1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
|
// Dafny prelude
// Created 9 February 2008 by Rustan Leino.
// Converted to Boogie 2 on 28 June 2008.
// Edited sequence axioms 20 October 2009 by Alex Summers.
// Copyright (c) 2008-2010, Microsoft.
const $$Language$Dafny: bool; // To be recognizable to the ModelViewer as
axiom $$Language$Dafny; // coming from a Dafny program.
// ---------------------------------------------------------------
// -- References -------------------------------------------------
// ---------------------------------------------------------------
type ref;
const null: ref;
// ---------------------------------------------------------------
// -- Axiomatization of sets -------------------------------------
// ---------------------------------------------------------------
type Set T = [T]bool;
function Set#Empty<T>(): Set T;
axiom (forall<T> o: T :: { Set#Empty()[o] } !Set#Empty()[o]);
function Set#Singleton<T>(T): Set T;
axiom (forall<T> r: T :: { Set#Singleton(r) } Set#Singleton(r)[r]);
axiom (forall<T> r: T, o: T :: { Set#Singleton(r)[o] } Set#Singleton(r)[o] <==> r == o);
function Set#UnionOne<T>(Set T, T): Set T;
axiom (forall<T> a: Set T, x: T, o: T :: { Set#UnionOne(a,x)[o] }
Set#UnionOne(a,x)[o] <==> o == x || a[o]);
axiom (forall<T> a: Set T, x: T :: { Set#UnionOne(a, x) }
Set#UnionOne(a, x)[x]);
axiom (forall<T> a: Set T, x: T, y: T :: { Set#UnionOne(a, x), a[y] }
a[y] ==> Set#UnionOne(a, x)[y]);
function Set#Union<T>(Set T, Set T): Set T;
axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Union(a,b)[o] }
Set#Union(a,b)[o] <==> a[o] || b[o]);
axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), a[y] }
a[y] ==> Set#Union(a, b)[y]);
axiom (forall<T> a, b: Set T, y: T :: { Set#Union(a, b), b[y] }
b[y] ==> Set#Union(a, b)[y]);
axiom (forall<T> a, b: Set T :: { Set#Union(a, b) }
Set#Disjoint(a, b) ==>
Set#Difference(Set#Union(a, b), a) == b &&
Set#Difference(Set#Union(a, b), b) == a);
function Set#Intersection<T>(Set T, Set T): Set T;
axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Intersection(a,b)[o] }
Set#Intersection(a,b)[o] <==> a[o] && b[o]);
axiom (forall<T> a, b: Set T :: { Set#Union(Set#Union(a, b), b) }
Set#Union(Set#Union(a, b), b) == Set#Union(a, b));
axiom (forall<T> a, b: Set T :: { Set#Union(a, Set#Union(a, b)) }
Set#Union(a, Set#Union(a, b)) == Set#Union(a, b));
axiom (forall<T> a, b: Set T :: { Set#Intersection(Set#Intersection(a, b), b) }
Set#Intersection(Set#Intersection(a, b), b) == Set#Intersection(a, b));
axiom (forall<T> a, b: Set T :: { Set#Intersection(a, Set#Intersection(a, b)) }
Set#Intersection(a, Set#Intersection(a, b)) == Set#Intersection(a, b));
function Set#Difference<T>(Set T, Set T): Set T;
axiom (forall<T> a: Set T, b: Set T, o: T :: { Set#Difference(a,b)[o] }
Set#Difference(a,b)[o] <==> a[o] && !b[o]);
axiom (forall<T> a, b: Set T, y: T :: { Set#Difference(a, b), b[y] }
b[y] ==> !Set#Difference(a, b)[y] );
function Set#Subset<T>(Set T, Set T): bool;
axiom(forall<T> a: Set T, b: Set T :: { Set#Subset(a,b) }
Set#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] ==> b[o]));
function Set#Equal<T>(Set T, Set T): bool;
axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) }
Set#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <==> b[o]));
axiom(forall<T> a: Set T, b: Set T :: { Set#Equal(a,b) } // extensionality axiom for sets
Set#Equal(a,b) ==> a == b);
function Set#Disjoint<T>(Set T, Set T): bool;
axiom (forall<T> a: Set T, b: Set T :: { Set#Disjoint(a,b) }
Set#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} !a[o] || !b[o]));
function Set#Choose<T>(Set T, TickType): T;
axiom (forall<T> a: Set T, tick: TickType :: { Set#Choose(a, tick) }
a != Set#Empty() ==> a[Set#Choose(a, tick)]);
// ---------------------------------------------------------------
// -- Axiomatization of multisets --------------------------------
// ---------------------------------------------------------------
function Math#min(a: int, b: int): int;
axiom (forall a: int, b: int :: { Math#min(a, b) } a <= b <==> Math#min(a, b) == a);
axiom (forall a: int, b: int :: { Math#min(a, b) } b <= a <==> Math#min(a, b) == b);
axiom (forall a: int, b: int :: { Math#min(a, b) } Math#min(a, b) == a || Math#min(a, b) == b);
function Math#clip(a: int): int;
axiom (forall a: int :: { Math#clip(a) } 0 <= a ==> Math#clip(a) == a);
axiom (forall a: int :: { Math#clip(a) } a < 0 ==> Math#clip(a) == 0);
type MultiSet T = [T]int;
function $IsGoodMultiSet<T>(ms: MultiSet T): bool;
// ints are non-negative, used after havocing, and for conversion from sequences to multisets.
