aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/protobuf/src/google/protobuf/io/coded_stream.h
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/protobuf/src/google/protobuf/io/coded_stream.h')
-rw-r--r--third_party/protobuf/src/google/protobuf/io/coded_stream.h1293
1 files changed, 0 insertions, 1293 deletions
diff --git a/third_party/protobuf/src/google/protobuf/io/coded_stream.h b/third_party/protobuf/src/google/protobuf/io/coded_stream.h
deleted file mode 100644
index 2da096c5c8..0000000000
--- a/third_party/protobuf/src/google/protobuf/io/coded_stream.h
+++ /dev/null
@@ -1,1293 +0,0 @@
-// Protocol Buffers - Google's data interchange format
-// Copyright 2008 Google Inc. All rights reserved.
-// https://developers.google.com/protocol-buffers/
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// Author: kenton@google.com (Kenton Varda)
-// Based on original Protocol Buffers design by
-// Sanjay Ghemawat, Jeff Dean, and others.
-//
-// This file contains the CodedInputStream and CodedOutputStream classes,
-// which wrap a ZeroCopyInputStream or ZeroCopyOutputStream, respectively,
-// and allow you to read or write individual pieces of data in various
-// formats. In particular, these implement the varint encoding for
-// integers, a simple variable-length encoding in which smaller numbers
-// take fewer bytes.
-//
-// Typically these classes will only be used internally by the protocol
-// buffer library in order to encode and decode protocol buffers. Clients
-// of the library only need to know about this class if they wish to write
-// custom message parsing or serialization procedures.
-//
-// CodedOutputStream example:
-// // Write some data to "myfile". First we write a 4-byte "magic number"
-// // to identify the file type, then write a length-delimited string. The
-// // string is composed of a varint giving the length followed by the raw
-// // bytes.
-// int fd = open("myfile", O_CREAT | O_WRONLY);
-// ZeroCopyOutputStream* raw_output = new FileOutputStream(fd);
-// CodedOutputStream* coded_output = new CodedOutputStream(raw_output);
-//
-// int magic_number = 1234;
-// char text[] = "Hello world!";
-// coded_output->WriteLittleEndian32(magic_number);
-// coded_output->WriteVarint32(strlen(text));
-// coded_output->WriteRaw(text, strlen(text));
-//
-// delete coded_output;
-// delete raw_output;
-// close(fd);
-//
-// CodedInputStream example:
-// // Read a file created by the above code.
-// int fd = open("myfile", O_RDONLY);
-// ZeroCopyInputStream* raw_input = new FileInputStream(fd);
-// CodedInputStream coded_input = new CodedInputStream(raw_input);
-//
-// coded_input->ReadLittleEndian32(&magic_number);
-// if (magic_number != 1234) {
-// cerr << "File not in expected format." << endl;
-// return;
-// }
-//
-// uint32 size;
-// coded_input->ReadVarint32(&size);
-//
-// char* text = new char[size + 1];
-// coded_input->ReadRaw(buffer, size);
-// text[size] = '\0';
-//
-// delete coded_input;
-// delete raw_input;
-// close(fd);
-//
-// cout << "Text is: " << text << endl;
-// delete [] text;
-//
-// For those who are interested, varint encoding is defined as follows:
-//
-// The encoding operates on unsigned integers of up to 64 bits in length.
-// Each byte of the encoded value has the format:
-// * bits 0-6: Seven bits of the number being encoded.
-// * bit 7: Zero if this is the last byte in the encoding (in which
-// case all remaining bits of the number are zero) or 1 if
-// more bytes follow.
-// The first byte contains the least-significant 7 bits of the number, the
-// second byte (if present) contains the next-least-significant 7 bits,
-// and so on. So, the binary number 1011000101011 would be encoded in two
-// bytes as "10101011 00101100".
-//
-// In theory, varint could be used to encode integers of any length.
-// However, for practicality we set a limit at 64 bits. The maximum encoded
-// length of a number is thus 10 bytes.
-
-#ifndef GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
-#define GOOGLE_PROTOBUF_IO_CODED_STREAM_H__
-
-#include <assert.h>
-#include <string>
-#include <utility>
-#ifdef _MSC_VER
- // Assuming windows is always little-endian.
- #if !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- #define PROTOBUF_LITTLE_ENDIAN 1
- #endif
- #if _MSC_VER >= 1300
- // If MSVC has "/RTCc" set, it will complain about truncating casts at
- // runtime. This file contains some intentional truncating casts.
- #pragma runtime_checks("c", off)
- #endif
-#else
- #include <sys/param.h> // __BYTE_ORDER
- #if ((defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)) || \
- (defined(__BYTE_ORDER) && __BYTE_ORDER == __LITTLE_ENDIAN)) && \
- !defined(PROTOBUF_DISABLE_LITTLE_ENDIAN_OPT_FOR_TEST)
- #define PROTOBUF_LITTLE_ENDIAN 1
- #endif
-#endif
-#include <google/protobuf/stubs/common.h>
-
-namespace google {
-
-namespace protobuf {
-
-class DescriptorPool;
-class MessageFactory;
-
-namespace io {
-
-// Defined in this file.
-class CodedInputStream;
-class CodedOutputStream;
-
-// Defined in other files.
-class ZeroCopyInputStream; // zero_copy_stream.h
-class ZeroCopyOutputStream; // zero_copy_stream.h
-
-// Class which reads and decodes binary data which is composed of varint-
-// encoded integers and fixed-width pieces. Wraps a ZeroCopyInputStream.
-// Most users will not need to deal with CodedInputStream.
-//
-// Most methods of CodedInputStream that return a bool return false if an
-// underlying I/O error occurs or if the data is malformed. Once such a
-// failure occurs, the CodedInputStream is broken and is no longer useful.
-class LIBPROTOBUF_EXPORT CodedInputStream {
- public:
- // Create a CodedInputStream that reads from the given ZeroCopyInputStream.
- explicit CodedInputStream(ZeroCopyInputStream* input);
-
- // Create a CodedInputStream that reads from the given flat array. This is
- // faster than using an ArrayInputStream. PushLimit(size) is implied by
- // this constructor.
- explicit CodedInputStream(const uint8* buffer, int size);
-
- // Destroy the CodedInputStream and position the underlying
- // ZeroCopyInputStream at the first unread byte. If an error occurred while
- // reading (causing a method to return false), then the exact position of
- // the input stream may be anywhere between the last value that was read
- // successfully and the stream's byte limit.
