aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/gpus/cuda_configure.bzl
blob: 6c9c128db635ecb23b7aa930dca1d20bae17f71c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
# -*- Python -*-
"""Repository rule for CUDA autoconfiguration.

`cuda_configure` depends on the following environment variables:

  * `TF_NEED_CUDA`: Whether to enable building with CUDA.
  * `GCC_HOST_COMPILER_PATH`: The GCC host compiler path
  * `TF_CUDA_CLANG`: Whether to use clang as a cuda compiler.
  * `CLANG_CUDA_COMPILER_PATH`: The clang compiler path that will be used for
    both host and device code compilation if TF_CUDA_CLANG is 1.
  * `TF_DOWNLOAD_CLANG`: Whether to download a recent release of clang
    compiler and use it to build tensorflow. When this option is set
    CLANG_CUDA_COMPILER_PATH is ignored.
  * `CUDA_TOOLKIT_PATH`: The path to the CUDA toolkit. Default is
    `/usr/local/cuda`.
  * `TF_CUDA_VERSION`: The version of the CUDA toolkit. If this is blank, then
    use the system default.
  * `TF_CUDNN_VERSION`: The version of the cuDNN library.
  * `CUDNN_INSTALL_PATH`: The path to the cuDNN library. Default is
    `/usr/local/cuda`.
  * `TF_CUDA_COMPUTE_CAPABILITIES`: The CUDA compute capabilities. Default is
    `3.5,5.2`.
"""

_GCC_HOST_COMPILER_PATH = "GCC_HOST_COMPILER_PATH"
_CLANG_CUDA_COMPILER_PATH = "CLANG_CUDA_COMPILER_PATH"
_CUDA_TOOLKIT_PATH = "CUDA_TOOLKIT_PATH"
_TF_CUDA_VERSION = "TF_CUDA_VERSION"
_TF_CUDNN_VERSION = "TF_CUDNN_VERSION"
_CUDNN_INSTALL_PATH = "CUDNN_INSTALL_PATH"
_TF_CUDA_COMPUTE_CAPABILITIES = "TF_CUDA_COMPUTE_CAPABILITIES"
_TF_CUDA_CONFIG_REPO = "TF_CUDA_CONFIG_REPO"
_TF_DOWNLOAD_CLANG = "TF_DOWNLOAD_CLANG"

_DEFAULT_CUDA_VERSION = ""
_DEFAULT_CUDNN_VERSION = ""
_DEFAULT_CUDA_TOOLKIT_PATH = "/usr/local/cuda"
_DEFAULT_CUDNN_INSTALL_PATH = "/usr/local/cuda"
_DEFAULT_CUDA_COMPUTE_CAPABILITIES = ["3.5", "5.2"]

# Lookup paths for CUDA / cuDNN libraries, relative to the install directories.
#
# Paths will be tried out in the order listed below. The first successful path
# will be used. For example, when looking for the cudart libraries, the first
# attempt will be lib64/cudart inside the CUDA toolkit.
CUDA_LIB_PATHS = [
  "lib64/",
  "lib64/stubs/",
  "lib/x86_64-linux-gnu/",
  "lib/x64/",
  "lib/",
  "",
]

# Lookup paths for cupti.h, relative to the CUDA toolkit directory.
#
# On most systems, the cupti library is not installed in the same directory as
# the other CUDA libraries but rather in a special extras/CUPTI directory.
CUPTI_HEADER_PATHS = [
  "extras/CUPTI/include/",
  "include/cuda/CUPTI/",
]

# Lookup paths for the cupti library, relative to the
#
# On most systems, the cupti library is not installed in the same directory as
# the other CUDA libraries but rather in a special extras/CUPTI directory.
CUPTI_LIB_PATHS = [
  "extras/CUPTI/lib64/",
  "lib/x86_64-linux-gnu",
  "lib64/",
  "extras/CUPTI/libx64/",
  "extras/CUPTI/lib/",
  "lib/",
]

# Lookup paths for CUDA headers (cuda.h) relative to the CUDA toolkit directory.
CUDA_INCLUDE_PATHS = [
  "include/",
  "include/cuda/"
]

# Lookup paths for cudnn.h relative to the CUDNN install directory.
CUDNN_INCLUDE_PATHS = [
  "",
  "include/",
  "include/cuda/",
]

# Lookup paths for NVVM libdevice relative to the CUDA directory toolkit.
#
# libdevice implements mathematical functions for GPU kernels, and is provided
# in NVVM bitcode (a subset of LLVM bitcode).
NVVM_LIBDEVICE_PATHS = [
  "nvvm/libdevice/",
  "share/cuda/",
]

load(":download_clang.bzl", "download_clang")

# TODO(dzc): Once these functions have been factored out of Bazel's
# cc_configure.bzl, load them from @bazel_tools instead.
# BEGIN cc_configure common functions.
def find_cc(repository_ctx):
  """Find the C++ compiler."""
  # On Windows, we use Bazel's MSVC CROSSTOOL for GPU build
  # Return a dummy value for GCC detection here to avoid error
  if _is_windows(repository_ctx):
    return "/use/--config=win-cuda --cpu=x64_windows_msvc/instead"

  if _use_cuda_clang(repository_ctx):
    target_cc_name = "clang"
    cc_path_envvar = _CLANG_CUDA_COMPILER_PATH
    if _flag_enabled(repository_ctx, _TF_DOWNLOAD_CLANG):
      return "extra_tools/bin/clang"
  else:
    target_cc_name = "gcc"
    cc_path_envvar = _GCC_HOST_COMPILER_PATH
  cc_name = target_cc_name

  if cc_path_envvar in repository_ctx.os.environ:
    cc_name_from_env = repository_ctx.os.environ[cc_path_envvar].strip()
    if cc_name_from_env:
      cc_name = cc_name_from_env
  if cc_name.startswith("/"):
    # Absolute path, maybe we should make this supported by our which function.
    return cc_name
  cc = repository_ctx.which(cc_name)
  if cc == None:
    fail(("Cannot find {}, either correct your path or set the {}" +
          " environment variable").format(target_cc_name, cc_path_envvar))
  return cc


_INC_DIR_MARKER_BEGIN = "#include <...>"


# OSX add " (framework directory)" at the end of line, strip it.
_OSX_FRAMEWORK_SUFFIX = " (framework directory)"
_OSX_FRAMEWORK_SUFFIX_LEN =  len(_OSX_FRAMEWORK_SUFFIX)
def _cxx_inc_convert(path):
  """Convert path returned by cc -E xc++ in a complete path."""
  path = path.strip()
  if path.endswith(_OSX_FRAMEWORK_SUFFIX):
    path = path[:-_OSX_FRAMEWORK_SUFFIX_LEN].strip()
  return path


def _normalize_include_path(repository_ctx, path):
  """Normalizes include paths before writing them to the crosstool.