axiom (forall<T> ms: MultiSet T :: { $IsGoodMultiSet(ms) }
$IsGoodMultiSet(ms) <==> (forall o: T :: { ms[o] } 0 <= ms[o]));
function MultiSet#Empty<T>(): MultiSet T;
axiom (forall<T> o: T :: { MultiSet#Empty()[o] } MultiSet#Empty()[o] == 0);
function MultiSet#Singleton<T>(T): MultiSet T;
axiom (forall<T> r: T, o: T :: { MultiSet#Singleton(r)[o] } (MultiSet#Singleton(r)[o] == 1 <==> r == o) &&
(MultiSet#Singleton(r)[o] == 0 <==> r != o));
axiom (forall<T> r: T :: { MultiSet#Singleton(r) } MultiSet#Singleton(r) == MultiSet#UnionOne(MultiSet#Empty(), r));
function MultiSet#UnionOne<T>(MultiSet T, T): MultiSet T;
// pure containment axiom (in the original multiset or is the added element)
axiom (forall<T> a: MultiSet T, x: T, o: T :: { MultiSet#UnionOne(a,x)[o] }
0 < MultiSet#UnionOne(a,x)[o] <==> o == x || 0 < a[o]);
// union-ing increases count by one
axiom (forall<T> a: MultiSet T, x: T :: { MultiSet#UnionOne(a, x) }
MultiSet#UnionOne(a, x)[x] == a[x] + 1);
// non-decreasing
axiom (forall<T> a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] }
0 < a[y] ==> 0 < MultiSet#UnionOne(a, x)[y]);
// other elements unchanged
axiom (forall<T> a: MultiSet T, x: T, y: T :: { MultiSet#UnionOne(a, x), a[y] }
x != y ==> a[y] == MultiSet#UnionOne(a, x)[y]);
function MultiSet#Union<T>(MultiSet T, MultiSet T): MultiSet T;
// union-ing is the sum of the contents
axiom (forall<T> a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Union(a,b)[o] }
MultiSet#Union(a,b)[o] == a[o] + b[o]);
// two containment axioms
axiom (forall<T> a, b: MultiSet T, y: T :: { MultiSet#Union(a, b), a[y] }
0 < a[y] ==> 0 < MultiSet#Union(a, b)[y]);
axiom (forall<T> a, b: MultiSet T, y: T :: { MultiSet#Union(a, b), b[y] }
0 < b[y] ==> 0 < MultiSet#Union(a, b)[y]);
// symmetry axiom
axiom (forall<T> a, b: MultiSet T :: { MultiSet#Union(a, b) }
MultiSet#Difference(MultiSet#Union(a, b), a) == b &&
MultiSet#Difference(MultiSet#Union(a, b), b) == a);
function MultiSet#Intersection<T>(MultiSet T, MultiSet T): MultiSet T;
axiom (forall<T> a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Intersection(a,b)[o] }
MultiSet#Intersection(a,b)[o] == Math#min(a[o], b[o]));
// left and right pseudo-idempotence
axiom (forall<T> a, b: MultiSet T :: { MultiSet#Intersection(MultiSet#Intersection(a, b), b) }
MultiSet#Intersection(MultiSet#Intersection(a, b), b) == MultiSet#Intersection(a, b));
axiom (forall<T> a, b: MultiSet T :: { MultiSet#Intersection(a, MultiSet#Intersection(a, b)) }
MultiSet#Intersection(a, MultiSet#Intersection(a, b)) == MultiSet#Intersection(a, b));
// multiset difference, a - b. clip() makes it positive.
