summaryrefslogtreecommitdiff
path: root/Source/Provers/SMTLib/SMTLibLineariser.cs
blob: 7efa109f93e79294038ed964ec91ae5932ce945e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation.  All Rights Reserved.
//
//-----------------------------------------------------------------------------
using System;
using System.Text;
using System.IO;
using System.Collections;
using System.Collections.Generic;
using Microsoft.Contracts;
using Microsoft.Basetypes;
using Microsoft.Boogie.VCExprAST;

// Method to turn VCExprs into strings that can be fed into SMT
// solvers. This is currently quite similar to the
// SimplifyLikeLineariser (but the code is independent)

namespace Microsoft.Boogie.SMTLib
{

  // Options for the linearisation
  public class LineariserOptions {

    public readonly bool AsTerm;
    public LineariserOptions! SetAsTerm(bool newVal) {
      if (newVal)
        return DefaultTerm;
      else
        return Default;
    }

    internal LineariserOptions(bool asTerm) {
      this.AsTerm = asTerm;
    }

    public static readonly LineariserOptions! Default = new LineariserOptions (false);
    internal static readonly LineariserOptions! DefaultTerm = new LineariserOptions (true);
  }


  ////////////////////////////////////////////////////////////////////////////////////////

  // Lineariser for expressions. The result (bool) is currently not used for anything
  public class SMTLibExprLineariser : IVCExprVisitor<bool, LineariserOptions!> {

    public static string! ToString(VCExpr! e, UniqueNamer! namer) {
      StringWriter sw = new StringWriter();
      SMTLibExprLineariser! lin = new SMTLibExprLineariser (sw, namer);
      lin.Linearise(e, LineariserOptions.Default);
      return (!)sw.ToString();
    }

    ////////////////////////////////////////////////////////////////////////////////////////

    private readonly TextWriter! wr;
    private SMTLibOpLineariser OpLinObject = null;
    private IVCExprOpVisitor<bool, LineariserOptions!>! OpLineariser { get {
      if (OpLinObject == null)
        OpLinObject = new SMTLibOpLineariser (this, wr);
      return OpLinObject;
    } }

    internal readonly UniqueNamer! Namer;

    public SMTLibExprLineariser(TextWriter! wr, UniqueNamer! namer) {
      this.wr = wr;
      this.Namer = namer;
    }

    public void Linearise(VCExpr! expr, LineariserOptions! options) {
      expr.Accept<bool, LineariserOptions!>(this, options);
    }

    public void LineariseAsTerm(VCExpr! expr, LineariserOptions! options) {
      Linearise(expr, options.SetAsTerm(true));
    }

    /////////////////////////////////////////////////////////////////////////////////////

    internal static string! TypeToString(Type! t) {
      if (t.IsBool)
        return "TermBool";
      else if (t.IsInt)
        return "Int";
      else if (t.IsBv)
        assert false; // bitvectors are currently not handled for SMT-Lib solvers
      else {
        // at this point, only the types U, T should be left
        System.IO.StringWriter buffer = new System.IO.StringWriter();
        using (TokenTextWriter stream = new TokenTextWriter("<buffer>", buffer, false)) {
          t.Emit(stream);
        }
        return "boogie" + buffer.ToString();
      }
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public static string! MakeIdPrintable(string! s) {
      // make sure that no keywords are used as identifiers
      switch(s) {
      case andName:
      case orName:
      case notName:
      case impliesName:
      case iffName:
      case eqName:
      case distinctName:
      case TRUEName:
      case FALSEName:
      case "Array":
        s = "nonkeyword_" + s;
        break;
      }

      string! newS = "";
      foreach (char ch in s) {
        if (Char.IsLetterOrDigit(ch) || ch == '.' || ch == '\'' || ch == '_')
          newS = newS + ch;
        else
          // replace everything else with a .
          newS = newS + '.';
      }

      // ensure that the first character is not . or _ (some SMT-solvers do
      // not like that, e.g., yices and cvc3)
      if (newS[0] == '.' || newS[0] == '_')
        newS = "x" + newS;

      return newS;
    }

    /////////////////////////////////////////////////////////////////////////////////////

