summaryrefslogtreecommitdiff
path: root/libdes/f_sched.c
blob: 82ff800f4bce79d4dac0477a3ffa7153c31f090b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
/*
 * Copyright (c) 1990 Dennis Ferguson.  All rights reserved.
 *
 * Commercial use is permitted only if products which are derived from
 * or include this software are made available for purchase and/or use
 * in Canada.  Otherwise, redistribution and use in source and binary
 * forms are permitted.
 */

/*
 * des_make_sched.c - permute a DES key, returning the resulting key schedule
 */
#include "des.h"
#include "f_tables.h"
/*
 * Permuted choice 1 tables.  These are used to extract bits
 * from the left and right parts of the key to form Ci and Di.
 * The code that uses these tables knows which bits from which
 * part of each key are used to form Ci and Di.
 */
static unsigned long PC1_CL[8] = {
	0x00000000, 0x00000010, 0x00001000, 0x00001010,
	0x00100000, 0x00100010, 0x00101000, 0x00101010
};

static unsigned long PC1_DL[16] = {
	0x00000000, 0x00100000, 0x00001000, 0x00101000,
	0x00000010, 0x00100010, 0x00001010, 0x00101010,
	0x00000001, 0x00100001, 0x00001001, 0x00101001,
	0x00000011, 0x00100011, 0x00001011, 0x00101011
};

static unsigned long PC1_CR[16] = {
	0x00000000, 0x00000001, 0x00000100, 0x00000101,
	0x00010000, 0x00010001, 0x00010100, 0x00010101,
	0x01000000, 0x01000001, 0x01000100, 0x01000101,
	0x01010000, 0x01010001, 0x01010100, 0x01010101
};

static unsigned long PC1_DR[8] = {
	0x00000000, 0x01000000, 0x00010000, 0x01010000,
	0x00000100, 0x01000100, 0x00010100, 0x01010100
};


/*
 * At the start of some iterations of the key schedule we do
 * a circular left shift by one place, while for others we do a shift by
 * two places.  This has bits set for the iterations where we do 2 bit
 * shifts, starting at the low order bit.
 */
#define	TWO_BIT_SHIFTS	0x7efc

/*
 * Permuted choice 2 tables.  The first actually produces the low order
 * 24 bits of the subkey Ki from the 28 bit value of Ci.  The second produces
 * the high order 24 bits from Di.  The tables are indexed by six bit
 * segments of Ci and Di respectively.  The code is handcrafted to compute
 * the appropriate 6 bit chunks.
 *
 * Note that for ease of computation, the 24 bit values are produced with
 * six bits going into each byte.  Note also that the table has been byte
 * rearranged to produce keys which match the order we will apply them
 * in in the des code.
 */
static unsigned long PC2_C[4][64] = {
	0x00000000, 0x00000004, 0x00010000, 0x00010004,
	0x00000400, 0x00000404, 0x00010400, 0x00010404,
	0x00000020, 0x00000024, 0x00010020, 0x00010024,
	0x00000420, 0x00000424, 0x00010420, 0x00010424,
	0x01000000, 0x01000004, 0x01010000, 0x01010004,
	0x01000400, 0x01000404, 0x01010400, 0x01010404,
	0x01000020, 0x01000024, 0x01010020, 0x01010024,
	0x01000420, 0x01000424, 0x01010420, 0x01010424,
	0x00020000, 0x00020004, 0x00030000, 0x00030004,
	0x00020400, 0x00020404, 0x00030400, 0x00030404,
	0x00020020, 0x00020024, 0x00030020, 0x00030024,
	0x00020420, 0x00020424, 0x00030420, 0x00030424,
	0x01020000, 0x01020004, 0x01030000, 0x01030004,
	0x01020400, 0x01020404, 0x01030400, 0x01030404,
	0x01020020, 0x01020024, 0x01030020, 0x01030024,
	0x01020420, 0x01020424, 0x01030420, 0x01030424,