- ~CodedInputStream();
-
- // Return true if this CodedInputStream reads from a flat array instead of
- // a ZeroCopyInputStream.
- inline bool IsFlat() const;
-
- // Skips a number of bytes. Returns false if an underlying read error
- // occurs.
- bool Skip(int count);
-
- // Sets *data to point directly at the unread part of the CodedInputStream's
- // underlying buffer, and *size to the size of that buffer, but does not
- // advance the stream's current position. This will always either produce
- // a non-empty buffer or return false. If the caller consumes any of
- // this data, it should then call Skip() to skip over the consumed bytes.
- // This may be useful for implementing external fast parsing routines for
- // types of data not covered by the CodedInputStream interface.
- bool GetDirectBufferPointer(const void** data, int* size);
-
- // Like GetDirectBufferPointer, but this method is inlined, and does not
- // attempt to Refresh() if the buffer is currently empty.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE void GetDirectBufferPointerInline(const void** data,
- int* size);
-
- // Read raw bytes, copying them into the given buffer.
- bool ReadRaw(void* buffer, int size);
-
- // Like the above, with inlined optimizations. This should only be used
- // by the protobuf implementation.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadRawInline(void* buffer, int size);
-
- // Like ReadRaw, but reads into a string.
- //
- // Implementation Note: ReadString() grows the string gradually as it
- // reads in the data, rather than allocating the entire requested size
- // upfront. This prevents denial-of-service attacks in which a client
- // could claim that a string is going to be MAX_INT bytes long in order to
- // crash the server because it can't allocate this much space at once.
- bool ReadString(string* buffer, int size);
- // Like the above, with inlined optimizations. This should only be used
- // by the protobuf implementation.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool InternalReadStringInline(string* buffer,
- int size);
-
-
- // Read a 32-bit little-endian integer.
- bool ReadLittleEndian32(uint32* value);
- // Read a 64-bit little-endian integer.
- bool ReadLittleEndian64(uint64* value);
-
- // These methods read from an externally provided buffer. The caller is
- // responsible for ensuring that the buffer has sufficient space.
- // Read a 32-bit little-endian integer.
- static const uint8* ReadLittleEndian32FromArray(const uint8* buffer,
- uint32* value);
- // Read a 64-bit little-endian integer.
- static const uint8* ReadLittleEndian64FromArray(const uint8* buffer,
- uint64* value);
-
- // Read an unsigned integer with Varint encoding, truncating to 32 bits.
- // Reading a 32-bit value is equivalent to reading a 64-bit one and casting
- // it to uint32, but may be more efficient.
- bool ReadVarint32(uint32* value);
- // Read an unsigned integer with Varint encoding.
- bool ReadVarint64(uint64* value);
-
- // Read a tag. This calls ReadVarint32() and returns the result, or returns
- // zero (which is not a valid tag) if ReadVarint32() fails. Also, it updates
- // the last tag value, which can be checked with LastTagWas().
- // Always inline because this is only called in one place per parse loop
- // but it is called for every iteration of said loop, so it should be fast.
- // GCC doesn't want to inline this by default.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE uint32 ReadTag();
-
- // This usually a faster alternative to ReadTag() when cutoff is a manifest
- // constant. It does particularly well for cutoff >= 127. The first part
- // of the return value is the tag that was read, though it can also be 0 in
- // the cases where ReadTag() would return 0. If the second part is true
- // then the tag is known to be in [0, cutoff]. If not, the tag either is
- // above cutoff or is 0. (There's intentional wiggle room when tag is 0,
- // because that can arise in several ways, and for best performance we want
- // to avoid an extra "is tag == 0?" check here.)
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE std::pair<uint32, bool> ReadTagWithCutoff(
- uint32 cutoff);
-
- // Usually returns true if calling ReadVarint32() now would produce the given
- // value. Will always return false if ReadVarint32() would not return the
- // given value. If ExpectTag() returns true, it also advances past
- // the varint. For best performance, use a compile-time constant as the
- // parameter.
- // Always inline because this collapses to a small number of instructions
- // when given a constant parameter, but GCC doesn't want to inline by default.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE bool ExpectTag(uint32 expected);
-
- // Like above, except this reads from the specified buffer. The caller is
- // responsible for ensuring that the buffer is large enough to read a varint
- // of the expected size. For best performance, use a compile-time constant as
- // the expected tag parameter.
- //
- // Returns a pointer beyond the expected tag if it was found, or NULL if it
- // was not.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE static const uint8* ExpectTagFromArray(
- const uint8* buffer,
- uint32 expected);
-
- // Usually returns true if no more bytes can be read. Always returns false
- // if more bytes can be read. If ExpectAtEnd() returns true, a subsequent
- // call to LastTagWas() will act as if ReadTag() had been called and returned
- // zero, and ConsumedEntireMessage() will return true.
- bool ExpectAtEnd();
-
- // If the last call to ReadTag() or ReadTagWithCutoff() returned the
- // given value, returns true. Otherwise, returns false;
- //
- // This is needed because parsers for some types of embedded messages
- // (with field type TYPE_GROUP) don't actually know that they've reached the
- // end of a message until they see an ENDGROUP tag, which was actually part
- // of the enclosing message. The enclosing message would like to check that
- // tag to make sure it had the right number, so it calls LastTagWas() on
- // return from the embedded parser to check.
- bool LastTagWas(uint32 expected);
-
- // When parsing message (but NOT a group), this method must be called
- // immediately after MergeFromCodedStream() returns (if it returns true)
- // to further verify that the message ended in a legitimate way. For
- // example, this verifies that parsing did not end on an end-group tag.
- // It also checks for some cases where, due to optimizations,
- // MergeFromCodedStream() can incorrectly return true.
- bool ConsumedEntireMessage();
-
- // Limits ----------------------------------------------------------
- // Limits are used when parsing length-delimited embedded messages.
- // After the message's length is read, PushLimit() is used to prevent
- // the CodedInputStream from reading beyond that length. Once the
- // embedded message has been parsed, PopLimit() is called to undo the
- // limit.
-
- // Opaque type used with PushLimit() and PopLimit(). Do not modify
- // values of this type yourself. The only reason that this isn't a
- // struct with private internals is for efficiency.
- typedef int Limit;
-
- // Places a limit on the number of bytes that the stream may read,
- // starting from the current position. Once the stream hits this limit,
- // it will act like the end of the input has been reached until PopLimit()
- // is called.