function MultiSet#Difference<T>(MultiSet T, MultiSet T): MultiSet T;
axiom (forall<T> a: MultiSet T, b: MultiSet T, o: T :: { MultiSet#Difference(a,b)[o] }
MultiSet#Difference(a,b)[o] == Math#clip(a[o] - b[o]));
axiom (forall<T> a, b: MultiSet T, y: T :: { MultiSet#Difference(a, b), b[y], a[y] }
a[y] <= b[y] ==> MultiSet#Difference(a, b)[y] == 0 );
// multiset subset means a must have at most as many of each element as b
function MultiSet#Subset<T>(MultiSet T, MultiSet T): bool;
axiom(forall<T> a: MultiSet T, b: MultiSet T :: { MultiSet#Subset(a,b) }
MultiSet#Subset(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] <= b[o]));
function MultiSet#Equal<T>(MultiSet T, MultiSet T): bool;
axiom(forall<T> a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a,b) }
MultiSet#Equal(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] == b[o]));
// extensionality axiom for multisets
axiom(forall<T> a: MultiSet T, b: MultiSet T :: { MultiSet#Equal(a,b) }
MultiSet#Equal(a,b) ==> a == b);
function MultiSet#Disjoint<T>(MultiSet T, MultiSet T): bool;
axiom (forall<T> a: MultiSet T, b: MultiSet T :: { MultiSet#Disjoint(a,b) }
MultiSet#Disjoint(a,b) <==> (forall o: T :: {a[o]} {b[o]} a[o] == 0 || b[o] == 0));
// conversion to a multiset. each element in the original set has duplicity 1.
function MultiSet#FromSet<T>(Set T): MultiSet T;
axiom (forall<T> s: Set T, a: T :: { MultiSet#FromSet(s)[a] }
(MultiSet#FromSet(s)[a] == 0 <==> !s[a]) &&
(MultiSet#FromSet(s)[a] == 1 <==> s[a]));
// conversion to a multiset, from a sequence.
function MultiSet#FromSeq<T>(Seq T): MultiSet T;
// conversion produces a good map.
axiom (forall<T> s: Seq T :: { MultiSet#FromSeq(s) } $IsGoodMultiSet(MultiSet#FromSeq(s)) );
// building axiom
axiom (forall<T> s: Seq T, v: T ::
{ MultiSet#FromSeq(Seq#Build(s, v)) }
MultiSet#FromSeq(Seq#Build(s, v)) == MultiSet#UnionOne(MultiSet#FromSeq(s), v)
);
axiom (forall<T> :: MultiSet#FromSeq(Seq#Empty(): Seq T) == MultiSet#Empty(): MultiSet T);
// concatenation axiom
axiom (forall<T> a: Seq T, b: Seq T ::
{ MultiSet#FromSeq(Seq#Append(a, b)) }
MultiSet#FromSeq(Seq#Append(a, b)) == MultiSet#Union(MultiSet#FromSeq(a), MultiSet#FromSeq(b)) );
// update axiom
axiom (forall<T> s: Seq T, i: int, v: T, x: T ::
{ MultiSet#FromSeq(Seq#Update(s, i, v))[x] }
0 <= i && i < Seq#Length(s) ==>
MultiSet#FromSeq(Seq#Update(s, i, v))[x] ==
MultiSet#Union(MultiSet#Difference(MultiSet#FromSeq(s), MultiSet#Singleton(Seq#Index(s,i))), MultiSet#Singleton(v))[x] );
// i.e. MS(Update(s, i, v)) == MS(s) - {{s[i]}} + {{v}}
axiom (forall<T> s: Seq T, x: T :: { MultiSet#FromSeq(s)[x] }
(exists i : int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && x == Seq#Index(s,i)) <==> 0 < MultiSet#FromSeq(s)[x] );
// ---------------------------------------------------------------
// -- Axiomatization of sequences --------------------------------
// ---------------------------------------------------------------
type Seq T;
function Seq#Length<T>(Seq T): int;
axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s));
function Seq#Empty<T>(): Seq T;
axiom (forall<T> :: Seq#Length(Seq#Empty(): Seq T) == 0);
