1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
//-----------------------------------------------------------------------------
//
// Copyright (C) Microsoft Corporation. All Rights Reserved.
//
//-----------------------------------------------------------------------------
package chalice;
object TranslatorPrelude {
val P =
"""// Copyright (c) 2008, Microsoft
type Field a;
type HeapType = <a>[ref,Field a]a;
type MaskType = <a>[ref,Field a][PermissionComponent]int;
type CreditsType = [ref]int;
type ref;
const null: ref;
var Heap: HeapType;
type PermissionComponent;
const unique perm$R: PermissionComponent;
const unique perm$N: PermissionComponent;
const Permission$MinusInfinity: int;
axiom Permission$MinusInfinity < -10000;
const Permission$PlusInfinity: int;
axiom 10000 < Permission$PlusInfinity;
var Mask: MaskType where IsGoodMask(Mask);
const Permission$Zero: [PermissionComponent]int;
axiom Permission$Zero[perm$R] == 0 && Permission$Zero[perm$N] == 0;
const Permission$Full: [PermissionComponent]int;
axiom Permission$Full[perm$R] == 100 && Permission$Full[perm$N] == 0;
const ZeroMask: MaskType;
axiom (forall<T> o: ref, f: Field T, pc: PermissionComponent :: ZeroMask[o,f][pc] == 0);
axiom IsGoodMask(ZeroMask);
function {:expand false} CanRead<T>(m: MaskType, obj: ref, f: Field T) returns (bool)
{
0 < m[obj,f][perm$R] || 0 < m[obj,f][perm$N]
}
function {:expand false} CanWrite<T>(m: MaskType, obj: ref, f: Field T) returns (bool)
{
m[obj,f][perm$R] == 100 && m[obj,f][perm$N] == 0
}
function {:expand true} IsGoodMask(m: MaskType) returns (bool)
{
(forall<T> o: ref, f: Field T ::
0 <= m[o,f][perm$R] &&
(NonPredicateField(f) ==>
(m[o,f][perm$R]<=100 &&
(0 < m[o,f][perm$N] ==> m[o,f][perm$R] < 100))) &&
(m[o,f][perm$N] < 0 ==> 0 < m[o,f][perm$R]))
}
var Credits: CreditsType;
function IsGoodState<T>(T) returns (bool);
function combine<T,U>(T, U) returns (T);
const nostate: HeapType;
axiom (forall<T,U> a: T, b: U :: {IsGoodState(combine(a, b))} IsGoodState(combine(a, b)) <==> IsGoodState(a) && IsGoodState(b));
axiom IsGoodState(nostate);
type ModuleName;
const CurrentModule: ModuleName;
type TypeName;
function dtype(ref) returns (TypeName);
const CanAssumeFunctionDefs: bool;
type Mu;
const unique mu: Field Mu;
axiom NonPredicateField(mu);
function MuBelow(Mu, Mu) returns (bool); // strict partial order
axiom (forall m: Mu, n: Mu ::
{ MuBelow(m,n), MuBelow(n,m) }
!(MuBelow(m,n) && MuBelow(n,m)));
axiom (forall m: Mu, n: Mu, o: Mu ::
{ MuBelow(m,n), MuBelow(n,o) }
MuBelow(m,n) && MuBelow(n,o) ==> MuBelow(m,o));
const $LockBottom: Mu;
axiom (forall m, n: Mu :: MuBelow(m, n) ==> n != $LockBottom);
const unique held: Field int;
function Acquire$Heap(int) returns (HeapType);
function Acquire$Mask(int) returns (MaskType);
function Acquire$Credits(int) returns (CreditsType);
axiom NonPredicateField(held);
function LastSeen$Heap(Mu, int) returns (HeapType);
function LastSeen$Mask(Mu, int) returns (MaskType);
function LastSeen$Credits(Mu, int) returns (CreditsType);
const unique rdheld: Field bool;
axiom NonPredicateField(rdheld);
function wf(h: HeapType, m: MaskType) returns (bool);
function IsGoodInhaleState(ih: HeapType, h: HeapType,
m: MaskType) returns (bool)
{
(forall<T> o: ref, f: Field T :: { ih[o, f] } CanRead(m, o, f) ==> ih[o, f] == h[o, f]) &&
(forall o: ref :: { ih[o, held] } (0<ih[o, held]) == (0<h[o, held])) &&
(forall o: ref :: { ih[o, rdheld] } ih[o, rdheld] == h[o, rdheld]) &&
(forall o: ref :: { h[o, held] } (0<h[o, held]) ==> ih[o, mu] == h[o, mu]) &&
(forall o: ref :: { h[o, rdheld] } h[o, rdheld] ==> ih[o, mu] == h[o, mu])
}
// ---------------------------------------------------------------
// -- If then else -----------------------------------------------
// ---------------------------------------------------------------
function ite<T>(bool, T, T) returns (T);
axiom (forall<T> con: bool, a: T, b: T :: {ite(con, a, b)} con ==> ite(con, a, b) == a);
axiom (forall<T> con: bool, a: T, b: T :: {ite(con, a, b)} ! con ==> ite(con, a, b) == b);
// ---------------------------------------------------------------
// -- Axiomatization of sequences --------------------------------
