aboutsummaryrefslogtreecommitdiffhomepage
path: root/src/main/java/com/google/devtools/build/lib/packages/AggregatingAttributeMapper.java
blob: 454cd71bf96c8ff198497dae1d0a53d0793e987b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// Copyright 2014 The Bazel Authors. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package com.google.devtools.build.lib.packages;

import static com.google.devtools.build.lib.packages.BuildType.DISTRIBUTIONS;
import static com.google.devtools.build.lib.packages.BuildType.FILESET_ENTRY_LIST;
import static com.google.devtools.build.lib.packages.BuildType.LABEL;
import static com.google.devtools.build.lib.packages.BuildType.LABEL_DICT_UNARY;
import static com.google.devtools.build.lib.packages.BuildType.LABEL_LIST;
import static com.google.devtools.build.lib.packages.BuildType.LICENSE;
import static com.google.devtools.build.lib.packages.BuildType.NODEP_LABEL;
import static com.google.devtools.build.lib.packages.BuildType.NODEP_LABEL_LIST;
import static com.google.devtools.build.lib.packages.BuildType.OUTPUT;
import static com.google.devtools.build.lib.packages.BuildType.OUTPUT_LIST;
import static com.google.devtools.build.lib.packages.BuildType.TRISTATE;
import static com.google.devtools.build.lib.syntax.Type.BOOLEAN;
import static com.google.devtools.build.lib.syntax.Type.INTEGER;
import static com.google.devtools.build.lib.syntax.Type.INTEGER_LIST;
import static com.google.devtools.build.lib.syntax.Type.STRING;
import static com.google.devtools.build.lib.syntax.Type.STRING_DICT;
import static com.google.devtools.build.lib.syntax.Type.STRING_DICT_UNARY;
import static com.google.devtools.build.lib.syntax.Type.STRING_LIST;
import static com.google.devtools.build.lib.syntax.Type.STRING_LIST_DICT;

import com.google.common.base.Verify;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableList.Builder;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableSet;
import com.google.common.collect.Iterables;
import com.google.common.collect.Lists;
import com.google.devtools.build.lib.cmdline.Label;
import com.google.devtools.build.lib.collect.CollectionUtils;
import com.google.devtools.build.lib.packages.BuildType.Selector;
import com.google.devtools.build.lib.packages.BuildType.SelectorList;
import com.google.devtools.build.lib.syntax.Type;
import com.google.devtools.build.lib.util.Preconditions;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.LinkedHashSet;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import javax.annotation.Nullable;

/**
 * {@link AttributeMap} implementation that provides the ability to retrieve <i>all possible</i>
 * values an attribute might take.
 */
public class AggregatingAttributeMapper extends AbstractAttributeMapper {

  @SuppressWarnings("unchecked")
  private static final ImmutableSet<Type<?>> scalarTypes =
      ImmutableSet.of(INTEGER, STRING, LABEL, NODEP_LABEL, OUTPUT, BOOLEAN, TRISTATE, LICENSE);

  /**
   * Store for all of this rule's attributes that are non-configurable. These are
   * unconditionally  available to computed defaults no matter what dependencies
   * they've declared.
   */
  private final List<String> nonConfigurableAttributes;

  private AggregatingAttributeMapper(Rule rule) {
    super(rule.getPackage(), rule.getRuleClassObject(), rule.getLabel(),
        rule.getAttributeContainer());

    nonConfigurableAttributes = rule.getRuleClassObject().getNonConfigurableAttributes();
  }

  public static AggregatingAttributeMapper of(Rule rule) {
    return new AggregatingAttributeMapper(rule);
  }