- //
- // As the names imply, the stream conceptually has a stack of limits. The
- // shortest limit on the stack is always enforced, even if it is not the
- // top limit.
- //
- // The value returned by PushLimit() is opaque to the caller, and must
- // be passed unchanged to the corresponding call to PopLimit().
- Limit PushLimit(int byte_limit);
-
- // Pops the last limit pushed by PushLimit(). The input must be the value
- // returned by that call to PushLimit().
- void PopLimit(Limit limit);
-
- // Returns the number of bytes left until the nearest limit on the
- // stack is hit, or -1 if no limits are in place.
- int BytesUntilLimit() const;
-
- // Returns current position relative to the beginning of the input stream.
- int CurrentPosition() const;
-
- // Total Bytes Limit -----------------------------------------------
- // To prevent malicious users from sending excessively large messages
- // and causing integer overflows or memory exhaustion, CodedInputStream
- // imposes a hard limit on the total number of bytes it will read.
-
- // Sets the maximum number of bytes that this CodedInputStream will read
- // before refusing to continue. To prevent integer overflows in the
- // protocol buffers implementation, as well as to prevent servers from
- // allocating enormous amounts of memory to hold parsed messages, the
- // maximum message length should be limited to the shortest length that
- // will not harm usability. The theoretical shortest message that could
- // cause integer overflows is 512MB. The default limit is 64MB. Apps
- // should set shorter limits if possible. If warning_threshold is not -1,
- // a warning will be printed to stderr after warning_threshold bytes are
- // read. For backwards compatibility all negative values get squashed to -1,
- // as other negative values might have special internal meanings.
- // An error will always be printed to stderr if the limit is reached.
- //
- // This is unrelated to PushLimit()/PopLimit().
- //
- // Hint: If you are reading this because your program is printing a
- // warning about dangerously large protocol messages, you may be
- // confused about what to do next. The best option is to change your
- // design such that excessively large messages are not necessary.
- // For example, try to design file formats to consist of many small
- // messages rather than a single large one. If this is infeasible,
- // you will need to increase the limit. Chances are, though, that
- // your code never constructs a CodedInputStream on which the limit
- // can be set. You probably parse messages by calling things like
- // Message::ParseFromString(). In this case, you will need to change
- // your code to instead construct some sort of ZeroCopyInputStream
- // (e.g. an ArrayInputStream), construct a CodedInputStream around
- // that, then call Message::ParseFromCodedStream() instead. Then
- // you can adjust the limit. Yes, it's more work, but you're doing
- // something unusual.
- void SetTotalBytesLimit(int total_bytes_limit, int warning_threshold);
-
- // The Total Bytes Limit minus the Current Position, or -1 if there
- // is no Total Bytes Limit.
- int BytesUntilTotalBytesLimit() const;
-
- // Recursion Limit -------------------------------------------------
- // To prevent corrupt or malicious messages from causing stack overflows,
- // we must keep track of the depth of recursion when parsing embedded
- // messages and groups. CodedInputStream keeps track of this because it
- // is the only object that is passed down the stack during parsing.
-
- // Sets the maximum recursion depth. The default is 100.
- void SetRecursionLimit(int limit);
-
-
- // Increments the current recursion depth. Returns true if the depth is
- // under the limit, false if it has gone over.
- bool IncrementRecursionDepth();
-
- // Decrements the recursion depth if possible.
- void DecrementRecursionDepth();
-
- // Decrements the recursion depth blindly. This is faster than
- // DecrementRecursionDepth(). It should be used only if all previous
- // increments to recursion depth were successful.
- void UnsafeDecrementRecursionDepth();
-
- // Shorthand for make_pair(PushLimit(byte_limit), --recursion_budget_).
- // Using this can reduce code size and complexity in some cases. The caller
- // is expected to check that the second part of the result is non-negative (to
- // bail out if the depth of recursion is too high) and, if all is well, to
- // later pass the first part of the result to PopLimit() or similar.
- std::pair<CodedInputStream::Limit, int> IncrementRecursionDepthAndPushLimit(
- int byte_limit);
-
- // Shorthand for PushLimit(ReadVarint32(&length) ? length : 0).
- Limit ReadLengthAndPushLimit();
-
- // Helper that is equivalent to: {
- // bool result = ConsumedEntireMessage();
- // PopLimit(limit);
- // UnsafeDecrementRecursionDepth();
- // return result; }
- // Using this can reduce code size and complexity in some cases.
- // Do not use unless the current recursion depth is greater than zero.
- bool DecrementRecursionDepthAndPopLimit(Limit limit);
-
- // Helper that is equivalent to: {
- // bool result = ConsumedEntireMessage();
- // PopLimit(limit);
- // return result; }
- // Using this can reduce code size and complexity in some cases.
- bool CheckEntireMessageConsumedAndPopLimit(Limit limit);
-
- // Extension Registry ----------------------------------------------
- // ADVANCED USAGE: 99.9% of people can ignore this section.
- //
- // By default, when parsing extensions, the parser looks for extension
- // definitions in the pool which owns the outer message's Descriptor.
- // However, you may call SetExtensionRegistry() to provide an alternative
- // pool instead. This makes it possible, for example, to parse a message
- // using a generated class, but represent some extensions using
- // DynamicMessage.
-
- // Set the pool used to look up extensions. Most users do not need to call
- // this as the correct pool will be chosen automatically.
- //
- // WARNING: It is very easy to misuse this. Carefully read the requirements
- // below. Do not use this unless you are sure you need it. Almost no one
- // does.
- //
- // Let's say you are parsing a message into message object m, and you want
- // to take advantage of SetExtensionRegistry(). You must follow these
- // requirements:
- //
- // The given DescriptorPool must contain m->GetDescriptor(). It is not
- // sufficient for it to simply contain a descriptor that has the same name
- // and content -- it must be the *exact object*. In other words:
- // assert(pool->FindMessageTypeByName(m->GetDescriptor()->full_name()) ==
- // m->GetDescriptor());
- // There are two ways to satisfy this requirement:
- // 1) Use m->GetDescriptor()->pool() as the pool. This is generally useless
- // because this is the pool that would be used anyway if you didn't call
- // SetExtensionRegistry() at all.
- // 2) Use a DescriptorPool which has m->GetDescriptor()->pool() as an
- // "underlay". Read the documentation for DescriptorPool for more
- // information about underlays.
