summaryrefslogtreecommitdiff
path: root/Source/AbsInt/IntervalDomain.cs
diff options
context:
space:
mode:
Diffstat (limited to 'Source/AbsInt/IntervalDomain.cs')
-rw-r--r--Source/AbsInt/IntervalDomain.cs2428
1 files changed, 1218 insertions, 1210 deletions
diff --git a/Source/AbsInt/IntervalDomain.cs b/Source/AbsInt/IntervalDomain.cs
index d5a5efc9..0dd78cbb 100644
--- a/Source/AbsInt/IntervalDomain.cs
+++ b/Source/AbsInt/IntervalDomain.cs
@@ -1,1210 +1,1218 @@
-using System;
-using System.Numerics;
-using System.Collections.Generic;
-using System.Diagnostics.Contracts;
-using Microsoft.Basetypes;
-
-namespace Microsoft.Boogie.AbstractInterpretation
-{
- class NativeIntervallDomain : NativeLattice
- {
- abstract class E_Common : NativeLattice.Element { }
- class E_Bottom : E_Common
- {
- public override Expr ToExpr() {
- return Expr.False;
- }
- }
- class E : E_Common
- {
- public readonly Node N;
- public E() { }
- public E(Node n) {
- N = n;
- }
-
- public override Expr ToExpr() {
- Expr expr = Expr.True;
- for (var n = N; n != null; n = n.Next) {
- expr = BplAnd(expr, n.ToExpr());
- }
- return expr;
- }
- }
- public class Node
- {
- public readonly Variable V; // variable has type bool or int
- // For an integer variable (Lo,Hi) indicates Lo <= V < Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
- // For a real variable (Lo,Hi) indicates Lo <= V <= Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
- // For a boolean variable, (Lo,Hi) is one of: (null,null) for {false,true}, (null,1) for {false}, and (1,null) for {true}.
- public readonly BigInteger? Lo;
- public readonly BigInteger? Hi;
- public Node Next; // always sorted according to StrictlyBefore; readonly after full initialization
- [Pure]
- public static bool StrictlyBefore(Variable a, Variable b) {
- Contract.Assert(a.UniqueId != b.UniqueId || a == b);
- return a.UniqueId < b.UniqueId;
- }
-
- Node(Variable v, BigInteger? lo, BigInteger? hi, Node next) {
- Contract.Requires(lo != null || hi != null); // don't accept empty constraints
- Contract.Requires(next == null || StrictlyBefore(v, next.V));
- V = v;
- Lo = lo;
- Hi = hi;
- Next = next;
- }
-
- /// <summary>
- /// This constructor leaves Next as null, allowing the caller to fill in Next to finish off the construction.
- /// </summary>
- public Node(Variable v, BigInteger? lo, BigInteger? hi) {
- Contract.Requires(lo != null || hi != null); // don't accept empty constraints
- V = v;
- Lo = lo;
- Hi = hi;
- }
-
- /// <summary>
- /// Returns a Node that has the constraints head.{V,Lo,Hi} plus
- /// all the constraints entailed by Nodes reachable from tail.
- /// Requires that "head" sorts no later than anything in "tail".
- /// Create either returns "head" itself or returns a new Node.
- /// </summary>
- public static Node Create(Node head, Node tail) {
- Contract.Requires(head != null);
- Contract.Requires(tail == null || !StrictlyBefore(tail.V, head.V));
- Contract.Requires(head != tail);
-
- if (head.Next == tail) {
- return head;
- } else if (tail != null && head.V == tail.V) {
- // incorporate both constraints into one Node
- return new Node(head.V, Max(head.Lo, tail.Lo, true), Min(head.Lo, tail.Lo, true), tail.Next);
- } else {
- return new Node(head.V, head.Lo, head.Hi, tail);
- }
- }
-
- public static void GetBounds(Node n, Variable v, out BigInteger? lo, out BigInteger? hi) {
- for (; n != null; n = n.Next) {
- if (n.V == v) {
- lo = n.Lo;
- hi = n.Hi;
- return;
- } else if (StrictlyBefore(v, n.V)) {
- break;
- }
- }
- lo = null;
- hi = null;
- }
-
- /// <summary>
- /// Return the minimum of "a" and "b". If treatNullAsUnit==true, then "null" is
- /// interpreted as positive infinity (the unit element of min); otherwise, it is
- /// treated as negative infinity (the zero element of min).
- /// </summary>
- public static BigInteger? Min(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
- if (a == null) {
- return treatNullAsUnit ? b : a;
- } else if (b == null) {
- return treatNullAsUnit ? a : b;
- } else {
- return BigInteger.Min((BigInteger)a, (BigInteger)b);
- }
- }
-
- /// <summary>
- /// Return the maximum of "a" and "b". If treatNullAsUnit==true, then "null" is
- /// interpreted as negative infinity (the unit element of max); otherwise, it is
- /// treated as positive infinity (the zero element of max).
- /// </summary>
- public static BigInteger? Max(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
- if (a == null) {
- return treatNullAsUnit ? b : a;
- } else if (b == null) {
- return treatNullAsUnit ? a : b;
- } else {
- return BigInteger.Max((BigInteger)a, (BigInteger)b);
- }
- }
-
- public static IEnumerable<Tuple<Node, Node>> Merge(Node a, Node b) {
- while (true) {
- if (a == null && b == null) {
- yield break;
- } else if (a == null || b == null) {
- yield return new Tuple<Node, Node>(a, b);
- if (a != null) { a = a.Next; } else { b = b.Next; }
- } else if (a.V == b.V) {
- yield return new Tuple<Node, Node>(a, b);
- a = a.Next; b = b.Next;
- } else if (StrictlyBefore(a.V, b.V)) {
- yield return new Tuple<Node, Node>(a, null);
- a = a.Next;
- } else {
- yield return new Tuple<Node, Node>(null, b);
- b = b.Next;
- }
- }
- }
-
- public Expr ToExpr() {
- if (!V.IsMutable && CommandLineOptions.Clo.InstrumentInfer != CommandLineOptions.InstrumentationPlaces.Everywhere) {
- // omit invariants about readonly variables
- return Expr.True;
- } else if (V.TypedIdent.Type.IsBool) {
- if (Lo == null && Hi == null) {
- return Expr.True;
- } else {
- Contract.Assert((Lo == null && (BigInteger)Hi == 1) || (Hi == null && (BigInteger)Lo == 1));
- var ide = new IdentifierExpr(Token.NoToken, V);
- return Hi == null ? ide : Expr.Not(ide);
- }
- } else if (V.TypedIdent.Type.IsInt) {
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo + 1 == Hi) {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- } else {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLt(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- } else if (V.TypedIdent.Type.IsReal){
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo == Hi) {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- } else {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null) {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- } else {
- Contract.Assert(V.TypedIdent.Type.IsFloat);
- Expr e = Expr.True;
- if (Lo != null && Hi != null && Lo == Hi)
- {
- // produce an equality
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
- }
- else
- {
- // produce a (possibly empty) conjunction of inequalities
- if (Lo != null)
- {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
- }
- if (Hi != null)
- {
- var ide = new IdentifierExpr(Token.NoToken, V);
- e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
- }
- }
- return e;
- }
- }
- }
-
- static Expr NumberToExpr(BigInteger n, Type ty) {
- if (n == null) {
- return null;
- } else if (ty.IsReal) {
- return Expr.Literal(Basetypes.BigDec.FromBigInt(n));
- } else if (ty.IsFloat) {
- return Expr.Literal(Basetypes.BigFloat.FromBigInt(n, ty.FloatExponent, ty.FloatMantissa));
- } else {
- Contract.Assume(ty.IsInt);
- return Expr.Literal(Basetypes.BigNum.FromBigInt(n));
- }
- }
-
- List<BigInteger> upThresholds; // invariant: thresholds are sorted
- List<BigInteger> downThresholds; // invariant: thresholds are sorted
-
- /// <summary>
- /// Requires "thresholds" to be sorted.