  If path points inside the 'crosstool' folder of the repository, a relative
  path is returned.
  If path points outside the 'crosstool' folder, an absolute path is returned.
  """
  path = str(repository_ctx.path(path))
  crosstool_folder = str(repository_ctx.path(".").get_child('crosstool'))

  if path.startswith(crosstool_folder):
    # We drop the path to "$REPO/crosstool" and a trailing path separator.
    return path[len(crosstool_folder)+1:]
  return path


def _get_cxx_inc_directories_impl(repository_ctx, cc, lang_is_cpp):
  """Compute the list of default C or C++ include directories."""
  if lang_is_cpp:
    lang = "c++"
  else:
    lang = "c"
  result = repository_ctx.execute([cc, "-E", "-x" + lang, "-", "-v"])
  index1 = result.stderr.find(_INC_DIR_MARKER_BEGIN)
  if index1 == -1:
    return []
  index1 = result.stderr.find("\n", index1)
  if index1 == -1:
    return []
  index2 = result.stderr.rfind("\n ")
  if index2 == -1 or index2 < index1:
    return []
  index2 = result.stderr.find("\n", index2 + 1)
  if index2 == -1:
    inc_dirs = result.stderr[index1 + 1:]
  else:
    inc_dirs = result.stderr[index1 + 1:index2].strip()

  return [
      _normalize_include_path(repository_ctx, _cxx_inc_convert(p))
      for p in inc_dirs.split("\n")
  ]


def get_cxx_inc_directories(repository_ctx, cc):
  """Compute the list of default C and C++ include directories."""
  # For some reason `clang -xc` sometimes returns include paths that are
  # different from the ones from `clang -xc++`. (Symlink and a dir)
  # So we run the compiler with both `-xc` and `-xc++` and merge resulting lists
  includes_cpp = _get_cxx_inc_directories_impl(repository_ctx, cc, True)
  includes_c = _get_cxx_inc_directories_impl(repository_ctx, cc, False)

  includes_cpp_set = depset(includes_cpp)
  return includes_cpp + [inc for inc in includes_c
                         if inc not in includes_cpp_set]


def auto_configure_fail(msg):
  """Output failure message when cuda configuration fails."""
  red = "\033[0;31m"
  no_color = "\033[0m"
  fail("\n%sCuda Configuration Error:%s %s\n" % (red, no_color, msg))
# END cc_configure common functions (see TODO above).


def _host_compiler_includes(repository_ctx, cc):
  """Generates the cxx_builtin_include_directory entries for gcc inc dirs.

  Args:
    repository_ctx: The repository context.
    cc: The path to the gcc host compiler.

  Returns:
    A string containing the cxx_builtin_include_directory for each of the gcc
    host compiler include directories, which can be added to the CROSSTOOL
    file.
  """
  inc_dirs = get_cxx_inc_directories(repository_ctx, cc)
  inc_entries = []
  for inc_dir in inc_dirs:
    inc_entries.append("  cxx_builtin_include_directory: \"%s\"" % inc_dir)
  return "\n".join(inc_entries)

def _cuda_include_path(repository_ctx, cuda_config):
  """Generates the cxx_builtin_include_directory entries for cuda inc dirs.

  Args:
    repository_ctx: The repository context.
    cc: The path to the gcc host compiler.

  Returns:
    A string containing the cxx_builtin_include_directory for each of the gcc
    host compiler include directories, which can be added to the CROSSTOOL
    file.
  """
  nvcc_path = repository_ctx.path("%s/bin/nvcc%s" %
                                  (cuda_config.cuda_toolkit_path,
                                   ".exe" if cuda_config.cpu_value == "Windows" else ""))
  result = repository_ctx.execute([nvcc_path, '-v',
                                  '/dev/null', '-o', '/dev/null'])
  target_dir = ""
  for one_line in result.stderr.splitlines():
    if one_line.startswith('#$ _TARGET_DIR_='):
      target_dir = (cuda_config.cuda_toolkit_path + '/' +
                    one_line.replace('#$ _TARGET_DIR_=', '') + "/include")
  inc_entries = []
  if target_dir != "":
    inc_entries.append("  cxx_builtin_include_directory: \"%s\"" % target_dir)
  default_include = cuda_config.cuda_toolkit_path + '/include'
  inc_entries.append("  cxx_builtin_include_directory: \"%s\"" %
                     default_include)
  return "\n".join(inc_entries)


def _enable_cuda(repository_ctx):
  if "TF_NEED_CUDA" in repository_ctx.os.environ:
    enable_cuda = repository_ctx.os.environ["TF_NEED_CUDA"].strip()
    return enable_cuda == "1"
  return False


def _cuda_toolkit_path(repository_ctx):
  """Finds the cuda toolkit directory.

  Args:
    repository_ctx: The repository context.