    /// <summary>
    /// The name for logical conjunction in Simplify
    /// </summary>
    internal const string! andName = "and"; // conjunction
    internal const string! orName = "or"; // disjunction
    internal const string! notName = "not"; // negation
    internal const string! impliesName = "implies"; // implication
    internal const string! iteName = "ite"; // if-then-else
    internal const string! iffName = "iff"; // logical equivalence
    internal const string! eqName = "="; // equality
    internal const string! lessName = "<";
    internal const string! greaterName = ">"; 
    internal const string! atmostName = "<=";
    internal const string! atleastName = ">=";
    internal const string! TRUEName = "true"; // nullary predicate that is always true
    internal const string! FALSEName = "false"; // nullary predicate that is always false
    internal const string! subtypeName = "UOrdering2";
    internal const string! subtypeArgsName = "UOrdering3";

    internal const string! distinctName = "distinct";

    internal const string! boolTrueName = "boolTrue";
    internal const string! boolFalseName = "boolFalse";
    internal const string! boolAndName = "boolAnd";
    internal const string! boolOrName = "boolOr";
    internal const string! boolNotName = "boolNot";
    internal const string! boolIffName = "boolIff";
    internal const string! boolImpliesName = "boolImplies";
    internal const string! boolIteName = "ite";
    internal const string! termUEqual = "UEqual";
    internal const string! termTEqual = "TEqual";
    internal const string! termIntEqual = "IntEqual";
    internal const string! termLessName = "intLess";
    internal const string! termGreaterName = "intGreater";
    internal const string! termAtmostName = "intAtMost";
    internal const string! termAtleastName = "intAtLeast";
    internal const string! intAddName = "+";
    internal const string! intSubName = "-";
    internal const string! intMulName = "*";
    internal const string! intDivName = "boogieIntDiv";
    internal const string! intModName = "boogieIntMod";

    internal void AssertAsTerm(string! x, LineariserOptions! options) {
      if (!options.AsTerm)
        System.Diagnostics.Debug.Fail("One should never write " + x + " as a formula!");
    }

    internal void AssertAsFormula(string! x, LineariserOptions! options) {
      if (options.AsTerm)
        System.Diagnostics.Debug.Fail("One should never write " + x + " as a term!");
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public bool Visit(VCExprLiteral! node, LineariserOptions! options) {
      if (options.AsTerm) {

        if (node == VCExpressionGenerator.True)
          wr.Write("{0}", boolTrueName);
        else if (node == VCExpressionGenerator.False)
          wr.Write("{0}", boolFalseName);
        else if (node is VCExprIntLit) {
          // some SMT-solvers do not understand negative literals
          // (e.g., yices)
          BigNum lit = ((VCExprIntLit)node).Val;
          if (lit.IsNegative)
            wr.Write("({0} 0 {1})", intSubName, lit.Abs);
          else
            wr.Write(lit);
        } else
          assert false;

      } else {

        if (node == VCExpressionGenerator.True)
          wr.Write("{0}", TRUEName);
        else if (node == VCExpressionGenerator.False)
          wr.Write("{0}", FALSEName);
        else if (node is VCExprIntLit) {
          System.Diagnostics.Debug.Fail("One should never write IntLit as a predicate!");
        } else
          assert false;

      }

      return true;
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public bool Visit(VCExprNAry! node, LineariserOptions! options) {
      VCExprOp! op = node.Op;

      if (!options.AsTerm &&
          (op.Equals(VCExpressionGenerator.AndOp) ||
           op.Equals(VCExpressionGenerator.OrOp))) {
        // handle these operators without recursion

        wr.Write("({0}",
                 op.Equals(VCExpressionGenerator.AndOp) ? andName : orName);
        IEnumerator! enumerator = new VCExprNAryUniformOpEnumerator (node);
        while (enumerator.MoveNext()) {
          VCExprNAry naryExpr = enumerator.Current as VCExprNAry;
          if (naryExpr == null || !naryExpr.Op.Equals(op)) {
            wr.Write(" ");
            Linearise((VCExpr!)enumerator.Current, options);
          }
        }

        wr.Write(")");

        return true;
      }

      return node.Accept<bool, LineariserOptions!>(OpLineariser, options);
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public bool Visit(VCExprVar! node, LineariserOptions! options) {
      string! printedName = Namer.GetName(node, MakeIdPrintable(node.Name));

      if (options.AsTerm ||
          // formula variables are easy to identify in SMT-Lib
          printedName[0] == '$')
        wr.Write("{0}", printedName);
      else
        wr.Write("({0} {1} {2})", eqName, printedName, boolTrueName);

      return true;
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public bool Visit(VCExprQuantifier! node, LineariserOptions! options) {
      AssertAsFormula(node.Quan.ToString(), options);
      assert node.TypeParameters.Count == 0;