- /// </summary>
- public NativeIntervallDomain() {
- upThresholds = new List<BigInteger>();
- downThresholds = new List<BigInteger>();
- }
-
- public override void Specialize(Implementation impl) {
- if (impl == null) {
- // remove thresholds
- upThresholds = new List<BigInteger>();
- downThresholds = new List<BigInteger>();
- } else {
- var tf = new ThresholdFinder(impl);
- tf.Find(out downThresholds, out upThresholds);
-#if DEBUG_PRINT
- Console.Write("DEBUG: for implementation '{0}', setting downs to [", impl.Name);
- foreach (var i in downThresholds) {
- Console.Write(" {0}", i);
- }
- Console.Write(" ] and ups to [");
- foreach (var i in upThresholds) {
- Console.Write(" {0}", i);
- }
- Console.WriteLine(" ]");
-#endif
- }
- base.Specialize(impl);
- }
-
- private E_Common top = new E();
- private E_Common bottom = new E_Bottom();
-
- public override Element Top { get { return top; } }
- public override Element Bottom { get { return bottom; } }
-
- public override bool IsTop(Element element) {
- var e = element as E;
- return e != null && e.N == null;
- }
- public override bool IsBottom(Element element) {
- return element is E_Bottom;
- }
-
- public override bool Below(Element a, Element b) {
- if (a is E_Bottom) {
- return true;
- } else if (b is E_Bottom) {
- return false;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // check if every constraint in 'bb' is implied by constraints in 'aa'
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- if (x == null) {
- // bb constrains a variable that aa does not
- return false;
- } else if (y == null) {
- // aa constrains a variable that bb does not; that's fine
- } else if (y.Lo != null && (x.Lo == null || x.Lo < y.Lo)) {
- // bb has a Lo constraint, and either aa has no Lo constraint or it has a weaker Lo constraint
- return false;
- } else if (y.Hi != null && (x.Hi == null || y.Hi < x.Hi)) {
- // bb has a Hi o constraint, and either aa has no Hi constraint or it has a weaker Hi constraint
- return false;
- }
- }
- return true;
- }
- }
-
- public override Element Meet(Element a, Element b) {
- if (a is E_Bottom) {
- return a;
- } else if (b is E_Bottom) {
- return b;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- Node n;
- if (x == null) {
- n = new Node(y.V, y.Lo, y.Hi);
- } else if (y == null) {
- n = new Node(x.V, x.Lo, x.Hi);
- } else {
- var lo = Node.Max(x.Lo, y.Lo, true);
- var hi = Node.Min(x.Hi, y.Hi, true);
- // if hi<=lo (or hi<lo for reals), then we're overconstrained
- if (lo != null && hi != null && (x.V.TypedIdent.Type.IsReal ? hi < lo : hi <= lo)) {
- return bottom;
- }
- n = new Node(x.V, lo, hi);
- }
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- return new E(head);
- }
- }
-
- public override Element Join(Element a, Element b) {
- if (a is E_Bottom) {
- return b;
- } else if (b is E_Bottom) {
- return a;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // for each variable, take the weaker of the constraints
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- if (t.Item1 != null && t.Item2 != null) {
- var lo = Node.Min(t.Item1.Lo, t.Item2.Lo, false);
- var hi = Node.Max(t.Item1.Hi, t.Item2.Hi, false);
- if (lo != null || hi != null) {
- var n = new Node(t.Item1.V, lo, hi);
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- }
- return new E(head);
- }
- }
-
- public override Element Widen(Element a, Element b) {
- if (a is E_Bottom) {
- return b; // since this is done just once, we maintain the ascending chains property
- } else if (b is E_Bottom) {
- return a;
- } else {
- var aa = (E)a;
- var bb = (E)b;
- // return a subset of the constraints of aa, namely those that are implied by bb
- Node head = null;
- Node prev = null;
- foreach (var t in Node.Merge(aa.N, bb.N)) {
- var x = t.Item1;
- var y = t.Item2;
- if (x != null && y != null) {
- BigInteger? lo, hi;
- lo = hi = null;
- if (x.Lo != null && y.Lo != null) {
- if (x.Lo <= y.Lo) {
- // okay, we keep the lower bound
- lo = x.Lo;
- } else {
- // set "lo" to the threshold that is below (or equal) y.Lo
- lo = RoundDown((BigInteger)y.Lo);
- }
- }
- if (x.Hi != null && y.Hi != null) {
- if (y.Hi <= x.Hi) {
- // okay, we keep the upper bound
- hi = x.Hi;
- } else {
- // set "hi" to the threshold that is above (or equal) y.Hi
- hi = RoundUp((BigInteger)y.Hi);
- }
- }
- if (lo != null || hi != null) {
- var n = new Node(x.V, lo, hi);
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- }
- return new E(head);
- }
- }
-
- /// <summary>
- /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
- /// A difference is that the this method returns:
- /// let d = Dafny_RoundDown(k);
- /// return d == -1 ? null : downThresholds[d];
- /// </summary>
- BigInteger? RoundDown(BigInteger k)
- {
- if (downThresholds.Count == 0 || k < downThresholds[0]) {
- return null;
- }
- var i = 0;
- var j = downThresholds.Count - 1;
- while (i < j)
- {
- var mid = i + (j - i + 1) / 2;
- if (downThresholds[mid] <= k) {
- i = mid;
- } else {
- j = mid - 1;
- }
- }
- return downThresholds[i];
- }
-
- /// <summary>
- /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
- /// A difference is that the this method returns:
- /// let d = Dafny_RoundUp(k);
- /// return d == thresholds.Count ? null : upThresholds[d];
- /// </summary>
- BigInteger? RoundUp(BigInteger k)
- {
- if (upThresholds.Count == 0 || upThresholds[upThresholds.Count - 1] < k) {
- return null;
- }
- var i = 0;
- var j = upThresholds.Count - 1;
- while (i < j)
- {
- var mid = i + (j - i) / 2;
- if (upThresholds[mid] < k) {
- i = mid + 1;
- } else {
- j = mid;
- }
- }
- return upThresholds[i];
- }
-
- public override Element Constrain(Element element, Expr expr) {
- if (element is E_Bottom) {
- return element;
- } else {
- var e = (E)element;
- var c = Constraint(expr, e.N);
- return c == null ? element : Meet(element, c);
- }
- }
-
- /// <summary>
- /// Returns an Element that corresponds to the constraints implied by "expr" in the
- /// state "state".
- /// Return "null" to indicate no constraints.
- /// </summary>
- E_Common Constraint(Expr expr, Node state) {
- Variable v;
- if (IsVariable(expr, out v)) {
- var n = new Node(v, BigInteger.One, null);
- return new E(n);
- } else if (expr is LiteralExpr) {
- var e = (LiteralExpr)expr;
- return (bool)e.Val ? null : new E_Bottom();
- } else if (expr is NAryExpr) {
- var e = (NAryExpr)expr;
- if (e.Fun is UnaryOperator) {
- if (((UnaryOperator)e.Fun).Op == UnaryOperator.Opcode.Not) {
- if (IsVariable(e.Args[0], out v)) {
- var n = new Node(v, null, BigInteger.One);
- return new E(n);
- }
- }
- } else if (e.Fun is BinaryOperator) {
- var op = ((BinaryOperator)e.Fun).Op;
- var arg0 = e.Args[0];
- var arg1 = e.Args[1];
- switch (op) {
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Iff: {
- E_Common c = null;
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
- var n = new Node(v, lo, hi);
- c = new E(n);
- }
- }
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
- var n = new Node(v, lo, hi);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Neq: {
- E_Common c = null;
- if (IsVariable(arg0, out v)) {
- c = ConstrainNeq(state, v, arg1);
- }
- if (IsVariable(arg1, out v)) {
- var cc = ConstrainNeq(state, v, arg0);
- if (cc != null) {
- c = c == null ? cc : (E_Common)Meet(c, cc);
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Le: {
- E_Common c = null;
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg0, state, out lo, out hi);
- if (lo != null) {
- var n = new Node(v, lo, null);
- c = new E(n);
- }
- }
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg1, state, out lo, out hi);
- if (hi != null) {
- var n = new Node(v, null, hi);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Lt: {
- E_Common c = null;
- if (IsVariable(arg1, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg0, state, out lo, out hi);
- if (lo != null) {
- var n = new Node(v, v.TypedIdent.Type.IsReal ? lo : lo + 1, null);
- c = new E(n);
- }
- }
- if (IsVariable(arg0, out v)) {
- BigInteger? lo, hi;
- PartiallyEvaluate(arg1, state, out lo, out hi);
- if (hi != null) {
- var n = new Node(v, null, v.TypedIdent.Type.IsReal ? hi : hi - 1);
- c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
- }
- }
- return c;
- }
- case BinaryOperator.Opcode.Ge: {
- var tmp = arg0; arg0 = arg1; arg1 = tmp;
- goto case BinaryOperator.Opcode.Le;
- }
- case BinaryOperator.Opcode.Gt: {
- var tmp = arg0; arg0 = arg1; arg1 = tmp;
- goto case BinaryOperator.Opcode.Lt;
- }
- default:
- break;
- }
- }
- }
- return null; // approximation
- }
-
- private E ConstrainNeq(Node state, Variable v, Expr arg) {
- BigInteger? lo, hi;
- if (PartiallyEvaluate(arg, state, out lo, out hi)) {
- if (!v.TypedIdent.Type.IsReal && lo != null && hi != null && lo + 1 == hi) {
- var exclude = lo;
- // If the partially evaluated arg (whose value is "exclude") is an end-point of
- // the interval known for "v", then produce a constraint that excludes that bound.