  Returns:
    A speculative real path of the cuda toolkit install directory.
  """
  cuda_toolkit_path = _DEFAULT_CUDA_TOOLKIT_PATH
  if _CUDA_TOOLKIT_PATH in repository_ctx.os.environ:
    cuda_toolkit_path = repository_ctx.os.environ[_CUDA_TOOLKIT_PATH].strip()
  if not repository_ctx.path(cuda_toolkit_path).exists:
    auto_configure_fail("Cannot find cuda toolkit path.")
  return str(repository_ctx.path(cuda_toolkit_path).realpath)


def _cudnn_install_basedir(repository_ctx):
  """Finds the cudnn install directory."""
  cudnn_install_path = _DEFAULT_CUDNN_INSTALL_PATH
  if _CUDNN_INSTALL_PATH in repository_ctx.os.environ:
    cudnn_install_path = repository_ctx.os.environ[_CUDNN_INSTALL_PATH].strip()
  if not repository_ctx.path(cudnn_install_path).exists:
    auto_configure_fail("Cannot find cudnn install path.")
  return cudnn_install_path


def matches_version(environ_version, detected_version):
  """Checks whether the user-specified version matches the detected version.

  This function performs a weak matching so that if the user specifies only the
  major or major and minor versions, the versions are still considered matching
  if the version parts match. To illustrate:

      environ_version  detected_version  result
      -----------------------------------------
      5.1.3            5.1.3             True
      5.1              5.1.3             True
      5                5.1               True
      5.1.3            5.1               False
      5.2.3            5.1.3             False

  Args:
    environ_version: The version specified by the user via environment
      variables.
    detected_version: The version autodetected from the CUDA installation on
      the system.

  Returns: True if user-specified version matches detected version and False
    otherwise.
  """
  environ_version_parts = environ_version.split(".")
  detected_version_parts = detected_version.split(".")
  if len(detected_version_parts) < len(environ_version_parts):
    return False
  for i, part in enumerate(detected_version_parts):
    if i >= len(environ_version_parts):
      break
    if part != environ_version_parts[i]:
      return False
  return True


_NVCC_VERSION_PREFIX = "Cuda compilation tools, release "


def _cuda_version(repository_ctx, cuda_toolkit_path, cpu_value):
  """Detects the version of CUDA installed on the system.

  Args:
    repository_ctx: The repository context.
    cuda_toolkit_path: The CUDA install directory.

  Returns:
    String containing the version of CUDA.
  """
  # Run nvcc --version and find the line containing the CUDA version.
  nvcc_path = repository_ctx.path("%s/bin/nvcc%s" %
                                  (cuda_toolkit_path,
                                   ".exe" if cpu_value == "Windows" else ""))
  if not nvcc_path.exists:
    auto_configure_fail("Cannot find nvcc at %s" % str(nvcc_path))
  result = repository_ctx.execute([str(nvcc_path), '--version'])
  if result.stderr:
    auto_configure_fail("Error running nvcc --version: %s" % result.stderr)
  lines = result.stdout.splitlines()
  version_line = lines[len(lines) - 1]
  if version_line.find(_NVCC_VERSION_PREFIX) == -1:
    auto_configure_fail(
        "Could not parse CUDA version from nvcc --version. Got: %s" %
        result.stdout)

  # Parse the CUDA version from the line containing the CUDA version.
  prefix_removed = version_line.replace(_NVCC_VERSION_PREFIX, '')
  parts = prefix_removed.split(",")
  if len(parts) != 2 or len(parts[0]) < 2:
    auto_configure_fail(
        "Could not parse CUDA version from nvcc --version. Got: %s" %
        result.stdout)
  full_version = parts[1].strip()
  if full_version.startswith('V'):
    full_version = full_version[1:]

  # Check whether TF_CUDA_VERSION was set by the user and fail if it does not
  # match the detected version.
  environ_version = ""
  if _TF_CUDA_VERSION in repository_ctx.os.environ:
    environ_version = repository_ctx.os.environ[_TF_CUDA_VERSION].strip()
  if environ_version and not matches_version(environ_version, full_version):
    auto_configure_fail(
        ("CUDA version detected from nvcc (%s) does not match " +
         "TF_CUDA_VERSION (%s)") % (full_version, environ_version))

  # We only use the version consisting of the major and minor version numbers.
  version_parts = full_version.split('.')
  if len(version_parts) < 2:
    auto_configure_fail("CUDA version detected from nvcc (%s) is incomplete.")
  if cpu_value == "Windows":
    version = "64_%s%s" % (version_parts[0], version_parts[1])
  else:
    version = "%s.%s" % (version_parts[0], version_parts[1])
  return version


_DEFINE_CUDNN_MAJOR = "#define CUDNN_MAJOR"
_DEFINE_CUDNN_MINOR = "#define CUDNN_MINOR"
_DEFINE_CUDNN_PATCHLEVEL = "#define CUDNN_PATCHLEVEL"


def find_cuda_define(repository_ctx, header_dir, header_file, define):
  """Returns the value of a #define in a header file.

  Greps through a header file and returns the value of the specified #define.
  If the #define is not found, then raise an error.

  Args:
    repository_ctx: The repository context.
    header_dir: The directory containing the header file.
    header_file: The header file name.
    define: The #define to search for.

  Returns:
    The value of the #define found in the header.
  """
  # Confirm location of the header and grep for the line defining the macro.
  h_path = repository_ctx.path("%s/%s" % (header_dir, header_file))
  if not h_path.exists:
    auto_configure_fail("Cannot find %s at %s" % (header_file, str(h_path)))
  result = repository_ctx.execute(
      # Grep one more lines as some #defines are splitted into two lines.
      ["grep", "--color=never", "-A1", "-E", define, str(h_path)])
  if result.stderr:
    auto_configure_fail("Error reading %s: %s" % (str(h_path), result.stderr))

  # Parse the version from the line defining the macro.
  if result.stdout.find(define) == -1:
    auto_configure_fail("Cannot find line containing '%s' in %s" %
                        (define, h_path))
  # Split results to lines
  lines = result.stdout.split('\n')
  num_lines = len(lines)
  for l in range(num_lines):
    line = lines[l]
    if define in line:  # Find the line with define
      version = line
      if l != num_lines-1 and line[-1] == '\\':  # Add next line, if multiline
        version = version[:-1] + lines[l+1]
      break
  # Remove any comments
  version = version.split("//")[0]
  # Remove define name
  version = version.replace(define, "").strip()
  # Remove the code after the version number.
  version_end = version.find(" ")
  if version_end != -1:
    if version_end == 0:
      auto_configure_fail(
          "Cannot extract the version from line containing '%s' in %s" %
          (define, str(h_path)))
    version = version[:version_end].strip()
  return version


def _cudnn_version(repository_ctx, cudnn_install_basedir, cpu_value):
  """Detects the version of cuDNN installed on the system.

