aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/checker_framework_javacutil/java/org/checkerframework/javacutil/TreeUtils.java
blob: a3ae88fa3144f81f74495d1c37b85d7418549094 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
package org.checkerframework.javacutil;

/*>>>
import org.checkerframework.checker.nullness.qual.*;
*/

import java.util.EnumSet;
import java.util.Set;

import javax.annotation.processing.ProcessingEnvironment;
import javax.lang.model.element.Element;
import javax.lang.model.element.ElementKind;
import javax.lang.model.element.ExecutableElement;
import javax.lang.model.element.Name;
import javax.lang.model.element.TypeElement;
import javax.lang.model.element.VariableElement;
import javax.lang.model.util.ElementFilter;

import com.sun.source.tree.AnnotatedTypeTree;
import com.sun.source.tree.ArrayAccessTree;
import com.sun.source.tree.AssignmentTree;
import com.sun.source.tree.BinaryTree;
import com.sun.source.tree.BlockTree;
import com.sun.source.tree.ClassTree;
import com.sun.source.tree.CompoundAssignmentTree;
import com.sun.source.tree.ExpressionStatementTree;
import com.sun.source.tree.ExpressionTree;
import com.sun.source.tree.IdentifierTree;
import com.sun.source.tree.LiteralTree;
import com.sun.source.tree.MemberSelectTree;
import com.sun.source.tree.MethodInvocationTree;
import com.sun.source.tree.MethodTree;
import com.sun.source.tree.NewArrayTree;
import com.sun.source.tree.NewClassTree;
import com.sun.source.tree.ParameterizedTypeTree;
import com.sun.source.tree.ParenthesizedTree;
import com.sun.source.tree.PrimitiveTypeTree;
import com.sun.source.tree.ReturnTree;
import com.sun.source.tree.StatementTree;
import com.sun.source.tree.Tree;
import com.sun.source.tree.TypeCastTree;
import com.sun.source.tree.VariableTree;
import com.sun.source.util.TreePath;
import com.sun.source.util.Trees;
import com.sun.tools.javac.code.Flags;
import com.sun.tools.javac.code.Symbol.MethodSymbol;
import com.sun.tools.javac.tree.JCTree;

/**
 * A utility class made for helping to analyze a given {@code Tree}.
 */
// TODO: This class needs significant restructuring
public final class TreeUtils {

    // Class cannot be instantiated.
    private TreeUtils() { throw new AssertionError("Class TreeUtils cannot be instantiated."); }

    /**
     * Checks if the provided method is a constructor method or no.
     *
     * @param tree
     *            a tree defining the method
     * @return true iff tree describes a constructor
     */
    public static boolean isConstructor(final MethodTree tree) {
        return tree.getName().contentEquals("<init>");
    }

    /**
     * Checks if the method invocation is a call to super.
     *
     * @param tree
     *            a tree defining a method invocation
     *
     * @return true iff tree describes a call to super
     */
    public static boolean isSuperCall(MethodInvocationTree tree) {
        /*@Nullable*/ ExpressionTree mst = tree.getMethodSelect();
        assert mst != null; /*nninvariant*/

        if (mst.getKind() == Tree.Kind.IDENTIFIER ) {
            return ((IdentifierTree)mst).getName().contentEquals("super");
        }

        if (mst.getKind() == Tree.Kind.MEMBER_SELECT) {
            MemberSelectTree selectTree = (MemberSelectTree)mst;

            if (selectTree.getExpression().getKind() != Tree.Kind.IDENTIFIER) {
                return false;
            }

            return ((IdentifierTree) selectTree.getExpression()).getName()
                .contentEquals("super");
        }