axiom (forall<T> s: Seq T :: { Seq#Length(s) } Seq#Length(s) == 0 ==> s == Seq#Empty());
function Seq#Singleton<T>(T): Seq T;
axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1);
function Seq#Build<T>(s: Seq T, val: T): Seq T;
axiom (forall<T> s: Seq T, v: T :: { Seq#Length(Seq#Build(s,v)) }
Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s));
axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) }
(i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) &&
(i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i)));
function Seq#Append<T>(Seq T, Seq T): Seq T;
axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) }
Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1));
function Seq#Index<T>(Seq T, int): T;
axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t);
axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) }
(n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) &&
(Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0))));
function Seq#Update<T>(Seq T, int, T): Seq T;
axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) }
0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s));
axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) }
0 <= n && n < Seq#Length(s) ==>
(i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) &&
(i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n)));
function Seq#Contains<T>(Seq T, T): bool;
axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) }
Seq#Contains(s,x) <==>
(exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x));
axiom (forall x: ref ::
{ Seq#Contains(Seq#Empty(), x) }
!Seq#Contains(Seq#Empty(), x));
axiom (forall<T> s0: Seq T, s1: Seq T, x: T ::
{ Seq#Contains(Seq#Append(s0, s1), x) }
Seq#Contains(Seq#Append(s0, s1), x) <==>
Seq#Contains(s0, x) || Seq#Contains(s1, x));
axiom (forall<T> s: Seq T, v: T, x: T ::
{ Seq#Contains(Seq#Build(s, v), x) }
Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x)));
axiom (forall<T> s: Seq T, n: int, x: T ::
{ Seq#Contains(Seq#Take(s, n), x) }
Seq#Contains(Seq#Take(s, n), x) <==>
(exists i: int :: { Seq#Index(s, i) }
0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x));
axiom (forall<T> s: Seq T, n: int, x: T ::
{ Seq#Contains(Seq#Drop(s, n), x) }
Seq#Contains(Seq#Drop(s, n), x) <==>
(exists i: int :: { Seq#Index(s, i) }
0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x));
function Seq#Equal<T>(Seq T, Seq T): bool;
axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) }
Seq#Equal(s0,s1) <==>
Seq#Length(s0) == Seq#Length(s1) &&
(forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) }
0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences
Seq#Equal(a,b) ==> a == b);
function Seq#SameUntil<T>(Seq T, Seq T, int): bool;
axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) }
Seq#SameUntil(s0,s1,n) <==>
(forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) }
0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
function Seq#Take<T>(s: Seq T, howMany: int): Seq T;
axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) }
0 <= n ==>
(n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n) &&