// ---------------------------------------------------------------
type Seq T;
function Seq#Length<T>(Seq T) returns (int);
axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s));
function Seq#Empty<T>() returns (Seq T);
axiom (forall<T> :: Seq#Length(Seq#Empty(): Seq T) == 0);
axiom (forall<T> s: Seq T :: { Seq#Length(s) } Seq#Length(s) == 0 ==> s == Seq#Empty());
function Seq#Singleton<T>(T) returns (Seq T);
axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1);
function Seq#Build<T>(s: Seq T, index: int, val: T, newLength: int) returns (Seq T);
axiom (forall<T> s: Seq T, i: int, v: T, len: int :: { Seq#Length(Seq#Build(s,i,v,len)) }
0 <= len ==> Seq#Length(Seq#Build(s,i,v,len)) == len);
function Seq#Append<T>(Seq T, Seq T) returns (Seq T);
axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) }
Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1));
function Seq#Index<T>(Seq T, int) returns (T);
axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t);
axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) }
(n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) &&
(Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0))));
axiom (forall<T> s: Seq T, i: int, v: T, len: int, n: int :: { Seq#Index(Seq#Build(s,i,v,len),n) }
0 <= n && n < len ==>
(i == n ==> Seq#Index(Seq#Build(s,i,v,len),n) == v) &&
(i != n ==> Seq#Index(Seq#Build(s,i,v,len),n) == Seq#Index(s,n)));
function Seq#Contains<T>(Seq T, T) returns (bool);
axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) }
Seq#Contains(s,x) <==>
(exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x));
axiom (forall x: ref ::
{ Seq#Contains(Seq#Empty(), x) }
!Seq#Contains(Seq#Empty(), x));
axiom (forall<T> s0: Seq T, s1: Seq T, x: T ::
{ Seq#Contains(Seq#Append(s0, s1), x) }
Seq#Contains(Seq#Append(s0, s1), x) <==>
Seq#Contains(s0, x) || Seq#Contains(s1, x));
axiom (forall<T> s: Seq T, i: int, v: T, len: int, x: T ::
{ Seq#Contains(Seq#Build(s, i, v, len), x) }
Seq#Contains(Seq#Build(s, i, v, len), x) <==>
(0 <= i && i < len && x == v) ||
(exists j: int :: { Seq#Index(s,j) } 0 <= j && j < Seq#Length(s) && j < len && j!=i && Seq#Index(s,j) == x));
axiom (forall<T> s: Seq T, n: int, x: T ::
{ Seq#Contains(Seq#Take(s, n), x) }
Seq#Contains(Seq#Take(s, n), x) <==>
(exists i: int :: { Seq#Index(s, i) }
0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x));
axiom (forall<T> s: Seq T, n: int, x: T ::
{ Seq#Contains(Seq#Drop(s, n), x) }
Seq#Contains(Seq#Drop(s, n), x) <==>
(exists i: int :: { Seq#Index(s, i) }
0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x));
function Seq#Equal<T>(Seq T, Seq T) returns (bool);
axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) }
Seq#Equal(s0,s1) <==>
Seq#Length(s0) == Seq#Length(s1) &&
(forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) }
0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
axiom(forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences
Seq#Equal(a,b) ==> a == b);
function Seq#SameUntil<T>(Seq T, Seq T, int) returns (bool);
axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) }
Seq#SameUntil(s0,s1,n) <==>
(forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) }
0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
function Seq#Take<T>(s: Seq T, howMany: int) returns (Seq T);
axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) }
0 <= n ==>
(n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n) &&
(Seq#Length(s) < n ==> Seq#Length(Seq#Take(s,n)) == Seq#Length(s)));
axiom (forall<T> s: Seq T, n: int, j: int :: { Seq#Index(Seq#Take(s,n), j) } {:weight 25}
0 <= j && j < n && j < Seq#Length(s) ==>
Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j));
function Seq#Drop<T>(s: Seq T, howMany: int) returns (Seq T);
axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) }
0 <= n ==>
(n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n) &&
(Seq#Length(s) < n ==> Seq#Length(Seq#Drop(s,n)) == 0));
axiom (forall<T> s: Seq T, n: int, j: int :: { Seq#Index(Seq#Drop(s,n), j) } {:weight 25}
0 <= n && 0 <= j && j < Seq#Length(s)-n ==>
Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n));