      Namer.PushScope(); try {

      string! kind = node.Quan == Quantifier.ALL ? "forall" : "exists";
      wr.Write("({0} ", kind);

      for (int i = 0; i < node.BoundVars.Count; i++) 
        {
          VCExprVar! var = node.BoundVars[i];
          // ensure that the variable name starts with ?
          string! printedName = Namer.GetLocalName(var, "?" + MakeIdPrintable(var.Name));
          assert printedName[0] == '?';
          wr.Write("({0} {1}) ", printedName, TypeToString(var.Type));
        }
        
      /*      if (options.QuantifierIds) {
        // only needed for Z3
        VCQuantifierInfos! infos = node.Infos;
        if (infos.qid != null) {
          wr.Write("(QID ");
          wr.Write(infos.qid);
          wr.Write(") ");
        }
        if (0 <= infos.uniqueId) {
          wr.Write("(SKOLEMID ");
          wr.Write(infos.uniqueId);
          wr.Write(") ");
        }
        } */

      Linearise(node.Body, options);

      WriteTriggers(node.Triggers, options);        
      wr.Write(")");

      return true;

      } finally {
        Namer.PopScope();
      }
    }

    private void WriteTriggers(List<VCTrigger!>! triggers, LineariserOptions! options) {
      // first, count how many neg/pos triggers there are
      int negTriggers = 0;
      int posTriggers = 0;
      foreach (VCTrigger! vcTrig in triggers) {
        if (vcTrig.Pos) {
          posTriggers++;
        } else {
          negTriggers++;
        }
      }

      if (posTriggers > 0) {
        foreach (VCTrigger! vcTrig in triggers) {
          if (vcTrig.Pos) {
            wr.Write(" :pat {");
            foreach (VCExpr! e in vcTrig.Exprs) {
              wr.Write(" ");
              LineariseAsTerm(e, options);
            }
            wr.Write(" } ");
          }
        }
      } else if (negTriggers > 0) {
        // if also positive triggers are given, the SMT solver (at least Z3)
        // will ignore the negative patterns and output a warning. Therefore
        // we never specify both negative and positive triggers
        foreach (VCTrigger! vcTrig in triggers) {
          if (!vcTrig.Pos) {
            wr.Write(" :nopat { ");
            assert vcTrig.Exprs.Count == 1;
            wr.Write(" ");
            LineariseAsTerm(vcTrig.Exprs[0], options);
            wr.Write(" } ");
          }
        }
      }
    }

    /////////////////////////////////////////////////////////////////////////////////////

    public bool Visit(VCExprLet! node, LineariserOptions! options) {
      Namer.PushScope(); try {

      foreach (VCExprLetBinding! b in node) {
        bool formula = b.V.Type.IsBool;

        wr.Write("({0} (", formula ? "flet" : "let");
        string! printedName = Namer.GetLocalName(b.V, "$" + MakeIdPrintable(b.V.Name));
        assert printedName[0] == '$';
        
        wr.Write("{0} ", printedName);
        Linearise(b.E, options.SetAsTerm(!formula));
        wr.Write(") ");
      }
      Linearise(node.Body, options);

      for (int i = 0; i < node.Length; ++i)
        wr.Write(")");

      return true;

      } finally {
        Namer.PopScope();
      }
    }

    /////////////////////////////////////////////////////////////////////////////////////

    // Lineariser for operator terms. The result (bool) is currently not used for anything
    internal class SMTLibOpLineariser : IVCExprOpVisitor<bool, LineariserOptions!> {
      private readonly SMTLibExprLineariser! ExprLineariser;
      private readonly TextWriter! wr;

      public SMTLibOpLineariser(SMTLibExprLineariser! ExprLineariser, TextWriter! wr) {
        this.ExprLineariser = ExprLineariser;
        this.wr = wr;
      }