- Node.GetBounds(state, v, out lo, out hi);
- if (lo != null && lo == exclude) {
- var n = new Node(v, lo + 1, null);
- return new E(n);
- } else if (hi != null && exclude + 1 == hi) {
- var n = new Node(v, null, exclude);
- return new E(n);
- }
- }
- }
- return null;
- }
-
- bool IsVariable(Expr expr, out Variable v) {
- var e = expr as IdentifierExpr;
- if (e == null) {
- v = null;
- return false;
- } else {
- v = e.Decl;
- return true;
- }
- }
-
- public override Element Update(Element element, AssignCmd cmd) {
- if (element is E_Bottom) {
- return element;
- }
- var e = (E)element;
- var nn = e.N;
- Contract.Assert(cmd.Lhss.Count == cmd.Rhss.Count);
- for (int i = 0; i < cmd.Lhss.Count; i++) {
- var lhs = cmd.Lhss[i];
- var rhs = cmd.Rhss[i];
- BigInteger? lo;
- BigInteger? hi;
- PartiallyEvaluate(rhs, e.N, out lo, out hi);
- nn = UpdateOne(nn, lhs.DeepAssignedVariable, lo, hi);
- }
- return new E(nn);
- }
-
- bool PartiallyEvaluate(Expr rhs, Node node, out BigInteger? lo, out BigInteger? hi) {
- var pe = new PEVisitor(node);
- pe.VisitExpr(rhs);
- lo = pe.Lo;
- hi = pe.Hi;
- return lo != null || hi != null;
- }
-
- class PEVisitor : ReadOnlyVisitor
- {
- public BigInteger? Lo;
- public BigInteger? Hi;
-
- readonly BigInteger one = BigInteger.One;
-
- Node N;
- public PEVisitor(Node n) {
- N = n;
- }
-
- // Override visitors for all expressions that can return a boolean, integer, or real result
-
- public override Expr VisitExpr(Expr node) {
- Lo = Hi = null;
- return base.VisitExpr(node);
- }
- public override Expr VisitLiteralExpr(LiteralExpr node) {
- if (node.Val is BigNum) {
- var n = ((BigNum)node.Val).ToBigInteger;
- Lo = n;
- Hi = n + 1;
- } else if (node.Val is BigDec) {
- BigInteger floor, ceiling;
- ((BigDec)node.Val).FloorCeiling(out floor, out ceiling);
- Lo = floor;
- Hi = ceiling;
- } else if (node.Val is BigFloat) {
- BigNum floor, ceiling;
- ((BigFloat)node.Val).FloorCeiling(out floor, out ceiling);
- Lo = floor.ToBigInteger;
- Hi = ceiling.ToBigInteger;
- } else if (node.Val is bool) {
- if ((bool)node.Val) {
- // true
- Lo = one;
- Hi = null;
- } else {
- // false
- Lo = null;
- Hi = one;
- }
- }
- return node;
- }
- public override Expr VisitIdentifierExpr(IdentifierExpr node) {
- if (node.Type.IsBool || node.Type.IsInt || node.Type.IsReal) {
- Node.GetBounds(N, node.Decl, out Lo, out Hi);
- }
- return node;
- }
- public override Expr VisitNAryExpr(NAryExpr node) {
- if (node.Fun is UnaryOperator) {
- var op = (UnaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 1);
- if (op.Op == UnaryOperator.Opcode.Neg) {
- BigInteger? lo, hi;
- VisitExpr(node.Args[0]);
- lo = Lo; hi = Hi;
- if (hi != null) {
- Lo = node.Type.IsReal ? -hi : 1 - hi;
- }
- if (lo != null) {
- Hi = node.Type.IsReal ? -lo : 1 - lo;
- }
- }
- else if (op.Op == UnaryOperator.Opcode.Not) {
- VisitExpr(node.Args[0]);
- Contract.Assert((Lo == null && Hi == null) ||
- (Lo == null && (BigInteger)Hi == 1) ||
- (Hi == null && (BigInteger)Lo == 1));
- var tmp = Lo;
- Lo = Hi;
- Hi = tmp;
- }
- } else if (node.Fun is BinaryOperator) {
- var op = (BinaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 2);
- BigInteger? lo0, hi0, lo1, hi1;
- VisitExpr(node.Args[0]);
- lo0 = Lo; hi0 = Hi;
- VisitExpr(node.Args[1]);
- lo1 = Lo; hi1 = Hi;
- Lo = Hi = null;
- var isReal = node.Args[0].Type.IsReal;
- switch (op.Op) {
- case BinaryOperator.Opcode.And:
- if (hi0 != null || hi1 != null) {
- // one operand is definitely false, thus so is the result
- Lo = null; Hi = one;
- } else if (lo0 != null && lo1 != null) {
- // both operands are definitely true, thus so is the result
- Lo = one; Hi = null;
- }
- break;
- case BinaryOperator.Opcode.Or:
- if (lo0 != null || lo1 != null) {
- // one operand is definitely true, thus so is the result
- Lo = one; Hi = null;
- } else if (hi0 != null && hi1 != null) {
- // both operands are definitely false, thus so is the result
- Lo = null; Hi = one;
- }
- break;
- case BinaryOperator.Opcode.Imp:
- if (hi0 != null || lo1 != null) {
- // either arg0 false or arg1 is true, so the result is true
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null) {
- // arg0 is true and arg1 is false, so the result is false
- Lo = null; Hi = one;
- }
- break;
- case BinaryOperator.Opcode.Iff:
- if (lo0 != null && lo1 != null) {
- Lo = one; Hi = null;
- } else if (hi0 != null && hi1 != null) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null) {
- Lo = null; Hi = one;
- } else if (hi0 != null && lo1 != null) {
- Lo = null; Hi = one;
- }
- if (op.Op == BinaryOperator.Opcode.Neq) {
- var tmp = Lo; Lo = Hi; Hi = tmp;
- }
- break;
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Neq:
- if (node.Args[0].Type.IsBool) {
- goto case BinaryOperator.Opcode.Iff;
- }
- // For Eq:
- // If the (lo0,hi0) and (lo1,hi1) ranges do not overlap, the answer is false.
- // If both ranges are the same unit range, then the answer is true.
- if (hi0 != null && lo1 != null && (isReal ? hi0 < lo1 : hi0 <= lo1)) {
- // no overlap
- Lo = null; Hi = one;
- } else if (lo0 != null && hi1 != null && (isReal ? hi1 < lo0 : hi1 <= lo0)) {
- Lo = null; Hi = one;
- // no overlaop
- } else if (lo0 != null && hi0 != null && lo1 != null && hi1 != null &&
- lo0 == lo1 && hi0 == hi1 && // ranges are the same
- (isReal ? lo0 == hi0 : lo0 + 1 == hi0)) { // unit range
- // both ranges are the same unit range
- Lo = one; Hi = null;
- }
- if (op.Op == BinaryOperator.Opcode.Neq) {
- var tmp = Lo; Lo = Hi; Hi = tmp;
- }
- break;
- case BinaryOperator.Opcode.Le:
- if (isReal) {
- // If hi0 <= lo1, then the answer is true.
- // If hi1 < lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 <= lo1) {
- Lo = one; Hi = null;
- } else if (hi1 != null && lo0 != null && hi1 < lo0) {
- Lo = null; Hi = one;
- }
- } else {
- // If hi0 - 1 <= lo1, then the answer is true.
- // If hi1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 - 1 <= lo1) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null && hi1 <= lo0) {
- Lo = null; Hi = one;
- }
- }
- break;
- case BinaryOperator.Opcode.Lt:
- if (isReal) {
- // If hi0 < lo1, then the answer is true.
- // If hi1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 < lo1) {
- Lo = one; Hi = null;
- } else if (hi1 != null && lo0 != null && hi1 <= lo0) {
- Lo = null; Hi = one;
- }
- } else {
- // If hi0 <= lo1, then the answer is true.
- // If hi1 - 1 <= lo0, then the answer is false.
- if (hi0 != null && lo1 != null && hi0 <= lo1) {
- Lo = one; Hi = null;
- } else if (lo0 != null && hi1 != null && hi1 - 1 <= lo0) {
- Lo = null; Hi = one;
- }
- }
- break;
- case BinaryOperator.Opcode.Gt:
- // swap the operands and then continue as Lt
- {
- var tmp = lo0; lo0 = lo1; lo1 = tmp;
- tmp = hi0; hi0 = hi1; hi1 = tmp;
- }
- goto case BinaryOperator.Opcode.Lt;
- case BinaryOperator.Opcode.Ge:
- // swap the operands and then continue as Le
- {
- var tmp = lo0; lo0 = lo1; lo1 = tmp;
- tmp = hi0; hi0 = hi1; hi1 = tmp;
- }
- goto case BinaryOperator.Opcode.Le;
- case BinaryOperator.Opcode.Add:
- if (lo0 != null && lo1 != null) {
- Lo = lo0 + lo1;
- }
- if (hi0 != null && hi1 != null) {
- Hi = isReal ? hi0 + hi1 : hi0 + hi1 - 1;
- }
- break;
- case BinaryOperator.Opcode.Sub:
- if (lo0 != null && hi1 != null) {
- Lo = isReal ? lo0 - hi1 : lo0 - hi1 + 1;
- }
- if (hi0 != null && lo1 != null) {
- Hi = hi0 - lo1;
- }
- break;
- case BinaryOperator.Opcode.Mul:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null) {
- if (0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = lo0 * lo1;
- Hi = hi0 == null || hi1 == null ? null : isReal ? hi0 * hi1 : (hi0 - 1) * (hi1 - 1) + 1;
- } else if ((BigInteger)lo0 < 0 && (BigInteger)lo1 < 0) {
- Lo = null; // approximation
- Hi = isReal ? lo0 * lo1 : lo0 * lo1 + 1;
- }
- }
- break;
- case BinaryOperator.Opcode.Div:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = hi0;
- }
- break;
- case BinaryOperator.Opcode.Mod:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = hi1;
- }
- break;
- case BinaryOperator.Opcode.RealDiv:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = BigInteger.Zero;
- Hi = 1 <= (BigInteger)lo1 ? hi0 : null;
- }
- break;
- case BinaryOperator.Opcode.Pow:
- // this uses an incomplete approximation that could be tightened up
- if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
- Lo = 1 <= (BigInteger)lo1 ? BigInteger.One : BigInteger.Zero;
- Hi = hi1;
- }
- break;
- default:
- break;
- }
- } else if (node.Fun is IfThenElse) {
- var op = (IfThenElse)node.Fun;
- Contract.Assert(node.Args.Count == 3);
- BigInteger? guardLo, guardHi, lo0, hi0, lo1, hi1;
- VisitExpr(node.Args[0]);
- guardLo = Lo; guardHi = Hi;
- VisitExpr(node.Args[1]);
- lo0 = Lo; hi0 = Hi;
- VisitExpr(node.Args[2]);
- lo1 = Lo; hi1 = Hi;
- Contract.Assert(guardLo == null || guardHi == null); // this is a consequence of the guard being boolean
- if (guardLo != null) {
- // guard is always true
- Lo = lo0; Hi = hi0;
- } else if (guardHi != null) {
- // guard is always false
- Lo = lo1; Hi = hi1;
- } else {
- // we don't know which branch will be taken, so join the information from the two branches
- Lo = Node.Min(lo0, lo1, false);
- Hi = Node.Max(hi0, hi1, false);
- }
- } else if (node.Fun is FunctionCall) {
- var call = (FunctionCall)node.Fun;
- // See if this is an identity function, which we do by checking: that the function has
- // exactly one argument and the function has been marked by the user with the attribute {:identity}
- bool claimsToBeIdentity = false;
- if (call.ArgumentCount == 1 && call.Func.CheckBooleanAttribute("identity", ref claimsToBeIdentity) && claimsToBeIdentity && node.Args[0].Type.Equals(node.Type)) {
- VisitExpr(node.Args[0]);
- }
- }
- return node;
- }
- public override BinderExpr VisitBinderExpr(BinderExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitOldExpr(OldExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitCodeExpr(CodeExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitBvConcatExpr(BvConcatExpr node) {
- // don't recurse on subexpression
- return node;
- }
- public override Expr VisitBvExtractExpr(BvExtractExpr node) {
- // don't recurse on subexpression
- return node;
- }
- }
-
- public override Element Eliminate(Element element, Variable v) {
- if (element is E_Bottom) {
- return element;
- }
- var e = (E)element;
- var nn = UpdateOne(e.N, v, null, null);
- if (nn == e.N) {
- return element;
- } else {
- return new E(nn);
- }
- }
-
- Node UpdateOne(Node nn, Variable v, BigInteger? lo, BigInteger? hi) {
- var orig = nn;
- Node head = null;
- Node prev = null;
- var foundV = false;
- for (; nn != null && !Node.StrictlyBefore(v, nn.V); nn = nn.Next) {
- if (nn.V == v) {
- foundV = true;
- nn = nn.Next;
- break; // we found the place where the new node goes
- } else {
- var n = new Node(nn.V, nn.Lo, nn.Hi); // copy this Node
- if (head == null) {
- head = n;
- } else {
- prev.Next = n;
- }
- prev = n;
- }
- }
- Node rest;
- if (lo == null && hi == null) {
- // eliminate all information about "v"
- if (!foundV) {
- return orig;
- }
- rest = nn;
- } else {
- rest = new Node(v, lo, hi);
- rest.Next = nn;
- }
- if (head == null) {
- head = rest;
- } else {
- prev.Next = rest;
- }
- return head;
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents the conjunction of a and b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplAnd(Expr a, Expr b) {
- if (a == Expr.True) {
- return b;
- } else if (b == Expr.True) {
- return a;
- } else {
- var nary = Expr.Binary(BinaryOperator.Opcode.And, a, b);
- nary.Type = Type.Bool;
- nary.TypeParameters = SimpleTypeParamInstantiation.EMPTY;
- return nary;
- }
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents a EQUALS b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplEq(Expr a, Expr b) {
- var e = Expr.Eq(a, b);
- e.Type = Type.Bool;
- return e;
- }
-
- /// <summary>
- /// Return a resolved/type-checked expression that represents a LESS-EQUAL b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplLe(Expr a, Expr b) {
- var e = Expr.Le(a, b);
- e.Type = Type.Bool;
- return e;
- }
- /// <summary>
- /// Return a resolved/type-checked expression that represents a LESS b.