        return false;
    }

    /**
     * Returns true if the tree is a tree that 'looks like' either an access
     * of a field or an invocation of a method that are owned by the same
     * accessing instance.
     *
     * It would only return true if the access tree is of the form:
     * <pre>
     *   field
     *   this.field
     *
     *   method()
     *   this.method()
     * </pre>
     *
     * It does not perform any semantical check to differentiate between
     * fields and local variables; local methods or imported static methods.
     *
     * @param tree  expression tree representing an access to object member
     * @return {@code true} iff the member is a member of {@code this} instance
     */
    public static boolean isSelfAccess(final ExpressionTree tree) {
        ExpressionTree tr = TreeUtils.skipParens(tree);
        // If method invocation check the method select
        if (tr.getKind() == Tree.Kind.ARRAY_ACCESS)
            return false;

        if (tree.getKind() == Tree.Kind.METHOD_INVOCATION) {
            tr = ((MethodInvocationTree)tree).getMethodSelect();
        }
        tr = TreeUtils.skipParens(tr);
        if (tr.getKind() == Tree.Kind.TYPE_CAST)
            tr = ((TypeCastTree)tr).getExpression();
        tr = TreeUtils.skipParens(tr);

        if (tr.getKind() == Tree.Kind.IDENTIFIER)
            return true;

        if (tr.getKind() == Tree.Kind.MEMBER_SELECT) {
            tr = ((MemberSelectTree)tr).getExpression();
            if (tr.getKind() == Tree.Kind.IDENTIFIER) {
                Name ident = ((IdentifierTree)tr).getName();
                return ident.contentEquals("this") ||
                        ident.contentEquals("super");
            }
        }

        return false;
    }

    /**
     * Gets the first enclosing tree in path, of the specified kind.
     *
     * @param path  the path defining the tree node
     * @param kind  the kind of the desired tree
     * @return the enclosing tree of the given type as given by the path
     */
    public static Tree enclosingOfKind(final TreePath path, final Tree.Kind kind) {
        return enclosingOfKind(path, EnumSet.of(kind));
    }

    /**
     * Gets the first enclosing tree in path, with any one of the specified kinds.
     *
     * @param path  the path defining the tree node
     * @param kinds  the set of kinds of the desired tree
     * @return the enclosing tree of the given type as given by the path
     */
    public static Tree enclosingOfKind(final TreePath path, final Set<Tree.Kind> kinds) {
        TreePath p = path;

        while (p != null) {
            Tree leaf = p.getLeaf();
            assert leaf != null; /*nninvariant*/
            if (kinds.contains(leaf.getKind()))
                return leaf;
            p = p.getParentPath();
        }

        return null;
    }

    /**
     * Gets path to the the first enclosing class tree, where class is
     * defined by the classTreeKinds method.
     *
     * @param path  the path defining the tree node
     * @return the path to the enclosing class tree
     */
    public static TreePath pathTillClass(final TreePath path) {
        return pathTillOfKind(path, classTreeKinds());
    }

    /**
     * Gets path to the the first enclosing tree of the specified kind.
     *
     * @param path  the path defining the tree node
     * @param kind  the kind of the desired tree
     * @return the path to the enclosing tree of the given type
     */
    public static TreePath pathTillOfKind(final TreePath path, final Tree.Kind kind) {
        return pathTillOfKind(path, EnumSet.of(kind));
    }

    /**
     * Gets path to the the first enclosing tree with any one of the specified kinds.
     *
     * @param path  the path defining the tree node
     * @param kinds  the set of kinds of the desired tree
     * @return the path to the enclosing tree of the given type
     */
    public static TreePath pathTillOfKind(final TreePath path, final Set<Tree.Kind> kinds) {
        TreePath p = path;

        while (p != null) {
            Tree leaf = p.getLeaf();
            assert leaf != null; /*nninvariant*/
            if (kinds.contains(leaf.getKind()))
                return p;
            p = p.getParentPath();
        }

        return null;
    }

    /**
     * Gets the first enclosing tree in path, of the specified class
     *
     * @param path  the path defining the tree node
     * @param treeClass the class of the desired tree
     * @return the enclosing tree of the given type as given by the path
     */
    public static <T extends Tree> T enclosingOfClass(final TreePath path, final Class<T> treeClass) {
        TreePath p = path;