      ///////////////////////////////////////////////////////////////////////////////////

      private void WriteApplication(string! op, IEnumerable<VCExpr!>! args,
                                    LineariserOptions! options,
                                    bool argsAsTerms) {
        WriteApplication(op, op, args, options, argsAsTerms);
      }

      private void WriteApplication(string! op, IEnumerable<VCExpr!>! args,
                                    LineariserOptions! options) {
        WriteApplication(op, op, args, options, options.AsTerm);
      }

      private void WriteTermApplication(string! op, IEnumerable<VCExpr!>! args,
                                        LineariserOptions! options) {
        ExprLineariser.AssertAsTerm(op, options);
        WriteApplication(op, op, args, options, options.AsTerm);
      }

      private void WriteApplication(string! termOp, string! predOp,
                                    IEnumerable<VCExpr!>! args, LineariserOptions! options) {
        WriteApplication(termOp, predOp, args, options, options.AsTerm);
      }

      private void WriteApplication(string! termOp, string! predOp,
                                    IEnumerable<VCExpr!>! args, LineariserOptions! options,
                                    // change the AsTerm option for the arguments?
                                    bool argsAsTerms) {
        string! opName = options.AsTerm ? termOp : predOp;
        LineariserOptions! newOptions = options.SetAsTerm(argsAsTerms);

        bool hasArgs = false;
        foreach (VCExpr! e in args) {
          if (!hasArgs)
            wr.Write("({0}", opName);
          wr.Write(" ");
          ExprLineariser.Linearise(e, newOptions);
          hasArgs = true;
        }
        
        if (hasArgs)
          wr.Write(")");
        else
          wr.Write("{0}", opName);
      }

      // write an application that can only be a term.
      // if the expression is supposed to be printed as a formula,
      // it is turned into an equation (EQ (f args) |@true|)
      private void WriteApplicationTermOnly(string! termOp,
                                            IEnumerable<VCExpr!>! args, LineariserOptions! options) {
        if (!options.AsTerm)
          // Write: (EQ (f args) |@true|)
          // where "args" are written as terms
          wr.Write("({0} ", eqName);

        WriteApplication(termOp, args, options, true);

        if (!options.AsTerm)
          wr.Write(" {0})", boolTrueName);
      }

      ///////////////////////////////////////////////////////////////////////////////////
      
      public bool VisitNotOp      (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(boolNotName, notName, node, options);      // arguments can be both terms and formulas
        return true;
      }

      private bool PrintEq(VCExprNAry! node, LineariserOptions! options) {
        if (options.AsTerm) {
          // use equality on terms, also if the arguments have type bool
          assert node[0].Type.Equals(node[1].Type);
          if (node[0].Type.IsBool) {
            WriteApplication(boolIffName, node, options);
          } else if (node[0].Type.IsInt) {
            WriteApplication(termIntEqual, node, options);
          } else {
            // TODO: make this less hackish
            CtorType t = node[0].Type as CtorType;
            if (t != null && t.Decl.Name.Equals("U")) {
              WriteApplication(termUEqual, node, options);
            } else if (t != null && t.Decl.Name.Equals("T")) {
              WriteApplication(termTEqual, node, options);
            } else {
              assert false;   // unknown type
            }
          }
        } else {
          if (node[0].Type.IsBool) {
            assert node[1].Type.IsBool;
            // use equivalence
            WriteApplication(iffName, node, options);
          } else {
            // use equality and write the arguments as terms
            WriteApplication(eqName, node, options, true);
          }
        }

        return true;        
      }

      public bool VisitEqOp       (VCExprNAry! node, LineariserOptions! options) {
        return PrintEq(node, options);
      }

      public bool VisitNeqOp      (VCExprNAry! node, LineariserOptions! options) {
        wr.Write("({0} ", options.AsTerm ? boolNotName : notName);
        PrintEq(node, options);
        wr.Write(")");
        return true;
      }

