aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/video_core/vertex_shader.cpp
blob: 477e78cfef9ba9064708af68cc0da5ffb16d2947 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.

#include <boost/range/algorithm.hpp>

#include <common/file_util.h>

#include <core/mem_map.h>

#include "debug_utils/debug_utils.h"

#include "pica.h"
#include "vertex_shader.h"

namespace Pica {

namespace VertexShader {

static struct {
    Math::Vec4<float24> f[96];
} shader_uniforms;


// TODO: Not sure where the shader binary and swizzle patterns are supposed to be loaded to!
// For now, we just keep these local arrays around.
static u32 shader_memory[1024];
static u32 swizzle_data[1024];

void SubmitShaderMemoryChange(u32 addr, u32 value)
{
    shader_memory[addr] = value;
}

void SubmitSwizzleDataChange(u32 addr, u32 value)
{
    swizzle_data[addr] = value;
}

Math::Vec4<float24>& GetFloatUniform(u32 index)
{
    return shader_uniforms.f[index];
}

struct VertexShaderState {
    u32* program_counter;

    const float24* input_register_table[16];
    float24* output_register_table[7*4];

    Math::Vec4<float24> temporary_registers[16];
    bool status_registers[2];

    enum {
        INVALID_ADDRESS = 0xFFFFFFFF
    };
    u32 call_stack[8]; // TODO: What is the maximal call stack depth?
    u32* call_stack_pointer;

    struct {
        u32 max_offset; // maximum program counter ever reached
        u32 max_opdesc_id; // maximum swizzle pattern index ever used
    } debug;
};

static void ProcessShaderCode(VertexShaderState& state) {
    while (true) {
        bool increment_pc = true;
        bool exit_loop = false;
        const Instruction& instr = *(const Instruction*)state.program_counter;
        state.debug.max_offset = std::max<u32>(state.debug.max_offset, 1 + (state.program_counter - shader_memory));

        const float24* src1_ = (instr.common.src1 < 0x10) ? state.input_register_table[instr.common.src1.GetIndex()]
                             : (instr.common.src1 < 0x20) ? &state.temporary_registers[instr.common.src1.GetIndex()].x
                             : (instr.common.src1 < 0x80) ? &shader_uniforms.f[instr.common.src1.GetIndex()].x
                             : nullptr;
        const float24* src2_ = (instr.common.src2 < 0x10) ? state.input_register_table[instr.common.src2.GetIndex()]
                             : &state.temporary_registers[instr.common.src2.GetIndex()].x;
        float24* dest = (instr.common.dest < 0x08) ? state.output_register_table[4*instr.common.dest.GetIndex()]
                      : (instr.common.dest < 0x10) ? nullptr
                      : (instr.common.dest < 0x20) ? &state.temporary_registers[instr.common.dest.GetIndex()][0]
                      : nullptr;

        const SwizzlePattern& swizzle = *(SwizzlePattern*)&swizzle_data[instr.common.operand_desc_id];
        const bool negate_src1 = (swizzle.negate != 0);

        float24 src1[4] = {
            src1_[(int)swizzle.GetSelectorSrc1(0)],
            src1_[(int)swizzle.GetSelectorSrc1(1)],
            src1_[(int)swizzle.GetSelectorSrc1(2)],
            src1_[(int)swizzle.GetSelectorSrc1(3)],
        };
        if (negate_src1) {
            src1[0] = src1[0] * float24::FromFloat32(-1);
            src1[1] = src1[1] * float24::FromFloat32(-1);
            src1[2] = src1[2] * float24::FromFloat32(-1);
            src1[3] = src1[3] * float24::FromFloat32(-1);
        }
        const float24 src2[4] = {
            src2_[(int)swizzle.GetSelectorSrc2(0)],
            src2_[(int)swizzle.GetSelectorSrc2(1)],
            src2_[(int)swizzle.GetSelectorSrc2(2)],
            src2_[(int)swizzle.GetSelectorSrc2(3)],
        };

        switch (instr.opcode) {
            case Instruction::OpCode::ADD:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i] + src2[i];
                }

                break;
            }

            case Instruction::OpCode::MUL:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i] * src2[i];
                }

                break;
            }

            case Instruction::OpCode::DP3:
            case Instruction::OpCode::DP4:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                float24 dot = float24::FromFloat32(0.f);
                int num_components = (instr.opcode == Instruction::OpCode::DP3) ? 3 : 4;
                for (int i = 0; i < num_components; ++i)
                    dot = dot + src1[i] * src2[i];

                for (int i = 0; i < num_components; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = dot;
                }
                break;
            }

            // Reciprocal
            case Instruction::OpCode::RCP:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    // TODO: Be stable against division by zero!
                    // TODO: I think this might be wrong... we should only use one component here
                    dest[i] = float24::FromFloat32(1.0 / src1[i].ToFloat32());
                }

                break;
            }

            // Reciprocal Square Root
            case Instruction::OpCode::RSQ:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    // TODO: Be stable against division by zero!
                    // TODO: I think this might be wrong... we should only use one component here
                    dest[i] = float24::FromFloat32(1.0 / sqrt(src1[i].ToFloat32()));
                }

                break;
            }

            case Instruction::OpCode::MOV:
            {
                state.debug.max_opdesc_id = std::max<u32>(state.debug.max_opdesc_id, 1+instr.common.operand_desc_id);
                for (int i = 0; i < 4; ++i) {
                    if (!swizzle.DestComponentEnabled(i))
                        continue;

                    dest[i] = src1[i];
                }
                break;
            }

            case Instruction::OpCode::RET:
                if (*state.call_stack_pointer == VertexShaderState::INVALID_ADDRESS) {
                    exit_loop = true;
                } else {
                    // Jump back to call stack position, invalidate call stack entry, move up call stack pointer
                    state.program_counter = &shader_memory[*state.call_stack_pointer];
                    *state.call_stack_pointer-- = VertexShaderState::INVALID_ADDRESS;
                }

                break;

            case Instruction::OpCode::CALL:
                increment_pc = false;