  Args:
    repository_ctx: The repository context.
    cpu_value: The name of the host operating system.
    cudnn_install_basedir: The cuDNN install directory.

  Returns:
    A string containing the version of cuDNN.
  """
  cudnn_header_dir = _find_cudnn_header_dir(repository_ctx,
                                            cudnn_install_basedir)
  major_version = find_cuda_define(
      repository_ctx, cudnn_header_dir, "cudnn.h", _DEFINE_CUDNN_MAJOR)
  minor_version = find_cuda_define(
      repository_ctx, cudnn_header_dir, "cudnn.h", _DEFINE_CUDNN_MINOR)
  patch_version = find_cuda_define(
      repository_ctx, cudnn_header_dir, "cudnn.h", _DEFINE_CUDNN_PATCHLEVEL)
  full_version = "%s.%s.%s" % (major_version, minor_version, patch_version)

  # Check whether TF_CUDNN_VERSION was set by the user and fail if it does not
  # match the detected version.
  environ_version = ""
  if _TF_CUDNN_VERSION in repository_ctx.os.environ:
    environ_version = repository_ctx.os.environ[_TF_CUDNN_VERSION].strip()
  if environ_version and not matches_version(environ_version, full_version):
    cudnn_h_path = repository_ctx.path("%s/include/cudnn.h" %
                                       cudnn_install_basedir)
    auto_configure_fail(
        ("cuDNN version detected from %s (%s) does not match " +
        "TF_CUDNN_VERSION (%s)") %
        (str(cudnn_h_path), full_version, environ_version))

  # We only use the major version since we use the libcudnn libraries that are
  # only versioned with the major version (e.g. libcudnn.so.5).
  version = major_version
  if cpu_value == "Windows":
    version = "64_" + version
  return version


def _compute_capabilities(repository_ctx):
  """Returns a list of strings representing cuda compute capabilities."""
  if _TF_CUDA_COMPUTE_CAPABILITIES not in repository_ctx.os.environ:
    return _DEFAULT_CUDA_COMPUTE_CAPABILITIES
  capabilities_str = repository_ctx.os.environ[_TF_CUDA_COMPUTE_CAPABILITIES]
  capabilities = capabilities_str.split(",")
  for capability in capabilities:
    # Workaround for Skylark's lack of support for regex. This check should
    # be equivalent to checking:
    #     if re.match("[0-9]+.[0-9]+", capability) == None:
    parts = capability.split(".")
    if len(parts) != 2 or not parts[0].isdigit() or not parts[1].isdigit():
      auto_configure_fail("Invalid compute capability: %s" % capability)
  return capabilities


def get_cpu_value(repository_ctx):
  """Returns the name of the host operating system.

  Args:
    repository_ctx: The repository context.

  Returns:
    A string containing the name of the host operating system.
  """
  os_name = repository_ctx.os.name.lower()
  if os_name.startswith("mac os"):
    return "Darwin"
  if os_name.find("windows") != -1:
    return "Windows"
  result = repository_ctx.execute(["uname", "-s"])
  return result.stdout.strip()


def _is_windows(repository_ctx):
  """Returns true if the host operating system is windows."""
  return get_cpu_value(repository_ctx) == "Windows"

def _lib_name(lib, cpu_value, version="", static=False):
  """Constructs the platform-specific name of a library.

  Args:
    lib: The name of the library, such as "cudart"
    cpu_value: The name of the host operating system.
    version: The version of the library.
    static: True the library is static or False if it is a shared object.

  Returns:
    The platform-specific name of the library.
  """
  if cpu_value in ("Linux", "FreeBSD"):
    if static:
      return "lib%s.a" % lib
    else:
      if version:
        version = ".%s" % version
      return "lib%s.so%s" % (lib, version)
  elif cpu_value == "Windows":
    return "%s.lib" % lib
  elif cpu_value == "Darwin":
    if static:
      return "lib%s.a" % lib
    else:
      if version:
        version = ".%s" % version
    return "lib%s%s.dylib" % (lib, version)
  else:
    auto_configure_fail("Invalid cpu_value: %s" % cpu_value)


def _find_cuda_lib(lib, repository_ctx, cpu_value, basedir, version="",
                   static=False):
  """Finds the given CUDA or cuDNN library on the system.

  Args:
    lib: The name of the library, such as "cudart"
    repository_ctx: The repository context.
    cpu_value: The name of the host operating system.
    basedir: The install directory of CUDA or cuDNN.
    version: The version of the library.
    static: True if static library, False if shared object.

  Returns:
    Returns a struct with the following fields:
      file_name: The basename of the library found on the system.
      path: The full path to the library.
  """
  file_name = _lib_name(lib, cpu_value, version, static)
  for relative_path in CUDA_LIB_PATHS:
    path = repository_ctx.path("%s/%s%s" % (basedir, relative_path, file_name))
    if path.exists:
      return struct(file_name=file_name, path=str(path.realpath))
  auto_configure_fail("Cannot find cuda library %s" % file_name)


def _find_cupti_header_dir(repository_ctx, cuda_config):
  """Returns the path to the directory containing cupti.h

  On most systems, the cupti library is not installed in the same directory as
  the other CUDA libraries but rather in a special extras/CUPTI directory.

  Args:
    repository_ctx: The repository context.
    cuda_config: The CUDA config as returned by _get_cuda_config

  Returns:
    The path of the directory containing the cupti header.
  """
  cuda_toolkit_path = cuda_config.cuda_toolkit_path
  for relative_path in CUPTI_HEADER_PATHS:
    if repository_ctx.path("%s/%scupti.h" % (cuda_toolkit_path, relative_path)).exists:
        return ("%s/%s" % (cuda_toolkit_path, relative_path))[:-1]
  auto_configure_fail("Cannot find cupti.h under %s" % cuda_toolkit_path)


def _find_cupti_lib(repository_ctx, cuda_config):
  """Finds the cupti library on the system.