  /**
   * Override that also visits the rule's configurable attribute keys (which are
   * themselves labels).
   *
   * <p>Note that we directly parse the selectors rather than just calling {@link #visitAttribute}
   * to iterate over all possible values. That's because {@link #visitAttribute} can grow
   * exponentially with respect to the number of selects (e.g. if an attribute uses three selects
   * with three conditions each, it can take nine possible values). So we want to avoid that code
   * path whenever actual value iteration isn't specifically needed.
   */
  @Override
  protected void visitLabels(Attribute attribute, AcceptsLabelAttribute observer) {
    visitLabels(attribute, true, observer);
  }

  private void visitLabels(Attribute attribute, boolean includeSelectKeys,
    AcceptsLabelAttribute observer) {
    Type<?> type = attribute.getType();
    SelectorList<?> selectorList = getSelectorList(attribute.getName(), type);
    if (selectorList == null) {
      if (getComputedDefault(attribute.getName(), attribute.getType()) != null) {
        // Computed defaults are a special pain: we have no choice but to iterate through their
        // (computed) values and look for labels.
        for (Object value : visitAttribute(attribute.getName(), attribute.getType())) {
          if (value != null) {
            for (Label label : extractLabels(type, value)) {
              observer.acceptLabelAttribute(getLabel().resolveRepositoryRelative(label), attribute);
            }
          }
        }
      } else {
        super.visitLabels(attribute, observer);
      }
    } else {
      for (Selector<?> selector : selectorList.getSelectors()) {
        for (Map.Entry<Label, ?> selectorEntry : selector.getEntries().entrySet()) {
          if (includeSelectKeys && !BuildType.Selector.isReservedLabel(selectorEntry.getKey())) {
            observer.acceptLabelAttribute(
                getLabel().resolveRepositoryRelative(selectorEntry.getKey()), attribute);
          }
          Object value = selector.isValueSet(selectorEntry.getKey())
              ? selectorEntry.getValue()
              : attribute.getDefaultValue(null);
          for (Label label : extractLabels(type, value)) {
            observer.acceptLabelAttribute(getLabel().resolveRepositoryRelative(label), attribute);
          }
        }
      }
    }
  }

  /**
   * Returns all labels reachable via the given attribute. If a label is listed multiple times,
   * each instance appears in the returned list.
   *
   * @param includeSelectKeys whether to include config_setting keys for configurable attributes
   */
  public List<Label> getReachableLabels(String attributeName, boolean includeSelectKeys) {
    final ImmutableList.Builder<Label> builder = ImmutableList.builder();
    visitLabels(getAttributeDefinition(attributeName), includeSelectKeys,
        new AcceptsLabelAttribute() {
          @Override
          public void acceptLabelAttribute(Label label, Attribute attribute) {
            builder.add(label);
          }
        });
    return builder.build();
  }

  /**
   * Returns the labels that might appear multiple times in the same attribute value.
   */
  public Set<Label> checkForDuplicateLabels(Attribute attribute) {
    String attrName = attribute.getName();
    Type<?> attrType = attribute.getType();
    ImmutableSet.Builder<Label> duplicates = ImmutableSet.builder();

    SelectorList<?> selectorList = getSelectorList(attribute.getName(), attrType);
    if (selectorList == null || selectorList.getSelectors().size() == 1) {
      // Three possible scenarios:
      //  1) Plain old attribute (no selects). Without selects, visitAttribute runs efficiently.
      //  2) Computed default, possibly depending on other attributes using select. In this case,
      //     visitAttribute might be inefficient. But we have no choice but to iterate over all
      //     possible values (since we have to compute them), so we take the efficiency hit.
      //  3) "attr = select({...})". With just a single select, visitAttribute runs efficiently.
      for (Object value : visitAttribute(attrName, attrType)) {
        if (value != null) {
          duplicates.addAll(CollectionUtils.duplicatedElementsOf(
              ImmutableList.copyOf(extractLabels(attrType, value))));
        }
      }
    } else {
      // Multiple selects concatenated together. It's expensive to iterate over every possible
      // value, so instead collect all labels across all the selects and check for duplicates.
      // This is overly strict, since this counts duplicates across values. We can presumably
      // relax this if necessary, but doing so would incur the value iteration expense this
      // code path avoids.
      List<Label> combinedLabels = new LinkedList<>(); // Labels that appear across all selectors.
      for (Selector<?> selector : selectorList.getSelectors()) {
        // Labels within a single selector. It's okay for there to be duplicates as long as
        // they're in different selector paths (since only one path can actually get chosen).
        Set<Label> selectorLabels = new LinkedHashSet<>();
        for (Object selectorValue : selector.getEntries().values()) {
          Iterable<Label> labelsInSelectorValue = extractLabels(attrType, selectorValue);
          // Duplicates within a single path are not okay.
          duplicates.addAll(CollectionUtils.duplicatedElementsOf(labelsInSelectorValue));
          Iterables.addAll(selectorLabels, labelsInSelectorValue);
        }
        combinedLabels.addAll(selectorLabels);
      }
      duplicates.addAll(CollectionUtils.duplicatedElementsOf(combinedLabels));
    }

