClassRepresentation repr = GetClassRepresentation(abstraction);
assume repr.RepresentingType.Arity == instantiations.Length;
return new CtorType(Token.NoToken, repr.RepresentingType, instantiations);
}
// TODO: cache the result of this operation
protected MapType! ThinOutMapType(MapType! rawType,
TypeSeq! instantiations) {
TypeSeq! newArguments = new TypeSeq ();
foreach (Type! subtype in rawType.Arguments)
newArguments.Add(ThinOutType(subtype, rawType.TypeParameters,
instantiations));
Type! newResult = ThinOutType(rawType.Result, rawType.TypeParameters,
instantiations);
return new MapType(Token.NoToken, rawType.TypeParameters, newArguments, newResult);
}
private Type! ThinOutType(Type! rawType, TypeVariableSeq! boundTypeParams,
// the instantiations of inserted type variables,
// the order corresponds to the order in which
// "AbstractionVariable(int)" delivers variables
TypeSeq! instantiations) {
if (CommandLineOptions.Clo.Monomorphize && AxBuilder.UnchangedType(rawType))
return rawType;
if (forall{TypeVariable! var in rawType.FreeVariables;
!boundTypeParams.Has(var)}) {
// Bingo!
// if the type does not contain any bound variables, we can simply
// replace it with a type variable
TypeVariable! abstractionVar = AbstractionVariable(instantiations.Length);
assume !boundTypeParams.Has(abstractionVar);
instantiations.Add(rawType);
return abstractionVar;
}
if (rawType.IsVariable) {
//
// then the variable has to be bound, we cannot do anything
TypeVariable! rawVar = rawType.AsVariable;
assume boundTypeParams.Has(rawVar);
return rawVar;
//
} else if (rawType.IsMap) {
//
// recursively abstract this map type and continue abstracting
CtorType! abstraction = AbstractMapType(rawType.AsMap);
return ThinOutType(abstraction, boundTypeParams, instantiations);
//
} else if (rawType.IsCtor) {
//
// traverse the subtypes
CtorType! rawCtorType = rawType.AsCtor;
TypeSeq! newArguments = new TypeSeq ();
foreach (Type! subtype in rawCtorType.Arguments)
newArguments.Add(ThinOutType(subtype, boundTypeParams,
instantiations));
return new CtorType(Token.NoToken, rawCtorType.Decl, newArguments);
//
} else {
System.Diagnostics.Debug.Fail("Don't know how to handle this type: " + rawType);
return rawType; // compiler appeasement policy
}
}
}
//////////////////////////////////////////////////////////////////////////////
public class VariableBindings {
public readonly IDictionary<VCExprVar!, VCExprVar!>! VCExprVarBindings;
public readonly IDictionary<TypeVariable!, VCExpr!>! TypeVariableBindings;
public VariableBindings(IDictionary<VCExprVar!, VCExprVar!>! vcExprVarBindings,
IDictionary<TypeVariable!, VCExpr!>! typeVariableBindings) {
this.VCExprVarBindings = vcExprVarBindings;
this.TypeVariableBindings = typeVariableBindings;
}
public VariableBindings() {
this (new Dictionary<VCExprVar!, VCExprVar!> (),
new Dictionary<TypeVariable!, VCExpr!> ());
}
public VariableBindings! Clone() {
IDictionary<VCExprVar!, VCExprVar!>! newVCExprVarBindings =
new Dictionary<VCExprVar!, VCExprVar!> ();
foreach (KeyValuePair<VCExprVar!, VCExprVar!> pair in VCExprVarBindings)
newVCExprVarBindings.Add(pair);
IDictionary<TypeVariable!, VCExpr!>! newTypeVariableBindings =
new Dictionary<TypeVariable!, VCExpr!> ();
foreach (KeyValuePair<TypeVariable!, VCExpr!> pair in TypeVariableBindings)
newTypeVariableBindings.Add(pair);
return new VariableBindings(newVCExprVarBindings, newTypeVariableBindings);
}
}
//////////////////////////////////////////////////////////////////////////////
// The central class for turning types VCExprs into untyped
// VCExprs. This class makes use of the type axiom builder to manage
// the available types and symbols.