  On most systems, the cupti library is not installed in the same directory as
  the other CUDA libraries but rather in a special extras/CUPTI directory.

  Args:
    repository_ctx: The repository context.
    cuda_config: The cuda configuration as returned by _get_cuda_config.

  Returns:
    Returns a struct with the following fields:
      file_name: The basename of the library found on the system.
      path: The full path to the library.
  """
  file_name = _lib_name("cupti", cuda_config.cpu_value,
                        cuda_config.cuda_version)
  cuda_toolkit_path = cuda_config.cuda_toolkit_path
  for relative_path in CUPTI_LIB_PATHS:
    path = repository_ctx.path(
        "%s/%s%s" % (cuda_toolkit_path, relative_path, file_name))
    if path.exists:
      return struct(file_name=file_name, path=str(path.realpath))

  auto_configure_fail("Cannot find cupti library %s" % file_name)

def _find_libs(repository_ctx, cuda_config):
  """Returns the CUDA and cuDNN libraries on the system.

  Args:
    repository_ctx: The repository context.
    cuda_config: The CUDA config as returned by _get_cuda_config

  Returns:
    Map of library names to structs of filename and path.
  """
  cpu_value = cuda_config.cpu_value
  return {
      "cuda": _find_cuda_lib("cuda", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path),
      "cudart": _find_cuda_lib(
          "cudart", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path,
          cuda_config.cuda_version),
      "cudart_static": _find_cuda_lib(
          "cudart_static", repository_ctx, cpu_value,
          cuda_config.cuda_toolkit_path, cuda_config.cuda_version, static=True),
      "cublas": _find_cuda_lib(
          "cublas", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path,
          cuda_config.cuda_version),
      "cusolver": _find_cuda_lib(
          "cusolver", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path,
          cuda_config.cuda_version),
      "curand": _find_cuda_lib(
          "curand", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path,
          cuda_config.cuda_version),
      "cufft": _find_cuda_lib(
          "cufft", repository_ctx, cpu_value, cuda_config.cuda_toolkit_path,
          cuda_config.cuda_version),
      "cudnn": _find_cuda_lib(
          "cudnn", repository_ctx, cpu_value, cuda_config.cudnn_install_basedir,
          cuda_config.cudnn_version),
      "cupti": _find_cupti_lib(repository_ctx, cuda_config)
  }


def _find_cuda_include_path(repository_ctx, cuda_config):
  """Returns the path to the directory containing cuda.h

  Args:
    repository_ctx: The repository context.
    cuda_config: The CUDA config as returned by _get_cuda_config

  Returns:
    The path of the directory containing the CUDA headers.
  """
  cuda_toolkit_path = cuda_config.cuda_toolkit_path
  for relative_path in CUDA_INCLUDE_PATHS:
    if repository_ctx.path("%s/%scuda.h" % (cuda_toolkit_path, relative_path)).exists:
        return ("%s/%s" % (cuda_toolkit_path, relative_path))[:-1]
  auto_configure_fail("Cannot find cuda.h under %s" % cuda_toolkit_path)


def _find_cudnn_header_dir(repository_ctx, cudnn_install_basedir):
  """Returns the path to the directory containing cudnn.h

  Args:
    repository_ctx: The repository context.
    cudnn_install_basedir: The cudnn install directory as returned by
      _cudnn_install_basedir.

  Returns:
    The path of the directory containing the cudnn header.
  """
  for relative_path in CUDA_INCLUDE_PATHS:
    if repository_ctx.path("%s/%scudnn.h" % (cudnn_install_basedir, relative_path)).exists:
        return ("%s/%s" % (cudnn_install_basedir, relative_path))[:-1]
  if repository_ctx.path("/usr/include/cudnn.h").exists:
    return "/usr/include"
  auto_configure_fail("Cannot find cudnn.h under %s" % cudnn_install_basedir)


def _find_nvvm_libdevice_dir(repository_ctx, cuda_config):
  """Returns the path to the directory containing libdevice in bitcode format.

  Args:
    repository_ctx: The repository context.
    cuda_config: The CUDA config as returned by _get_cuda_config

  Returns:
    The path of the directory containing the CUDA headers.
  """
  cuda_toolkit_path = cuda_config.cuda_toolkit_path
  for relative_path in NVVM_LIBDEVICE_PATHS:
    if repository_ctx.path("%s/%slibdevice.10.bc" % (cuda_toolkit_path, relative_path)).exists:
      return ("%s/%s" % (cuda_toolkit_path, relative_path))[:-1]
  auto_configure_fail("Cannot find libdevice.10.bc under %s" % cuda_toolkit_path)


def _cudart_static_linkopt(cpu_value):
  """Returns additional platform-specific linkopts for cudart."""
  return "" if cpu_value == "Darwin" else "\"-lrt\","

def _get_cuda_config(repository_ctx):
  """Detects and returns information about the CUDA installation on the system.

  Args:
    repository_ctx: The repository context.

