summaryrefslogtreecommitdiff
path: root/Source/VCGeneration/RPFP.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Source/VCGeneration/RPFP.cs')
-rw-r--r--Source/VCGeneration/RPFP.cs558
1 files changed, 558 insertions, 0 deletions
diff --git a/Source/VCGeneration/RPFP.cs b/Source/VCGeneration/RPFP.cs
new file mode 100644
index 00000000..96fdec97
--- /dev/null
+++ b/Source/VCGeneration/RPFP.cs
@@ -0,0 +1,558 @@
+//-----------------------------------------------------------------------------
+//
+// Copyright (C) 2012 Microsoft Corporation. All Rights Reserved.
+//
+//-----------------------------------------------------------------------------
+
+using System;
+using System.Collections.Generic;
+using System.Linq;
+using System.Text;
+
+using Term = Microsoft.Boogie.VCExprAST.VCExpr;
+using FuncDecl = Microsoft.Boogie.VCExprAST.VCExprOp;
+using Sort = Microsoft.Boogie.Type;
+using Microsoft.Boogie.VCExprAST;
+
+
+using Microsoft.Boogie.ExprExtensions;
+
+
+namespace Microsoft.Boogie
+{
+
+
+
+
+ /** This class represents a relation post-fixed point (RPFP) problem as
+ * a "problem graph". The graph consists of Nodes and hyper-edges.
+ *
+ * A node consists of
+ * - Annotation, a symbolic relation
+ * - Bound, a symbolic relation giving an upper bound on Annotation
+ *
+ *
+ * A hyper-edge consists of:
+ * - Children, a sequence of children Nodes,
+ * - F, a symbolic relational transformer,
+ * - Parent, a single parent Node.
+ *
+ * The graph is "solved" when:
+ * - For every Node n, n.Annotation subseteq n.Bound
+ * - For every hyperedge e, e.F(e.Children.Annotation) subseteq e.Parent.Annotation
+ *
+ * where, if x is a sequence of Nodes, x.Annotation is the sequences
+ * of Annotations of the nodes in the sequence.
+ *
+ * A symbolic Transformer consists of
+ * - RelParams, a sequence of relational symbols
+ * - IndParams, a sequence of individual symbols
+ * - Formula, a formula over RelParams and IndParams
+ *
+ * A Transformer t represents a function that takes sequence R of relations
+ * and yields the relation lambda (t.Indparams). Formula(R/RelParams).
+ *
+ * As a special case, a nullary Transformer (where RelParams is the empty sequence)
+ * represents a fixed relation.
+ *
+ * An RPFP consists of
+ * - Nodes, a set of Nodes
+ * - Edges, a set of hyper-edges
+ * - Context, a prover context that contains formula AST's
+ *
+ * Multiple RPFP's can use the same Context, but you should be careful
+ * that only one RPFP asserts constraints in the context at any time.