- //
- // You must also provide a MessageFactory. This factory will be used to
- // construct Message objects representing extensions. The factory's
- // GetPrototype() MUST return non-NULL for any Descriptor which can be found
- // through the provided pool.
- //
- // If the provided factory might return instances of protocol-compiler-
- // generated (i.e. compiled-in) types, or if the outer message object m is
- // a generated type, then the given factory MUST have this property: If
- // GetPrototype() is given a Descriptor which resides in
- // DescriptorPool::generated_pool(), the factory MUST return the same
- // prototype which MessageFactory::generated_factory() would return. That
- // is, given a descriptor for a generated type, the factory must return an
- // instance of the generated class (NOT DynamicMessage). However, when
- // given a descriptor for a type that is NOT in generated_pool, the factory
- // is free to return any implementation.
- //
- // The reason for this requirement is that generated sub-objects may be
- // accessed via the standard (non-reflection) extension accessor methods,
- // and these methods will down-cast the object to the generated class type.
- // If the object is not actually of that type, the results would be undefined.
- // On the other hand, if an extension is not compiled in, then there is no
- // way the code could end up accessing it via the standard accessors -- the
- // only way to access the extension is via reflection. When using reflection,
- // DynamicMessage and generated messages are indistinguishable, so it's fine
- // if these objects are represented using DynamicMessage.
- //
- // Using DynamicMessageFactory on which you have called
- // SetDelegateToGeneratedFactory(true) should be sufficient to satisfy the
- // above requirement.
- //
- // If either pool or factory is NULL, both must be NULL.
- //
- // Note that this feature is ignored when parsing "lite" messages as they do
- // not have descriptors.
- void SetExtensionRegistry(const DescriptorPool* pool,
- MessageFactory* factory);
-
- // Get the DescriptorPool set via SetExtensionRegistry(), or NULL if no pool
- // has been provided.
- const DescriptorPool* GetExtensionPool();
-
- // Get the MessageFactory set via SetExtensionRegistry(), or NULL if no
- // factory has been provided.
- MessageFactory* GetExtensionFactory();
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedInputStream);
-
- const uint8* buffer_;
- const uint8* buffer_end_; // pointer to the end of the buffer.
- ZeroCopyInputStream* input_;
- int total_bytes_read_; // total bytes read from input_, including
- // the current buffer
-
- // If total_bytes_read_ surpasses INT_MAX, we record the extra bytes here
- // so that we can BackUp() on destruction.
- int overflow_bytes_;
-
- // LastTagWas() stuff.
- uint32 last_tag_; // result of last ReadTag() or ReadTagWithCutoff().
-
- // This is set true by ReadTag{Fallback/Slow}() if it is called when exactly
- // at EOF, or by ExpectAtEnd() when it returns true. This happens when we
- // reach the end of a message and attempt to read another tag.
- bool legitimate_message_end_;
-
- // See EnableAliasing().
- bool aliasing_enabled_;
-
- // Limits
- Limit current_limit_; // if position = -1, no limit is applied
-
- // For simplicity, if the current buffer crosses a limit (either a normal
- // limit created by PushLimit() or the total bytes limit), buffer_size_
- // only tracks the number of bytes before that limit. This field
- // contains the number of bytes after it. Note that this implies that if
- // buffer_size_ == 0 and buffer_size_after_limit_ > 0, we know we've
- // hit a limit. However, if both are zero, it doesn't necessarily mean
- // we aren't at a limit -- the buffer may have ended exactly at the limit.
- int buffer_size_after_limit_;
-
- // Maximum number of bytes to read, period. This is unrelated to
- // current_limit_. Set using SetTotalBytesLimit().
- int total_bytes_limit_;
-
- // If positive/0: Limit for bytes read after which a warning due to size
- // should be logged.
- // If -1: Printing of warning disabled. Can be set by client.
- // If -2: Internal: Limit has been reached, print full size when destructing.
- int total_bytes_warning_threshold_;
-
- // Current recursion budget, controlled by IncrementRecursionDepth() and
- // similar. Starts at recursion_limit_ and goes down: if this reaches
- // -1 we are over budget.
- int recursion_budget_;
- // Recursion depth limit, set by SetRecursionLimit().
- int recursion_limit_;
-
- // See SetExtensionRegistry().
- const DescriptorPool* extension_pool_;
- MessageFactory* extension_factory_;
-
- // Private member functions.
-
- // Advance the buffer by a given number of bytes.
- void Advance(int amount);
-
- // Back up input_ to the current buffer position.
- void BackUpInputToCurrentPosition();
-
- // Recomputes the value of buffer_size_after_limit_. Must be called after
- // current_limit_ or total_bytes_limit_ changes.
- void RecomputeBufferLimits();
-
- // Writes an error message saying that we hit total_bytes_limit_.
- void PrintTotalBytesLimitError();
-
- // Called when the buffer runs out to request more data. Implies an
- // Advance(BufferSize()).
- bool Refresh();
-
- // When parsing varints, we optimize for the common case of small values, and
- // then optimize for the case when the varint fits within the current buffer
- // piece. The Fallback method is used when we can't use the one-byte
- // optimization. The Slow method is yet another fallback when the buffer is
- // not large enough. Making the slow path out-of-line speeds up the common
- // case by 10-15%. The slow path is fairly uncommon: it only triggers when a
- // message crosses multiple buffers. Note: ReadVarint32Fallback() and
- // ReadVarint64Fallback() are called frequently and generally not inlined, so
- // they have been optimized to avoid "out" parameters. The former returns -1
- // if it fails and the uint32 it read otherwise. The latter has a bool
- // indicating success or failure as part of its return type.
- int64 ReadVarint32Fallback(uint32 first_byte_or_zero);
- std::pair<uint64, bool> ReadVarint64Fallback();
- bool ReadVarint32Slow(uint32* value);
- bool ReadVarint64Slow(uint64* value);
- bool ReadLittleEndian32Fallback(uint32* value);
- bool ReadLittleEndian64Fallback(uint64* value);
- // Fallback/slow methods for reading tags. These do not update last_tag_,
- // but will set legitimate_message_end_ if we are at the end of the input
- // stream.
- uint32 ReadTagFallback(uint32 first_byte_or_zero);
- uint32 ReadTagSlow();
- bool ReadStringFallback(string* buffer, int size);
-
- // Return the size of the buffer.