        while (p != null) {
            Tree leaf = p.getLeaf();
            if (treeClass.isInstance(leaf))
                return treeClass.cast(leaf);
            p = p.getParentPath();
        }

        return null;
    }

    /**
     * Gets the enclosing class of the tree node defined by the given
     * {@code {@link TreePath}}. It returns a {@link Tree}, from which
     * {@code checkers.types.AnnotatedTypeMirror} or {@link Element} can be
     * obtained.
     *
     * @param path the path defining the tree node
     * @return the enclosing class (or interface) as given by the path, or null
     *         if one does not exist.
     */
    public static /*@Nullable*/ ClassTree enclosingClass(final /*@Nullable*/ TreePath path) {
        return (ClassTree) enclosingOfKind(path, classTreeKinds());
    }

    /**
     * Gets the enclosing variable of a tree node defined by the given
     * {@link TreePath}.
     *
     * @param path the path defining the tree node
     * @return the enclosing variable as given by the path, or null if one does not exist
     */
    public static VariableTree enclosingVariable(final TreePath path) {
        return (VariableTree) enclosingOfKind(path, Tree.Kind.VARIABLE);
    }

    /**
     * Gets the enclosing method of the tree node defined by the given
     * {@code {@link TreePath}}. It returns a {@link Tree}, from which an
     * {@code checkers.types.AnnotatedTypeMirror} or {@link Element} can be
     * obtained.
     *
     * @param path the path defining the tree node
     * @return the enclosing method as given by the path, or null if one does
     *         not exist
     */
    public static /*@Nullable*/ MethodTree enclosingMethod(final /*@Nullable*/ TreePath path) {
        return (MethodTree) enclosingOfKind(path, Tree.Kind.METHOD);
    }

    public static /*@Nullable*/ BlockTree enclosingTopLevelBlock(TreePath path) {
        TreePath parpath = path.getParentPath();
        while (parpath!=null && parpath.getLeaf().getKind() != Tree.Kind.CLASS) {
            path = parpath;
            parpath = parpath.getParentPath();
        }
        if (path.getLeaf().getKind() == Tree.Kind.BLOCK) {
            return (BlockTree) path.getLeaf();
        }
        return null;
    }


    /**
     * If the given tree is a parenthesized tree, it returns the enclosed
     * non-parenthesized tree. Otherwise, it returns the same tree.
     *
     * @param tree  an expression tree
     * @return  the outermost non-parenthesized tree enclosed by the given tree
     */
    public static ExpressionTree skipParens(final ExpressionTree tree) {
        ExpressionTree t = tree;
        while (t.getKind() == Tree.Kind.PARENTHESIZED)
            t = ((ParenthesizedTree)t).getExpression();
        return t;
    }

    /**
     * Returns the tree with the assignment context for the treePath
     * leaf node.
     *
     * The assignment context for the treepath is the most enclosing
     * tree of type:
     * <ul>
     *   <li>AssignmentTree </li>
     *   <li>CompoundAssignmentTree </li>
     *   <li>MethodInvocationTree</li>
     *   <li>NewArrayTree</li>
     *   <li>NewClassTree</li>
     *   <li>ReturnTree</li>
     *   <li>VariableTree</li>
     * </ul>
     *
     * @param treePath
     * @return  the assignment context as described.
     */
    public static Tree getAssignmentContext(final TreePath treePath) {
        TreePath path = treePath.getParentPath();

        if (path == null)
            return null;
        Tree node = path.getLeaf();
        if ((node instanceof AssignmentTree) ||
                (node instanceof CompoundAssignmentTree) ||
                (node instanceof MethodInvocationTree) ||
                (node instanceof NewArrayTree) ||
                (node instanceof NewClassTree) ||
                (node instanceof ReturnTree) ||
                (node instanceof VariableTree))
            return node;
        return null;
    }