- /// Requires a and b to be resolved and type checked already.
- /// </summary>
- public static Expr BplLt(Expr a, Expr b) {
- var e = Expr.Lt(a, b);
- e.Type = Type.Bool;
- return e;
- }
- }
-
- public class ThresholdFinder : ReadOnlyVisitor
- {
- readonly Implementation Impl;
- public ThresholdFinder(Implementation impl) {
- Contract.Requires(impl != null);
- Impl = impl;
- }
- HashSet<BigInteger> downs = new HashSet<BigInteger>();
- HashSet<BigInteger> ups = new HashSet<BigInteger>();
- public void Find(out List<BigInteger> downThresholds, out List<BigInteger> upThresholds) {
- // always include -1, 0, 1 as down-thresholds
- downs.Clear();
- downs.Add(-1);
- downs.Add(0);
- downs.Add(1);
- // always include 0 and 1 as up-thresholds
- ups.Clear();
- ups.Add(0);
- ups.Add(1);
-
- foreach (Requires p in Impl.Proc.Requires) {
- Visit(p.Condition);
- }
- foreach (Ensures p in Impl.Proc.Ensures) {
- Visit(p.Condition);
- }
- foreach (var b in Impl.Blocks) {
- foreach (Cmd c in b.Cmds) {
- Visit(c);
- }
- }
-
- // convert the HashSets to sorted Lists and return
- downThresholds = new List<BigInteger>();
- foreach (var i in downs) {
- downThresholds.Add(i);
- }
- downThresholds.Sort();
- upThresholds = new List<BigInteger>();
- foreach (var i in ups) {
- upThresholds.Add(i);
- }
- upThresholds.Sort();
- }
-
- public override Expr VisitNAryExpr(NAryExpr node) {
- if (node.Fun is BinaryOperator) {
- var op = (BinaryOperator)node.Fun;
- Contract.Assert(node.Args.Count == 2);
- var arg0 = node.Args[0];
- var arg1 = node.Args[1];
- var offset = arg0.Type.IsReal ? 0 : 1;
- BigInteger? k;
- switch (op.Op) {
- case BinaryOperator.Opcode.Eq:
- case BinaryOperator.Opcode.Neq:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- ups.Add(i + 1);
- ups.Add(i + 2);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- ups.Add(i + 1);
- ups.Add(i + 2);
- }
- break;
- case BinaryOperator.Opcode.Le:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i - 1);
- downs.Add(i);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- ups.Add(i + offset);
- ups.Add(i + 1 + offset);
- }
- break;
- case BinaryOperator.Opcode.Lt:
- k = AsIntLiteral(arg0);
- if (k != null) {
- var i = (BigInteger)k;
- downs.Add(i );
- downs.Add(i + 1);
- }
- k = AsIntLiteral(arg1);
- if (k != null) {
- var i = (BigInteger)k;
- ups.Add(i - 1 + offset);
- ups.Add(i + offset);
- }
- break;
- case BinaryOperator.Opcode.Ge:
- { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
- goto case BinaryOperator.Opcode.Le;
- case BinaryOperator.Opcode.Gt:
- { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
- goto case BinaryOperator.Opcode.Lt;
- default:
- break;
- }
- }
- return base.VisitNAryExpr(node);
- }
-
- BigInteger? AsIntLiteral(Expr e) {
- var lit = e as LiteralExpr;
- if (lit != null && lit.isBigNum) {
- BigNum bn = lit.asBigNum;
- return bn.ToBigInteger;
- }
- return null;
- }
- }
-
-}
+using System;
+using System.Numerics;
+using System.Collections.Generic;
+using System.Diagnostics.Contracts;
+using Microsoft.Basetypes;
+
+namespace Microsoft.Boogie.AbstractInterpretation
+{
+ class NativeIntervallDomain : NativeLattice
+ {
+ abstract class E_Common : NativeLattice.Element { }
+ class E_Bottom : E_Common
+ {
+ public override Expr ToExpr() {
+ return Expr.False;
+ }
+ }
+ class E : E_Common
+ {
+ public readonly Node N;
+ public E() { }
+ public E(Node n) {
+ N = n;
+ }
+
+ public override Expr ToExpr() {
+ Expr expr = Expr.True;
+ for (var n = N; n != null; n = n.Next) {
+ expr = BplAnd(expr, n.ToExpr());
+ }
+ return expr;
+ }
+ }
+ public class Node
+ {
+ public readonly Variable V; // variable has type bool or int
+ // For an integer variable (Lo,Hi) indicates Lo <= V < Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
+ // For a real variable (Lo,Hi) indicates Lo <= V <= Hi, where Lo==null means no lower bound and Hi==null means no upper bound.
+ // For a boolean variable, (Lo,Hi) is one of: (null,null) for {false,true}, (null,1) for {false}, and (1,null) for {true}.
+ public readonly BigInteger? Lo;
+ public readonly BigInteger? Hi;
+ public Node Next; // always sorted according to StrictlyBefore; readonly after full initialization
+ [Pure]
+ public static bool StrictlyBefore(Variable a, Variable b) {
+ Contract.Assert(a.UniqueId != b.UniqueId || a == b);
+ return a.UniqueId < b.UniqueId;
+ }
+
+ Node(Variable v, BigInteger? lo, BigInteger? hi, Node next) {
+ Contract.Requires(lo != null || hi != null); // don't accept empty constraints
+ Contract.Requires(next == null || StrictlyBefore(v, next.V));
+ V = v;
+ Lo = lo;
+ Hi = hi;
+ Next = next;
+ }
+
+ /// <summary>
+ /// This constructor leaves Next as null, allowing the caller to fill in Next to finish off the construction.
+ /// </summary>
+ public Node(Variable v, BigInteger? lo, BigInteger? hi) {
+ Contract.Requires(lo != null || hi != null); // don't accept empty constraints
+ V = v;
+ Lo = lo;
+ Hi = hi;
+ }
+
+ /// <summary>
+ /// Returns a Node that has the constraints head.{V,Lo,Hi} plus
+ /// all the constraints entailed by Nodes reachable from tail.
+ /// Requires that "head" sorts no later than anything in "tail".
+ /// Create either returns "head" itself or returns a new Node.
+ /// </summary>
+ public static Node Create(Node head, Node tail) {
+ Contract.Requires(head != null);
+ Contract.Requires(tail == null || !StrictlyBefore(tail.V, head.V));
+ Contract.Requires(head != tail);
+
+ if (head.Next == tail) {
+ return head;
+ } else if (tail != null && head.V == tail.V) {
+ // incorporate both constraints into one Node
+ return new Node(head.V, Max(head.Lo, tail.Lo, true), Min(head.Lo, tail.Lo, true), tail.Next);
+ } else {
+ return new Node(head.V, head.Lo, head.Hi, tail);
+ }
+ }
+
+ public static void GetBounds(Node n, Variable v, out BigInteger? lo, out BigInteger? hi) {
+ for (; n != null; n = n.Next) {
+ if (n.V == v) {
+ lo = n.Lo;
+ hi = n.Hi;
+ return;
+ } else if (StrictlyBefore(v, n.V)) {
+ break;
+ }
+ }
+ lo = null;
+ hi = null;
+ }
+
+ /// <summary>
+ /// Return the minimum of "a" and "b". If treatNullAsUnit==true, then "null" is
+ /// interpreted as positive infinity (the unit element of min); otherwise, it is
+ /// treated as negative infinity (the zero element of min).
