aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorVarDim.h
blob: 49954b955e7f44c945fcfc3d568b79ecf7949e75 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_VAR_DIM_H
#define EIGEN_CXX11_TENSOR_TENSOR_VAR_DIM_H

namespace Eigen {

/** \class Tensor
  * \ingroup CXX11_Tensor_Module
  *
  * \brief A version of the tensor class that supports a variable number of dimensions.
  *
  * The variable equivalent of
  * Eigen::Tensor<float, 3> t(3, 5, 7);
  * is
  * Eigen::TensorVarDim<float> t(3, 5, 7);
  */

template<typename Scalar_, int Options_, typename IndexType_>
class TensorVarDim : public TensorBase<TensorVarDim<Scalar_, Options_, IndexType_> >
{
  public:
    typedef TensorVarDim<Scalar_, Options_, IndexType_> Self;
    typedef TensorBase<TensorVarDim<Scalar_, Options_, IndexType_> > Base;
    typedef typename Eigen::internal::nested<Self>::type Nested;
    typedef typename internal::traits<Self>::StorageKind StorageKind;
    typedef typename internal::traits<Self>::Index Index;
    typedef Scalar_ Scalar;
    typedef typename internal::packet_traits<Scalar>::type Packet;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename Base::CoeffReturnType CoeffReturnType;
    typedef typename Base::PacketReturnType PacketReturnType;

    enum {
      IsAligned = bool(EIGEN_ALIGN) & !(Options_ & DontAlign),
      PacketAccess = (internal::packet_traits<Scalar>::size > 1),
      BlockAccess = false,
      Layout = Options_ & RowMajor ? RowMajor : ColMajor,
      // disabled for now as the number of coefficients is not known by the
      // caller at compile time.
      CoordAccess = false,
    };

    static const int Options = Options_;

    static const Index NumIndices = Dynamic;

    typedef VSizes<Index> Dimensions;

  protected:
    TensorStorage<Scalar, VSizes<Index>, Options_> m_storage;

  public:
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         rank() const { return m_storage.dimensions().size(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions()    const { return m_storage.dimensions(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         size()                   const { return m_storage.size(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar                        *data()                        { return m_storage.data(); }
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar                  *data()                  const { return m_storage.data(); }

    // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    // work, because that uses base().coeffRef() - and we don't yet
    // implement a similar class hierarchy
    inline Self& base()             { return *this; }
    inline const Self& base() const { return *this; }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      static const std::size_t NumIndices = sizeof...(otherIndices) + 2;
      return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#endif

    template <std::size_t NumIndices>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
    {
      static const std::size_t NumIndices = sizeof...(otherIndices) + 2;
      return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#endif

    template <std::size_t NumIndices>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
    {
      eigen_internal_assert(checkIndexRange(indices));
      return m_storage.data()[linearizedIndex(indices)];
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
    {
      eigen_internal_assert(index >= 0 && index < size());
      return m_storage.data()[index];
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      static const std::size_t NumIndices = sizeof...(otherIndices) + 2;
      return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
    }
#endif

    template <std::size_t NumIndices>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
    {
      eigen_assert(checkIndexRange(indices));
      return coeff(indices);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
    {
      eigen_internal_assert(index >= 0 && index < size());
      return coeff(index);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
    {
      return coeff(index);
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    inline Scalar& operator()(Index firstIndex, IndexTypes... otherIndices)
    {
      // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
      static const size_t NumIndices = sizeof...(otherIndices) + 1;
      return operator()(array<Index, NumIndices>{{firstIndex, otherIndices...}});
    }
#endif

    template <std::size_t NumIndices>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
    {
      eigen_assert(checkIndexRange(indices));
      return coeffRef(indices);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
    {
      eigen_assert(index >= 0 && index < size());
      return coeffRef(index);
    }

    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
    {
      return coeffRef(index);
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim()
      : m_storage()
    {
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim(const Self& other)
      : m_storage(other.m_storage)
    {
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    EIGEN_STRONG_INLINE TensorVarDim(Index firstDimension, IndexTypes... otherDimensions)
        : m_storage(firstDimension, otherDimensions...)
    {
    }
#endif

    EIGEN_STRONG_INLINE explicit TensorVarDim(const std::vector<Index>& dimensions)
        : m_storage(dimensions)
    {
      EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
    }

    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
    {
      typedef TensorAssignOp<TensorVarDim, const OtherDerived> Assign;
      Assign assign(*this, other.derived());
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    }
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim(const TensorBase<OtherDerived, WriteAccessors>& other)
    {
      typedef TensorAssignOp<TensorVarDim, const OtherDerived> Assign;
      Assign assign(*this, other.derived());
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
    }

    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim& operator=(const TensorVarDim& other)
    {
      typedef TensorAssignOp<TensorVarDim, const TensorVarDim> Assign;
      Assign assign(*this, other);
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }
    template<typename OtherDerived>
    EIGEN_DEVICE_FUNC
    EIGEN_STRONG_INLINE TensorVarDim& operator=(const OtherDerived& other)
    {
      typedef TensorAssignOp<TensorVarDim, const OtherDerived> Assign;
      Assign assign(*this, other);
      resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
      internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
      return *this;
    }

#ifdef EIGEN_HAS_VARIADIC_TEMPLATES
    template<typename... IndexTypes>
    void resize(Index firstDimension, IndexTypes... otherDimensions)
    {
      // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
      EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
      static const std::size_t NumIndices = sizeof...(otherDimensions) + 1;
      resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
    }
#endif

    template <size_t NumIndices>
    void resize(const array<Index, NumIndices>& dimensions)
    {
      Index size = Index(1);
      for (std::size_t i = 0; i < NumIndices; i++) {
        internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
        size *= dimensions[i];
      }
      #ifdef EIGEN_INITIALIZE_COEFFS
        bool size_changed = size != this->size();
        m_storage.resize(size, dimensions);
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #else
        m_storage.resize(size, dimensions);
      #endif
    }
    void resize(const std::vector<Index>& dimensions)
    {
      Index size = Index(1);
      for (std::size_t i = 0; i < dimensions.size(); i++) {
        internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
        size *= dimensions[i];
      }
      #ifdef EIGEN_INITIALIZE_COEFFS
        bool size_changed = size != this->size();
        m_storage.resize(size, dimensions);
        if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
      #else
        m_storage.resize(size, dimensions);
      #endif
    }

  protected:
    template <std::size_t NumIndices>
    bool checkIndexRange(const array<Index, NumIndices>& indices) const
    {
      /*     using internal::array_apply_and_reduce;
      using internal::array_zip_and_reduce;
      using internal::greater_equal_zero_op;
      using internal::logical_and_op;
      using internal::lesser_op;

      return
        // check whether the indices are all >= 0
        array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
        // check whether the indices fit in the dimensions
        array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
      */
      return true;
    }

    template <std::size_t NumIndices>
    EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
    {
      if (Options&RowMajor) {
        return m_storage.dimensions().IndexOfRowMajor(indices);
      } else {
        return m_storage.dimensions().IndexOfColMajor(indices);
      }
    }
};

} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_VAR_DIM_H