    /**
     * Gets the element for a class corresponding to a declaration.
     *
     * @param node
     * @return the element for the given class
     */
    public static final TypeElement elementFromDeclaration(ClassTree node) {
        TypeElement elt = (TypeElement) InternalUtils.symbol(node);
        return elt;
    }

    /**
     * Gets the element for a method corresponding to a declaration.
     *
     * @param node
     * @return the element for the given method
     */
    public static final ExecutableElement elementFromDeclaration(MethodTree node) {
        ExecutableElement elt = (ExecutableElement) InternalUtils.symbol(node);
        return elt;
    }

    /**
     * Gets the element for a variable corresponding to its declaration.
     *
     * @param node
     * @return the element for the given variable
     */
    public static final VariableElement elementFromDeclaration(VariableTree node) {
        VariableElement elt = (VariableElement) InternalUtils.symbol(node);
        return elt;
    }

    /**
     * Gets the element for the declaration corresponding to this use of an element.
     * To get the element for a declaration, use {@link
     * Trees#getElement(TreePath)} instead.
     *
     * TODO: remove this method, as it really doesn't do anything.
     *
     * @param node the tree corresponding to a use of an element
     * @return the element for the corresponding declaration
     */
    public static final Element elementFromUse(ExpressionTree node) {
        return InternalUtils.symbol(node);
    }

    // Specialization for return type.
    public static final ExecutableElement elementFromUse(MethodInvocationTree node) {
        return (ExecutableElement) elementFromUse((ExpressionTree) node);
    }

    // Specialization for return type.
    public static final ExecutableElement elementFromUse(NewClassTree node) {
        return (ExecutableElement) elementFromUse((ExpressionTree) node);
    }


    /**
     * Determine whether the given ExpressionTree has an underlying element.
     *
     * @param node the ExpressionTree to test
     * @return whether the tree refers to an identifier, member select, or method invocation.
     */
    public static final boolean isUseOfElement(ExpressionTree node) {
        node = TreeUtils.skipParens(node);
        switch (node.getKind()) {
            case IDENTIFIER:
            case MEMBER_SELECT:
            case METHOD_INVOCATION:
            case NEW_CLASS:
                return true;
            default:
                return false;
        }
    }

    /**
     * @return the name of the invoked method
     */
    public static final Name methodName(MethodInvocationTree node) {
        ExpressionTree expr = node.getMethodSelect();
        if (expr.getKind() == Tree.Kind.IDENTIFIER)
            return ((IdentifierTree)expr).getName();
        else if (expr.getKind() == Tree.Kind.MEMBER_SELECT)
            return ((MemberSelectTree)expr).getIdentifier();
        ErrorReporter.errorAbort("TreeUtils.methodName: cannot be here: " + node);
        return null; // dead code
    }

    /**
     * @return true if the first statement in the body is a self constructor
     *  invocation within a constructor
     */
    public static final boolean containsThisConstructorInvocation(MethodTree node) {
        if (!TreeUtils.isConstructor(node)
                || node.getBody().getStatements().isEmpty())
            return false;

        StatementTree st = node.getBody().getStatements().get(0);
        if (!(st instanceof ExpressionStatementTree)
                || !(((ExpressionStatementTree)st).getExpression() instanceof MethodInvocationTree))
            return false;

        MethodInvocationTree invocation = (MethodInvocationTree)
            ((ExpressionStatementTree)st).getExpression();

        return "this".contentEquals(TreeUtils.methodName(invocation));
    }

    public static final Tree firstStatement(Tree tree) {
        Tree first;
        if (tree.getKind() == Tree.Kind.BLOCK) {
            BlockTree block = (BlockTree)tree;
            if (block.getStatements().isEmpty())
                first = block;
            else
                first = block.getStatements().iterator().next();
        } else {
            first = tree;
        }
        return first;
    }