    return duplicates.build();
  }

  /**
   * Returns a list of the possible values of the specified attribute in the specified rule.
   *
   * <p>If the attribute's value is a simple value, then this returns a singleton list of that
   * value.
   *
   * <p>If the attribute's value is an expression containing one or many {@code select(...)}
   * expressions, then this returns a list of all values that expression may evaluate to.
   *
   * <p>If the attribute does not have an explicit value for this rule, and the rule provides a
   * computed default, the computed default function is evaluated given the rule's other attribute
   * values as inputs and the output is returned in a singleton list.
   *
   * <p>If the attribute does not have an explicit value for this rule, and the rule provides a
   * computed default, and the computed default function depends on other attributes whose values
   * contain {@code select(...)} expressions, then the computed default function is evaluated for
   * every possible combination of input values, and the list of outputs is returned.
   */
  public Iterable<Object> getPossibleAttributeValues(Rule rule, Attribute attr) {
    // Values may be null, so use normal collections rather than immutable collections.
    // This special case for the visibility attribute is needed because its value is replaced
    // with an empty list during package loading if it is public or private in order not to visit
    // the package called 'visibility'.
    if (attr.getName().equals("visibility")) {
      List<Object> result = new ArrayList<>(1);
      result.add(rule.getVisibility().getDeclaredLabels());
      return result;
    }
    return Lists.<Object>newArrayList(visitAttribute(attr.getName(), attr.getType()));
  }

  /**
   * Coerces the list {@param possibleValues} of values of type {@param attrType} to a single
   * value of that type, in the following way:
   *
   * <p>If the list contains a single value, return that value.
   *
   * <p>If the list contains zero or multiple values and the type is a scalar type, return {@code
   * null}.
   *
   * <p>If the list contains zero or multiple values and the type is a collection or map type,
   * merge the collections/maps in the list and return the merged collection/map.
   */
  @Nullable
  @SuppressWarnings("unchecked")
  public static Object flattenAttributeValues(Type<?> attrType, Iterable<Object> possibleValues) {
    // If there is only one possible value, return it.
    if (Iterables.size(possibleValues) == 1) {
      return Iterables.getOnlyElement(possibleValues);
    }

    // Otherwise, there are multiple possible values. To conform to the message shape expected by
    // query output's clients, we must transform the list of possible values. This transformation
    // will be lossy, but this is the best we can do.

    // If the attribute's type is not a collection type, return null. Query output's clients do
    // not support list values for scalar attributes.
    if (scalarTypes.contains(attrType)) {
      return null;
    }

    // If the attribute's type is a collection type, merge the list of collections into a single
    // collection. This is a sensible solution for query output's clients, which are happy to get
    // the union of possible values.
    if (attrType == STRING_LIST
        || attrType == LABEL_LIST
        || attrType == NODEP_LABEL_LIST
        || attrType == OUTPUT_LIST
        || attrType == DISTRIBUTIONS
        || attrType == INTEGER_LIST
        || attrType == FILESET_ENTRY_LIST) {
      Builder<Object> builder = ImmutableList.builder();
      for (Object possibleValue : possibleValues) {
        Collection<Object> collection = (Collection<Object>) possibleValue;
        for (Object o : collection) {
          builder.add(o);
        }
      }
      return builder.build();
    }

