aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/main/java/com/google/devtools/build/lib/runtime/CriticalPathComputer.java
blob: f53495cd40410db0f4a0a831e6b862f5a7025f6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright 2014 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package com.google.devtools.build.lib.runtime;

import com.google.common.collect.ImmutableList;
import com.google.common.collect.Maps;
import com.google.common.eventbus.Subscribe;
import com.google.devtools.build.lib.actions.Action;
import com.google.devtools.build.lib.actions.ActionCompletionEvent;
import com.google.devtools.build.lib.actions.ActionMiddlemanEvent;
import com.google.devtools.build.lib.actions.ActionStartedEvent;
import com.google.devtools.build.lib.actions.Actions;
import com.google.devtools.build.lib.actions.Artifact;
import com.google.devtools.build.lib.actions.CachedActionEvent;
import com.google.devtools.build.lib.util.Clock;
import com.google.devtools.build.lib.util.Preconditions;

import java.util.ArrayList;
import java.util.Collections;
import java.util.Comparator;
import java.util.PriorityQueue;
import java.util.concurrent.ConcurrentMap;

import javax.annotation.concurrent.ThreadSafe;

/**
 * Computes the critical path in the action graph based on events published to the event bus.
 *
 * <p>After instantiation, this object needs to be registered on the event bus to work.
 */
@ThreadSafe
public abstract class CriticalPathComputer<C extends AbstractCriticalPathComponent<C>,
                                           A extends AggregatedCriticalPath<C>> {

  /** Number of top actions to record. */
  static final int SLOWEST_COMPONENTS_SIZE = 30;
  // outputArtifactToComponent is accessed from multiple event handlers.
  protected final ConcurrentMap<Artifact, C> outputArtifactToComponent = Maps.newConcurrentMap();

  /** Maximum critical path found. */
  private C maxCriticalPath;
  private final Clock clock;

  /**
   * The list of slowest individual components, ignoring the time to build dependencies.
   *
   * <p>This data is a useful metric when running non highly incremental builds, where multiple
   * tasks could run un parallel and critical path would only record the longest path.
   */
  private final PriorityQueue<C> slowestComponents = new PriorityQueue<>(SLOWEST_COMPONENTS_SIZE,
      new Comparator<C>() {
        @Override
        public int compare(C o1, C o2) {
          return Long.compare(o1.getElapsedTimeNanos(), o2.getElapsedTimeNanos());
        }
      }
  );

  private final Object lock = new Object();

  protected CriticalPathComputer(Clock clock) {
    this.clock = clock;
    maxCriticalPath = null;
  }

  /**
   * Creates a critical path component for an action.
   * @param action the action for the critical path component
   * @param relativeStartNanos time when the action started to run in nanos. Only mean to be used
   * for computing time differences.
   */
  protected abstract C createComponent(Action action, long relativeStartNanos);

  /**
   * Return the critical path stats for the current command execution.
   *
   * <p>This method allows us to calculate lazily the aggregate statistics of the critical path,
   * avoiding the memory and cpu penalty for doing it for all the actions executed.
   */
  public abstract A aggregate();

  /**
   * Record an action that has started to run.
   *
   * @param event information about the started action
   */
  @Subscribe
  public void actionStarted(ActionStartedEvent event) {
    Action action = event.getAction();
    tryAddComponent(createComponent(action, event.getNanoTimeStart()));
  }

  /**
   * Record a middleman action execution. Even if middleman are almost instant, we record them
   * because they depend on other actions and we need them for constructing the critical path.
   *
   * <p>For some rules with incorrect configuration transitions we might get notified several times
   * for the same middleman. This should only happen if the actions are shared.
   */
  @Subscribe
  public void middlemanAction(ActionMiddlemanEvent event) {
    Action action = event.getAction();
    C component = tryAddComponent(createComponent(action, event.getNanoTimeStart()));
    finalizeActionStat(event.getNanoTimeStart(), action, component);
  }