	0x00000000, 0x02000000, 0x00000800, 0x02000800,
	0x00080000, 0x02080000, 0x00080800, 0x02080800,
	0x00000001, 0x02000001, 0x00000801, 0x02000801,
	0x00080001, 0x02080001, 0x00080801, 0x02080801,
	0x00000100, 0x02000100, 0x00000900, 0x02000900,
	0x00080100, 0x02080100, 0x00080900, 0x02080900,
	0x00000101, 0x02000101, 0x00000901, 0x02000901,
	0x00080101, 0x02080101, 0x00080901, 0x02080901,
	0x10000000, 0x12000000, 0x10000800, 0x12000800,
	0x10080000, 0x12080000, 0x10080800, 0x12080800,
	0x10000001, 0x12000001, 0x10000801, 0x12000801,
	0x10080001, 0x12080001, 0x10080801, 0x12080801,
	0x10000100, 0x12000100, 0x10000900, 0x12000900,
	0x10080100, 0x12080100, 0x10080900, 0x12080900,
	0x10000101, 0x12000101, 0x10000901, 0x12000901,
	0x10080101, 0x12080101, 0x10080901, 0x12080901,

	0x00000000, 0x00040000, 0x00002000, 0x00042000,
	0x00100000, 0x00140000, 0x00102000, 0x00142000,
	0x20000000, 0x20040000, 0x20002000, 0x20042000,
	0x20100000, 0x20140000, 0x20102000, 0x20142000,
	0x00000008, 0x00040008, 0x00002008, 0x00042008,
	0x00100008, 0x00140008, 0x00102008, 0x00142008,
	0x20000008, 0x20040008, 0x20002008, 0x20042008,
	0x20100008, 0x20140008, 0x20102008, 0x20142008,
	0x00200000, 0x00240000, 0x00202000, 0x00242000,
	0x00300000, 0x00340000, 0x00302000, 0x00342000,
	0x20200000, 0x20240000, 0x20202000, 0x20242000,
	0x20300000, 0x20340000, 0x20302000, 0x20342000,
	0x00200008, 0x00240008, 0x00202008, 0x00242008,
	0x00300008, 0x00340008, 0x00302008, 0x00342008,
	0x20200008, 0x20240008, 0x20202008, 0x20242008,
	0x20300008, 0x20340008, 0x20302008, 0x20342008,

	0x00000000, 0x00000010, 0x08000000, 0x08000010,
	0x00000200, 0x00000210, 0x08000200, 0x08000210,
	0x00000002, 0x00000012, 0x08000002, 0x08000012,
	0x00000202, 0x00000212, 0x08000202, 0x08000212,
	0x04000000, 0x04000010, 0x0c000000, 0x0c000010,
	0x04000200, 0x04000210, 0x0c000200, 0x0c000210,
	0x04000002, 0x04000012, 0x0c000002, 0x0c000012,
	0x04000202, 0x04000212, 0x0c000202, 0x0c000212,
	0x00001000, 0x00001010, 0x08001000, 0x08001010,
	0x00001200, 0x00001210, 0x08001200, 0x08001210,
	0x00001002, 0x00001012, 0x08001002, 0x08001012,
	0x00001202, 0x00001212, 0x08001202, 0x08001212,
	0x04001000, 0x04001010, 0x0c001000, 0x0c001010,
	0x04001200, 0x04001210, 0x0c001200, 0x0c001210,
	0x04001002, 0x04001012, 0x0c001002, 0x0c001012,
	0x04001202, 0x04001212, 0x0c001202, 0x0c001212
};

static unsigned long PC2_D[4][64] = {
	0x00000000, 0x02000000, 0x00020000, 0x02020000,
	0x00000100, 0x02000100, 0x00020100, 0x02020100,
	0x00000008, 0x02000008, 0x00020008, 0x02020008,
	0x00000108, 0x02000108, 0x00020108, 0x02020108,
	0x00200000, 0x02200000, 0x00220000, 0x02220000,
	0x00200100, 0x02200100, 0x00220100, 0x02220100,
	0x00200008, 0x02200008, 0x00220008, 0x02220008,
	0x00200108, 0x02200108, 0x00220108, 0x02220108,
	0x00000200, 0x02000200, 0x00020200, 0x02020200,
	0x00000300, 0x02000300, 0x00020300, 0x02020300,
	0x00000208, 0x02000208, 0x00020208, 0x02020208,
	0x00000308, 0x02000308, 0x00020308, 0x02020308,
	0x00200200, 0x02200200, 0x00220200, 0x02220200,
	0x00200300, 0x02200300, 0x00220300, 0x02220300,
	0x00200208, 0x02200208, 0x00220208, 0x02220208,
	0x00200308, 0x02200308, 0x00220308, 0x02220308,