    // Same for maps as for collections.
    if (attrType == STRING_DICT
        || attrType == STRING_DICT_UNARY
        || attrType == STRING_LIST_DICT
        || attrType == LABEL_DICT_UNARY) {
      Map<Object, Object> mergedDict = new HashMap<>();
      for (Object possibleValue : possibleValues) {
        Map<Object, Object> stringDict = (Map<Object, Object>) possibleValue;
        for (Entry<Object, Object> entry : stringDict.entrySet()) {
          mergedDict.put(entry.getKey(), entry.getValue());
        }
      }
      return mergedDict;
    }

    throw new AssertionError("Unknown type: " + attrType);
  }

  /**
   * Returns a list of all possible values an attribute can take for this rule.
   *
   * <p>Note that when an attribute uses multiple selects, or is a {@link Attribute.ComputedDefault}
   * that depends on configurable attributes, it can potentially take on many values. So be cautious
   * about unnecessarily relying on this method.
   */
  public <T> Iterable<T> visitAttribute(String attributeName, Type<T> type) {
    // If this attribute value is configurable, visit all possible values.
    SelectorList<T> selectorList = getSelectorList(attributeName, type);
    if (selectorList != null) {
      ImmutableList.Builder<T> builder = ImmutableList.builder();
      visitConfigurableAttribute(selectorList.getSelectors(), new BoundSelectorPaths(), type,
          null, builder);
      return builder.build();
    }

    // If this attribute is a computed default, feed it all possible value combinations of
    // its declared dependencies and return all computed results. For example, if this default
    // uses attributes x and y, x can configurably be x1 or x2, and y can configurably be y1
    // or y1, then compute default values for the (x1,y1), (x1,y2), (x2,y1), and (x2,y2) cases.
    Attribute.ComputedDefault computedDefault = getComputedDefault(attributeName, type);
    if (computedDefault != null) {
      // The depMaps list holds every assignment of possible values to the computed default's
      // declared possibly-configurable dependencies.
      List<Map<String, Object>> depMaps = visitAttributes(computedDefault.dependencies());

      List<T> possibleValues = new ArrayList<>(); // Not ImmutableList.Builder: values may be null.
      // For each combination, call getDefault on a specialized AttributeMap providing those values.
      for (Map<String, Object> depMap : depMaps) {
        possibleValues.add(type.cast(computedDefault.getDefault(mapBackedAttributeMap(depMap))));
      }
      return possibleValues;
    }

    // For any other attribute, just return its direct value.
    T value = get(attributeName, type);
    return value == null ? ImmutableList.<T>of() : ImmutableList.of(value);
  }

  /**
   * Determines all possible values a configurable attribute can take. Do not call this method
   * unless really necessary (see TODO comment inside).
   *
   * @param selectors the selectors that make up this attribute assignment (in order)
   * @param boundSelectorPaths paths that have already been chosen from previous selectors in an
   *     earlier recursive call of this method. For example, given
   *     <pre>cmd = select({':a': 'w', ':b': 'x'}) + select({':a': 'y', ':b': 'z'})</pre>
   *     the only possible values for <code>cmd</code> are <code>"wy"</code> and <code>"xz"</code>.
   *     This is because the selects have the same conditions, so whatever matches the first also
   *     matches the second. Note that this doesn't work for selects with overlapping but
   *     <i>different</i> key sets. That's because of key specialization (see
   *     {@link com.google.devtools.build.lib.analysis.ConfiguredAttributeMapper} - if the
   *     second select also included a condition <code>':c'</code> that includes both the flags
   *     in <code>':a'</code> and <code>':b'</code>, <code>':c'</code> would be chosen over
   *     them both.
   * @param type the type of this attribute
   * @param currentValueSoFar the partial value produced so far from earlier calls to this method
   * @param valuesBuilder output container for full values this attribute can take
   */
  private <T> void visitConfigurableAttribute(List<Selector<T>> selectors,
      BoundSelectorPaths boundSelectorPaths, Type<T> type, T currentValueSoFar,
      ImmutableList.Builder<T> valuesBuilder) {
    // TODO(bazel-team): minimize or eliminate uses of this interface. It necessarily grows
    // exponentially with the number of selects in the attribute. Is that always necessary?
    // For example, dependency resolution just needs to know every possible label an attribute
    // might reference, but it doesn't need to know the exact combination of labels that make
    // up a value. This may be even less important for non-label values (e.g. strings), which
    // have no impact on the dependency structure.