                _dbg_assert_(HW_GPU, state.call_stack_pointer - state.call_stack < sizeof(state.call_stack));

                *++state.call_stack_pointer = state.program_counter - shader_memory;
                // TODO: Does this offset refer to the beginning of shader memory?
                state.program_counter = &shader_memory[instr.flow_control.offset_words];
                break;

            case Instruction::OpCode::FLS:
                // TODO: Do whatever needs to be done here?
                break;

            default:
                LOG_ERROR(HW_GPU, "Unhandled instruction: 0x%02x (%s): 0x%08x",
                          (int)instr.opcode.Value(), instr.GetOpCodeName().c_str(), instr.hex);
                break;
        }

        if (increment_pc)
            ++state.program_counter;

        if (exit_loop)
            break;
    }
}

OutputVertex RunShader(const InputVertex& input, int num_attributes)
{
    VertexShaderState state;

    const u32* main = &shader_memory[registers.vs_main_offset];
    state.program_counter = (u32*)main;
    state.debug.max_offset = 0;
    state.debug.max_opdesc_id = 0;

    // Setup input register table
    const auto& attribute_register_map = registers.vs_input_register_map;
    float24 dummy_register;
    boost::fill(state.input_register_table, &dummy_register);
    if(num_attributes > 0) state.input_register_table[attribute_register_map.attribute0_register] = &input.attr[0].x;
    if(num_attributes > 1) state.input_register_table[attribute_register_map.attribute1_register] = &input.attr[1].x;
    if(num_attributes > 2) state.input_register_table[attribute_register_map.attribute2_register] = &input.attr[2].x;
    if(num_attributes > 3) state.input_register_table[attribute_register_map.attribute3_register] = &input.attr[3].x;
    if(num_attributes > 4) state.input_register_table[attribute_register_map.attribute4_register] = &input.attr[4].x;
    if(num_attributes > 5) state.input_register_table[attribute_register_map.attribute5_register] = &input.attr[5].x;
    if(num_attributes > 6) state.input_register_table[attribute_register_map.attribute6_register] = &input.attr[6].x;
    if(num_attributes > 7) state.input_register_table[attribute_register_map.attribute7_register] = &input.attr[7].x;
    if(num_attributes > 8) state.input_register_table[attribute_register_map.attribute8_register] = &input.attr[8].x;
    if(num_attributes > 9) state.input_register_table[attribute_register_map.attribute9_register] = &input.attr[9].x;
    if(num_attributes > 10) state.input_register_table[attribute_register_map.attribute10_register] = &input.attr[10].x;
    if(num_attributes > 11) state.input_register_table[attribute_register_map.attribute11_register] = &input.attr[11].x;
    if(num_attributes > 12) state.input_register_table[attribute_register_map.attribute12_register] = &input.attr[12].x;
    if(num_attributes > 13) state.input_register_table[attribute_register_map.attribute13_register] = &input.attr[13].x;
    if(num_attributes > 14) state.input_register_table[attribute_register_map.attribute14_register] = &input.attr[14].x;
    if(num_attributes > 15) state.input_register_table[attribute_register_map.attribute15_register] = &input.attr[15].x;

    // Setup output register table
    OutputVertex ret;
    for (int i = 0; i < 7; ++i) {
        const auto& output_register_map = registers.vs_output_attributes[i];

        u32 semantics[4] = {
            output_register_map.map_x, output_register_map.map_y,
            output_register_map.map_z, output_register_map.map_w
        };

        for (int comp = 0; comp < 4; ++comp)
            state.output_register_table[4*i+comp] = ((float24*)&ret) + semantics[comp];
    }

    state.status_registers[0] = false;
    state.status_registers[1] = false;
    boost::fill(state.call_stack, VertexShaderState::INVALID_ADDRESS);
    state.call_stack_pointer = &state.call_stack[0];

    ProcessShaderCode(state);
    DebugUtils::DumpShader(shader_memory, state.debug.max_offset, swizzle_data,
                           state.debug.max_opdesc_id, registers.vs_main_offset,
                           registers.vs_output_attributes);

    LOG_TRACE(Render_Software, "Output vertex: pos (%.2f, %.2f, %.2f, %.2f), col(%.2f, %.2f, %.2f, %.2f), tc0(%.2f, %.2f)",
        ret.pos.x.ToFloat32(), ret.pos.y.ToFloat32(), ret.pos.z.ToFloat32(), ret.pos.w.ToFloat32(),
        ret.color.x.ToFloat32(), ret.color.y.ToFloat32(), ret.color.z.ToFloat32(), ret.color.w.ToFloat32(),
        ret.tc0.u().ToFloat32(), ret.tc0.v().ToFloat32());

    return ret;
}


} // namespace

} // namespace