  Returns:
    A struct containing the following fields:
      cuda_toolkit_path: The CUDA toolkit installation directory.
      cudnn_install_basedir: The cuDNN installation directory.
      cuda_version: The version of CUDA on the system.
      cudnn_version: The version of cuDNN on the system.
      compute_capabilities: A list of the system's CUDA compute capabilities.
      cpu_value: The name of the host operating system.
  """
  cpu_value = get_cpu_value(repository_ctx)
  cuda_toolkit_path = _cuda_toolkit_path(repository_ctx)
  cuda_version = _cuda_version(repository_ctx, cuda_toolkit_path, cpu_value)
  cudnn_install_basedir = _cudnn_install_basedir(repository_ctx)
  cudnn_version = _cudnn_version(repository_ctx, cudnn_install_basedir, cpu_value)
  return struct(
      cuda_toolkit_path = cuda_toolkit_path,
      cudnn_install_basedir = cudnn_install_basedir,
      cuda_version = cuda_version,
      cudnn_version = cudnn_version,
      compute_capabilities = _compute_capabilities(repository_ctx),
      cpu_value = cpu_value)


def _tpl(repository_ctx, tpl, substitutions={}, out=None):
  if not out:
    out = tpl.replace(":", "/")
  repository_ctx.template(
      out,
      Label("//third_party/gpus/%s.tpl" % tpl),
      substitutions)


def _file(repository_ctx, label):
  repository_ctx.template(
      label.replace(":", "/"),
      Label("//third_party/gpus/%s.tpl" % label),
      {})


_DUMMY_CROSSTOOL_BZL_FILE = """
def error_gpu_disabled():
  fail("ERROR: Building with --config=cuda but TensorFlow is not configured " +
       "to build with GPU support. Please re-run ./configure and enter 'Y' " +
       "at the prompt to build with GPU support.")

  native.genrule(
      name = "error_gen_crosstool",
      outs = ["CROSSTOOL"],
      cmd = "echo 'Should not be run.' && exit 1",
  )

  native.filegroup(
      name = "crosstool",
      srcs = [":CROSSTOOL"],
      output_licenses = ["unencumbered"],
  )
"""


_DUMMY_CROSSTOOL_BUILD_FILE = """
load("//crosstool:error_gpu_disabled.bzl", "error_gpu_disabled")

error_gpu_disabled()
"""


def _create_dummy_repository(repository_ctx):
  cpu_value = get_cpu_value(repository_ctx)

  # Set up BUILD file for cuda/.
  _tpl(repository_ctx, "cuda:build_defs.bzl",
       {
           "%{cuda_is_configured}": "False",
           "%{cuda_extra_copts}": "[]",
       })
  _tpl(repository_ctx, "cuda:BUILD",
       {
           "%{cuda_driver_lib}": _lib_name("cuda", cpu_value),
           "%{cudart_static_lib}": _lib_name("cudart_static", cpu_value,
                                             static=True),
           "%{cudart_static_linkopt}": _cudart_static_linkopt(cpu_value),
           "%{cudart_lib}": _lib_name("cudart", cpu_value),
           "%{cublas_lib}": _lib_name("cublas", cpu_value),
           "%{cusolver_lib}": _lib_name("cusolver", cpu_value),
           "%{cudnn_lib}": _lib_name("cudnn", cpu_value),
           "%{cufft_lib}": _lib_name("cufft", cpu_value),
           "%{curand_lib}": _lib_name("curand", cpu_value),
           "%{cupti_lib}": _lib_name("cupti", cpu_value),
           "%{cuda_include_genrules}": '',
           "%{cuda_headers}": '',
       })

  # Create dummy files for the CUDA toolkit since they are still required by
  # tensorflow/core/platform/default/build_config:cuda.
  repository_ctx.file("cuda/cuda/include/cuda.h", "")
  repository_ctx.file("cuda/cuda/include/cublas.h", "")
  repository_ctx.file("cuda/cuda/include/cudnn.h", "")
  repository_ctx.file("cuda/cuda/extras/CUPTI/include/cupti.h", "")
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cuda", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cudart", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cudart_static", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cublas", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cusolver", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cudnn", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("curand", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cufft", cpu_value))
  repository_ctx.file("cuda/cuda/lib/%s" % _lib_name("cupti", cpu_value))

  # Set up cuda_config.h, which is used by
  # tensorflow/stream_executor/dso_loader.cc.
  _tpl(repository_ctx, "cuda:cuda_config.h",
       {
           "%{cuda_version}": _DEFAULT_CUDA_VERSION,
           "%{cudnn_version}": _DEFAULT_CUDNN_VERSION,
           "%{cuda_compute_capabilities}": ",".join([
               "CudaVersion(\"%s\")" % c
               for c in _DEFAULT_CUDA_COMPUTE_CAPABILITIES]),
           "%{cuda_toolkit_path}": _DEFAULT_CUDA_TOOLKIT_PATH,
       }, "cuda/cuda/cuda_config.h")

  # If cuda_configure is not configured to build with GPU support, and the user
  # attempts to build with --config=cuda, add a dummy build rule to intercept
  # this and fail with an actionable error message.
  repository_ctx.file("crosstool/error_gpu_disabled.bzl",
                      _DUMMY_CROSSTOOL_BZL_FILE)
  repository_ctx.file("crosstool/BUILD", _DUMMY_CROSSTOOL_BUILD_FILE)


def _execute(repository_ctx, cmdline, error_msg=None, error_details=None,
             empty_stdout_fine=False):
  """Executes an arbitrary shell command.

  Args:
    repository_ctx: the repository_ctx object
    cmdline: list of strings, the command to execute
    error_msg: string, a summary of the error if the command fails
    error_details: string, details about the error or steps to fix it
    empty_stdout_fine: bool, if True, an empty stdout result is fine, otherwise
      it's an error
  Return:
    the result of repository_ctx.execute(cmdline)
  """
  result = repository_ctx.execute(cmdline)
  if result.stderr or not (empty_stdout_fine or result.stdout):
    auto_configure_fail(
        "\n".join([
            error_msg.strip() if error_msg else "Repository command failed",
            result.stderr.strip(),
            error_details if error_details else ""]))
  return result


def _norm_path(path):
  """Returns a path with '/' and remove the trailing slash."""
  path = path.replace("\\", "/")
  if path[-1] == "/":
    path = path[:-1]
  return path


def symlink_genrule_for_dir(repository_ctx, src_dir, dest_dir, genrule_name,
                            src_files = [], dest_files = []):
  """Returns a genrule to symlink(or copy if on Windows) a set of files.