axiom (forall<T> s, t: Seq T ::
{ Seq#Append(s, t) }
Seq#Take(Seq#Append(s, t), Seq#Length(s)) == s &&
Seq#Drop(Seq#Append(s, t), Seq#Length(s)) == t);
function Seq#Range(min: int, max: int) returns (Seq int);
axiom (forall min: int, max: int :: { Seq#Length(Seq#Range(min, max)) } (min < max ==> Seq#Length(Seq#Range(min, max)) == max-min) && (max <= min ==> Seq#Length(Seq#Range(min, max)) == 0));
axiom (forall min: int, max: int, j: int :: { Seq#Index(Seq#Range(min, max), j) } 0<=j && j<max-min ==> Seq#Index(Seq#Range(min, max), j) == min + j);
// ---------------------------------------------------------------
// -- Permissions ------------------------------------------------
// ---------------------------------------------------------------
axiom (forall h: HeapType, m: MaskType, o: ref, q: ref :: {wf(h, m), h[o, mu], h[q, mu]} wf(h, m) && o!=q && (0 < h[o, held] || h[o, rdheld]) && (0 < h[q, held] || h[q, rdheld]) ==> h[o, mu] != h[q, mu]);
function DecPerm<T>(m: MaskType, o: ref, f: Field T, howMuch: int) returns (MaskType);
axiom (forall<T,U> m: MaskType, o: ref, f: Field T, howMuch: int, q: ref, g: Field U :: {DecPerm(m, o, f, howMuch)[q, g][perm$R]}
DecPerm(m, o, f, howMuch)[q, g][perm$R] == ite(o==q && f ==g, m[q, g][perm$R] - howMuch, m[q, g][perm$R])
);
function DecEpsilons<T>(m: MaskType, o: ref, f: Field T, howMuch: int) returns (MaskType);
axiom (forall<T,U> m: MaskType, o: ref, f: Field T, howMuch: int, q: ref, g: Field U :: {DecPerm(m, o, f, howMuch)[q, g][perm$N]}
DecEpsilons(m, o, f, howMuch)[q, g][perm$N] == ite(o==q && f ==g, m[q, g][perm$N] - howMuch, m[q, g][perm$N])
);
function IncPerm<T>(m: MaskType, o: ref, f: Field T, howMuch: int) returns (MaskType);
axiom (forall<T,U> m: MaskType, o: ref, f: Field T, howMuch: int, q: ref, g: Field U :: {IncPerm(m, o, f, howMuch)[q, g][perm$R]}
IncPerm(m, o, f, howMuch)[q, g][perm$R] == ite(o==q && f ==g, m[q, g][perm$R] + howMuch, m[q, g][perm$R])
);
function IncEpsilons<T>(m: MaskType, o: ref, f: Field T, howMuch: int) returns (MaskType);
axiom (forall<T,U> m: MaskType, o: ref, f: Field T, howMuch: int, q: ref, g: Field U :: {IncPerm(m, o, f, howMuch)[q, g][perm$N]}
IncEpsilons(m, o, f, howMuch)[q, g][perm$N] == ite(o==q && f ==g, m[q, g][perm$N] + howMuch, m[q, g][perm$N])
);
function Havocing<T,U>(h: HeapType, o: ref, f: Field T, newValue: U) returns (HeapType);
axiom (forall<T,U> h: HeapType, o: ref, f: Field T, newValue: U, q: ref, g: Field U :: {Havocing(h, o, f, newValue)[q, g]}
Havocing(h, o, f, newValue)[q, g] == ite(o==q && f ==g, newValue, h[q, g])
);
const unique joinable: Field int;
axiom NonPredicateField(joinable);
const unique token#t: TypeName;
function Call$Heap(int) returns (HeapType);
function Call$Mask(int) returns (MaskType);
function Call$Credits(int) returns (CreditsType);
function Call$Args(int) returns (ArgSeq);
type ArgSeq = <T>[int]T;
function EmptyMask(m: MaskType) returns (bool);
axiom (forall m: MaskType :: {EmptyMask(m)} EmptyMask(m) <==> (forall<T> o: ref, f: Field T :: NonPredicateField(f) ==> m[o, f][perm$R]<=0 && m[o, f][perm$N]<=0));
const ZeroCredits: CreditsType;
axiom (forall o: ref :: ZeroCredits[o] == 0);
function EmptyCredits(c: CreditsType) returns (bool);
axiom (forall c: CreditsType :: {EmptyCredits(c)} EmptyCredits(c) <==> (forall o: ref :: o != null ==> c[o] == 0));
function NonPredicateField<T>(f: Field T) returns (bool);
function PredicateField<T>(f: Field T) returns (bool);
axiom (forall<T> f: Field T :: NonPredicateField(f) ==> ! PredicateField(f));
axiom (forall<T> f: Field T :: PredicateField(f) ==> ! NonPredicateField(f));
function submask(m1: MaskType, m2: MaskType) returns (bool);
axiom (forall m1: MaskType, m2: MaskType :: {submask(m1, m2)}
submask(m1, m2) <==> (forall<T> o: ref, f: Field T :: (m1[o, f][perm$R] < m2[o, f][perm$R]) || (m1[o, f][perm$R] == m2[o, f][perm$R] && m1[o, f][perm$N] <= m2[o, f][perm$N]))
);
// ---------------------------------------------------------------
// -- End of prelude ---------------------------------------------
// ---------------------------------------------------------------
"""
}
|