    /**
     * Determine whether the given class contains an explicit constructor.
     *
     * @param node A class tree.
     * @return True, iff there is an explicit constructor.
     */
    public static boolean hasExplicitConstructor(ClassTree node) {
        TypeElement elem = TreeUtils.elementFromDeclaration(node);

        for ( ExecutableElement ee : ElementFilter.constructorsIn(elem.getEnclosedElements())) {
            MethodSymbol ms = (MethodSymbol) ee;
            long mod = ms.flags();

            if ((mod & Flags.SYNTHETIC) == 0) {
                return true;
            }
        }
        return false;
    }

    /**
     * Returns true if the tree is of a diamond type.
     * In contrast to the implementation in TreeInfo, this version
     * works on Trees.
     *
     * @see com.sun.tools.javac.tree.TreeInfo#isDiamond(JCTree)
     */
    public static final boolean isDiamondTree(Tree tree) {
        switch (tree.getKind()) {
        case ANNOTATED_TYPE: return isDiamondTree(((AnnotatedTypeTree)tree).getUnderlyingType());
        case PARAMETERIZED_TYPE: return ((ParameterizedTypeTree)tree).getTypeArguments().isEmpty();
        case NEW_CLASS: return isDiamondTree(((NewClassTree)tree).getIdentifier());
        default: return false;
        }
    }

    /**
     * Returns true if the tree represents a {@code String} concatenation
     * operation
     */
    public static final boolean isStringConcatenation(Tree tree) {
        return (tree.getKind() == Tree.Kind.PLUS
                && TypesUtils.isString(InternalUtils.typeOf(tree)));
    }

    /**
     * Returns true if the compound assignment tree is a string concatenation
     */
    public static final boolean isStringCompoundConcatenation(CompoundAssignmentTree tree) {
        return (tree.getKind() == Tree.Kind.PLUS_ASSIGNMENT
                && TypesUtils.isString(InternalUtils.typeOf(tree)));
    }

    /**
     * Returns true if the node is a constant-time expression.
     *
     * A tree is a constant-time expression if it is:
     * <ol>
     * <li>a literal tree
     * <li>a reference to a final variable initialized with a compile time
     *  constant
     * <li>a String concatenation of two compile time constants
     * </ol>
     */
    public static boolean isCompileTimeString(ExpressionTree node) {
        ExpressionTree tree = TreeUtils.skipParens(node);
        if (tree instanceof LiteralTree)
            return true;

        if (TreeUtils.isUseOfElement(tree)) {
            Element elt = TreeUtils.elementFromUse(tree);
            return ElementUtils.isCompileTimeConstant(elt);
        } else if (TreeUtils.isStringConcatenation(tree)) {
            BinaryTree binOp = (BinaryTree) tree;
            return isCompileTimeString(binOp.getLeftOperand())
                && isCompileTimeString(binOp.getRightOperand());
        } else {
            return false;
        }
    }

    /**
     * Returns the receiver tree of a field access or a method invocation
     */
    public static ExpressionTree getReceiverTree(ExpressionTree expression) {
        ExpressionTree receiver = TreeUtils.skipParens(expression);

        if (!(receiver.getKind() == Tree.Kind.METHOD_INVOCATION
                || receiver.getKind() == Tree.Kind.MEMBER_SELECT
                || receiver.getKind() == Tree.Kind.IDENTIFIER
                || receiver.getKind() == Tree.Kind.ARRAY_ACCESS)) {
            // No receiver tree for anything but these four kinds.
            return null;
        }

        if (receiver.getKind() == Tree.Kind.METHOD_INVOCATION) {
            // Trying to handle receiver calls to trees of the form
            //     ((m).getArray())
            // returns the type of 'm' in this case
            receiver = ((MethodInvocationTree)receiver).getMethodSelect();