- int BufferSize() const;
-
- static const int kDefaultTotalBytesLimit = 64 << 20; // 64MB
-
- static const int kDefaultTotalBytesWarningThreshold = 32 << 20; // 32MB
-
- static int default_recursion_limit_; // 100 by default.
-};
-
-// Class which encodes and writes binary data which is composed of varint-
-// encoded integers and fixed-width pieces. Wraps a ZeroCopyOutputStream.
-// Most users will not need to deal with CodedOutputStream.
-//
-// Most methods of CodedOutputStream which return a bool return false if an
-// underlying I/O error occurs. Once such a failure occurs, the
-// CodedOutputStream is broken and is no longer useful. The Write* methods do
-// not return the stream status, but will invalidate the stream if an error
-// occurs. The client can probe HadError() to determine the status.
-//
-// Note that every method of CodedOutputStream which writes some data has
-// a corresponding static "ToArray" version. These versions write directly
-// to the provided buffer, returning a pointer past the last written byte.
-// They require that the buffer has sufficient capacity for the encoded data.
-// This allows an optimization where we check if an output stream has enough
-// space for an entire message before we start writing and, if there is, we
-// call only the ToArray methods to avoid doing bound checks for each
-// individual value.
-// i.e., in the example above:
-//
-// CodedOutputStream coded_output = new CodedOutputStream(raw_output);
-// int magic_number = 1234;
-// char text[] = "Hello world!";
-//
-// int coded_size = sizeof(magic_number) +
-// CodedOutputStream::VarintSize32(strlen(text)) +
-// strlen(text);
-//
-// uint8* buffer =
-// coded_output->GetDirectBufferForNBytesAndAdvance(coded_size);
-// if (buffer != NULL) {
-// // The output stream has enough space in the buffer: write directly to
-// // the array.
-// buffer = CodedOutputStream::WriteLittleEndian32ToArray(magic_number,
-// buffer);
-// buffer = CodedOutputStream::WriteVarint32ToArray(strlen(text), buffer);
-// buffer = CodedOutputStream::WriteRawToArray(text, strlen(text), buffer);
-// } else {
-// // Make bound-checked writes, which will ask the underlying stream for
-// // more space as needed.
-// coded_output->WriteLittleEndian32(magic_number);
-// coded_output->WriteVarint32(strlen(text));
-// coded_output->WriteRaw(text, strlen(text));
-// }
-//
-// delete coded_output;
-class LIBPROTOBUF_EXPORT CodedOutputStream {
- public:
- // Create an CodedOutputStream that writes to the given ZeroCopyOutputStream.
- explicit CodedOutputStream(ZeroCopyOutputStream* output);
-
- // Destroy the CodedOutputStream and position the underlying
- // ZeroCopyOutputStream immediately after the last byte written.
- ~CodedOutputStream();
-
- // Trims any unused space in the underlying buffer so that its size matches
- // the number of bytes written by this stream. The underlying buffer will
- // automatically be trimmed when this stream is destroyed; this call is only
- // necessary if the underlying buffer is accessed *before* the stream is
- // destroyed.
- void Trim();
-
- // Skips a number of bytes, leaving the bytes unmodified in the underlying
- // buffer. Returns false if an underlying write error occurs. This is
- // mainly useful with GetDirectBufferPointer().
- bool Skip(int count);
-
- // Sets *data to point directly at the unwritten part of the
- // CodedOutputStream's underlying buffer, and *size to the size of that
- // buffer, but does not advance the stream's current position. This will
- // always either produce a non-empty buffer or return false. If the caller
- // writes any data to this buffer, it should then call Skip() to skip over
- // the consumed bytes. This may be useful for implementing external fast
- // serialization routines for types of data not covered by the
- // CodedOutputStream interface.
- bool GetDirectBufferPointer(void** data, int* size);
-
- // If there are at least "size" bytes available in the current buffer,
- // returns a pointer directly into the buffer and advances over these bytes.
- // The caller may then write directly into this buffer (e.g. using the
- // *ToArray static methods) rather than go through CodedOutputStream. If
- // there are not enough bytes available, returns NULL. The return pointer is
- // invalidated as soon as any other non-const method of CodedOutputStream
- // is called.
- inline uint8* GetDirectBufferForNBytesAndAdvance(int size);
-
- // Write raw bytes, copying them from the given buffer.
- void WriteRaw(const void* buffer, int size);
- // Like WriteRaw() but will try to write aliased data if aliasing is
- // turned on.
- void WriteRawMaybeAliased(const void* data, int size);
- // Like WriteRaw() but writing directly to the target array.
- // This is _not_ inlined, as the compiler often optimizes memcpy into inline
- // copy loops. Since this gets called by every field with string or bytes
- // type, inlining may lead to a significant amount of code bloat, with only a
- // minor performance gain.
- static uint8* WriteRawToArray(const void* buffer, int size, uint8* target);
-
- // Equivalent to WriteRaw(str.data(), str.size()).
- void WriteString(const string& str);
- // Like WriteString() but writing directly to the target array.
- static uint8* WriteStringToArray(const string& str, uint8* target);
- // Write the varint-encoded size of str followed by str.
- static uint8* WriteStringWithSizeToArray(const string& str, uint8* target);
-
-
- // Instructs the CodedOutputStream to allow the underlying
- // ZeroCopyOutputStream to hold pointers to the original structure instead of
- // copying, if it supports it (i.e. output->AllowsAliasing() is true). If the
- // underlying stream does not support aliasing, then enabling it has no
- // affect. For now, this only affects the behavior of
- // WriteRawMaybeAliased().
- //
- // NOTE: It is caller's responsibility to ensure that the chunk of memory
- // remains live until all of the data has been consumed from the stream.
- void EnableAliasing(bool enabled);
-
- // Write a 32-bit little-endian integer.
- void WriteLittleEndian32(uint32 value);
- // Like WriteLittleEndian32() but writing directly to the target array.
- static uint8* WriteLittleEndian32ToArray(uint32 value, uint8* target);
- // Write a 64-bit little-endian integer.
- void WriteLittleEndian64(uint64 value);
- // Like WriteLittleEndian64() but writing directly to the target array.
- static uint8* WriteLittleEndian64ToArray(uint64 value, uint8* target);
-
- // Write an unsigned integer with Varint encoding. Writing a 32-bit value
- // is equivalent to casting it to uint64 and writing it as a 64-bit value,
- // but may be more efficient.
- void WriteVarint32(uint32 value);
- // Like WriteVarint32() but writing directly to the target array.