+ *
+ * */
+ public class RPFP
+ {
+ /** Symbolic representation of a relational transformer */
+ public class Transformer
+ {
+ public FuncDecl[] RelParams;
+ public Term[] IndParams;
+ public Term Formula;
+ public RPFP owner;
+
+ public Transformer Clone()
+ {
+ return (Transformer)this.MemberwiseClone();
+ }
+ }
+
+ /** Create a symbolic transformer. */
+ public Transformer CreateTransformer(FuncDecl[] _RelParams, Term[] _IndParams, Term _Formula)
+ {
+ Transformer t = new Transformer();
+ t.RelParams = _RelParams;
+ t.IndParams = _IndParams;
+ t.Formula = _Formula;
+ t.owner = this;
+ return t;
+ }
+
+ /** Create a relation (nullary relational transformer) */
+ public Transformer CreateRelation(Term[] _IndParams, Term _Formula)
+ {
+ return CreateTransformer(new FuncDecl[0], _IndParams, _Formula);
+ }
+
+ /** A node in the RPFP graph */
+ public class Node
+ {
+ public FuncDecl Name;
+ public Transformer Annotation;
+ public Transformer Bound;
+ public RPFP owner;
+ public int number;
+ public Edge Outgoing;
+ public List<Edge> Incoming;
+ public Term dual;
+ public Node map;
+ }
+
+ /** Create a node in the graph. The input is a term R(v_1...v_n)
+ * where R is an arbitrary relational symbol and v_1...v_n are
+ * arbitary distinct variables. The names are only of mnemonic value,
+ * however, the number and type of arguments determine the type
+ * of the relation at this node. */
+
+ public Node CreateNode(Term t)
+ {
+ Node n = new Node();
+ // Microsoft.Boogie.VCExprAST.VCExprNAry tn = t as Microsoft.Boogie.VCExprAST.VCExprNAry;
+ // Term[] _IndParams = tn.ToArray();
+ Term[] _IndParams = t.GetAppArgs();
+ FuncDecl Name = t.GetAppDecl();
+ n.Annotation = CreateRelation(_IndParams,ctx.MkTrue());
+ n.Bound = CreateRelation(_IndParams, ctx.MkTrue());
+ n.owner = this;
+ n.number = ++nodeCount;
+ n.Name = Name; // just to have a unique name
+ n.Incoming = new List<Edge>();
+ return n;
+ }
+
+ /** Clone a node (can be from another graph). */
+
+ public Node CloneNode(Node old)
+ {
+ Node n = new Node();
+ n.Annotation = old.Annotation.Clone();
+ n.Bound = old.Bound.Clone();
+ n.owner = this;
+ n.number = ++nodeCount;
+ n.Name = old.Name; // just to have a unique name
+ n.Incoming = new List<Edge>();
+ return n;
+ }
+
+ /** This class represents a hyper-edge in the RPFP graph */
+
+ public class Edge
+ {
+ public Transformer F;
+ public Node Parent;
+ public Node[] Children;
+ public RPFP owner;
+ public int number;
+ public Edge map;
+ public HashSet<string> labels;
+ internal Term dual;
+ internal Dictionary<FuncDecl,int> relMap;
+ internal Dictionary<Term,Term> varMap;
+ }
+
+
+ /** Create a hyper-edge. */
+ public Edge CreateEdge(Node _Parent, Transformer _F, Node[] _Children)
+ {
+ Edge e = new Edge();
+ e.Parent = _Parent;
+ e.F = _F;
+ e.Children = _Children;
+ e.owner = this;
+ e.number = ++edgeCount;
+ _Parent.Outgoing = e;
+ foreach (var c in _Children)
+ c.Incoming.Add(e);
+ return e;
+ }
+
+ /** Create an edge that lower-bounds its parent. */
+ public Edge CreateLowerBoundEdge(Node _Parent)
+ {
+ return CreateEdge(_Parent, _Parent.Annotation, new RPFP.Node[0]);
+ }
+
+
+
+
+ /** Assert a background axiom. Background axioms can be used to provide the
+ * theory of auxilliary functions or relations. All symbols appearing in
+ * background axioms are considered global, and may appear in both transformer
+ * and relational solutions. Semantically, a solution to the RPFP gives
+ * an interpretation of the unknown relations for each interpretation of the
+ * auxilliary symbols that is consistent with the axioms. Axioms should be
+ * asserted before any calls to Push. They cannot be de-asserted by Pop. */
+
+ public void AssertAxiom(Term t)
+ {
+ ctx.AddAxiom(t);
+ }
+
+ /** Do not call this. */
+
+ public void RemoveAxiom(Term t)
+ {
+ ctx.RemoveAxiom(t);
+ }
+
+ /** Type of solve results */
+ public enum LBool { False, True, Undef };
+
+
+ /** Solve an RPFP graph. This means either strengthen the annotation
+ * so that the bound at the given root node is satisfied, or
+ * show that this cannot be done by giving a dual solution
+ * (i.e., a counterexample).