            if (receiver.getKind() == Tree.Kind.IDENTIFIER) {
                // It's a method call "m(foo)" without an explicit receiver
                return null;
            } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) {
                receiver = ((MemberSelectTree)receiver).getExpression();
            } else {
                // Otherwise, e.g. a NEW_CLASS: nothing to do.
            }
        } else if (receiver.getKind() == Tree.Kind.IDENTIFIER) {
            // It's a field access on implicit this or a local variable/parameter.
            return null;
        } else if (receiver.getKind() == Tree.Kind.ARRAY_ACCESS) {
            return TreeUtils.skipParens(((ArrayAccessTree)receiver).getExpression());
        } else if (receiver.getKind() == Tree.Kind.MEMBER_SELECT) {
            receiver = ((MemberSelectTree)receiver).getExpression();
            // Avoid int.class
            if (receiver instanceof PrimitiveTypeTree) {
                return null;
            }
        }

        // Receiver is now really just the receiver tree.
        return TreeUtils.skipParens(receiver);
    }

    // TODO: What about anonymous classes?
    // Adding Tree.Kind.NEW_CLASS here doesn't work, because then a
    // tree gets cast to ClassTree when it is actually a NewClassTree,
    // for example in enclosingClass above.
    private final static Set<Tree.Kind> classTreeKinds = EnumSet.of(
            Tree.Kind.CLASS,
            Tree.Kind.ENUM,
            Tree.Kind.INTERFACE,
            Tree.Kind.ANNOTATION_TYPE
    );

    public static Set<Tree.Kind> classTreeKinds() {
        return classTreeKinds;
    }

    /**
     * Is the given tree kind a class, i.e. a class, enum,
     * interface, or annotation type.
     *
     * @param tree the tree to test
     * @return true, iff the given kind is a class kind
     */
    public static boolean isClassTree(Tree tree) {
        return classTreeKinds().contains(tree.getKind());
    }

    private final static Set<Tree.Kind> typeTreeKinds = EnumSet.of(
            Tree.Kind.PRIMITIVE_TYPE,
            Tree.Kind.PARAMETERIZED_TYPE,
            Tree.Kind.TYPE_PARAMETER,
            Tree.Kind.ARRAY_TYPE,
            Tree.Kind.UNBOUNDED_WILDCARD,
            Tree.Kind.EXTENDS_WILDCARD,
            Tree.Kind.SUPER_WILDCARD,
            Tree.Kind.ANNOTATED_TYPE
    );

    public static Set<Tree.Kind> typeTreeKinds() {
        return typeTreeKinds;
    }

    /**
     * Is the given tree a type instantiation?
     *
     * TODO: this is an under-approximation: e.g. an identifier could
     * be either a type use or an expression. How can we distinguish.
     *
     * @param tree the tree to test
     * @return true, iff the given tree is a type
     */
    public static boolean isTypeTree(Tree tree) {
        return typeTreeKinds().contains(tree.getKind());
    }

    /**
     * Returns true if the given element is an invocation of the method, or
     * of any method that overrides that one.
     */
    public static boolean isMethodInvocation(Tree tree, ExecutableElement method, ProcessingEnvironment env) {
        if (!(tree instanceof MethodInvocationTree))
            return false;
        MethodInvocationTree methInvok = (MethodInvocationTree)tree;
        ExecutableElement invoked = TreeUtils.elementFromUse(methInvok);
        return isMethod(invoked, method, env);
    }

    /** Returns true if the given element is, or overrides, method. */
    private static boolean isMethod(ExecutableElement questioned, ExecutableElement method, ProcessingEnvironment env) {
        return (questioned.equals(method)
                || env.getElementUtils().overrides(questioned, method,
                        (TypeElement)questioned.getEnclosingElement()));
    }