+ /// </summary>
+ public static BigInteger? Min(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
+ if (a == null) {
+ return treatNullAsUnit ? b : a;
+ } else if (b == null) {
+ return treatNullAsUnit ? a : b;
+ } else {
+ return BigInteger.Min((BigInteger)a, (BigInteger)b);
+ }
+ }
+
+ /// <summary>
+ /// Return the maximum of "a" and "b". If treatNullAsUnit==true, then "null" is
+ /// interpreted as negative infinity (the unit element of max); otherwise, it is
+ /// treated as positive infinity (the zero element of max).
+ /// </summary>
+ public static BigInteger? Max(BigInteger? a, BigInteger? b, bool treatNullAsUnit) {
+ if (a == null) {
+ return treatNullAsUnit ? b : a;
+ } else if (b == null) {
+ return treatNullAsUnit ? a : b;
+ } else {
+ return BigInteger.Max((BigInteger)a, (BigInteger)b);
+ }
+ }
+
+ public static IEnumerable<Tuple<Node, Node>> Merge(Node a, Node b) {
+ while (true) {
+ if (a == null && b == null) {
+ yield break;
+ } else if (a == null || b == null) {
+ yield return new Tuple<Node, Node>(a, b);
+ if (a != null) { a = a.Next; } else { b = b.Next; }
+ } else if (a.V == b.V) {
+ yield return new Tuple<Node, Node>(a, b);
+ a = a.Next; b = b.Next;
+ } else if (StrictlyBefore(a.V, b.V)) {
+ yield return new Tuple<Node, Node>(a, null);
+ a = a.Next;
+ } else {
+ yield return new Tuple<Node, Node>(null, b);
+ b = b.Next;
+ }
+ }
+ }
+
+ public Expr ToExpr() {
+ if (!V.IsMutable && CommandLineOptions.Clo.InstrumentInfer != CommandLineOptions.InstrumentationPlaces.Everywhere) {
+ // omit invariants about readonly variables
+ return Expr.True;
+ } else if (V.TypedIdent.Type.IsBool) {
+ if (Lo == null && Hi == null) {
+ return Expr.True;
+ } else {
+ Contract.Assert((Lo == null && (BigInteger)Hi == 1) || (Hi == null && (BigInteger)Lo == 1));
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ return Hi == null ? ide : Expr.Not(ide);
+ }
+ } else if (V.TypedIdent.Type.IsInt) {
+ Expr e = Expr.True;
+ if (Lo != null && Hi != null && Lo + 1 == Hi) {
+ // produce an equality
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
+ } else {
+ // produce a (possibly empty) conjunction of inequalities
+ if (Lo != null) {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
+ }
+ if (Hi != null) {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLt(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
+ }
+ }
+ return e;
+ } else if (V.TypedIdent.Type.IsReal){
+ Expr e = Expr.True;
+ if (Lo != null && Hi != null && Lo == Hi) {
+ // produce an equality
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
+ } else {
+ // produce a (possibly empty) conjunction of inequalities
+ if (Lo != null) {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
+ }
+ if (Hi != null) {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
+ }
+ }
+ return e;
+ } else {
+ Contract.Assert(V.TypedIdent.Type.IsFloat);
+ Expr e = Expr.True;
+ if (Lo != null && Hi != null && Lo == Hi)
+ {
+ // produce an equality
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplEq(ide, NumberToExpr((BigInteger)Lo, V.TypedIdent.Type)));
+ }
+ else
+ {
+ // produce a (possibly empty) conjunction of inequalities
+ if (Lo != null)
+ {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLe(NumberToExpr((BigInteger)Lo, V.TypedIdent.Type), ide));
+ }
+ if (Hi != null)
+ {
+ var ide = new IdentifierExpr(Token.NoToken, V);
+ e = Expr.And(e, BplLe(ide, NumberToExpr((BigInteger)Hi, V.TypedIdent.Type)));
+ }
+ }
+ return e;
+ }
+ }
+ }
+
+ static Expr NumberToExpr(BigInteger n, Type ty) {
+ if (n == null) {
+ return null;
+ } else if (ty.IsReal) {
+ return Expr.Literal(Basetypes.BigDec.FromBigInt(n));
+ } else if (ty.IsFloat) {
+ return Expr.Literal(Basetypes.BigFloat.FromBigInt(n, ty.FloatExponent, ty.FloatMantissa));
+ } else {
+ Contract.Assume(ty.IsInt);
+ return Expr.Literal(Basetypes.BigNum.FromBigInt(n));
+ }
+ }
+
+ List<BigInteger> upThresholds; // invariant: thresholds are sorted
+ List<BigInteger> downThresholds; // invariant: thresholds are sorted
+
+ /// <summary>
+ /// Requires "thresholds" to be sorted.
+ /// </summary>
+ public NativeIntervallDomain() {
+ upThresholds = new List<BigInteger>();
+ downThresholds = new List<BigInteger>();
+ }
+
+ public override void Specialize(Implementation impl) {
+ if (impl == null) {
+ // remove thresholds
+ upThresholds = new List<BigInteger>();
+ downThresholds = new List<BigInteger>();
+ } else {
+ var tf = new ThresholdFinder(impl);
+ tf.Find(out downThresholds, out upThresholds);
+#if DEBUG_PRINT
+ Console.Write("DEBUG: for implementation '{0}', setting downs to [", impl.Name);
+ foreach (var i in downThresholds) {
+ Console.Write(" {0}", i);
+ }
+ Console.Write(" ] and ups to [");
+ foreach (var i in upThresholds) {
+ Console.Write(" {0}", i);
+ }
+ Console.WriteLine(" ]");
+#endif
+ }
+ base.Specialize(impl);
+ }
+
+ private E_Common top = new E();
+ private E_Common bottom = new E_Bottom();
+
+ public override Element Top { get { return top; } }
+ public override Element Bottom { get { return bottom; } }
+
+ public override bool IsTop(Element element) {
+ var e = element as E;
+ return e != null && e.N == null;
+ }
+ public override bool IsBottom(Element element) {
+ return element is E_Bottom;
+ }
+
+ public override bool Below(Element a, Element b) {
+ if (a is E_Bottom) {
+ return true;
+ } else if (b is E_Bottom) {
+ return false;
+ } else {
+ var aa = (E)a;
+ var bb = (E)b;
+ // check if every constraint in 'bb' is implied by constraints in 'aa'
+ foreach (var t in Node.Merge(aa.N, bb.N)) {
+ var x = t.Item1;
+ var y = t.Item2;
+ if (x == null) {
+ // bb constrains a variable that aa does not
+ return false;
+ } else if (y == null) {
+ // aa constrains a variable that bb does not; that's fine
+ } else if (y.Lo != null && (x.Lo == null || x.Lo < y.Lo)) {
+ // bb has a Lo constraint, and either aa has no Lo constraint or it has a weaker Lo constraint
+ return false;
+ } else if (y.Hi != null && (x.Hi == null || y.Hi < x.Hi)) {
+ // bb has a Hi o constraint, and either aa has no Hi constraint or it has a weaker Hi constraint
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+
+ public override Element Meet(Element a, Element b) {
+ if (a is E_Bottom) {
+ return a;
+ } else if (b is E_Bottom) {
+ return b;
+ } else {
+ var aa = (E)a;
+ var bb = (E)b;
+ Node head = null;
+ Node prev = null;
+ foreach (var t in Node.Merge(aa.N, bb.N)) {
+ var x = t.Item1;
+ var y = t.Item2;
+ Node n;
+ if (x == null) {
+ n = new Node(y.V, y.Lo, y.Hi);
+ } else if (y == null) {
+ n = new Node(x.V, x.Lo, x.Hi);
+ } else {
+ var lo = Node.Max(x.Lo, y.Lo, true);
+ var hi = Node.Min(x.Hi, y.Hi, true);
+ // if hi<=lo (or hi<lo for reals), then we're overconstrained
+ if (lo != null && hi != null && (x.V.TypedIdent.Type.IsReal ? hi < lo : hi <= lo)) {
+ return bottom;
+ }
+ n = new Node(x.V, lo, hi);
+ }
+ if (head == null) {
+ head = n;
+ } else {
+ prev.Next = n;
+ }
+ prev = n;
+ }
+ return new E(head);
+ }
+ }
+
+ public override Element Join(Element a, Element b) {
+ if (a is E_Bottom) {
+ return b;
+ } else if (b is E_Bottom) {
+ return a;
+ } else {
+ var aa = (E)a;
+ var bb = (E)b;
+ // for each variable, take the weaker of the constraints
+ Node head = null;
+ Node prev = null;
+ foreach (var t in Node.Merge(aa.N, bb.N)) {
+ if (t.Item1 != null && t.Item2 != null) {
+ var lo = Node.Min(t.Item1.Lo, t.Item2.Lo, false);
+ var hi = Node.Max(t.Item1.Hi, t.Item2.Hi, false);
+ if (lo != null || hi != null) {
+ var n = new Node(t.Item1.V, lo, hi);
+ if (head == null) {
+ head = n;
+ } else {
+ prev.Next = n;
+ }
+ prev = n;
+ }
+ }
+ }
+ return new E(head);
+ }
+ }
+
+ public override Element Widen(Element a, Element b) {
+ if (a is E_Bottom) {
+ return b; // since this is done just once, we maintain the ascending chains property
+ } else if (b is E_Bottom) {
+ return a;
+ } else {
+ var aa = (E)a;
+ var bb = (E)b;
+ // return a subset of the constraints of aa, namely those that are implied by bb
+ Node head = null;
+ Node prev = null;
+ foreach (var t in Node.Merge(aa.N, bb.N)) {
+ var x = t.Item1;
+ var y = t.Item2;
+ if (x != null && y != null) {
+ BigInteger? lo, hi;
+ lo = hi = null;
+ if (x.Lo != null && y.Lo != null) {
+ if (x.Lo <= y.Lo) {
+ // okay, we keep the lower bound
+ lo = x.Lo;
+ } else {
+ // set "lo" to the threshold that is below (or equal) y.Lo
+ lo = RoundDown((BigInteger)y.Lo);
+ }
+ }
+ if (x.Hi != null && y.Hi != null) {
+ if (y.Hi <= x.Hi) {
+ // okay, we keep the upper bound
+ hi = x.Hi;
+ } else {
+ // set "hi" to the threshold that is above (or equal) y.Hi
+ hi = RoundUp((BigInteger)y.Hi);
+ }
+ }
+ if (lo != null || hi != null) {
+ var n = new Node(x.V, lo, hi);
+ if (head == null) {
+ head = n;
+ } else {
+ prev.Next = n;
+ }
+ prev = n;
+ }
+ }
+ }
+ return new E(head);
+ }
+ }
+
+ /// <summary>
+ /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
+ /// A difference is that the this method returns:
+ /// let d = Dafny_RoundDown(k);
+ /// return d == -1 ? null : downThresholds[d];
+ /// </summary>
+ BigInteger? RoundDown(BigInteger k)
+ {
+ if (downThresholds.Count == 0 || k < downThresholds[0]) {
+ return null;
+ }
+ var i = 0;
+ var j = downThresholds.Count - 1;
+ while (i < j)
+ {
+ var mid = i + (j - i + 1) / 2;
+ if (downThresholds[mid] <= k) {
+ i = mid;
+ } else {
+ j = mid - 1;
+ }
+ }
+ return downThresholds[i];
+ }
+
+ /// <summary>
+ /// For a proof of correctness of this method, see Test/dafny2/Intervals.dfy.