+ *
+ * In the current implementation, this only works for graphs that
+ * are:
+ * - tree-like
+ *
+ * - closed.
+ *
+ * In a tree-like graph, every nod has out most one incoming and one out-going edge,
+ * and there are no cycles. In a closed graph, every node has exactly one out-going
+ * edge. This means that the leaves of the tree are all hyper-edges with no
+ * children. Such an edge represents a relation (nullary transformer) and thus
+ * a lower bound on its parent. The parameter root must be the root of this tree.
+ *
+ * If Solve returns LBool.False, this indicates success. The annotation of the tree
+ * has been updated to satisfy the upper bound at the root.
+ *
+ * If Solve returns LBool.True, this indicates a counterexample. For each edge,
+ * you can then call Eval to determine the values of symbols in the transformer formula.
+ * You can also call Empty on a node to determine if its value in the counterexample
+ * is the empty relation.
+ *
+ * \param root The root of the tree
+ * \param persist Number of context pops through which result should persist
+ *
+ *
+ */
+
+ public LBool Solve(Node root, int persist)
+ {
+ return LBool.False; // TODO
+ }
+
+
+ /** Dispose of the dual model (counterexample) if there is one. */
+
+ public void DisposeDualModel()
+ {
+ // TODO dualModel = null;
+ }
+
+
+ /** Determines the value in the counterexample of a symbol occuring in the transformer formula of
+ * a given edge. */
+
+ public Term Eval(Edge e, Term t)
+ {
+ return ctx.MkFalse(); // TODO
+ }
+
+
+
+ /** Returns true if the given node is empty in the primal solution. For proecudure summaries,
+ this means that the procedure is not called in the current counter-model. */
+
+ public bool Empty(Node p)
+ {
+ return false; // TODO
+ }
+
+ /** Push a scope. Assertions made after Push can be undone by Pop. */
+
+ public void Push()
+ {
+ stack.Push(new stack_entry());
+ // TODO: do we need push/pop?
+ }
+
+ /** Pop a scope (see Push). Note, you cannot pop axioms. */
+
+ public void Pop(int num_scopes)
+ {
+ //TODO ctx.Pop((uint)num_scopes);
+ for (uint i = 0; i < num_scopes; i++)
+ {
+ stack_entry back = stack.Pop();
+ foreach (var e in back.edges)
+ e.dual = null;
+ foreach (var n in back.nodes)
+ n.dual = null;
+ }
+ }
+
+ public Context ctx;
+
+ public class LogicSolver {
+ public Context ctx;
+ };
+
+ public LogicSolver solver;
+
+ static public LogicSolver CreateLogicSolver(Context _ctx){
+ LogicSolver res = new LogicSolver();
+ res.ctx = _ctx;
+ return res;
+ }
+
+
+ /** Construct an RPFP graph with a given interpolating prover context. It is allowed to
+ have multiple RPFP's use the same context, but you should never have teo RPFP's
+ with the same conext asserting nodes or edges at the same time. Note, if you create
+ axioms in one RPFP, them create a second RPFP with the same context, the second will
+ inherit the axioms.
+ */
+
+ public RPFP(LogicSolver slvr)
+ {
+ solver = slvr;
+ ctx = slvr.ctx;
+ stack = new Stack<stack_entry>();
+ stack.Push(new stack_entry());
+ }
+
+
+ /** Convert an array of clauses to an RPFP.
+ */
+
+ public void FromClauses(Term[] clauses){
+ FuncDecl failName = ctx.MkFuncDecl("@Fail", ctx.MkBoolSort());
+ foreach(var clause in clauses){
+ Node foo = GetNodeFromClause(clause,failName);
+ if(foo != null)
+ nodes.Add(foo);
+ }
+ foreach (var clause in clauses)
+ edges.Add(GetEdgeFromClause(clause,failName));
+ }
+
+
+ // This returns a new FuncDel with same sort as top-level function
+ // of term t, but with numeric suffix appended to name.