    /**
     * Returns the ExecutableElement for a method declaration of
     * methodName, in class typeName, with params parameters.
     *
     * TODO: to precisely resolve method overloading, we should use parameter types and not just
     * the number of parameters!
     */
    public static ExecutableElement getMethod(String typeName, String methodName, int params, ProcessingEnvironment env) {
        TypeElement mapElt = env.getElementUtils().getTypeElement(typeName);
        for (ExecutableElement exec : ElementFilter.methodsIn(mapElt.getEnclosedElements())) {
            if (exec.getSimpleName().contentEquals(methodName)
                    && exec.getParameters().size() == params)
                return exec;
        }
        ErrorReporter.errorAbort("TreeUtils.getMethod: shouldn't be here!");
        return null; // dead code
    }

    /**
     * Determine whether the given expression is either "this" or an outer
     * "C.this".
     *
     * TODO: Should this also handle "super"?
     *
     * @param tree
     * @return
     */
    public static final boolean isExplicitThisDereference(ExpressionTree tree) {
        if (tree.getKind() == Tree.Kind.IDENTIFIER
                && ((IdentifierTree)tree).getName().contentEquals("this")) {
            // Explicit this reference "this"
            return true;
        }

        if (tree.getKind() != Tree.Kind.MEMBER_SELECT) {
            return false;
        }

        MemberSelectTree memSelTree = (MemberSelectTree) tree;
        if (memSelTree.getIdentifier().contentEquals("this")) {
            // Outer this reference "C.this"
            return true;
        }
        return false;
    }

    /**
     * Determine whether <code>tree</code> is a field access expressions, such
     * as
     *
     * <pre>
     *   <em>f</em>
     *   <em>obj</em> . <em>f</em>
     * </pre>
     *
     * @return true iff if tree is a field access expression (implicit or
     *         explicit).
     */
    public static boolean isFieldAccess(Tree tree) {
        if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) {
            // explicit field access
            MemberSelectTree memberSelect = (MemberSelectTree) tree;
            Element el = TreeUtils.elementFromUse(memberSelect);
            return el.getKind().isField();
        } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) {
            // implicit field access
            IdentifierTree ident = (IdentifierTree) tree;
            Element el = TreeUtils.elementFromUse(ident);
            return el.getKind().isField()
                    && !ident.getName().contentEquals("this") && !ident.getName().contentEquals("super");
        }
        return false;
    }

    /**
     * Compute the name of the field that the field access <code>tree</code>
     * accesses. Requires <code>tree</code> to be a field access, as determined
     * by <code>isFieldAccess</code>.
     *
     * @return The name of the field accessed by <code>tree</code>.
     */
    public static String getFieldName(Tree tree) {
        assert isFieldAccess(tree);
        if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) {
            MemberSelectTree mtree = (MemberSelectTree) tree;
            return mtree.getIdentifier().toString();
        } else {
            IdentifierTree itree = (IdentifierTree) tree;
            return itree.getName().toString();
        }
    }

    /**
     * Determine whether <code>tree</code> refers to a method element, such
     * as
     *
     * <pre>
     *   <em>m</em>(...)
     *   <em>obj</em> . <em>m</em>(...)
     * </pre>
     *
     * @return true iff if tree is a method access expression (implicit or
     *         explicit).
     */
    public static boolean isMethodAccess(Tree tree) {
        if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) {
            // explicit method access
            MemberSelectTree memberSelect = (MemberSelectTree) tree;
            Element el = TreeUtils.elementFromUse(memberSelect);
            return el.getKind() == ElementKind.METHOD
                    || el.getKind() == ElementKind.CONSTRUCTOR;
        } else if (tree.getKind().equals(Tree.Kind.IDENTIFIER)) {
            // implicit method access
            IdentifierTree ident = (IdentifierTree) tree;
            // The field "super" and "this" are also legal methods
            if (ident.getName().contentEquals("super")
                    || ident.getName().contentEquals("this")) {
                return true;
            }
            Element el = TreeUtils.elementFromUse(ident);
            return el.getKind() == ElementKind.METHOD
                    || el.getKind() == ElementKind.CONSTRUCTOR;
        }
        return false;
    }

