aboutsummaryrefslogtreecommitdiff
path: root/contexts/data/lib/closure-library/closure/goog/math/bezier.js
blob: cb2267810be5c888ad1353c777456ecd8cb2f259 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2007 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.


/**
 * @fileoverview Represents a cubic Bezier curve.
 *
 * Uses the deCasteljau algorithm to compute points on the curve.
 * http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
 *
 * Currently it uses an unrolled version of the algorithm for speed.  Eventually
 * it may be useful to use the loop form of the algorithm in order to support
 * curves of arbitrary degree.
 *
 * @author robbyw@google.com (Robby Walker)
 * @author wcrosby@google.com (Wayne Crosby)
 */

goog.provide('goog.math.Bezier');

goog.require('goog.math');
goog.require('goog.math.Coordinate');



/**
 * Object representing a cubic bezier curve.
 * @param {number} x0 X coordinate of the start point.
 * @param {number} y0 Y coordinate of the start point.
 * @param {number} x1 X coordinate of the first control point.
 * @param {number} y1 Y coordinate of the first control point.
 * @param {number} x2 X coordinate of the second control point.
 * @param {number} y2 Y coordinate of the second control point.
 * @param {number} x3 X coordinate of the end point.
 * @param {number} y3 Y coordinate of the end point.
 * @constructor
 */
goog.math.Bezier = function(x0, y0, x1, y1, x2, y2, x3, y3) {
  /**
   * X coordinate of the first point.
   * @type {number}
   */
  this.x0 = x0;

  /**
   * Y coordinate of the first point.
   * @type {number}
   */
  this.y0 = y0;

  /**
   * X coordinate of the first control point.
   * @type {number}
   */
  this.x1 = x1;

  /**
   * Y coordinate of the first control point.
   * @type {number}
   */
  this.y1 = y1;

  /**
   * X coordinate of the second control point.
   * @type {number}
   */
  this.x2 = x2;

  /**
   * Y coordinate of the second control point.
   * @type {number}
   */
  this.y2 = y2;

  /**
   * X coordinate of the end point.
   * @type {number}
   */
  this.x3 = x3;

  /**
   * Y coordinate of the end point.
   * @type {number}
   */
  this.y3 = y3;
};


/**
 * Constant used to approximate ellipses.
 * See: http://canvaspaint.org/blog/2006/12/ellipse/
 * @type {number}
 */
goog.math.Bezier.KAPPA = 4 * (Math.sqrt(2) - 1) / 3;


/**
 * @return {!goog.math.Bezier} A copy of this curve.
 */
goog.math.Bezier.prototype.clone = function() {
  return new goog.math.Bezier(this.x0, this.y0, this.x1, this.y1, this.x2,
      this.y2, this.x3, this.y3);
};


/**
 * Test if the given curve is exactly the same as this one.
 * @param {goog.math.Bezier} other The other curve.
 * @return {boolean} Whether the given curve is the same as this one.
 */
goog.math.Bezier.prototype.equals = function(other) {
  return this.x0 == other.x0 && this.y0 == other.y0 && this.x1 == other.x1 &&
         this.y1 == other.y1 && this.x2 == other.x2 && this.y2 == other.y2 &&
         this.x3 == other.x3 && this.y3 == other.y3;
};


/**
 * Modifies the curve in place to progress in the opposite direction.
 */
goog.math.Bezier.prototype.flip = function() {
  var temp = this.x0;
  this.x0 = this.x3;
  this.x3 = temp;
  temp = this.y0;
  this.y0 = this.y3;
  this.y3 = temp;

  temp = this.x1;
  this.x1 = this.x2;
  this.x2 = temp;
  temp = this.y1;
  this.y1 = this.y2;
  this.y2 = temp;
};


/**
 * Computes the curve at a point between 0 and 1.
 * @param {number} t The point on the curve to find.
 * @return {!goog.math.Coordinate} The computed coordinate.
 */
goog.math.Bezier.prototype.getPoint = function(t) {
  // Special case start and end
  if (t == 0) {
    return new goog.math.Coordinate(this.x0, this.y0);
  } else if (t == 1) {
    return new goog.math.Coordinate(this.x3, this.y3);
  }

  // Step one - from 4 points to 3
  var ix0 = goog.math.lerp(this.x0, this.x1, t);
  var iy0 = goog.math.lerp(this.y0, this.y1, t);

  var ix1 = goog.math.lerp(this.x1, this.x2, t);
  var iy1 = goog.math.lerp(this.y1, this.y2, t);

  var ix2 = goog.math.lerp(this.x2, this.x3, t);
  var iy2 = goog.math.lerp(this.y2, this.y3, t);