      public bool VisitAndOp      (VCExprNAry! node, LineariserOptions! options) {
        assert options.AsTerm;
        WriteApplication(boolAndName, andName, node, options);
        return true;
      }

      public bool VisitOrOp       (VCExprNAry! node, LineariserOptions! options) {
        assert options.AsTerm;
        WriteApplication(boolOrName, orName, node, options);
        return true;
      }

      public bool VisitImpliesOp  (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(boolImpliesName, impliesName, node, options);
        return true;
      }

      public bool VisitIfThenElseOp  (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(boolIteName, iteName, node, options);
        return true;
      }

      public bool VisitDistinctOp (VCExprNAry! node, LineariserOptions! options) {
        ExprLineariser.AssertAsFormula(distinctName, options);
        
        if (node.Length < 2) {
          ExprLineariser.Linearise(VCExpressionGenerator.True, options);
        } else {
          wr.Write("({0}", distinctName);
          foreach (VCExpr! e in node) {
            wr.Write(" ");
            ExprLineariser.LineariseAsTerm(e, options);
          }
          wr.Write(")");
        }

        return true;
      }

      public bool VisitLabelOp    (VCExprNAry! node, LineariserOptions! options) {
        // VCExprLabelOp! op = (VCExprLabelOp)node.Op;
        // TODO
        //        wr.Write(String.Format("({0} |{1}| ", op.pos ? "LBLPOS" : "LBLNEG", op.label));
        ExprLineariser.Linearise(node[0], options);
        //        wr.Write(")");
        return true;
      }

      public bool VisitSelectOp   (VCExprNAry! node, LineariserOptions! options) {
        assert false;      // should not occur in the output
      }

      public bool VisitStoreOp    (VCExprNAry! node, LineariserOptions! options) {
        assert false;       // should not occur in the output
      }

      public bool VisitBvOp       (VCExprNAry! node, LineariserOptions! options) {
        assert false;       // TODO
      }

      public bool VisitBvExtractOp(VCExprNAry! node, LineariserOptions! options) {
        assert false;       // TODO
      }

      public bool VisitBvConcatOp (VCExprNAry! node, LineariserOptions! options) {
        assert false;       // TODO
      }

      public bool VisitAddOp            (VCExprNAry! node, LineariserOptions! options) {
        WriteTermApplication(intAddName, node, options);
        return true;
      }

      public bool VisitSubOp            (VCExprNAry! node, LineariserOptions! options) {
        WriteTermApplication(intSubName, node, options);
        return true;
      }

      public bool VisitMulOp            (VCExprNAry! node, LineariserOptions! options) {
        WriteTermApplication(intMulName, node, options);
        return true;
      }

      public bool VisitDivOp            (VCExprNAry! node, LineariserOptions! options) {
        WriteTermApplication(intDivName, node, options);
        return true;
      }

      public bool VisitModOp            (VCExprNAry! node, LineariserOptions! options) {
        WriteTermApplication(intModName, node, options);
        return true;
      }

      public bool VisitLtOp             (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(termLessName, lessName, node, options, true);  // arguments are always terms
        return true;
      }

      public bool VisitLeOp             (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(termAtmostName, atmostName, node, options, true);  // arguments are always terms
        return true;
      }

      public bool VisitGtOp             (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(termGreaterName, greaterName, node, options, true);  // arguments are always terms
        return true;
      }

      public bool VisitGeOp             (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(termAtleastName, atleastName, node, options, true);  // arguments are always terms
        return true;
      }

      public bool VisitSubtypeOp        (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(subtypeName, node, options, true);               // arguments are always terms
        return true;
      }

      public bool VisitSubtype3Op        (VCExprNAry! node, LineariserOptions! options) {
        WriteApplication(subtypeArgsName, node, options, true);               // arguments are always terms
        return true;
      }

      public bool VisitBoogieFunctionOp (VCExprNAry! node, LineariserOptions! options) {
        VCExprBoogieFunctionOp! op = (VCExprBoogieFunctionOp)node.Op;
        string! printedName = ExprLineariser.Namer.GetName(op.Func, MakeIdPrintable(op.Func.Name));

        // arguments are always terms
        WriteApplicationTermOnly(printedName, node, options);
        return true;
      }
      
    }
  }

}