    if (selectors.isEmpty()) {
      if (currentValueSoFar != null) {
        // Null values arise when a None is used as the value of a Selector for a type without a
        // default value.
        // TODO(gregce): visitAttribute should probably convey that an unset attribute is possible.
        // Therefore we need to actually handle null values here.
        valuesBuilder.add(currentValueSoFar);
      }
    } else {
      Selector<T> firstSelector = selectors.get(0);
      List<Selector<T>> remainingSelectors = selectors.subList(1, selectors.size());

      Map<Label, T> firstSelectorEntries = firstSelector.getEntries();
      Label boundKey = boundSelectorPaths.getChosenKey(firstSelectorEntries.keySet());
      if (boundKey != null) {
        // If we've already followed some path from a previous selector with the same exact
        // conditions as this one, we only need to visit that path (since the same key will
        // match both selectors).
        T boundValue = firstSelectorEntries.get(boundKey);
        visitConfigurableAttribute(remainingSelectors, boundSelectorPaths, type,
                    currentValueSoFar == null
                        ? boundValue
                        : type.concat(ImmutableList.of(currentValueSoFar, boundValue)),
                    valuesBuilder);
      } else {
        // Otherwise, we need to iterate over all possible paths.
        for (Map.Entry<Label, T> selectorBranch : firstSelectorEntries.entrySet()) {
          // Bind this particular path for later selectors using the same conditions.
          boundSelectorPaths.bind(firstSelectorEntries.keySet(), selectorBranch.getKey());
          visitConfigurableAttribute(remainingSelectors, boundSelectorPaths, type,
              currentValueSoFar == null
                  ? selectorBranch.getValue()
                  : type.concat(ImmutableList.of(currentValueSoFar, selectorBranch.getValue())),
              valuesBuilder);
          // Unbind the path (so when we pop back up the recursive stack we can rebind it to new
          // values if we visit this selector again).
          boundSelectorPaths.unbind(firstSelectorEntries.keySet());
        }
      }
    }
  }

  /**
   * Helper class for {@link #visitConfigurableAttribute}. See that method's comments for more
   * details.
   */
  private static class BoundSelectorPaths {
    private final Map<Set<Label>, Label> bindings = new HashMap<>();

    /**
     * Binds the given config key set to the specified path. There should be no previous binding
     * for this key set.
     */
    public void bind(Set<Label> allKeys, Label chosenKey) {
      Preconditions.checkState(allKeys.contains(chosenKey));
      Verify.verify(bindings.put(allKeys, chosenKey) == null);
    }

    /**
     * Unbinds the given config key set.
     */
    public void unbind(Set<Label> allKeys) {
      Verify.verifyNotNull(bindings.remove(allKeys));
    }

    /**
     * Returns the key this config key set is bound to or null if no binding.
     */
    public Label getChosenKey(Set<Label> allKeys) {
      return bindings.get(allKeys);
    }
  }

  /**
   * Given a list of attributes, creates an {attrName -> attrValue} map for every possible
   * combination of those attributes' values and returns a list of all the maps.
   *
   * <p>For example, given attributes x and y, which respectively have possible values x1, x2 and
   * y1, y2, this returns:
   *
   * <pre>
   *   [
   *    {x: x1, y: y1},
   *    {x: x1, y: y2},
   *    {x: x2, y: y1},
   *    {x: x2, y: y2}
   *   ]
   * </pre>
   *
   * <p>This uses time and space exponential on the number of inputs. To guard against misuse,
   * {@code attributes.size()} must be two or less.
   */
  private List<Map<String, Object>> visitAttributes(List<String> attributes) {
    Preconditions.checkState(attributes.size() <= 2);
    List<Map<String, Object>> depMaps = new LinkedList<>();
    visitAttributesInner(attributes, depMaps, ImmutableMap.<String, Object>of());
    return depMaps;
  }