public abstract class TypeEraser : MutatingVCExprVisitor<VariableBindings!> {
protected readonly TypeAxiomBuilderIntBoolU! AxBuilder;
protected abstract OpTypeEraser! OpEraser { get; }
////////////////////////////////////////////////////////////////////////////
public TypeEraser(TypeAxiomBuilderIntBoolU! axBuilder, VCExpressionGenerator! gen) {
base(gen);
AxBuilder = axBuilder;
}
public VCExpr! Erase(VCExpr! expr, int polarity)
requires polarity >= -1 && polarity <= 1; {
this.Polarity = polarity;
return Mutate(expr, new VariableBindings());
}
internal int Polarity = 1; // 1 for positive, -1 for negative, 0 for both
////////////////////////////////////////////////////////////////////////////
public override VCExpr! Visit(VCExprLiteral! node, VariableBindings! bindings) {
assume node.Type == Type.Bool || node.Type == Type.Int;
return node;
}
////////////////////////////////////////////////////////////////////////////
public override VCExpr! Visit(VCExprNAry! node, VariableBindings! bindings) {
VCExprOp! op = node.Op;
if (op == VCExpressionGenerator.AndOp || op == VCExpressionGenerator.OrOp)
// more efficient on large conjunctions/disjunctions
return base.Visit(node, bindings);
// the visitor that handles all other operators
return node.Accept<VCExpr!, VariableBindings!>(OpEraser, bindings);
}
// this method is called by MutatingVCExprVisitor.Visit(VCExprNAry, ...)
protected override VCExpr! UpdateModifiedNode(VCExprNAry! originalNode,
List<VCExpr!>! newSubExprs,
bool changed,
VariableBindings! bindings) {
assume originalNode.Op == VCExpressionGenerator.AndOp ||
originalNode.Op == VCExpressionGenerator.OrOp;
return Gen.Function(originalNode.Op,
AxBuilder.Cast(newSubExprs[0], Type.Bool),
AxBuilder.Cast(newSubExprs[1], Type.Bool));
}
////////////////////////////////////////////////////////////////////////////
public override VCExpr! Visit(VCExprVar! node, VariableBindings! bindings) {
VCExprVar res;
if (!bindings.VCExprVarBindings.TryGetValue(node, out res))
return AxBuilder.Typed2Untyped(node);
return (!)res;
}
////////////////////////////////////////////////////////////////////////////
protected bool IsUniversalQuantifier(VCExprQuantifier! node) {
return Polarity == 1 && node.Quan == Quantifier.EX ||
Polarity == -1 && node.Quan == Quantifier.ALL;
}
protected List<VCExprVar!>! BoundVarsAfterErasure(List<VCExprVar!>! oldBoundVars,
// the mapping between old and new variables
// is added to this bindings-object
VariableBindings! bindings) {
List<VCExprVar!>! newBoundVars = new List<VCExprVar!> (oldBoundVars.Count);
foreach (VCExprVar! var in oldBoundVars) {
Type! newType = AxBuilder.TypeAfterErasure(var.Type);
VCExprVar! newVar = Gen.Variable(var.Name, newType);
newBoundVars.Add(newVar);
bindings.VCExprVarBindings.Add(var, newVar);
}
return newBoundVars;
}
// We check whether casts Int2U or Bool2U on the bound variables
// occur in triggers. In case a trigger like f(Int2U(x)) occurs,
// it may be better to give variable x the type U and remove the
// cast. The following method returns true if the quantifier
// should be translated again with a different typing
protected bool RedoQuantifier(VCExprQuantifier! node,
VCExprQuantifier! newNode,
// the bound vars that actually occur in the body or
// in any of the triggers
List<VCExprVar!>! occurringVars,
VariableBindings! oldBindings,
out VariableBindings! newBindings,
out List<VCExprVar!>! newBoundVars) {
List<VCExprVar!> castVariables =
VariableCastCollector.FindCastVariables(node, newNode, AxBuilder);
if (castVariables.Count == 0) {
newBindings = oldBindings; // to make the compiler happy
newBoundVars = newNode.BoundVars; // to make the compiler happy
return false;
}
// redo everything with a different typing ...