  If src_dir is passed, files will be read from the given directory; otherwise
  we assume files are in src_files and dest_files
  """
  if src_dir != None:
    src_dir = _norm_path(src_dir)
    dest_dir = _norm_path(dest_dir)
    files = '\n'.join(sorted(_read_dir(repository_ctx, src_dir).splitlines()))
    # Create a list with the src_dir stripped to use for outputs.
    dest_files = files.replace(src_dir, '').splitlines()
    src_files = files.splitlines()
  command = []
  if not _is_windows(repository_ctx):
    # We clear folders that might have been generated previously to avoid
    # undesired inclusions
    command.append('if [ -d "$(@D)/extras" ]; then rm $(@D)/extras -drf; fi')
    command.append('if [ -d "$(@D)/include" ]; then rm $(@D)/include -drf; fi')
    command.append('if [ -d "$(@D)/lib" ]; then rm $(@D)/lib -drf; fi')
    command.append('if [ -d "$(@D)/nvvm" ]; then rm $(@D)/nvvm -drf; fi')
  outs = []
  for i in range(len(dest_files)):
    if dest_files[i] != "":
      # If we have only one file to link we do not want to use the dest_dir, as
      # $(@D) will include the full path to the file.
      dest = '$(@D)/' + dest_dir + dest_files[i] if len(dest_files) != 1 else '$(@D)/' + dest_files[i]
      # On Windows, symlink is not supported, so we just copy all the files.
      cmd = 'cp -f' if _is_windows(repository_ctx) else 'ln -s'
      command.append(cmd + ' "%s" "%s"' % (src_files[i] , dest))
      outs.append('        "' + dest_dir + dest_files[i] + '",')
  genrule = _genrule(src_dir, genrule_name, " && ".join(command),
                     "\n".join(outs))
  return genrule


def _genrule(src_dir, genrule_name, command, outs):
  """Returns a string with a genrule.

  Genrule executes the given command and produces the given outputs.
  """
  return (
      'genrule(\n' +
      '    name = "' +
      genrule_name + '",\n' +
      '    outs = [\n' +
      outs +
      '\n    ],\n' +
      '    cmd = """\n' +
      command +
      '\n   """,\n' +
      ')\n'
  )


def _read_dir(repository_ctx, src_dir):
  """Returns a string with all files in a directory.

  Finds all files inside a directory, traversing subfolders and following
  symlinks. The returned string contains the full path of all files
  separated by line breaks.
  """
  if _is_windows(repository_ctx):
    src_dir = src_dir.replace("/", "\\")
    find_result = _execute(
        repository_ctx, ["cmd.exe", "/c", "dir", src_dir, "/b", "/s", "/a-d"],
        empty_stdout_fine=True)
    # src_files will be used in genrule.outs where the paths must
    # use forward slashes.
    result = find_result.stdout.replace("\\", "/")
  else:
    find_result = _execute(
        repository_ctx, ["find", src_dir, "-follow", "-type", "f"],
        empty_stdout_fine=True)
    result = find_result.stdout
  return result

def _flag_enabled(repository_ctx, flag_name):
  if flag_name in repository_ctx.os.environ:
    value = repository_ctx.os.environ[flag_name].strip()
    return value == "1"
  return False

def _use_cuda_clang(repository_ctx):
  return _flag_enabled(repository_ctx, "TF_CUDA_CLANG")

def _compute_cuda_extra_copts(repository_ctx, compute_capabilities):
  if _use_cuda_clang(repository_ctx):
    capability_flags = ["--cuda-gpu-arch=sm_" +
        cap.replace(".", "") for cap in compute_capabilities]
  else:
    # Capabilities are handled in the "crosstool_wrapper_driver_is_not_gcc" for nvcc
    capability_flags = []
  return str(capability_flags)

def _create_local_cuda_repository(repository_ctx):
  """Creates the repository containing files set up to build with CUDA."""
  cuda_config = _get_cuda_config(repository_ctx)

  cuda_include_path = _find_cuda_include_path(repository_ctx, cuda_config)
  cudnn_header_dir = _find_cudnn_header_dir(repository_ctx,
                                            cuda_config.cudnn_install_basedir)
  cupti_header_dir = _find_cupti_header_dir(repository_ctx, cuda_config)
  nvvm_libdevice_dir = _find_nvvm_libdevice_dir(repository_ctx, cuda_config)

  # Set up symbolic links for the cuda toolkit by creating genrules to do
  # symlinking. We create one genrule for each directory we want to track under
  # cuda_toolkit_path
  cuda_toolkit_path = cuda_config.cuda_toolkit_path
  genrules = [symlink_genrule_for_dir(repository_ctx,
      cuda_include_path, "cuda/include", "cuda-include")]
  genrules.append(symlink_genrule_for_dir(repository_ctx,
      nvvm_libdevice_dir, "cuda/nvvm/libdevice", "cuda-nvvm"))
  genrules.append(symlink_genrule_for_dir(repository_ctx,
      cupti_header_dir, "cuda/extras/CUPTI/include", "cuda-extras"))

  cuda_libs = _find_libs(repository_ctx, cuda_config)
  cuda_lib_src = []
  cuda_lib_dest = []
  for lib in cuda_libs.values():
    cuda_lib_src.append(lib.path)
    cuda_lib_dest.append("cuda/lib/" + lib.file_name)
  genrules.append(symlink_genrule_for_dir(repository_ctx, None, "", "cuda-lib",
                                          cuda_lib_src, cuda_lib_dest))

  # Set up the symbolic links for cudnn if cndnn was not installed to
  # CUDA_TOOLKIT_PATH.
  included_files = _read_dir(repository_ctx, cuda_include_path).replace(
      cuda_include_path, '').splitlines()
  if '/cudnn.h' not in included_files:
    genrules.append(symlink_genrule_for_dir(repository_ctx, None,
        "cuda/include/", "cudnn-include", [cudnn_header_dir + "/cudnn.h"],
        ["cudnn.h"]))
  else:
    genrules.append(
            'filegroup(\n' +
            '    name = "cudnn-include",\n' +
            '    srcs = [],\n' +
            ')\n'
        )