  /**
   * A recursive function used in the implementation of {@link #visitAttributes(List)}.
   *
   * @param attributes a list of attributes that are not yet assigned values in the {@code
   *     currentMap} parameter.
   * @param mappings a mutable list of {attrName --> attrValue} maps collected so far. This method
   *     will add newly discovered maps to the list.
   * @param currentMap a (possibly non-empty) map holding {attrName --> attrValue} assignments for
   *     attributes not in the {@code attributes} list.
   */
  private void visitAttributesInner(
      List<String> attributes, List<Map<String, Object>> mappings, Map<String, Object> currentMap) {
    if (attributes.isEmpty()) {
      // Recursive base case: store whatever's already been populated in currentMap.
      mappings.add(currentMap);
      return;
    }

    // Take the first attribute in the dependency list and iterate over all its values. For each
    // value x, copy currentMap with the additional entry { firstAttrName: x }, then feed
    // this recursively into a subcall over all remaining dependencies. This recursively
    // continues until we run out of values.
    String firstAttribute = attributes.get(0);
    Iterable<?> firstAttributePossibleValues =
        visitAttribute(firstAttribute, getAttributeType(firstAttribute));
    for (Object value : firstAttributePossibleValues) {
      Map<String, Object> newMap = new HashMap<>();
      newMap.putAll(currentMap);
      newMap.put(firstAttribute, value);
      visitAttributesInner(attributes.subList(1, attributes.size()), mappings, newMap);
    }
  }

  /**
   * Returns an {@link AttributeMap} that delegates to {@code AggregatingAttributeMapper.this}
   * except for {@link #get} calls for attributes that are configurable. In that case, the {@link
   * AttributeMap} looks up an attribute's value in {@code directMap}. Any attempt to {@link #get} a
   * configurable attribute that's not in {@code directMap} causes an {@link
   * IllegalArgumentException} to be thrown.
   */
  private AttributeMap mapBackedAttributeMap(final Map<String, Object> directMap) {
    final AggregatingAttributeMapper owner = AggregatingAttributeMapper.this;
    return new AttributeMap() {

      @Override
      public <T> T get(String attributeName, Type<T> type) {
        owner.checkType(attributeName, type);
        if (nonConfigurableAttributes.contains(attributeName)) {
          return owner.get(attributeName, type);
        }
        if (!directMap.containsKey(attributeName)) {
          throw new IllegalArgumentException("attribute \"" + attributeName
              + "\" isn't available in this computed default context");
        }
        return type.cast(directMap.get(attributeName));
      }

      @Override
      public <T> boolean isConfigurable(String attributeName, Type<T> type) {
        return owner.isConfigurable(attributeName, type);
      }

      @Override public String getName() { return owner.getName(); }
      @Override public Label getLabel() { return owner.getLabel(); }
      @Override public Iterable<String> getAttributeNames() {
        return ImmutableList.<String>builder()
            .addAll(directMap.keySet()).addAll(nonConfigurableAttributes).build();
      }
      @Override
      public void visitLabels(AcceptsLabelAttribute observer) { owner.visitLabels(observer); }
      @Override
      public String getPackageDefaultHdrsCheck() { return owner.getPackageDefaultHdrsCheck(); }
      @Override
      public Boolean getPackageDefaultTestOnly() { return owner.getPackageDefaultTestOnly(); }
      @Override
      public String getPackageDefaultDeprecation() { return owner.getPackageDefaultDeprecation(); }
      @Override
      public ImmutableList<String> getPackageDefaultCopts() {
        return owner.getPackageDefaultCopts();
      }
      @Nullable @Override
      public Type<?> getAttributeType(String attrName) { return owner.getAttributeType(attrName); }
      @Nullable @Override  public Attribute getAttributeDefinition(String attrName) {
        return owner.getAttributeDefinition(attrName);
      }
      @Override public boolean isAttributeValueExplicitlySpecified(String attributeName) {
        return owner.isAttributeValueExplicitlySpecified(attributeName);
      }
      @Override
      public boolean has(String attrName, Type<?> type) { return owner.has(attrName, type); }
    };
  }
}