	0x00000000, 0x00001000, 0x00000020, 0x00001020,
	0x00100000, 0x00101000, 0x00100020, 0x00101020,
	0x08000000, 0x08001000, 0x08000020, 0x08001020,
	0x08100000, 0x08101000, 0x08100020, 0x08101020,
	0x00000004, 0x00001004, 0x00000024, 0x00001024,
	0x00100004, 0x00101004, 0x00100024, 0x00101024,
	0x08000004, 0x08001004, 0x08000024, 0x08001024,
	0x08100004, 0x08101004, 0x08100024, 0x08101024,
	0x00000400, 0x00001400, 0x00000420, 0x00001420,
	0x00100400, 0x00101400, 0x00100420, 0x00101420,
	0x08000400, 0x08001400, 0x08000420, 0x08001420,
	0x08100400, 0x08101400, 0x08100420, 0x08101420,
	0x00000404, 0x00001404, 0x00000424, 0x00001424,
	0x00100404, 0x00101404, 0x00100424, 0x00101424,
	0x08000404, 0x08001404, 0x08000424, 0x08001424,
	0x08100404, 0x08101404, 0x08100424, 0x08101424,

	0x00000000, 0x10000000, 0x00010000, 0x10010000,
	0x00000002, 0x10000002, 0x00010002, 0x10010002,
	0x00002000, 0x10002000, 0x00012000, 0x10012000,
	0x00002002, 0x10002002, 0x00012002, 0x10012002,
	0x00040000, 0x10040000, 0x00050000, 0x10050000,
	0x00040002, 0x10040002, 0x00050002, 0x10050002,
	0x00042000, 0x10042000, 0x00052000, 0x10052000,
	0x00042002, 0x10042002, 0x00052002, 0x10052002,
	0x20000000, 0x30000000, 0x20010000, 0x30010000,
	0x20000002, 0x30000002, 0x20010002, 0x30010002,
	0x20002000, 0x30002000, 0x20012000, 0x30012000,
	0x20002002, 0x30002002, 0x20012002, 0x30012002,
	0x20040000, 0x30040000, 0x20050000, 0x30050000,
	0x20040002, 0x30040002, 0x20050002, 0x30050002,
	0x20042000, 0x30042000, 0x20052000, 0x30052000,
	0x20042002, 0x30042002, 0x20052002, 0x30052002,

	0x00000000, 0x04000000, 0x00000001, 0x04000001,
	0x01000000, 0x05000000, 0x01000001, 0x05000001,
	0x00000010, 0x04000010, 0x00000011, 0x04000011,
	0x01000010, 0x05000010, 0x01000011, 0x05000011,
	0x00080000, 0x04080000, 0x00080001, 0x04080001,
	0x01080000, 0x05080000, 0x01080001, 0x05080001,
	0x00080010, 0x04080010, 0x00080011, 0x04080011,
	0x01080010, 0x05080010, 0x01080011, 0x05080011,
	0x00000800, 0x04000800, 0x00000801, 0x04000801,
	0x01000800, 0x05000800, 0x01000801, 0x05000801,
	0x00000810, 0x04000810, 0x00000811, 0x04000811,
	0x01000810, 0x05000810, 0x01000811, 0x05000811,
	0x00080800, 0x04080800, 0x00080801, 0x04080801,
	0x01080800, 0x05080800, 0x01080801, 0x05080801,
	0x00080810, 0x04080810, 0x00080811, 0x04080811,
	0x01080810, 0x05080810, 0x01080811, 0x05080811
};



/*
 * Permute the key to give us our key schedule.
 */
int
make_key_sched(key, schedule)
	des_cblock *key;
	des_key_schedule schedule;
{
	register unsigned long c, d;

	{
		/*
		 * Need a pointer for the keys and a temporary long
		 */
		register unsigned char *k;
		register unsigned long tmp;

		/*
		 * Fetch the key into something we can work with
		 */
		k = (unsigned char *)key;

		/*
		 * The first permutted choice gives us the 28 bits for C0 and
		 * 28 for D0.  C0 gets 12 bits from the left key and 16 from
		 * the right, while D0 gets 16 from the left and 12 from the
		 * right.  The code knows which bits go where.
		 */
		tmp = ((u_int32)(*(k)++)) << 24;
		tmp |= ((u_int32)(*(k)++)) << 16;
		tmp |= ((u_int32)(*(k)++)) << 8;
		tmp |= (u_int32)(*(k)++);	/* left part of key */
		c =  PC1_CL[(tmp >> 29) & 0x7]
		  | (PC1_CL[(tmp >> 21) & 0x7] << 1)
		  | (PC1_CL[(tmp >> 13) & 0x7] << 2)
		  | (PC1_CL[(tmp >>  5) & 0x7] << 3);
		d =  PC1_DL[(tmp >> 25) & 0xf]
		  | (PC1_DL[(tmp >> 17) & 0xf] << 1)
		  | (PC1_DL[(tmp >>  9) & 0xf] << 2)
		  | (PC1_DL[(tmp >>  1) & 0xf] << 3);