(Seq#Length(s) < n ==> Seq#Length(Seq#Take(s,n)) == Seq#Length(s)));
axiom (forall<T> s: Seq T, n: int, j: int :: { Seq#Index(Seq#Take(s,n), j) } {:weight 25}
0 <= j && j < n && j < Seq#Length(s) ==>
Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j));
function Seq#Drop<T>(s: Seq T, howMany: int): Seq T;
axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) }
0 <= n ==>
(n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n) &&
(Seq#Length(s) < n ==> Seq#Length(Seq#Drop(s,n)) == 0));
axiom (forall<T> s: Seq T, n: int, j: int :: { Seq#Index(Seq#Drop(s,n), j) } {:weight 25}
0 <= n && 0 <= j && j < Seq#Length(s)-n ==>
Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n));
axiom (forall<T> s, t: Seq T ::
{ Seq#Append(s, t) }
Seq#Take(Seq#Append(s, t), Seq#Length(s)) == s &&
Seq#Drop(Seq#Append(s, t), Seq#Length(s)) == t);
function Seq#FromArray(h: HeapType, a: ref): Seq BoxType;
axiom (forall h: HeapType, a: ref ::
{ Seq#Length(Seq#FromArray(h,a)) }
Seq#Length(Seq#FromArray(h, a)) == _System.array.Length(a));
axiom (forall h: HeapType, a: ref :: { Seq#FromArray(h,a): Seq BoxType }
(forall i: int :: 0 <= i && i < Seq#Length(Seq#FromArray(h, a)) ==> Seq#Index(Seq#FromArray(h, a), i) == read(h, a, IndexField(i))));
axiom (forall<alpha> h: HeapType, o: ref, f: Field alpha, v: alpha, a: ref ::
{ Seq#FromArray(update(h, o, f, v), a) }
o != a ==> Seq#FromArray(update(h, o, f, v), a) == Seq#FromArray(h, a) );
axiom (forall h: HeapType, i: int, v: BoxType, a: ref ::
{ Seq#FromArray(update(h, a, IndexField(i), v), a) }
0 <= i && i < _System.array.Length(a) ==> Seq#FromArray(update(h, a, IndexField(i), v), a) == Seq#Update(Seq#FromArray(h, a), i, v) );
/**** Someday:
axiom (forall h: HeapType, a: ref :: { Seq#FromArray(h, a) }
$IsGoodHeap(h) &&
a != null && read(h, a, alloc) && dtype(a) == class._System.array && TypeParams(a, 0) == class._System.bool
==>
(forall i: int :: { Seq#Index(Seq#FromArray(h, a), i) }
0 <= i && i < Seq#Length(Seq#FromArray(h, a)) ==> $IsCanonicalBoolBox(Seq#Index(Seq#FromArray(h, a), i))));
****/
// Commutability of Take and Drop with Update.
axiom (forall<T> s: Seq T, i: int, v: T, n: int ::
{ Seq#Take(Seq#Update(s, i, v), n) }
0 <= i && i < n && n <= Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) );
axiom (forall<T> s: Seq T, i: int, v: T, n: int ::
{ Seq#Take(Seq#Update(s, i, v), n) }
n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n));
axiom (forall<T> s: Seq T, i: int, v: T, n: int ::
{ Seq#Drop(Seq#Update(s, i, v), n) }
0 <= n && n <= i && i < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) );
axiom (forall<T> s: Seq T, i: int, v: T, n: int ::
{ Seq#Drop(Seq#Update(s, i, v), n) }
0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n));
// Extension axiom, triggers only on Takes from arrays.
axiom (forall h: HeapType, a: ref, n0, n1: int ::
{ Seq#Take(Seq#FromArray(h, a), n0), Seq#Take(Seq#FromArray(h, a), n1) }
n0 + 1 == n1 && 0 <= n0 && n1 <= _System.array.Length(a) ==> Seq#Take(Seq#FromArray(h, a), n1) == Seq#Build(Seq#Take(Seq#FromArray(h, a), n0), read(h, a, IndexField(n0): Field BoxType)) );
// drop commutes with build.