+ /// A difference is that the this method returns:
+ /// let d = Dafny_RoundUp(k);
+ /// return d == thresholds.Count ? null : upThresholds[d];
+ /// </summary>
+ BigInteger? RoundUp(BigInteger k)
+ {
+ if (upThresholds.Count == 0 || upThresholds[upThresholds.Count - 1] < k) {
+ return null;
+ }
+ var i = 0;
+ var j = upThresholds.Count - 1;
+ while (i < j)
+ {
+ var mid = i + (j - i) / 2;
+ if (upThresholds[mid] < k) {
+ i = mid + 1;
+ } else {
+ j = mid;
+ }
+ }
+ return upThresholds[i];
+ }
+
+ public override Element Constrain(Element element, Expr expr) {
+ if (element is E_Bottom) {
+ return element;
+ } else {
+ var e = (E)element;
+ var c = Constraint(expr, e.N);
+ return c == null ? element : Meet(element, c);
+ }
+ }
+
+ /// <summary>
+ /// Returns an Element that corresponds to the constraints implied by "expr" in the
+ /// state "state".
+ /// Return "null" to indicate no constraints.
+ /// </summary>
+ E_Common Constraint(Expr expr, Node state) {
+ Variable v;
+ if (IsVariable(expr, out v)) {
+ var n = new Node(v, BigInteger.One, null);
+ return new E(n);
+ } else if (expr is LiteralExpr) {
+ var e = (LiteralExpr)expr;
+ return (bool)e.Val ? null : new E_Bottom();
+ } else if (expr is NAryExpr) {
+ var e = (NAryExpr)expr;
+ if (e.Fun is UnaryOperator) {
+ if (((UnaryOperator)e.Fun).Op == UnaryOperator.Opcode.Not) {
+ if (IsVariable(e.Args[0], out v)) {
+ var n = new Node(v, null, BigInteger.One);
+ return new E(n);
+ }
+ }
+ } else if (e.Fun is BinaryOperator) {
+ var op = ((BinaryOperator)e.Fun).Op;
+ var arg0 = e.Args[0];
+ var arg1 = e.Args[1];
+ switch (op) {
+ case BinaryOperator.Opcode.Eq:
+ case BinaryOperator.Opcode.Iff: {
+ E_Common c = null;
+ if (IsVariable(arg0, out v)) {
+ BigInteger? lo, hi;
+ if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
+ var n = new Node(v, lo, hi);
+ c = new E(n);
+ }
+ }
+ if (IsVariable(arg1, out v)) {
+ BigInteger? lo, hi;
+ if (PartiallyEvaluate(arg1, state, out lo, out hi)) {
+ var n = new Node(v, lo, hi);
+ c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
+ }
+ }
+ return c;
+ }
+ case BinaryOperator.Opcode.Neq: {
+ E_Common c = null;
+ if (IsVariable(arg0, out v)) {
+ c = ConstrainNeq(state, v, arg1);
+ }
+ if (IsVariable(arg1, out v)) {
+ var cc = ConstrainNeq(state, v, arg0);
+ if (cc != null) {
+ c = c == null ? cc : (E_Common)Meet(c, cc);
+ }
+ }
+ return c;
+ }
+ case BinaryOperator.Opcode.Le: {
+ E_Common c = null;
+ if (IsVariable(arg1, out v)) {
+ BigInteger? lo, hi;
+ PartiallyEvaluate(arg0, state, out lo, out hi);
+ if (lo != null) {
+ var n = new Node(v, lo, null);
+ c = new E(n);
+ }
+ }
+ if (IsVariable(arg0, out v)) {
+ BigInteger? lo, hi;
+ PartiallyEvaluate(arg1, state, out lo, out hi);
+ if (hi != null) {
+ var n = new Node(v, null, hi);
+ c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
+ }
+ }
+ return c;
+ }
+ case BinaryOperator.Opcode.Lt: {
+ E_Common c = null;
+ if (IsVariable(arg1, out v)) {
+ BigInteger? lo, hi;
+ PartiallyEvaluate(arg0, state, out lo, out hi);
+ if (lo != null) {
+ var n = new Node(v, v.TypedIdent.Type.IsReal ? lo : lo + 1, null);
+ c = new E(n);
+ }
+ }
+ if (IsVariable(arg0, out v)) {
+ BigInteger? lo, hi;
+ PartiallyEvaluate(arg1, state, out lo, out hi);
+ if (hi != null) {
+ var n = new Node(v, null, v.TypedIdent.Type.IsReal ? hi : hi - 1);
+ c = c == null ? new E(n) : (E_Common)Meet(c, new E(n));
+ }
+ }
+ return c;
+ }
+ case BinaryOperator.Opcode.Ge: {
+ var tmp = arg0; arg0 = arg1; arg1 = tmp;
+ goto case BinaryOperator.Opcode.Le;
+ }
+ case BinaryOperator.Opcode.Gt: {
+ var tmp = arg0; arg0 = arg1; arg1 = tmp;
+ goto case BinaryOperator.Opcode.Lt;
+ }
+ default:
+ break;
+ }
+ }
+ }
+ return null; // approximation
+ }
+
+ private E ConstrainNeq(Node state, Variable v, Expr arg) {
+ BigInteger? lo, hi;
+ if (PartiallyEvaluate(arg, state, out lo, out hi)) {
+ if (!v.TypedIdent.Type.IsReal && lo != null && hi != null && lo + 1 == hi) {
+ var exclude = lo;
+ // If the partially evaluated arg (whose value is "exclude") is an end-point of
+ // the interval known for "v", then produce a constraint that excludes that bound.