		tmp = ((u_int32)(*(k)++)) << 24;
		tmp |= ((u_int32)(*(k)++)) << 16;
		tmp |= ((u_int32)(*(k)++)) << 8;
		tmp |= (u_int32)(*(k)++);	/* right part of key */
		c |= PC1_CR[(tmp >> 28) & 0xf]
		  | (PC1_CR[(tmp >> 20) & 0xf] << 1)
		  | (PC1_CR[(tmp >> 12) & 0xf] << 2)
		  | (PC1_CR[(tmp >>  4) & 0xf] << 3);
		d |= PC1_DR[(tmp >> 25) & 0x7]
		  | (PC1_DR[(tmp >> 17) & 0x7] << 1)
		  | (PC1_DR[(tmp >>  9) & 0x7] << 2)
		  | (PC1_DR[(tmp >>  1) & 0x7] << 3);
	}

	{
		/*
		 * Need several temporaries in here
		 */
		register unsigned long ltmp, rtmp;
		register u_int32 *k;
		register int two_bit_shifts;
		register int i;
		/*
		 * Now iterate to compute the key schedule.  Note that we
		 * record the entire set of subkeys in 6 bit chunks since
		 * they are used that way.  At 6 bits/char, we need
		 * 48/6 char's/subkey * 16 subkeys/encryption == 128 bytes.
		 * The schedule must be this big.
		 */
		k = (u_int32 *)schedule;
		two_bit_shifts = TWO_BIT_SHIFTS;
		for (i = 16; i > 0; i--) {
			/*
			 * Do the rotation.  One bit and two bit rotations
			 * are done separately.  Note C and D are 28 bits.
			 */
			if (two_bit_shifts & 0x1) {
				c = ((c << 2) & 0xffffffc) | (c >> 26);
				d = ((d << 2) & 0xffffffc) | (d >> 26);
			} else {
				c = ((c << 1) & 0xffffffe) | (c >> 27);
				d = ((d << 1) & 0xffffffe) | (d >> 27);
			}
			two_bit_shifts >>= 1;

			/*
			 * Apply permutted choice 2 to C to get the first
			 * 24 bits worth of keys.  Note that bits 9, 18, 22
			 * and 25 (using DES numbering) in C are unused.  The
			 * shift-mask stuff is done to delete these bits from
			 * the indices, since this cuts the table size in half.
			 *
			 * The table is torqued, by the way.  If the standard
			 * byte order for this (high to low order) is 1234,
			 * the table actually gives us 4132.
			 */
			ltmp = PC2_C[0][((c >> 22) & 0x3f)]
			     | PC2_C[1][((c >> 15) & 0xf) | ((c >> 16) & 0x30)]
			     | PC2_C[2][((c >>  4) & 0x3) | ((c >>  9) & 0x3c)]
			     | PC2_C[3][((c      ) & 0x7) | ((c >>  4) & 0x38)];
			/*
			 * Apply permutted choice 2 to D to get the other half.
			 * Here, bits 7, 10, 15 and 26 go unused.  The sqeezing
			 * actually turns out to be cheaper here.
			 *
			 * This table is similarly torqued.  If the standard
			 * byte order is 5678, the table has the bytes permuted
			 * to give us 7685.
			 */
			rtmp = PC2_D[0][((d >> 22) & 0x3f)]
			     | PC2_D[1][((d >> 14) & 0xf) | ((d >> 15) & 0x30)]
			     | PC2_D[2][((d >>  7) & 0x3f)]
			     | PC2_D[3][((d      ) & 0x3) | ((d >>  1) & 0x3c)];
			
			/*
			 * Make up two words of the key schedule, with a
			 * byte order which is convenient for the DES
			 * inner loop.  The high order (first) word will
			 * hold bytes 7135 (high to low order) while the
			 * second holds bytes 4682.
			 */
			*k++ = (ltmp & 0x00ffff00) | (rtmp & 0xff0000ff);
			*k++ = (ltmp & 0xff0000ff) | (rtmp & 0x00ffff00);
		}
	}
	return (0);
}