axiom (forall<T> s: Seq T, v: T, n: int ::
{ Seq#Drop(Seq#Build(s, v), n) }
0 <= n && n <= Seq#Length(s) ==> Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) );
// Additional axioms about common things
axiom Seq#Take(Seq#Empty(): Seq BoxType, 0) == Seq#Empty(); // [][..0] == []
axiom Seq#Drop(Seq#Empty(): Seq BoxType, 0) == Seq#Empty(); // [][0..] == []
// ---------------------------------------------------------------
// -- Axiomatization of Maps -------------------------------------
// ---------------------------------------------------------------
type Map U V;
function Map#Domain<U, V>(Map U V): [U] bool;
function Map#Elements<U, V>(Map U V): [U]V;
function Map#Empty<U, V>(): Map U V;
axiom (forall<U, V> u: U ::
{ Map#Domain(Map#Empty(): Map U V)[u] }
!Map#Domain(Map#Empty(): Map U V)[u]);
function Map#Glue<U, V>([U] bool, [U]V): Map U V;
axiom (forall<U, V> a: [U] bool, b:[U]V ::
{ Map#Domain(Map#Glue(a, b)) }
Map#Domain(Map#Glue(a, b)) == a);
axiom (forall<U, V> a: [U] bool, b:[U]V ::
{ Map#Elements(Map#Glue(a, b)) }
Map#Elements(Map#Glue(a, b)) == b);
//Build is used in displays, and for map updates
function Map#Build<U, V>(Map U V, U, V): Map U V;
/*axiom (forall<U, V> m: Map U V, u: U, v: V ::
{ Map#Domain(Map#Build(m, u, v))[u] } { Map#Elements(Map#Build(m, u, v))[u] }
Map#Domain(Map#Build(m, u, v))[u] && Map#Elements(Map#Build(m, u, v))[u] == v);*/
axiom (forall<U, V> m: Map U V, u: U, u': U, v: V ::
{ Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] }
(u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] &&
Map#Elements(Map#Build(m, u, v))[u'] == v) &&
(u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] &&
Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u']));
//equality for maps
function Map#Equal<U, V>(Map U V, Map U V): bool;
axiom (forall<U, V> m: Map U V, m': Map U V::
{ Map#Equal(m, m') }
Map#Equal(m, m') <==> (forall u : U :: Map#Domain(m)[u] == Map#Domain(m')[u]) &&
(forall u : U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u]));
// extensionality
axiom (forall<U, V> m: Map U V, m': Map U V::
{ Map#Equal(m, m') }
Map#Equal(m, m') ==> m == m');
function Map#Disjoint<U, V>(Map U V, Map U V): bool;
axiom (forall<U, V> m: Map U V, m': Map U V ::
{ Map#Disjoint(m, m') }
Map#Disjoint(m, m') <==> (forall o: U :: {Map#Domain(m)[o]} {Map#Domain(m')[o]} !Map#Domain(m)[o] || !Map#Domain(m')[o]));
// ---------------------------------------------------------------
// -- Boxing and unboxing ----------------------------------------
// ---------------------------------------------------------------
type BoxType;
function $Box<T>(T): BoxType;
function $Unbox<T>(BoxType): T;
axiom (forall<T> x: T :: { $Box(x) } $Unbox($Box(x)) == x);
axiom (forall b: BoxType :: { $Unbox(b): int } $Box($Unbox(b): int) == b);
axiom (forall b: BoxType :: { $Unbox(b): ref } $Box($Unbox(b): ref) == b);
axiom (forall b: BoxType :: { $Unbox(b): Set BoxType } $Box($Unbox(b): Set BoxType) == b);
axiom (forall b: BoxType :: { $Unbox(b): Seq BoxType } $Box($Unbox(b): Seq BoxType) == b);
axiom (forall b: BoxType :: { $Unbox(b): Map BoxType BoxType } $Box($Unbox(b): Map BoxType BoxType) == b);
axiom (forall b: BoxType :: { $Unbox(b): DatatypeType } $Box($Unbox(b): DatatypeType) == b);
// Note: an axiom like this for bool would not be sound; instead, we do:
function $IsCanonicalBoolBox(BoxType): bool;
axiom $IsCanonicalBoolBox($Box(false)) && $IsCanonicalBoolBox($Box(true));
axiom (forall b: BoxType :: { $Unbox(b): bool } $IsCanonicalBoolBox(b) ==> $Box($Unbox(b): bool) == b);
// ---------------------------------------------------------------
// -- Encoding of type names -------------------------------------
// ---------------------------------------------------------------
type ClassName;
const unique class._System.int: ClassName;
const unique class._System.bool: ClassName;
const unique class._System.set: ClassName;