  # Set up BUILD file for cuda/
  _tpl(repository_ctx, "cuda:build_defs.bzl",
       {
           "%{cuda_is_configured}": "True",
           "%{cuda_extra_copts}": _compute_cuda_extra_copts(
               repository_ctx, cuda_config.compute_capabilities),
       })
  _tpl(repository_ctx, "cuda:BUILD",
       {
           "%{cuda_driver_lib}": cuda_libs["cuda"].file_name,
           "%{cudart_static_lib}": cuda_libs["cudart_static"].file_name,
           "%{cudart_static_linkopt}": _cudart_static_linkopt(
               cuda_config.cpu_value),
           "%{cudart_lib}": cuda_libs["cudart"].file_name,
           "%{cublas_lib}": cuda_libs["cublas"].file_name,
           "%{cusolver_lib}": cuda_libs["cusolver"].file_name,
           "%{cudnn_lib}": cuda_libs["cudnn"].file_name,
           "%{cufft_lib}": cuda_libs["cufft"].file_name,
           "%{curand_lib}": cuda_libs["curand"].file_name,
           "%{cupti_lib}": cuda_libs["cupti"].file_name,
           "%{cuda_include_genrules}": "\n".join(genrules),
           "%{cuda_headers}": ('":cuda-include",\n' +
                               '        ":cudnn-include",')
       })

  is_cuda_clang = _use_cuda_clang(repository_ctx)

  should_download_clang = is_cuda_clang and _flag_enabled(
      repository_ctx, _TF_DOWNLOAD_CLANG)
  if should_download_clang:
    download_clang(repository_ctx, "crosstool/extra_tools")

  # Set up crosstool/
  cc = find_cc(repository_ctx)
  cc_fullpath = cc if not should_download_clang else "crosstool/" + cc

  host_compiler_includes = _host_compiler_includes(repository_ctx, cc_fullpath)
  cuda_defines = {
           "%{cuda_include_path}": _cuda_include_path(repository_ctx,
                                                      cuda_config),
           "%{host_compiler_includes}": host_compiler_includes,
       }
  if is_cuda_clang:
    cuda_defines["%{clang_path}"] = cc
    _tpl(repository_ctx, "crosstool:BUILD", {"%{linker_files}": ":empty"})
    _tpl(repository_ctx, "crosstool:CROSSTOOL_clang", cuda_defines, out="crosstool/CROSSTOOL")
    repository_ctx.file("crosstool/clang/bin/crosstool_wrapper_driver_is_not_gcc", "")
  else:
    nvcc_path = str(repository_ctx.path("%s/bin/nvcc%s" %
        (cuda_config.cuda_toolkit_path,
        ".exe" if cuda_config.cpu_value == "Windows" else "")))
    _tpl(repository_ctx, "crosstool:BUILD",
         {"%{linker_files}": ":crosstool_wrapper_driver_is_not_gcc"})
    _tpl(repository_ctx, "crosstool:CROSSTOOL_nvcc", cuda_defines, out="crosstool/CROSSTOOL")
    _tpl(repository_ctx,
         "crosstool:clang/bin/crosstool_wrapper_driver_is_not_gcc",
         {
             "%{cpu_compiler}": str(cc),
             "%{cuda_version}": cuda_config.cuda_version,
             "%{nvcc_path}": nvcc_path,
             "%{gcc_host_compiler_path}": str(cc),
             "%{cuda_compute_capabilities}": ", ".join(
                 ["\"%s\"" % c for c in cuda_config.compute_capabilities]),
         })

  # Set up cuda_config.h, which is used by
  # tensorflow/stream_executor/dso_loader.cc.
  _tpl(repository_ctx, "cuda:cuda_config.h",
       {
           "%{cuda_version}": cuda_config.cuda_version,
           "%{cudnn_version}": cuda_config.cudnn_version,
           "%{cuda_compute_capabilities}": ",".join(
               ["CudaVersion(\"%s\")" % c
                for c in cuda_config.compute_capabilities]),
               "%{cuda_toolkit_path}": cuda_config.cuda_toolkit_path,
       }, "cuda/cuda/cuda_config.h")

def _create_remote_cuda_repository(repository_ctx, remote_config_repo):
  """Creates pointers to a remotely configured repo set up to build with CUDA."""
  _tpl(repository_ctx, "cuda:build_defs.bzl",
       {
           "%{cuda_is_configured}": "True",
           "%{cuda_extra_copts}": _compute_cuda_extra_copts(
               repository_ctx, _compute_capabilities(repository_ctx)),

       })
  _tpl(repository_ctx, "cuda:remote.BUILD",
       {
           "%{remote_cuda_repo}": remote_config_repo,
       }, "cuda/BUILD")
  _tpl(repository_ctx, "crosstool:remote.BUILD", {
           "%{remote_cuda_repo}": remote_config_repo,
       }, "crosstool/BUILD")

def _cuda_autoconf_impl(repository_ctx):
  """Implementation of the cuda_autoconf repository rule."""
  if not _enable_cuda(repository_ctx):
    _create_dummy_repository(repository_ctx)
  else:
    if _TF_CUDA_CONFIG_REPO in repository_ctx.os.environ:
      _create_remote_cuda_repository(repository_ctx,
          repository_ctx.os.environ[_TF_CUDA_CONFIG_REPO])
    else:
      _create_local_cuda_repository(repository_ctx)


cuda_configure = repository_rule(
    implementation = _cuda_autoconf_impl,
    environ = [
        _GCC_HOST_COMPILER_PATH,
        _CLANG_CUDA_COMPILER_PATH,
        "TF_NEED_CUDA",
        "TF_CUDA_CLANG",
        _TF_DOWNLOAD_CLANG,
        _CUDA_TOOLKIT_PATH,
        _CUDNN_INSTALL_PATH,
        _TF_CUDA_VERSION,
        _TF_CUDNN_VERSION,
        _TF_CUDA_COMPUTE_CAPABILITIES,
        _TF_CUDA_CONFIG_REPO,
        "NVVMIR_LIBRARY_DIR",
    ],
)

"""Detects and configures the local CUDA toolchain.

Add the following to your WORKSPACE FILE:

```python
cuda_configure(name = "local_config_cuda")
```

Args:
  name: A unique name for this workspace rule.
"""