newBindings = oldBindings.Clone();
newBoundVars = new List<VCExprVar!> (node.BoundVars.Count);
foreach (VCExprVar! var in node.BoundVars) {
Type! newType =
castVariables.Contains(var) ? AxBuilder.U
: AxBuilder.TypeAfterErasure(var.Type);
VCExprVar! newVar = Gen.Variable(var.Name, newType);
newBoundVars.Add(newVar);
newBindings.VCExprVarBindings.Add(var, newVar);
}
return true;
}
////////////////////////////////////////////////////////////////////////////
public override VCExpr! Visit(VCExprLet! node, VariableBindings! bindings) {
VariableBindings! newVarBindings = bindings.Clone();
List<VCExprVar!>! newBoundVars = new List<VCExprVar!> (node.BoundVars.Count);
foreach (VCExprVar! var in node.BoundVars) {
Type! newType = AxBuilder.TypeAfterErasure(var.Type);
VCExprVar! newVar = Gen.Variable(var.Name, newType);
newBoundVars.Add(newVar);
newVarBindings.VCExprVarBindings.Add(var, newVar);
}
List<VCExprLetBinding!>! newbindings = new List<VCExprLetBinding!> (node.Length);
for (int i = 0; i < node.Length; ++i) {
VCExprLetBinding! binding = node[i];
VCExprVar! newVar = newBoundVars[i];
Type! newType = newVar.Type;
VCExpr! newE = AxBuilder.Cast(Mutate(binding.E, newVarBindings), newType);
newbindings.Add(Gen.LetBinding(newVar, newE));
}
VCExpr! newbody = Mutate(node.Body, newVarBindings);
return Gen.Let(newbindings, newbody);
}
}
//////////////////////////////////////////////////////////////////////////////
public abstract class OpTypeEraser : StandardVCExprOpVisitor<VCExpr!, VariableBindings!> {
protected readonly TypeAxiomBuilderIntBoolU! AxBuilder;
protected readonly TypeEraser! Eraser;
protected readonly VCExpressionGenerator! Gen;
public OpTypeEraser(TypeEraser! eraser, TypeAxiomBuilderIntBoolU! axBuilder,
VCExpressionGenerator! gen) {
this.AxBuilder = axBuilder;
this.Eraser = eraser;
this.Gen = gen;
}
protected override VCExpr! StandardResult(VCExprNAry! node, VariableBindings! bindings) {
System.Diagnostics.Debug.Fail("Don't know how to erase types in this expression: " + node);
assert false; // to please the compiler
}
private List<VCExpr!>! MutateSeq(VCExprNAry! node, VariableBindings! bindings,
int newPolarity) {
int oldPolarity = Eraser.Polarity;
Eraser.Polarity = newPolarity;
List<VCExpr!>! newArgs = Eraser.MutateSeq(node, bindings);
Eraser.Polarity = oldPolarity;
return newArgs;
}
private VCExpr! CastArguments(VCExprNAry! node, Type! argType, VariableBindings! bindings,
int newPolarity) {
return Gen.Function(node.Op,
AxBuilder.CastSeq(MutateSeq(node, bindings, newPolarity),
argType));
}
// Cast the arguments of the node to their old type if necessary and possible; otherwise use
// their new type (int, bool, or U)
private VCExpr! CastArgumentsToOldType(VCExprNAry! node, VariableBindings! bindings,
int newPolarity)
requires node.Arity > 0; {
List<VCExpr!>! newArgs = MutateSeq(node, bindings, newPolarity);
Type! oldType = node[0].Type;
if (AxBuilder.UnchangedType(oldType) &&
forall{int i in (1:node.Arity); node[i].Type.Equals(oldType)})
return Gen.Function(node.Op, AxBuilder.CastSeq(newArgs, oldType));
else
return Gen.Function(node.Op, AxBuilder.CastSeq(newArgs, AxBuilder.U));
}
///////////////////////////////////////////////////////////////////////////
public override VCExpr! VisitNotOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Bool, bindings, -Eraser.Polarity);
}
public override VCExpr! VisitEqOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArgumentsToOldType(node, bindings, 0);
}
public override VCExpr! VisitNeqOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArgumentsToOldType(node, bindings, 0);
}
public override VCExpr! VisitImpliesOp (VCExprNAry! node, VariableBindings! bindings) {
// UGLY: the code for tracking polarities should be factored out
List<VCExpr!>! newArgs = new List<VCExpr!> (2);
Eraser.Polarity = -Eraser.Polarity;
newArgs.Add(Eraser.Mutate(node[0], bindings));
Eraser.Polarity = -Eraser.Polarity;
newArgs.Add(Eraser.Mutate(node[1], bindings));
return Gen.Function(node.Op, AxBuilder.CastSeq(newArgs, Type.Bool));
}
public override VCExpr! VisitDistinctOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArgumentsToOldType(node, bindings, 0);
}
public override VCExpr! VisitLabelOp (VCExprNAry! node, VariableBindings! bindings) {
// argument of the label operator should always be a formula
// (at least for Simplify ... should this be ensured at a later point?)