+
+ private FuncDecl SuffixFuncDecl(Term t, int n)
+ {
+ var name = t.GetAppDecl().GetDeclName() + "_" + n.ToString();
+ return ctx.MkFuncDecl(name, t.GetAppDecl());
+ }
+
+ // Collect the relational paremeters
+
+ Dictionary<FuncDecl, Node> relationToNode = new Dictionary<FuncDecl, Node>();
+
+ private Term CollectParamsRec(Dictionary<Term, Term> memo, Term t, List<FuncDecl> parms, List<RPFP.Node> nodes)
+ {
+ Term res;
+ if (memo.TryGetValue(t, out res))
+ return res;
+ if (t.GetKind() == TermKind.App)
+ {
+ var f = t.GetAppDecl();
+ Node node;
+ if (relationToNode.TryGetValue(f, out node))
+ {
+ f = SuffixFuncDecl(t, parms.Count);
+ parms.Add(f);
+ nodes.Add(node);
+ }
+ var args = t.GetAppArgs();
+ args = args.Select(x => CollectParamsRec(memo, x, parms, nodes)).ToArray();
+ res = ctx.MkApp(f, args);
+ } // TODO: handle quantifiers
+ else
+ res = t;
+ memo.Add(t, res);
+ return res;
+ }
+
+ private bool IsVariable(Term t)
+ {
+ // TODO: is this right?
+ // return t.IsFunctionApp() && t.GetAppArgs().Length == 0;
+ return t is VCExprVar;
+ }
+
+ private Edge GetEdgeFromClause(Term t, FuncDecl failName)
+ {
+ Term[] args = t.GetAppArgs();
+ Term body = args[0];
+ Term head = args[1];
+ Term[] _IndParams;
+ FuncDecl Name;
+ if (head.IsFalse())
+ {
+ Name = failName;
+ _IndParams = new Term[0];
+ }
+ else
+ {
+ _IndParams = head.GetAppArgs();
+ Name = head.GetAppDecl();
+ }
+ for(int i = 0; i < _IndParams.Length; i++)
+ if (!IsVariable(_IndParams[i]))
+ {
+ Term v = ctx.MkConst("@a" + i.ToString(), _IndParams[i].GetSort());
+ body = ctx.MkAnd(body, ctx.MkEq(v, _IndParams[i]));
+ _IndParams[i] = v;
+ }
+ var relParams = new List<FuncDecl>();
+ var nodeParams = new List<RPFP.Node>();
+ var memo = new Dictionary<Term, Term>();
+ body = CollectParamsRec(memo, body, relParams, nodeParams);
+ Transformer F = CreateTransformer(relParams.ToArray(), _IndParams, body);
+ Node parent = relationToNode[Name];
+ return CreateEdge(parent, F, nodeParams.ToArray());
+ }
+
+ private Node GetNodeFromClause(Term t, FuncDecl failName)
+ {
+ Term[] args = t.GetAppArgs();
+ Term body = args[0];
+ Term head = args[1];
+ FuncDecl Name;
+ Term[] _IndParams;
+ bool is_query = false;
+ if (head.Equals(ctx.MkFalse()))
+ {
+ Name = failName;
+ is_query = true;
+ _IndParams = new Term[0];
+ }
+ else
+ {
+ Name = head.GetAppDecl();
+ _IndParams = head.GetAppArgs();
+ }
+ if (relationToNode.ContainsKey(Name))
+ return null;
+ for (int i = 0; i < _IndParams.Length; i++)
+ if (!IsVariable(_IndParams[i]))
+ {
+ Term v = ctx.MkConst("@a" + i.ToString(), _IndParams[i].GetSort());
+ _IndParams[i] = v;
+ }
+ Term foo = ctx.MkApp(Name, _IndParams);
+ Node node = CreateNode(foo);
+ relationToNode[Name] = node;
+ if (is_query)
+ node.Bound = CreateRelation(new Term[0], ctx.MkFalse());
+ return node;
+ }
+