- static uint8* WriteVarint32ToArray(uint32 value, uint8* target);
- // Write an unsigned integer with Varint encoding.
- void WriteVarint64(uint64 value);
- // Like WriteVarint64() but writing directly to the target array.
- static uint8* WriteVarint64ToArray(uint64 value, uint8* target);
-
- // Equivalent to WriteVarint32() except when the value is negative,
- // in which case it must be sign-extended to a full 10 bytes.
- void WriteVarint32SignExtended(int32 value);
- // Like WriteVarint32SignExtended() but writing directly to the target array.
- static uint8* WriteVarint32SignExtendedToArray(int32 value, uint8* target);
-
- // This is identical to WriteVarint32(), but optimized for writing tags.
- // In particular, if the input is a compile-time constant, this method
- // compiles down to a couple instructions.
- // Always inline because otherwise the aformentioned optimization can't work,
- // but GCC by default doesn't want to inline this.
- void WriteTag(uint32 value);
- // Like WriteTag() but writing directly to the target array.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteTagToArray(uint32 value,
- uint8* target);
-
- // Returns the number of bytes needed to encode the given value as a varint.
- static int VarintSize32(uint32 value);
- // Returns the number of bytes needed to encode the given value as a varint.
- static int VarintSize64(uint64 value);
-
- // If negative, 10 bytes. Otheriwse, same as VarintSize32().
- static int VarintSize32SignExtended(int32 value);
-
- // Compile-time equivalent of VarintSize32().
- template <uint32 Value>
- struct StaticVarintSize32 {
- static const int value =
- (Value < (1 << 7))
- ? 1
- : (Value < (1 << 14))
- ? 2
- : (Value < (1 << 21))
- ? 3
- : (Value < (1 << 28))
- ? 4
- : 5;
- };
-
- // Returns the total number of bytes written since this object was created.
- inline int ByteCount() const;
-
- // Returns true if there was an underlying I/O error since this object was
- // created.
- bool HadError() const { return had_error_; }
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(CodedOutputStream);
-
- ZeroCopyOutputStream* output_;
- uint8* buffer_;
- int buffer_size_;
- int total_bytes_; // Sum of sizes of all buffers seen so far.
- bool had_error_; // Whether an error occurred during output.
- bool aliasing_enabled_; // See EnableAliasing().
-
- // Advance the buffer by a given number of bytes.
- void Advance(int amount);
-
- // Called when the buffer runs out to request more data. Implies an
- // Advance(buffer_size_).
- bool Refresh();
-
- // Like WriteRaw() but may avoid copying if the underlying
- // ZeroCopyOutputStream supports it.
- void WriteAliasedRaw(const void* buffer, int size);
-
- // If this write might cross the end of the buffer, we compose the bytes first
- // then use WriteRaw().
- void WriteVarint32SlowPath(uint32 value);
-
- // Always-inlined versions of WriteVarint* functions so that code can be
- // reused, while still controlling size. For instance, WriteVarint32ToArray()
- // should not directly call this: since it is inlined itself, doing so
- // would greatly increase the size of generated code. Instead, it should call
- // WriteVarint32FallbackToArray. Meanwhile, WriteVarint32() is already
- // out-of-line, so it should just invoke this directly to avoid any extra
- // function call overhead.
- GOOGLE_ATTRIBUTE_ALWAYS_INLINE static uint8* WriteVarint64ToArrayInline(
- uint64 value, uint8* target);
-
- static int VarintSize32Fallback(uint32 value);
-};
-
-// inline methods ====================================================
-// The vast majority of varints are only one byte. These inline
-// methods optimize for that case.
-
-inline bool CodedInputStream::ReadVarint32(uint32* value) {
- uint32 v = 0;
- if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
- v = *buffer_;
- if (v < 0x80) {
- *value = v;
- Advance(1);
- return true;
- }
- }
- int64 result = ReadVarint32Fallback(v);
- *value = static_cast<uint32>(result);
- return result >= 0;
-}
-
-inline bool CodedInputStream::ReadVarint64(uint64* value) {
- if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && *buffer_ < 0x80) {
- *value = *buffer_;
- Advance(1);
- return true;
- }
- std::pair<uint64, bool> p = ReadVarint64Fallback();
- *value = p.first;
- return p.second;
-}
-
-// static
-inline const uint8* CodedInputStream::ReadLittleEndian32FromArray(
- const uint8* buffer,
- uint32* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- memcpy(value, buffer, sizeof(*value));
- return buffer + sizeof(*value);
-#else
- *value = (static_cast<uint32>(buffer[0]) ) |
- (static_cast<uint32>(buffer[1]) << 8) |
- (static_cast<uint32>(buffer[2]) << 16) |
- (static_cast<uint32>(buffer[3]) << 24);
- return buffer + sizeof(*value);
-#endif
-}
-// static
-inline const uint8* CodedInputStream::ReadLittleEndian64FromArray(
- const uint8* buffer,
- uint64* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- memcpy(value, buffer, sizeof(*value));
- return buffer + sizeof(*value);
-#else
- uint32 part0 = (static_cast<uint32>(buffer[0]) ) |
- (static_cast<uint32>(buffer[1]) << 8) |
- (static_cast<uint32>(buffer[2]) << 16) |
- (static_cast<uint32>(buffer[3]) << 24);
- uint32 part1 = (static_cast<uint32>(buffer[4]) ) |
- (static_cast<uint32>(buffer[5]) << 8) |
- (static_cast<uint32>(buffer[6]) << 16) |
- (static_cast<uint32>(buffer[7]) << 24);
- *value = static_cast<uint64>(part0) |
- (static_cast<uint64>(part1) << 32);
- return buffer + sizeof(*value);
-#endif
-}
-
-inline bool CodedInputStream::ReadLittleEndian32(uint32* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
- memcpy(value, buffer_, sizeof(*value));
- Advance(sizeof(*value));
- return true;
- } else {
- return ReadLittleEndian32Fallback(value);
- }
-#else
- return ReadLittleEndian32Fallback(value);
-#endif
-}
-
-inline bool CodedInputStream::ReadLittleEndian64(uint64* value) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- if (GOOGLE_PREDICT_TRUE(BufferSize() >= static_cast<int>(sizeof(*value)))) {
- memcpy(value, buffer_, sizeof(*value));
- Advance(sizeof(*value));
- return true;
- } else {
- return ReadLittleEndian64Fallback(value);
- }
-#else
- return ReadLittleEndian64Fallback(value);
-#endif
-}
-
-inline uint32 CodedInputStream::ReadTag() {
- uint32 v = 0;
- if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
- v = *buffer_;
- if (v < 0x80) {
- last_tag_ = v;
- Advance(1);
- return v;
- }
- }
- last_tag_ = ReadTagFallback(v);
- return last_tag_;
-}
-
-inline std::pair<uint32, bool> CodedInputStream::ReadTagWithCutoff(
- uint32 cutoff) {
- // In performance-sensitive code we can expect cutoff to be a compile-time
- // constant, and things like "cutoff >= kMax1ByteVarint" to be evaluated at
- // compile time.