return CastArguments(node, Type.Bool, bindings, Eraser.Polarity);
}
public override VCExpr! VisitIfThenElseOp (VCExprNAry! node, VariableBindings! bindings) {
List<VCExpr!>! newArgs = MutateSeq(node, bindings, 0);
newArgs[0] = AxBuilder.Cast(newArgs[0], Type.Bool);
Type t = node.Type;
if (!AxBuilder.UnchangedType(t)) {
t = AxBuilder.U;
}
newArgs[1] = AxBuilder.Cast(newArgs[1], t);
newArgs[2] = AxBuilder.Cast(newArgs[2], t);
return Gen.Function(node.Op, newArgs);
}
public override VCExpr! VisitAddOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitSubOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitMulOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitDivOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitModOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitLtOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitLeOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitGtOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitGeOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, Type.Int, bindings, 0);
}
public override VCExpr! VisitSubtypeOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArguments(node, AxBuilder.U, bindings, 0);
}
public override VCExpr! VisitBvOp (VCExprNAry! node, VariableBindings! bindings) {
return CastArgumentsToOldType(node, bindings, 0);
}
public override VCExpr! VisitBvExtractOp(VCExprNAry! node, VariableBindings! bindings) {
return CastArgumentsToOldType(node, bindings, 0);
}
public override VCExpr! VisitBvConcatOp (VCExprNAry! node, VariableBindings! bindings) {
List<VCExpr!>! newArgs = MutateSeq(node, bindings, 0);
// each argument is cast to its old type
assert newArgs.Count == node.Arity && newArgs.Count == 2;
VCExpr! arg0 = AxBuilder.Cast(newArgs[0], node[0].Type);
VCExpr! arg1 = AxBuilder.Cast(newArgs[1], node[1].Type);
return Gen.Function(node.Op, arg0, arg1);
}
}
//////////////////////////////////////////////////////////////////////////////
/// <summary>
/// Collect all variables x occurring in expressions of the form Int2U(x) or Bool2U(x), and
/// collect all variables x occurring outside such forms.
/// </summary>
internal class VariableCastCollector : TraversingVCExprVisitor<bool, bool> {
/// <summary>
/// Determine those bound variables in "oldNode" <em>all</em> of whose relevant uses
/// have to be cast in potential triggers in "newNode". It is assume that
/// the bound variables of "oldNode" correspond to the first bound
/// variables of "newNode".
/// </summary>
public static List<VCExprVar!>! FindCastVariables(VCExprQuantifier! oldNode,
VCExprQuantifier! newNode,
TypeAxiomBuilderIntBoolU! axBuilder) {
VariableCastCollector! collector = new VariableCastCollector(axBuilder);
if (exists{VCTrigger! trigger in newNode.Triggers; trigger.Pos}) {
// look in the given triggers
foreach (VCTrigger! trigger in newNode.Triggers)
if (trigger.Pos)
foreach (VCExpr! expr in trigger.Exprs)
collector.Traverse(expr, true);
} else {
// look in the body of the quantifier
collector.Traverse(newNode.Body, true);
}
List<VCExprVar!>! castVariables = new List<VCExprVar!> (collector.varsInCasts.Count);
foreach (VCExprVar! castVar in collector.varsInCasts) {
int i = newNode.BoundVars.IndexOf(castVar);
if (0 <= i && i < oldNode.BoundVars.Count && !collector.varsOutsideCasts.ContainsKey(castVar))
castVariables.Add(oldNode.BoundVars[i]);
}
return castVariables;
}
public VariableCastCollector(TypeAxiomBuilderIntBoolU! axBuilder) {
this.AxBuilder = axBuilder;
}
readonly List<VCExprVar!>! varsInCasts = new List<VCExprVar!> ();
readonly Dictionary<VCExprVar!,object>! varsOutsideCasts = new Dictionary<VCExprVar!,object> ();
readonly TypeAxiomBuilderIntBoolU! AxBuilder;
protected override bool StandardResult(VCExpr! node, bool arg) {
return true; // not used
}
public override bool Visit(VCExprNAry! node, bool arg) {
if (node.Op is VCExprBoogieFunctionOp) {
Function! func = ((VCExprBoogieFunctionOp)node.Op).Func;
if ((AxBuilder.IsCast(func)) && node[0] is VCExprVar) {
VCExprVar castVar = (VCExprVar)node[0];
if (!varsInCasts.Contains(castVar))
varsInCasts.Add(castVar);
return true;
}
} else if (node.Op is VCExprNAryOp) {
VCExpressionGenerator.SingletonOp op = VCExpressionGenerator.SingletonOpDict[node.Op];
switch(op) {
// the following operators cannot be used in triggers, so disregard any uses of variables as direct arguments
case VCExpressionGenerator.SingletonOp.NotOp:
case VCExpressionGenerator.SingletonOp.EqOp:
case VCExpressionGenerator.SingletonOp.NeqOp:
case VCExpressionGenerator.SingletonOp.AndOp:
case VCExpressionGenerator.SingletonOp.OrOp:
case VCExpressionGenerator.SingletonOp.ImpliesOp:
case VCExpressionGenerator.SingletonOp.LtOp:
case VCExpressionGenerator.SingletonOp.LeOp:
case VCExpressionGenerator.SingletonOp.GtOp:
case VCExpressionGenerator.SingletonOp.GeOp:
foreach (VCExpr n in node) {
if (!(n is VCExprVar)) { // don't recurse on VCExprVar argument
n.Accept<bool,bool>(this, arg);
}
}
return true;
default:
break;
}
}
return base.Visit(node, arg);
}
public override bool Visit(VCExprVar! node, bool arg) {
if (!varsOutsideCasts.ContainsKey(node))
varsOutsideCasts.Add(node, null);
return true;
}
}
}
|