  /**
   * Try to add the component to the map of critical path components. If there is an existing
   * component for its primary output it uses that to update the rest of the outputs.
   *
   * @return The component to be used for updating the time stats.
   */
  private C tryAddComponent(C newComponent) {
    Action newAction = newComponent.getAction();
    Artifact primaryOutput = newAction.getPrimaryOutput();
    C storedComponent = outputArtifactToComponent.putIfAbsent(primaryOutput, newComponent);

    if (storedComponent != null) {
      if (!Actions.canBeShared(newAction, storedComponent.getAction())) {
        throw new IllegalStateException("Duplicate output artifact found for unsharable actions."
            + "This could happen  if a previous event registered the action.\n"
            + "Old action: " + storedComponent.getAction() + "\n\n"
            + "New action: " + newAction + "\n\n"
            + "Artifact: " + primaryOutput + "\n");
      }
    } else {
      storedComponent = newComponent;
    }
    // Try to insert the existing component for the rest of the outputs even if we failed to be
    // the ones inserting the component so that at the end of this method we guarantee that all the
    // outputs have a component.
    for (Artifact output : newAction.getOutputs()) {
      if (output == primaryOutput) {
        continue;
      }
      C old = outputArtifactToComponent.putIfAbsent(output, storedComponent);
      // If two actions run concurrently maybe we find a component by primary output but we are
      // the first updating the rest of the outputs.
      Preconditions.checkState(old == null || old == storedComponent,
          "Inconsistent state for %s", newAction);
    }
    return storedComponent;
  }

  /**
   * Record an action that was not executed because it was in the (disk) cache. This is needed so
   * that we can calculate correctly the dependencies tree if we have some cached actions in the
   * middle of the critical path.
   */
  @Subscribe
  public void actionCached(CachedActionEvent event) {
    Action action = event.getAction();
    C component = tryAddComponent(createComponent(action, event.getNanoTimeStart()));
    finalizeActionStat(event.getNanoTimeStart(), action, component);
  }

  /**
   * Records the elapsed time stats for the action. For each input artifact, it finds the real
   * dependent artifacts and records the critical path stats.
   */
  @Subscribe
  public void actionComplete(ActionCompletionEvent event) {
    Action action = event.getAction();
    C component = Preconditions.checkNotNull(
        outputArtifactToComponent.get(action.getPrimaryOutput()));
    finalizeActionStat(event.getRelativeActionStartTime(), action, component);
  }

  /** Maximum critical path component found during the build. */
  protected C getMaxCriticalPath() {
    synchronized (lock) {
      return maxCriticalPath;
    }
  }

  /**
   * The list of slowest individual components, ignoring the time to build dependencies.
   */
  public ImmutableList<C> getSlowestComponents() {
    ArrayList<C> list;
    synchronized (lock) {
      list = new ArrayList<>(slowestComponents);
      Collections.sort(list, slowestComponents.comparator());
    }
    return ImmutableList.copyOf(list).reverse();
  }

  private void finalizeActionStat(long startTimeNanos, Action action, C component) {
    boolean updated = component.finishActionExecution(startTimeNanos, clock.nanoTime());

    for (Artifact input : action.getInputs()) {
      addArtifactDependency(component, input);
    }

    synchronized (lock) {
      if (isBiggestCriticalPath(component)) {
        maxCriticalPath = component;
      }

      // We do not want to fill slow components list with the same component.
      //
      // This might still insert a second copy of the component but only if the new self elapsed
      // time is greater than the old time. That said, in practice this is not important, since
      // this would happen when we have two concurrent shared actions and one is a cache hit
      // because of the other one. In this case, the cache hit would not appear in the 30 slowest
      // actions or we had a very fast build, so we do not care :).
      if (updated) {
        if (slowestComponents.size() == SLOWEST_COMPONENTS_SIZE) {
          // The new component is faster than any of the slow components, avoid insertion.
          if (slowestComponents.peek().getElapsedTimeNanos() >= component.getElapsedTimeNanos()) {
            return;
          }
          // Remove the head element to make space (The fastest component in the queue).
          slowestComponents.remove();
        }
        slowestComponents.add(component);
      }
    }
  }

  private boolean isBiggestCriticalPath(C newCriticalPath) {
    synchronized (lock) {
      return maxCriticalPath == null
          || maxCriticalPath.getAggregatedElapsedTimeMillis()
          < newCriticalPath.getAggregatedElapsedTimeMillis();
    }
  }

  /**
   * If "input" is a generated artifact, link its critical path to the one we're building.
   */
  private void addArtifactDependency(C actionStats, Artifact input) {
    C depComponent = outputArtifactToComponent.get(input);
    if (depComponent != null) {
      actionStats.addDepInfo(depComponent);
    }
  }
}