- uint32 first_byte_or_zero = 0;
- if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_)) {
- // Hot case: buffer_ non_empty, buffer_[0] in [1, 128).
- // TODO(gpike): Is it worth rearranging this? E.g., if the number of fields
- // is large enough then is it better to check for the two-byte case first?
- first_byte_or_zero = buffer_[0];
- if (static_cast<int8>(buffer_[0]) > 0) {
- const uint32 kMax1ByteVarint = 0x7f;
- uint32 tag = last_tag_ = buffer_[0];
- Advance(1);
- return std::make_pair(tag, cutoff >= kMax1ByteVarint || tag <= cutoff);
- }
- // Other hot case: cutoff >= 0x80, buffer_ has at least two bytes available,
- // and tag is two bytes. The latter is tested by bitwise-and-not of the
- // first byte and the second byte.
- if (cutoff >= 0x80 &&
- GOOGLE_PREDICT_TRUE(buffer_ + 1 < buffer_end_) &&
- GOOGLE_PREDICT_TRUE((buffer_[0] & ~buffer_[1]) >= 0x80)) {
- const uint32 kMax2ByteVarint = (0x7f << 7) + 0x7f;
- uint32 tag = last_tag_ = (1u << 7) * buffer_[1] + (buffer_[0] - 0x80);
- Advance(2);
- // It might make sense to test for tag == 0 now, but it is so rare that
- // that we don't bother. A varint-encoded 0 should be one byte unless
- // the encoder lost its mind. The second part of the return value of
- // this function is allowed to be either true or false if the tag is 0,
- // so we don't have to check for tag == 0. We may need to check whether
- // it exceeds cutoff.
- bool at_or_below_cutoff = cutoff >= kMax2ByteVarint || tag <= cutoff;
- return std::make_pair(tag, at_or_below_cutoff);
- }
- }
- // Slow path
- last_tag_ = ReadTagFallback(first_byte_or_zero);
- return std::make_pair(last_tag_, static_cast<uint32>(last_tag_ - 1) < cutoff);
-}
-
-inline bool CodedInputStream::LastTagWas(uint32 expected) {
- return last_tag_ == expected;
-}
-
-inline bool CodedInputStream::ConsumedEntireMessage() {
- return legitimate_message_end_;
-}
-
-inline bool CodedInputStream::ExpectTag(uint32 expected) {
- if (expected < (1 << 7)) {
- if (GOOGLE_PREDICT_TRUE(buffer_ < buffer_end_) && buffer_[0] == expected) {
- Advance(1);
- return true;
- } else {
- return false;
- }
- } else if (expected < (1 << 14)) {
- if (GOOGLE_PREDICT_TRUE(BufferSize() >= 2) &&
- buffer_[0] == static_cast<uint8>(expected | 0x80) &&
- buffer_[1] == static_cast<uint8>(expected >> 7)) {
- Advance(2);
- return true;
- } else {
- return false;
- }
- } else {
- // Don't bother optimizing for larger values.
- return false;
- }
-}
-
-inline const uint8* CodedInputStream::ExpectTagFromArray(
- const uint8* buffer, uint32 expected) {
- if (expected < (1 << 7)) {
- if (buffer[0] == expected) {
- return buffer + 1;
- }
- } else if (expected < (1 << 14)) {
- if (buffer[0] == static_cast<uint8>(expected | 0x80) &&
- buffer[1] == static_cast<uint8>(expected >> 7)) {
- return buffer + 2;
- }
- }
- return NULL;
-}
-
-inline void CodedInputStream::GetDirectBufferPointerInline(const void** data,
- int* size) {
- *data = buffer_;
- *size = static_cast<int>(buffer_end_ - buffer_);
-}
-
-inline bool CodedInputStream::ExpectAtEnd() {
- // If we are at a limit we know no more bytes can be read. Otherwise, it's
- // hard to say without calling Refresh(), and we'd rather not do that.
-
- if (buffer_ == buffer_end_ &&
- ((buffer_size_after_limit_ != 0) ||
- (total_bytes_read_ == current_limit_))) {
- last_tag_ = 0; // Pretend we called ReadTag()...
- legitimate_message_end_ = true; // ... and it hit EOF.
- return true;
- } else {
- return false;
- }
-}
-
-inline int CodedInputStream::CurrentPosition() const {
- return total_bytes_read_ - (BufferSize() + buffer_size_after_limit_);
-}
-
-inline uint8* CodedOutputStream::GetDirectBufferForNBytesAndAdvance(int size) {
- if (buffer_size_ < size) {
- return NULL;
- } else {
- uint8* result = buffer_;
- Advance(size);
- return result;
- }
-}
-
-inline uint8* CodedOutputStream::WriteVarint32ToArray(uint32 value,
- uint8* target) {
- while (value >= 0x80) {
- *target = static_cast<uint8>(value | 0x80);
- value >>= 7;
- ++target;
- }
- *target = static_cast<uint8>(value);
- return target + 1;
-}
-
-inline void CodedOutputStream::WriteVarint32SignExtended(int32 value) {
- if (value < 0) {
- WriteVarint64(static_cast<uint64>(value));
- } else {
- WriteVarint32(static_cast<uint32>(value));
- }
-}
-
-inline uint8* CodedOutputStream::WriteVarint32SignExtendedToArray(
- int32 value, uint8* target) {
- if (value < 0) {
- return WriteVarint64ToArray(static_cast<uint64>(value), target);
- } else {
- return WriteVarint32ToArray(static_cast<uint32>(value), target);
- }
-}
-
-inline uint8* CodedOutputStream::WriteLittleEndian32ToArray(uint32 value,
- uint8* target) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- memcpy(target, &value, sizeof(value));
-#else
- target[0] = static_cast<uint8>(value);
- target[1] = static_cast<uint8>(value >> 8);
- target[2] = static_cast<uint8>(value >> 16);
- target[3] = static_cast<uint8>(value >> 24);
-#endif
- return target + sizeof(value);
-}
-
-inline uint8* CodedOutputStream::WriteLittleEndian64ToArray(uint64 value,
- uint8* target) {
-#if defined(PROTOBUF_LITTLE_ENDIAN)
- memcpy(target, &value, sizeof(value));
-#else
- uint32 part0 = static_cast<uint32>(value);
- uint32 part1 = static_cast<uint32>(value >> 32);
-
- target[0] = static_cast<uint8>(part0);
- target[1] = static_cast<uint8>(part0 >> 8);
- target[2] = static_cast<uint8>(part0 >> 16);
- target[3] = static_cast<uint8>(part0 >> 24);
- target[4] = static_cast<uint8>(part1);
- target[5] = static_cast<uint8>(part1 >> 8);
- target[6] = static_cast<uint8>(part1 >> 16);
- target[7] = static_cast<uint8>(part1 >> 24);
-#endif
- return target + sizeof(value);
-}
-
-inline void CodedOutputStream::WriteVarint32(uint32 value) {
- if (buffer_size_ >= 5) {
- // Fast path: We have enough bytes left in the buffer to guarantee that
- // this write won't cross the end, so we can skip the checks.