+ Node.GetBounds(state, v, out lo, out hi);
+ if (lo != null && lo == exclude) {
+ var n = new Node(v, lo + 1, null);
+ return new E(n);
+ } else if (hi != null && exclude + 1 == hi) {
+ var n = new Node(v, null, exclude);
+ return new E(n);
+ }
+ }
+ }
+ return null;
+ }
+
+ bool IsVariable(Expr expr, out Variable v) {
+ var e = expr as IdentifierExpr;
+ if (e == null) {
+ v = null;
+ return false;
+ } else {
+ v = e.Decl;
+ return true;
+ }
+ }
+
+ public override Element Update(Element element, AssignCmd cmd) {
+ if (element is E_Bottom) {
+ return element;
+ }
+ var e = (E)element;
+ var nn = e.N;
+ Contract.Assert(cmd.Lhss.Count == cmd.Rhss.Count);
+ for (int i = 0; i < cmd.Lhss.Count; i++) {
+ var lhs = cmd.Lhss[i];
+ var rhs = cmd.Rhss[i];
+ BigInteger? lo;
+ BigInteger? hi;
+ PartiallyEvaluate(rhs, e.N, out lo, out hi);
+ nn = UpdateOne(nn, lhs.DeepAssignedVariable, lo, hi);
+ }
+ return new E(nn);
+ }
+
+ bool PartiallyEvaluate(Expr rhs, Node node, out BigInteger? lo, out BigInteger? hi) {
+ var pe = new PEVisitor(node);
+ pe.VisitExpr(rhs);
+ lo = pe.Lo;
+ hi = pe.Hi;
+ return lo != null || hi != null;
+ }
+
+ class PEVisitor : ReadOnlyVisitor
+ {
+ public BigInteger? Lo;
+ public BigInteger? Hi;
+
+ readonly BigInteger one = BigInteger.One;
+
+ Node N;
+ public PEVisitor(Node n) {
+ N = n;
+ }
+
+ // Override visitors for all expressions that can return a boolean, integer, or real result
+
+ public override Expr VisitExpr(Expr node) {
+ Lo = Hi = null;
+ return base.VisitExpr(node);
+ }
+ public override Expr VisitLiteralExpr(LiteralExpr node) {
+ if (node.Val is BigNum) {
+ var n = ((BigNum)node.Val).ToBigInteger;
+ Lo = n;
+ Hi = n + 1;
+ } else if (node.Val is BigDec) {
+ BigInteger floor, ceiling;
+ ((BigDec)node.Val).FloorCeiling(out floor, out ceiling);
+ Lo = floor;
+ Hi = ceiling;
+ } else if (node.Val is BigFloat) {
+ BigNum floor, ceiling;
+ ((BigFloat)node.Val).FloorCeiling(out floor, out ceiling);
+ Lo = floor.ToBigInteger;
+ Hi = ceiling.ToBigInteger;
+ } else if (node.Val is bool) {
+ if ((bool)node.Val) {
+ // true
+ Lo = one;
+ Hi = null;
+ } else {
+ // false
+ Lo = null;
+ Hi = one;
+ }
+ }
+ return node;
+ }
+ public override Expr VisitIdentifierExpr(IdentifierExpr node) {
+ if (node.Type.IsBool || node.Type.IsInt || node.Type.IsReal) {
+ Node.GetBounds(N, node.Decl, out Lo, out Hi);
+ }
+ return node;
+ }
+ public override Expr VisitNAryExpr(NAryExpr node) {
+ if (node.Fun is UnaryOperator) {
+ var op = (UnaryOperator)node.Fun;
+ Contract.Assert(node.Args.Count == 1);
+ if (op.Op == UnaryOperator.Opcode.Neg) {
+ BigInteger? lo, hi;
+ VisitExpr(node.Args[0]);
+ lo = Lo; hi = Hi;
+ if (hi != null) {
+ Lo = node.Type.IsReal ? -hi : 1 - hi;
+ } else {
+ Lo = null;
+ }
+ if (lo != null) {
+ Hi = node.Type.IsReal ? -lo : 1 - lo;
+ } else {
+ Hi = null;
+ }
+ }
+ else if (op.Op == UnaryOperator.Opcode.Not) {
+ VisitExpr(node.Args[0]);
+ Contract.Assert((Lo == null && Hi == null) ||
+ (Lo == null && (BigInteger)Hi == 1) ||
+ (Hi == null && (BigInteger)Lo == 1));
+ var tmp = Lo;
+ Lo = Hi;
+ Hi = tmp;
+ }
+ } else if (node.Fun is BinaryOperator) {
+ var op = (BinaryOperator)node.Fun;
+ Contract.Assert(node.Args.Count == 2);
+ BigInteger? lo0, hi0, lo1, hi1;
+ VisitExpr(node.Args[0]);
+ lo0 = Lo; hi0 = Hi;
+ VisitExpr(node.Args[1]);
+ lo1 = Lo; hi1 = Hi;
+ Lo = Hi = null;
+ var isReal = node.Args[0].Type.IsReal;
+ switch (op.Op) {
+ case BinaryOperator.Opcode.And:
+ if (hi0 != null || hi1 != null) {
+ // one operand is definitely false, thus so is the result
+ Lo = null; Hi = one;
+ } else if (lo0 != null && lo1 != null) {
+ // both operands are definitely true, thus so is the result
+ Lo = one; Hi = null;
+ }
+ break;
+ case BinaryOperator.Opcode.Or:
+ if (lo0 != null || lo1 != null) {
+ // one operand is definitely true, thus so is the result
+ Lo = one; Hi = null;
+ } else if (hi0 != null && hi1 != null) {
+ // both operands are definitely false, thus so is the result
+ Lo = null; Hi = one;
+ }
+ break;
+ case BinaryOperator.Opcode.Imp:
+ if (hi0 != null || lo1 != null) {
+ // either arg0 false or arg1 is true, so the result is true
+ Lo = one; Hi = null;
+ } else if (lo0 != null && hi1 != null) {
+ // arg0 is true and arg1 is false, so the result is false
+ Lo = null; Hi = one;
+ }
+ break;
+ case BinaryOperator.Opcode.Iff:
+ if (lo0 != null && lo1 != null) {
+ Lo = one; Hi = null;
+ } else if (hi0 != null && hi1 != null) {
+ Lo = one; Hi = null;
+ } else if (lo0 != null && hi1 != null) {
+ Lo = null; Hi = one;
+ } else if (hi0 != null && lo1 != null) {
+ Lo = null; Hi = one;
+ }
+ if (op.Op == BinaryOperator.Opcode.Neq) {
+ var tmp = Lo; Lo = Hi; Hi = tmp;
+ }
+ break;
+ case BinaryOperator.Opcode.Eq:
+ case BinaryOperator.Opcode.Neq:
+ if (node.Args[0].Type.IsBool) {
+ goto case BinaryOperator.Opcode.Iff;
+ }
+ // For Eq:
+ // If the (lo0,hi0) and (lo1,hi1) ranges do not overlap, the answer is false.
+ // If both ranges are the same unit range, then the answer is true.
+ if (hi0 != null && lo1 != null && (isReal ? hi0 < lo1 : hi0 <= lo1)) {
+ // no overlap
+ Lo = null; Hi = one;
+ } else if (lo0 != null && hi1 != null && (isReal ? hi1 < lo0 : hi1 <= lo0)) {
+ Lo = null; Hi = one;
+ // no overlaop
+ } else if (lo0 != null && hi0 != null && lo1 != null && hi1 != null &&
+ lo0 == lo1 && hi0 == hi1 && // ranges are the same
+ (isReal ? lo0 == hi0 : lo0 + 1 == hi0)) { // unit range
+ // both ranges are the same unit range
+ Lo = one; Hi = null;
+ }
+ if (op.Op == BinaryOperator.Opcode.Neq) {
+ var tmp = Lo; Lo = Hi; Hi = tmp;
+ }
+ break;
+ case BinaryOperator.Opcode.Le:
+ if (isReal) {
+ // If hi0 <= lo1, then the answer is true.
+ // If hi1 < lo0, then the answer is false.
+ if (hi0 != null && lo1 != null && hi0 <= lo1) {
+ Lo = one; Hi = null;
+ } else if (hi1 != null && lo0 != null && hi1 < lo0) {
+ Lo = null; Hi = one;
+ }
+ } else {
+ // If hi0 - 1 <= lo1, then the answer is true.
+ // If hi1 <= lo0, then the answer is false.
+ if (hi0 != null && lo1 != null && hi0 - 1 <= lo1) {
+ Lo = one; Hi = null;
+ } else if (lo0 != null && hi1 != null && hi1 <= lo0) {
+ Lo = null; Hi = one;
+ }
+ }
+ break;
+ case BinaryOperator.Opcode.Lt:
+ if (isReal) {
+ // If hi0 < lo1, then the answer is true.
+ // If hi1 <= lo0, then the answer is false.
+ if (hi0 != null && lo1 != null && hi0 < lo1) {
+ Lo = one; Hi = null;
+ } else if (hi1 != null && lo0 != null && hi1 <= lo0) {
+ Lo = null; Hi = one;
+ }
+ } else {
+ // If hi0 <= lo1, then the answer is true.
+ // If hi1 - 1 <= lo0, then the answer is false.
+ if (hi0 != null && lo1 != null && hi0 <= lo1) {
+ Lo = one; Hi = null;
+ } else if (lo0 != null && hi1 != null && hi1 - 1 <= lo0) {
+ Lo = null; Hi = one;
+ }
+ }
+ break;
+ case BinaryOperator.Opcode.Gt:
+ // swap the operands and then continue as Lt
+ {
+ var tmp = lo0; lo0 = lo1; lo1 = tmp;
+ tmp = hi0; hi0 = hi1; hi1 = tmp;
+ }
+ goto case BinaryOperator.Opcode.Lt;
+ case BinaryOperator.Opcode.Ge:
+ // swap the operands and then continue as Le
+ {
+ var tmp = lo0; lo0 = lo1; lo1 = tmp;
+ tmp = hi0; hi0 = hi1; hi1 = tmp;
+ }
+ goto case BinaryOperator.Opcode.Le;
+ case BinaryOperator.Opcode.Add:
+ if (lo0 != null && lo1 != null) {
+ Lo = lo0 + lo1;
+ }
+ if (hi0 != null && hi1 != null) {
+ Hi = isReal ? hi0 + hi1 : hi0 + hi1 - 1;
+ }
+ break;
+ case BinaryOperator.Opcode.Sub:
+ if (lo0 != null && hi1 != null) {
+ Lo = isReal ? lo0 - hi1 : lo0 - hi1 + 1;
+ }
+ if (hi0 != null && lo1 != null) {
+ Hi = hi0 - lo1;
+ }
+ break;
+ case BinaryOperator.Opcode.Mul:
+ // this uses an incomplete approximation that could be tightened up
+ if (lo0 != null && lo1 != null) {
+ if (0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
+ Lo = lo0 * lo1;
+ Hi = hi0 == null || hi1 == null ? null : isReal ? hi0 * hi1 : (hi0 - 1) * (hi1 - 1) + 1;
+ } else if ((BigInteger)lo0 < 0 && (BigInteger)lo1 < 0) {
+ Lo = null; // approximation
+ Hi = isReal ? lo0 * lo1 : lo0 * lo1 + 1;
+ }
+ }
+ break;
+ case BinaryOperator.Opcode.Div:
+ // this uses an incomplete approximation that could be tightened up