const unique class._System.seq: ClassName;
const unique class._System.multiset: ClassName;
const unique class._System.array: ClassName;
function /*{:never_pattern true}*/ dtype(ref): ClassName;
function /*{:never_pattern true}*/ TypeParams(ref, int): ClassName;
function TypeTuple(a: ClassName, b: ClassName): ClassName;
function TypeTupleCar(ClassName): ClassName;
function TypeTupleCdr(ClassName): ClassName;
// TypeTuple is injective in both arguments:
axiom (forall a: ClassName, b: ClassName :: { TypeTuple(a,b) }
TypeTupleCar(TypeTuple(a,b)) == a &&
TypeTupleCdr(TypeTuple(a,b)) == b);
// ---------------------------------------------------------------
// -- Datatypes --------------------------------------------------
// ---------------------------------------------------------------
type DatatypeType;
function /*{:never_pattern true}*/ DtType(DatatypeType): ClassName; // the analog of dtype for datatype values
function /*{:never_pattern true}*/ DtTypeParams(DatatypeType, int): ClassName; // the analog of TypeParams
type DtCtorId;
function DatatypeCtorId(DatatypeType): DtCtorId;
function DtRank(DatatypeType): int;
// ---------------------------------------------------------------
// -- Axiom contexts ---------------------------------------------
// ---------------------------------------------------------------
// used to make sure function axioms are not used while their consistency is being checked
const $ModuleContextHeight: int;
const $FunctionContextHeight: int;
const $InMethodContext: bool;
// ---------------------------------------------------------------
// -- Fields -----------------------------------------------------
// ---------------------------------------------------------------
type Field alpha;
function FDim<T>(Field T): int;
function IndexField(int): Field BoxType;
axiom (forall i: int :: { IndexField(i) } FDim(IndexField(i)) == 1);
function IndexField_Inverse<T>(Field T): int;
axiom (forall i: int :: { IndexField(i) } IndexField_Inverse(IndexField(i)) == i);
function MultiIndexField(Field BoxType, int): Field BoxType;
axiom (forall f: Field BoxType, i: int :: { MultiIndexField(f,i) } FDim(MultiIndexField(f,i)) == FDim(f) + 1);
function MultiIndexField_Inverse0<T>(Field T): Field T;
function MultiIndexField_Inverse1<T>(Field T): int;
axiom (forall f: Field BoxType, i: int :: { MultiIndexField(f,i) }
MultiIndexField_Inverse0(MultiIndexField(f,i)) == f &&
MultiIndexField_Inverse1(MultiIndexField(f,i)) == i);
function DeclType<T>(Field T): ClassName;
type NameFamily;
function DeclName<T>(Field T): NameFamily;
function FieldOfDecl<alpha>(ClassName, NameFamily): Field alpha;
axiom (forall<T> cl : ClassName, nm: NameFamily ::
{FieldOfDecl(cl, nm): Field T}
DeclType(FieldOfDecl(cl, nm): Field T) == cl && DeclName(FieldOfDecl(cl, nm): Field T) == nm);
// ---------------------------------------------------------------
// -- Allocatedness ----------------------------------------------
// ---------------------------------------------------------------
const unique alloc: Field bool;
axiom FDim(alloc) == 0;
function DtAlloc(DatatypeType, HeapType): bool;
axiom (forall h, k: HeapType, d: DatatypeType ::
{ $HeapSucc(h, k), DtAlloc(d, h) }
{ $HeapSucc(h, k), DtAlloc(d, k) }
$HeapSucc(h, k) ==> DtAlloc(d, h) ==> DtAlloc(d, k));
function GenericAlloc(BoxType, HeapType): bool;
axiom (forall h: HeapType, k: HeapType, d: BoxType ::
{ $HeapSucc(h, k), GenericAlloc(d, h) }
{ $HeapSucc(h, k), GenericAlloc(d, k) }
$HeapSucc(h, k) ==> GenericAlloc(d, h) ==> GenericAlloc(d, k));
// GenericAlloc ==>
axiom (forall b: BoxType, h: HeapType ::
{ GenericAlloc(b, h), h[$Unbox(b): ref, alloc] }
GenericAlloc(b, h) ==>
$Unbox(b): ref == null || h[$Unbox(b): ref, alloc]);
//seqs
axiom (forall b: BoxType, h: HeapType, i: int ::
{ GenericAlloc(b, h), Seq#Index($Unbox(b): Seq BoxType, i) }
GenericAlloc(b, h) &&
0 <= i && i < Seq#Length($Unbox(b): Seq BoxType) ==>