- uint8* target = buffer_;
- uint8* end = WriteVarint32ToArray(value, target);
- int size = end - target;
- Advance(size);
- } else {
- WriteVarint32SlowPath(value);
- }
-}
-
-inline void CodedOutputStream::WriteTag(uint32 value) {
- WriteVarint32(value);
-}
-
-inline uint8* CodedOutputStream::WriteTagToArray(
- uint32 value, uint8* target) {
- return WriteVarint32ToArray(value, target);
-}
-
-inline int CodedOutputStream::VarintSize32(uint32 value) {
- if (value < (1 << 7)) {
- return 1;
- } else {
- return VarintSize32Fallback(value);
- }
-}
-
-inline int CodedOutputStream::VarintSize32SignExtended(int32 value) {
- if (value < 0) {
- return 10; // TODO(kenton): Make this a symbolic constant.
- } else {
- return VarintSize32(static_cast<uint32>(value));
- }
-}
-
-inline void CodedOutputStream::WriteString(const string& str) {
- WriteRaw(str.data(), static_cast<int>(str.size()));
-}
-
-inline void CodedOutputStream::WriteRawMaybeAliased(
- const void* data, int size) {
- if (aliasing_enabled_) {
- WriteAliasedRaw(data, size);
- } else {
- WriteRaw(data, size);
- }
-}
-
-inline uint8* CodedOutputStream::WriteStringToArray(
- const string& str, uint8* target) {
- return WriteRawToArray(str.data(), static_cast<int>(str.size()), target);
-}
-
-inline int CodedOutputStream::ByteCount() const {
- return total_bytes_ - buffer_size_;
-}
-
-inline void CodedInputStream::Advance(int amount) {
- buffer_ += amount;
-}
-
-inline void CodedOutputStream::Advance(int amount) {
- buffer_ += amount;
- buffer_size_ -= amount;
-}
-
-inline void CodedInputStream::SetRecursionLimit(int limit) {
- recursion_budget_ += limit - recursion_limit_;
- recursion_limit_ = limit;
-}
-
-inline bool CodedInputStream::IncrementRecursionDepth() {
- --recursion_budget_;
- return recursion_budget_ >= 0;
-}
-
-inline void CodedInputStream::DecrementRecursionDepth() {
- if (recursion_budget_ < recursion_limit_) ++recursion_budget_;
-}
-
-inline void CodedInputStream::UnsafeDecrementRecursionDepth() {
- assert(recursion_budget_ < recursion_limit_);
- ++recursion_budget_;
-}
-
-inline void CodedInputStream::SetExtensionRegistry(const DescriptorPool* pool,
- MessageFactory* factory) {
- extension_pool_ = pool;
- extension_factory_ = factory;
-}
-
-inline const DescriptorPool* CodedInputStream::GetExtensionPool() {
- return extension_pool_;
-}
-
-inline MessageFactory* CodedInputStream::GetExtensionFactory() {
- return extension_factory_;
-}
-
-inline int CodedInputStream::BufferSize() const {
- return static_cast<int>(buffer_end_ - buffer_);
-}
-
-inline CodedInputStream::CodedInputStream(ZeroCopyInputStream* input)
- : buffer_(NULL),
- buffer_end_(NULL),
- input_(input),
- total_bytes_read_(0),
- overflow_bytes_(0),
- last_tag_(0),
- legitimate_message_end_(false),
- aliasing_enabled_(false),
- current_limit_(kint32max),
- buffer_size_after_limit_(0),
- total_bytes_limit_(kDefaultTotalBytesLimit),
- total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
- recursion_budget_(default_recursion_limit_),
- recursion_limit_(default_recursion_limit_),
- extension_pool_(NULL),
- extension_factory_(NULL) {
- // Eagerly Refresh() so buffer space is immediately available.
- Refresh();
-}
-
-inline CodedInputStream::CodedInputStream(const uint8* buffer, int size)
- : buffer_(buffer),
- buffer_end_(buffer + size),
- input_(NULL),
- total_bytes_read_(size),
- overflow_bytes_(0),
- last_tag_(0),
- legitimate_message_end_(false),
- aliasing_enabled_(false),
- current_limit_(size),
- buffer_size_after_limit_(0),
- total_bytes_limit_(kDefaultTotalBytesLimit),
- total_bytes_warning_threshold_(kDefaultTotalBytesWarningThreshold),
- recursion_budget_(default_recursion_limit_),
- recursion_limit_(default_recursion_limit_),
- extension_pool_(NULL),
- extension_factory_(NULL) {
- // Note that setting current_limit_ == size is important to prevent some
- // code paths from trying to access input_ and segfaulting.
-}
-
-inline bool CodedInputStream::IsFlat() const {
- return input_ == NULL;
-}
-
-} // namespace io
-} // namespace protobuf
-
-
-#if defined(_MSC_VER) && _MSC_VER >= 1300
- #pragma runtime_checks("c", restore)
-#endif // _MSC_VER
-
-} // namespace google
-#endif // GOOGLE_PROTOBUF_IO_CODED_STREAM_H__