+ if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
+ Lo = BigInteger.Zero;
+ Hi = hi0;
+ }
+ break;
+ case BinaryOperator.Opcode.Mod:
+ // this uses an incomplete approximation that could be tightened up
+ if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
+ Lo = BigInteger.Zero;
+ Hi = hi1;
+ if (lo0 < lo1 && hi0 != null && hi0 < lo1) {
+ Lo = lo0;
+ Hi = hi0;
+ }
+ }
+ break;
+ case BinaryOperator.Opcode.RealDiv:
+ // this uses an incomplete approximation that could be tightened up
+ if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
+ Lo = BigInteger.Zero;
+ Hi = 1 <= (BigInteger)lo1 ? hi0 : null;
+ }
+ break;
+ case BinaryOperator.Opcode.Pow:
+ // this uses an incomplete approximation that could be tightened up
+ if (lo0 != null && lo1 != null && 0 <= (BigInteger)lo0 && 0 <= (BigInteger)lo1) {
+ Lo = 1 <= (BigInteger)lo1 ? BigInteger.One : BigInteger.Zero;
+ Hi = hi1;
+ }
+ break;
+ default:
+ break;
+ }
+ } else if (node.Fun is IfThenElse) {
+ var op = (IfThenElse)node.Fun;
+ Contract.Assert(node.Args.Count == 3);
+ BigInteger? guardLo, guardHi, lo0, hi0, lo1, hi1;
+ VisitExpr(node.Args[0]);
+ guardLo = Lo; guardHi = Hi;
+ VisitExpr(node.Args[1]);
+ lo0 = Lo; hi0 = Hi;
+ VisitExpr(node.Args[2]);
+ lo1 = Lo; hi1 = Hi;
+ Contract.Assert(guardLo == null || guardHi == null); // this is a consequence of the guard being boolean
+ if (guardLo != null) {
+ // guard is always true
+ Lo = lo0; Hi = hi0;
+ } else if (guardHi != null) {
+ // guard is always false
+ Lo = lo1; Hi = hi1;
+ } else {
+ // we don't know which branch will be taken, so join the information from the two branches
+ Lo = Node.Min(lo0, lo1, false);
+ Hi = Node.Max(hi0, hi1, false);
+ }
+ } else if (node.Fun is FunctionCall) {
+ var call = (FunctionCall)node.Fun;
+ // See if this is an identity function, which we do by checking: that the function has
+ // exactly one argument and the function has been marked by the user with the attribute {:identity}
+ bool claimsToBeIdentity = false;
+ if (call.ArgumentCount == 1 && call.Func.CheckBooleanAttribute("identity", ref claimsToBeIdentity) && claimsToBeIdentity && node.Args[0].Type.Equals(node.Type)) {
+ VisitExpr(node.Args[0]);
+ }
+ }
+ return node;
+ }
+ public override BinderExpr VisitBinderExpr(BinderExpr node) {
+ // don't recurse on subexpression
+ return node;
+ }
+ public override Expr VisitOldExpr(OldExpr node) {
+ // don't recurse on subexpression
+ return node;
+ }
+ public override Expr VisitCodeExpr(CodeExpr node) {
+ // don't recurse on subexpression
+ return node;
+ }
+ public override Expr VisitBvConcatExpr(BvConcatExpr node) {
+ // don't recurse on subexpression
+ return node;
+ }
+ public override Expr VisitBvExtractExpr(BvExtractExpr node) {
+ // don't recurse on subexpression
+ return node;
+ }
+ }
+
+ public override Element Eliminate(Element element, Variable v) {
+ if (element is E_Bottom) {
+ return element;
+ }
+ var e = (E)element;
+ var nn = UpdateOne(e.N, v, null, null);
+ if (nn == e.N) {
+ return element;
+ } else {
+ return new E(nn);
+ }
+ }
+
+ Node UpdateOne(Node nn, Variable v, BigInteger? lo, BigInteger? hi) {
+ var orig = nn;
+ Node head = null;
+ Node prev = null;
+ var foundV = false;
+ for (; nn != null && !Node.StrictlyBefore(v, nn.V); nn = nn.Next) {
+ if (nn.V == v) {
+ foundV = true;
+ nn = nn.Next;
+ break; // we found the place where the new node goes
+ } else {
+ var n = new Node(nn.V, nn.Lo, nn.Hi); // copy this Node
+ if (head == null) {
+ head = n;
+ } else {
+ prev.Next = n;
+ }
+ prev = n;
+ }
+ }
+ Node rest;
+ if (lo == null && hi == null) {
+ // eliminate all information about "v"
+ if (!foundV) {
+ return orig;
+ }
+ rest = nn;
+ } else {
+ rest = new Node(v, lo, hi);
+ rest.Next = nn;
+ }
+ if (head == null) {
+ head = rest;
+ } else {
+ prev.Next = rest;
+ }
+ return head;
+ }
+
+ /// <summary>
+ /// Return a resolved/type-checked expression that represents the conjunction of a and b.
+ /// Requires a and b to be resolved and type checked already.
+ /// </summary>
+ public static Expr BplAnd(Expr a, Expr b) {
+ if (a == Expr.True) {
+ return b;
+ } else if (b == Expr.True) {
+ return a;
+ } else {
+ var nary = Expr.Binary(BinaryOperator.Opcode.And, a, b);
+ nary.Type = Type.Bool;
+ nary.TypeParameters = SimpleTypeParamInstantiation.EMPTY;
+ return nary;
+ }
+ }
+
+ /// <summary>
+ /// Return a resolved/type-checked expression that represents a EQUALS b.
+ /// Requires a and b to be resolved and type checked already.
+ /// </summary>
+ public static Expr BplEq(Expr a, Expr b) {
+ var e = Expr.Eq(a, b);
+ e.Type = Type.Bool;
+ return e;
+ }
+
+ /// <summary>
+ /// Return a resolved/type-checked expression that represents a LESS-EQUAL b.
+ /// Requires a and b to be resolved and type checked already.
+ /// </summary>
+ public static Expr BplLe(Expr a, Expr b) {
+ var e = Expr.Le(a, b);
+ e.Type = Type.Bool;
+ return e;
+ }
+ /// <summary>
+ /// Return a resolved/type-checked expression that represents a LESS b.
+ /// Requires a and b to be resolved and type checked already.
+ /// </summary>
+ public static Expr BplLt(Expr a, Expr b) {
+ var e = Expr.Lt(a, b);
+ e.Type = Type.Bool;
+ return e;
+ }
+ }
+
+ public class ThresholdFinder : ReadOnlyVisitor
+ {
+ readonly Implementation Impl;
+ public ThresholdFinder(Implementation impl) {
+ Contract.Requires(impl != null);
+ Impl = impl;
+ }
+ HashSet<BigInteger> downs = new HashSet<BigInteger>();
+ HashSet<BigInteger> ups = new HashSet<BigInteger>();
+ public void Find(out List<BigInteger> downThresholds, out List<BigInteger> upThresholds) {
+ // always include -1, 0, 1 as down-thresholds
+ downs.Clear();
+ downs.Add(-1);
+ downs.Add(0);
+ downs.Add(1);
+ // always include 0 and 1 as up-thresholds
+ ups.Clear();
+ ups.Add(0);
+ ups.Add(1);
+
+ foreach (Requires p in Impl.Proc.Requires) {
+ Visit(p.Condition);
+ }
+ foreach (Ensures p in Impl.Proc.Ensures) {
+ Visit(p.Condition);
+ }
+ foreach (var b in Impl.Blocks) {
+ foreach (Cmd c in b.Cmds) {
+ Visit(c);
+ }
+ }
+
+ // convert the HashSets to sorted Lists and return
+ downThresholds = new List<BigInteger>();
+ foreach (var i in downs) {
+ downThresholds.Add(i);
+ }
+ downThresholds.Sort();
+ upThresholds = new List<BigInteger>();
+ foreach (var i in ups) {
+ upThresholds.Add(i);
+ }
+ upThresholds.Sort();
+ }
+
+ public override Expr VisitNAryExpr(NAryExpr node) {
+ if (node.Fun is BinaryOperator) {
+ var op = (BinaryOperator)node.Fun;
+ Contract.Assert(node.Args.Count == 2);
+ var arg0 = node.Args[0];
+ var arg1 = node.Args[1];
+ var offset = arg0.Type.IsReal ? 0 : 1;
+ BigInteger? k;
+ switch (op.Op) {
+ case BinaryOperator.Opcode.Eq:
+ case BinaryOperator.Opcode.Neq:
+ k = AsIntLiteral(arg0);
+ if (k != null) {
+ var i = (BigInteger)k;
+ downs.Add(i - 1);
+ downs.Add(i);
+ ups.Add(i + 1);
+ ups.Add(i + 2);
+ }
+ k = AsIntLiteral(arg1);
+ if (k != null) {
+ var i = (BigInteger)k;
+ downs.Add(i - 1);
+ downs.Add(i);
+ ups.Add(i + 1);
+ ups.Add(i + 2);
+ }
+ break;
+ case BinaryOperator.Opcode.Le:
+ k = AsIntLiteral(arg0);
+ if (k != null) {
+ var i = (BigInteger)k;
+ downs.Add(i - 1);
+ downs.Add(i);
+ }
+ k = AsIntLiteral(arg1);
+ if (k != null) {
+ var i = (BigInteger)k;
+ ups.Add(i + offset);
+ ups.Add(i + 1 + offset);
+ }
+ break;
+ case BinaryOperator.Opcode.Lt:
+ k = AsIntLiteral(arg0);
+ if (k != null) {
+ var i = (BigInteger)k;
+ downs.Add(i );
+ downs.Add(i + 1);
+ }
+ k = AsIntLiteral(arg1);
+ if (k != null) {
+ var i = (BigInteger)k;
+ ups.Add(i - 1 + offset);
+ ups.Add(i + offset);
+ }
+ break;
+ case BinaryOperator.Opcode.Ge:
+ { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
+ goto case BinaryOperator.Opcode.Le;
+ case BinaryOperator.Opcode.Gt:
+ { var tmp = arg0; arg0 = arg1; arg1 = tmp; }
+ goto case BinaryOperator.Opcode.Lt;
+ default:
+ break;
+ }
+ }
+ return base.VisitNAryExpr(node);
+ }
+
+ BigInteger? AsIntLiteral(Expr e) {
+ var lit = e as LiteralExpr;
+ if (lit != null && lit.isBigNum) {
+ BigNum bn = lit.asBigNum;
+ return bn.ToBigInteger;
+ }
+ return null;
+ }
+ }
+
+}