  // Step two - from 3 points to 2
  ix0 = goog.math.lerp(ix0, ix1, t);
  iy0 = goog.math.lerp(iy0, iy1, t);

  ix1 = goog.math.lerp(ix1, ix2, t);
  iy1 = goog.math.lerp(iy1, iy2, t);

  // Final step - last point
  return new goog.math.Coordinate(goog.math.lerp(ix0, ix1, t),
      goog.math.lerp(iy0, iy1, t));
};


/**
 * Changes this curve in place to be the portion of itself from [t, 1].
 * @param {number} t The start of the desired portion of the curve.
 */
goog.math.Bezier.prototype.subdivideLeft = function(t) {
  if (t == 1) {
    return;
  }

  // Step one - from 4 points to 3
  var ix0 = goog.math.lerp(this.x0, this.x1, t);
  var iy0 = goog.math.lerp(this.y0, this.y1, t);

  var ix1 = goog.math.lerp(this.x1, this.x2, t);
  var iy1 = goog.math.lerp(this.y1, this.y2, t);

  var ix2 = goog.math.lerp(this.x2, this.x3, t);
  var iy2 = goog.math.lerp(this.y2, this.y3, t);

  // Collect our new x1 and y1
  this.x1 = ix0;
  this.y1 = iy0;

  // Step two - from 3 points to 2
  ix0 = goog.math.lerp(ix0, ix1, t);
  iy0 = goog.math.lerp(iy0, iy1, t);

  ix1 = goog.math.lerp(ix1, ix2, t);
  iy1 = goog.math.lerp(iy1, iy2, t);

  // Collect our new x2 and y2
  this.x2 = ix0;
  this.y2 = iy0;

  // Final step - last point
  this.x3 = goog.math.lerp(ix0, ix1, t);
  this.y3 = goog.math.lerp(iy0, iy1, t);
};


/**
 * Changes this curve in place to be the portion of itself from [0, t].
 * @param {number} t The end of the desired portion of the curve.
 */
goog.math.Bezier.prototype.subdivideRight = function(t) {
  this.flip();
  this.subdivideLeft(1 - t);
  this.flip();
};


/**
 * Changes this curve in place to be the portion of itself from [s, t].
 * @param {number} s The start of the desired portion of the curve.
 * @param {number} t The end of the desired portion of the curve.
 */
goog.math.Bezier.prototype.subdivide = function(s, t) {
  this.subdivideRight(s);
  this.subdivideLeft((t - s) / (1 - s));
};


/**
 * Computes the position t of a point on the curve given its x coordinate.
 * That is, for an input xVal, finds t s.t. getPoint(t).x = xVal.
 * As such, the following should always be true up to some small epsilon:
 * t ~ solvePositionFromXValue(getPoint(t).x) for t in [0, 1].
 * @param {number} xVal The x coordinate of the point to find on the curve.
 * @return {number} The position t.
 */
goog.math.Bezier.prototype.solvePositionFromXValue = function(xVal) {
  // Desired precision on the computation.
  var epsilon = 1e-6;

  // Initial estimate of t using linear interpolation.
  var t = (xVal - this.x0) / (this.x3 - this.x0);
  if (t <= 0) {
    return 0;
  } else if (t >= 1) {
    return 1;
  }

  // Try gradient descent to solve for t. If it works, it is very fast.
  var tMin = 0;
  var tMax = 1;
  for (var i = 0; i < 8; i++) {
    var value = this.getPoint(t).x;
    var derivative = (this.getPoint(t + epsilon).x - value) / epsilon;
    if (Math.abs(value - xVal) < epsilon) {
      return t;
    } else if (Math.abs(derivative) < epsilon) {
      break;
    } else {
      if (value < xVal) {
        tMin = t;
      } else {
        tMax = t;
      }
      t -= (value - xVal) / derivative;
    }
  }

  // If the gradient descent got stuck in a local minimum, e.g. because
  // the derivative was close to 0, use a Dichotomy refinement instead.
  // We limit the number of interations to 8.
  for (var i = 0; Math.abs(value - xVal) > epsilon && i < 8; i++) {
    if (value < xVal) {
      tMin = t;
      t = (t + tMax) / 2;
    } else {
      tMax = t;
      t = (t + tMin) / 2;
    }
    value = this.getPoint(t).x;
  }
  return t;
};


/**
 * Computes the y coordinate of a point on the curve given its x coordinate.
 * @param {number} xVal The x coordinate of the point on the curve.
 * @return {number} The y coordinate of the point on the curve.
 */
goog.math.Bezier.prototype.solveYValueFromXValue = function(xVal) {
  return this.getPoint(this.solvePositionFromXValue(xVal)).y;
};