    /**
     * Compute the name of the method that the method access <code>tree</code>
     * accesses. Requires <code>tree</code> to be a method access, as determined
     * by <code>isMethodAccess</code>.
     *
     * @return The name of the method accessed by <code>tree</code>.
     */
    public static String getMethodName(Tree tree) {
        assert isMethodAccess(tree);
        if (tree.getKind().equals(Tree.Kind.MEMBER_SELECT)) {
            MemberSelectTree mtree = (MemberSelectTree) tree;
            return mtree.getIdentifier().toString();
        } else {
            IdentifierTree itree = (IdentifierTree) tree;
            return itree.getName().toString();
        }
    }

    /**
     * @return {@code true} if and only if {@code tree} can have a type
     *         annotation.
     *
     * TODO: is this implementation precise enough? E.g. does
     * a .class literal work correctly?
     */
    public static boolean canHaveTypeAnnotation(Tree tree) {
        return ((JCTree) tree).type != null;
    }

    /**
     * Returns true if and only if the given {@code tree} represents a field
     * access of the given {@link VariableElement}.
     */
    public static boolean isSpecificFieldAccess(Tree tree, VariableElement var) {
        if (tree instanceof MemberSelectTree) {
            MemberSelectTree memSel = (MemberSelectTree) tree;
            Element field = TreeUtils.elementFromUse(memSel);
            return field.equals(var);
        } else if (tree instanceof IdentifierTree) {
            IdentifierTree idTree = (IdentifierTree) tree;
            Element field = TreeUtils.elementFromUse(idTree);
            return field.equals(var);
        } else {
            return false;
        }
    }

    /**
     * Returns the VariableElement for a field declaration.
     *
     * @param typeName the class where the field is declared.
     * @param fieldName the name of the field.
     * @param env the processing environment.
     * @return the VariableElement for typeName.fieldName
     */
    public static VariableElement getField(String typeName, String fieldName, ProcessingEnvironment env) {
        TypeElement mapElt = env.getElementUtils().getTypeElement(typeName);
        for (VariableElement var : ElementFilter.fieldsIn(mapElt.getEnclosedElements())) {
            if (var.getSimpleName().contentEquals(fieldName)) {
                return var;
            }
        }
        ErrorReporter.errorAbort("TreeUtils.getField: shouldn't be here!");
        return null; // dead code
    }

    /** Determine whether the given tree represents an ExpressionTree.
     *
     * TODO: is there a nicer way than an instanceof?
     *
     * @param tree the Tree to test.
     * @return whether the tree is an ExpressionTree
     */
    public static boolean isExpressionTree(Tree tree) {
        return tree instanceof ExpressionTree;
    }

    /**
     * @param node the method invocation to check
     * @return true if this is a super call to the {@link Enum} constructor
     */
    public static boolean isEnumSuper(MethodInvocationTree node) {
        ExecutableElement ex = TreeUtils.elementFromUse(node);
        Name name = ElementUtils.getQualifiedClassName(ex);
        boolean correctClass = "java.lang.Enum".contentEquals(name);
        boolean correctMethod = "<init>".contentEquals(ex.getSimpleName());
        return correctClass && correctMethod;
    }

    /** Determine whether the given tree represents a declaration of a type
     * (including type parameters).
     *
     * @param node  the Tree to test
     * @return true if the tree is a type declaration
     */
    public static boolean isTypeDeclaration(Tree node) {
        switch (node.getKind()) {
            // These tree kinds are always declarations.  Uses of the declared
            // types have tree kind IDENTIFIER.
            case ANNOTATION_TYPE:
            case CLASS:
            case ENUM:
            case INTERFACE:
            case TYPE_PARAMETER:
                return true;

            default:
                return false;
        }
    }
}