+ /////////////////////////////////////////////////////////////////////////////////////////
+ // Convert RPFP to Z3 rules
+ /////////////////////////////////////////////////////////////////////////////////////////
+
+ /** Get the Z3 rule corresponding to an edge */
+
+ public Term GetRule(Edge edge)
+ {
+ Dictionary<FuncDecl, FuncDecl> predSubst = new Dictionary<FuncDecl, FuncDecl>();
+ for (int i = 0; i < edge.Children.Length; i++)
+ predSubst.Add(edge.F.RelParams[i], edge.Children[i].Name);
+ Term body = SubstPreds(predSubst, edge.F.Formula);
+ Term head = ctx.MkApp(edge.Parent.Name, edge.F.IndParams);
+ return BindVariables(ctx.MkImplies(body, head));
+ }
+
+ /** Get the Z3 query corresponding to the conjunction of the node bounds. */
+
+ public Term GetQuery()
+ {
+ List<Term> conjuncts = new List<Term>();
+ foreach (var node in nodes)
+ {
+ if (node.Bound.Formula != ctx.MkTrue())
+ conjuncts.Add(ctx.MkImplies(ctx.MkApp(node.Name, node.Bound.IndParams), node.Bound.Formula));
+ }
+ Term query = ctx.MkNot(ctx.MkAnd(conjuncts.ToArray()));
+ return BindVariables(query,false); // bind variables existentially
+ }
+
+ private void CollectVariables(Dictionary<Term, bool> memo, Term t, List<Term> vars)
+ {
+ if (memo.ContainsKey(t))
+ return;
+ if (IsVariable(t))
+ vars.Add(t);
+ if (t.GetKind() == TermKind.App)
+ {
+ foreach (var s in t.GetAppArgs())
+ CollectVariables(memo, s, vars);
+ }
+ memo.Add(t, true);
+ }
+
+ private Term BindVariables(Term t, bool universal = true)
+ {
+ Dictionary<Term, bool> memo = new Dictionary<Term,bool>();
+ List<Term> vars = new List<Term>();
+ CollectVariables(memo,t,vars);
+ return universal ? ctx.MkForall(vars.ToArray(), t) : ctx.MkExists(vars.ToArray(), t);
+ }
+
+ private Term SubstPredsRec(Dictionary<Term, Term> memo, Dictionary<FuncDecl,FuncDecl> subst, Term t)
+ {
+ Term res;
+ if (memo.TryGetValue(t, out res))
+ return res;
+ if (t.GetKind() == TermKind.App)
+ {
+ var args = t.GetAppArgs();
+ args = args.Select(x => SubstPredsRec(memo,subst,x)).ToArray();
+ FuncDecl nf = null;
+ var f = t.GetAppDecl();
+ if (subst.TryGetValue(f, out nf))
+ f = nf;
+ res = ctx.MkApp(f, args);
+ } // TODO: handle quantifiers
+ else
+ res = t;
+ memo.Add(t, res);
+ return res;
+ }
+
+ private Term SubstPreds(Dictionary<FuncDecl, FuncDecl> subst, Term t)
+ {
+ Dictionary<Term, Term> memo = new Dictionary<Term, Term>();
+ return SubstPredsRec(memo, subst, t);
+ }
+
+ /* Everything after here is private. */
+
+ private class stack_entry
+ {
+ public List<Edge> edges = new List<Edge>();
+ public List<Node> nodes = new List<Node>();
+ };
+
+
+ private int nodeCount = 0;
+ private int edgeCount = 0;
+ // private Model dualModel;
+ // private LabeledLiterals dualLabels;
+ private Stack<stack_entry> stack;
+ public List<Node> nodes = new List<Node>();
+ public List<Edge> edges = new List<Edge>();
+
+
+ }
+}