GenericAlloc( Seq#Index($Unbox(b): Seq BoxType, i), h ) );
//maps
//seq-like axiom, talking about the range elements
axiom (forall b: BoxType, h: HeapType, i: BoxType ::
{ GenericAlloc(b, h), Map#Domain($Unbox(b): Map BoxType BoxType)[i] }
GenericAlloc(b, h) && Map#Domain($Unbox(b): Map BoxType BoxType)[i] ==>
GenericAlloc( Map#Elements($Unbox(b): Map BoxType BoxType)[i], h ) );
//set-like axiom, talking about the domain elements
axiom (forall b: BoxType, h: HeapType, t: BoxType ::
{ GenericAlloc(b, h), Map#Domain($Unbox(b): Map BoxType BoxType)[t] }
GenericAlloc(b, h) && Map#Domain($Unbox(b): Map BoxType BoxType)[t] ==>
GenericAlloc(t, h));
//sets
axiom (forall b: BoxType, h: HeapType, t: BoxType ::
{ GenericAlloc(b, h), ($Unbox(b): Set BoxType)[t] }
GenericAlloc(b, h) && ($Unbox(b): Set BoxType)[t] ==>
GenericAlloc(t, h));
axiom (forall b: BoxType, h: HeapType ::
{ GenericAlloc(b, h), DtType($Unbox(b): DatatypeType) }
GenericAlloc(b, h) ==> DtAlloc($Unbox(b): DatatypeType, h));
// ==> GenericAlloc
axiom (forall b: bool, h: HeapType ::
$IsGoodHeap(h) ==> GenericAlloc($Box(b), h));
axiom (forall x: int, h: HeapType ::
$IsGoodHeap(h) ==> GenericAlloc($Box(x), h));
axiom (forall r: ref, h: HeapType ::
{ GenericAlloc($Box(r), h) }
$IsGoodHeap(h) && (r == null || h[r,alloc]) ==> GenericAlloc($Box(r), h));
// boxes in the heap
axiom (forall r: ref, f: Field BoxType, h: HeapType ::
{ GenericAlloc(read(h, r, f), h) }
$IsGoodHeap(h) && r != null && read(h, r, alloc) ==>
GenericAlloc(read(h, r, f), h));
// ---------------------------------------------------------------
// -- Arrays -----------------------------------------------------
// ---------------------------------------------------------------
function _System.array.Length(a: ref): int;
axiom (forall o: ref :: 0 <= _System.array.Length(o));
// ---------------------------------------------------------------
// -- The heap ---------------------------------------------------
// ---------------------------------------------------------------
type HeapType = <alpha>[ref,Field alpha]alpha;
function {:inline true} read<alpha>(H:HeapType, r:ref, f:Field alpha): alpha { H[r, f] }
function {:inline true} update<alpha>(H:HeapType, r:ref, f:Field alpha, v:alpha): HeapType { H[r,f := v] }
function $IsGoodHeap(HeapType): bool;
var $Heap: HeapType where $IsGoodHeap($Heap);
function $HeapSucc(HeapType, HeapType): bool;
axiom (forall<alpha> h: HeapType, r: ref, f: Field alpha, x: alpha :: { update(h, r, f, x) }
$IsGoodHeap(update(h, r, f, x)) ==>
$HeapSucc(h, update(h, r, f, x)));
axiom (forall a,b,c: HeapType :: { $HeapSucc(a,b), $HeapSucc(b,c) }
$HeapSucc(a,b) && $HeapSucc(b,c) ==> $HeapSucc(a,c));
axiom (forall h: HeapType, k: HeapType :: { $HeapSucc(h,k) }
$HeapSucc(h,k) ==> (forall o: ref :: { read(k, o, alloc) } read(h, o, alloc) ==> read(k, o, alloc)));
// ---------------------------------------------------------------
// -- Non-determinism --------------------------------------------
// ---------------------------------------------------------------
type TickType;
var $Tick: TickType;
// ---------------------------------------------------------------
// -- Arithmetic -------------------------------------------------
// ---------------------------------------------------------------
// the connection between % and /
axiom (forall x:int, y:int :: {x % y} {x / y} x % y == x - x / y * y);
// remainder is always Euclidean Modulus.
axiom (forall x:int, y:int :: {x % y} 0 < y ==> 0 <= x % y && x % y < y);
axiom (forall x:int, y:int :: {x % y} y < 0 ==> 0 <= x % y && x % y < -y);
// the following axiom has some unfortunate matching, but it does state a property about % that
// is sometimes useful
axiom (forall a: int, b: int, d: int :: { a % d, b % d } 2 <= d && a % d == b % d && a < b ==> a + d <= b);
// ---------------------------------------------------------------
|