aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorDeviceType.h
blob: b6eeb7383206bb93b1df7257a7cd542d877d1772 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H
#define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H

namespace Eigen {

// Default device for the machine (typically a single cpu core)
struct DefaultDevice {
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
    ::memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
    ::memset(buffer, c, n);
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
#ifndef __CUDA_ARCH__
    // Running on the host CPU
    return 1;
#else
    // Running on a CUDA device
    return 32;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t memcpyThreshold() const {
    return 2 * numThreads();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
#ifndef __CUDA_ARCH__
    // Running on the host CPU
    return l1CacheSize();
#else
    // Running on a CUDA device, return the amount of shared memory available.
    return 48*1024;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
#ifndef __CUDA_ARCH__
    // Running single threaded on the host CPU
    return l3CacheSize();
#else
    // Running on a CUDA device
    return firstLevelCacheSize();
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
#ifndef __CUDA_ARCH__
    // Running single threaded on the host CPU
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
#else
    // Running on a CUDA device
    return __CUDA_ARCH__ / 100;
#endif
  }
};

// Multiple cpu cores
#ifdef EIGEN_USE_THREADS

#if __cplusplus > 199711
// This defines an interface that ThreadPoolDevice can take to use
// custom thread pools underneath.
class ThreadPoolInterface {
 public:
  virtual void Schedule(std::function<void()> fn) = 0;

  virtual ~ThreadPoolInterface() {}
};
#endif

// The implementation of the ThreadPool type ensures that the Schedule method
// runs the functions it is provided in FIFO order when the scheduling is done
// by a single thread.
#ifdef EIGEN_USE_CUSTOM_THREAD_POOL
class ThreadPool : public ThreadPoolInterface {
 public:
  // Construct a pool that contains "num_threads" threads.
  explicit ThreadPool(int num_threads) : threads_(num_threads), waiters_(num_threads) {
    for (int i = 0; i < num_threads; i++) {
      threads_.push_back(new std::thread([this]() { WorkerLoop(); }));
    }
  }

  // Wait until all scheduled work has finished and then destroy the
  // set of threads.
  ~ThreadPool() {
    {
      // Wait for all work to get done.
      std::unique_lock<std::mutex> l(mu_);
      while (!pending_.empty()) {
        empty_.wait(l);
      }
      exiting_ = true;

      // Wakeup all waiters.
      for (auto w : waiters_) {
        w->ready = true;
        w->work = nullptr;
        w->cv.notify_one();
      }
    }

    // Wait for threads to finish.
    for (auto t : threads_) {
      t->join();
      delete t;
    }
  }

  // Schedule fn() for execution in the pool of threads. The functions are
  // executed in the order in which they are scheduled.
  void Schedule(std::function<void()> fn) final {
    std::unique_lock<std::mutex> l(mu_);
    if (waiters_.empty()) {
      pending_.push_back(fn);
    } else {
      Waiter* w = waiters_.back();
      waiters_.pop_back();
      w->ready = true;
      w->work = fn;
      w->cv.notify_one();
    }
  }

 protected:
  void WorkerLoop() {
    std::unique_lock<std::mutex> l(mu_);
    Waiter w;
    while (!exiting_) {
      std::function<void()> fn;
      if (pending_.empty()) {
        // Wait for work to be assigned to me
        w.ready = false;
        waiters_.push_back(&w);
        while (!w.ready) {
          w.cv.wait(l);
        }
        fn = w.work;
        w.work = nullptr;
      } else {
        // Pick up pending work
        fn = pending_.front();
        pending_.pop_front();
        if (pending_.empty()) {
          empty_.notify_all();
        }
      }
      if (fn) {
        mu_.unlock();
        fn();
        mu_.lock();
      }
    }
  }

 private:
  struct Waiter {
    std::condition_variable cv;
    std::function<void()> work;
    bool ready;
  };

  std::mutex mu_;
  FixedSizeVector<std::thread*> threads_;               // All threads
  FixedSizeVector<Waiter*> waiters_;                    // Stack of waiting threads.
  std::deque<std::function<void()>> pending_;       // Queue of pending work
  std::condition_variable empty_;                   // Signaled on pending_.empty()
  bool exiting_ = false;
};


// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object.
// but only one caller must call Notify() on the object.
class Notification {
 public:
  Notification() : notified_(false) {}
  ~Notification() {}

  void Notify() {
    std::unique_lock<std::mutex> l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void WaitForNotification() {
    std::unique_lock<std::mutex> l(mu_);
    while (!notified_) {
      cv_.wait(l);
    }
  }

 private:
  std::mutex mu_;
  std::condition_variable cv_;
  bool notified_;
};

#else

// Notification is an object that allows a user to to wait for another
// thread to signal a notification that an event has occurred.
//
// Multiple threads can wait on the same Notification object.
// but only one caller must call Notify() on the object.
class Notification {
 public:
  Notification() : notified_(false) {}
  ~Notification() {}

  void Notify() {
    tensorflow::mutex_lock l(mu_);
    eigen_assert(!notified_);
    notified_ = true;
    cv_.notify_all();
  }

  void WaitForNotification() {
    tensorflow::mutex_lock l(mu_);
    while (!notified_) {
      cv_.wait(l);
    }
  }

 private:
  tensorflow::mutex mu_;
  tensorflow::condition_variable cv_;
  bool notified_;
};
#endif

// Runs an arbitrary function and then calls Notify() on the passed in
// Notification.
template <typename Function, typename... Args> struct FunctionWrapper
{
  static void run(Notification* n, Function f, Args... args) {
    f(args...);
    n->Notify();
  }
};

static EIGEN_STRONG_INLINE void wait_until_ready(Notification* n) {
  if (n) {
    n->WaitForNotification();
  }
}


struct MemcpyExecutor {
  typedef MemcpyExecutor Self;

  MemcpyExecutor(void *dst, const void *src) :
      m_dst(static_cast<char *>(dst)), m_src(static_cast<const char *>(src)) { }

  static EIGEN_STRONG_INLINE void run(const MemcpyExecutor* exec, size_t idx, size_t block_size) {
    ::memcpy(&(exec->m_dst[idx]), &(exec->m_src[idx]), block_size);
  }

 private:
  char* m_dst;
  const char* m_src;
};

struct MemsetExecutor {
  typedef MemsetExecutor Self;

  MemsetExecutor(void *buffer, int val) :
      m_buffer(static_cast<char *>(buffer)), m_val(val) { }

  static EIGEN_STRONG_INLINE void run(const MemsetExecutor* exec, size_t idx, size_t block_size) {
    ::memset(&(exec->m_buffer[idx]), exec->m_val, block_size);
  }

 private:
  char* m_buffer;
  const int m_val;
};


struct ThreadPoolDevice {
  // The ownership of the thread pool remains with the caller.
  ThreadPoolDevice(ThreadPoolInterface* pool, size_t num_cores)
      : pool_(pool), num_threads_(num_cores) {}

  EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    return internal::aligned_malloc(num_bytes);
  }

  EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    internal::aligned_free(buffer);
  }

  EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifdef __ANDROID__
    ::memcpy(dst, src, n);
#else
    if (n <= 32768) {
      ::memcpy(dst, src, n);
    } else {
      MemcpyExecutor memcpy_executor(dst, src);
      execute(memcpy_executor, n);
    }
#endif
  }

  EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
    memcpy(dst, src, n);
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifdef __ANDROID__
    ::memset(buffer, c, n);
#else
    if (n <= 32768) {
      ::memset(buffer, c, n);
    } else {
      MemsetExecutor memset_executor(buffer, c);
      execute(memset_executor, n);
    }
#endif
  }

  EIGEN_STRONG_INLINE size_t numThreads() const {
    return num_threads_;
  }

  EIGEN_STRONG_INLINE size_t memcpyThreshold() const {
    return 2 * numThreads();
  }

  EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    return l1CacheSize();
  }

  EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // The l3 cache size is shared between all the cores.
    return l3CacheSize() / num_threads_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int majorDeviceVersion() const {
    // Should return an enum that encodes the ISA supported by the CPU
    return 1;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE Notification* enqueue(Function&& f, Args&&... args) const {
    Notification* n = new Notification();
    std::function<void()> func =
        std::bind(&FunctionWrapper<Function, Args...>::run, n, f, args...);
    pool_->Schedule(func);
    return n;
  }

  template <class Function, class... Args>
  EIGEN_STRONG_INLINE void enqueue_and_forget(Function&& f, Args&&... args) const {
    std::function<void()> func = std::bind(f, args...);
    pool_->Schedule(func);
  }

 private:
  template<typename Executor>
  EIGEN_STRONG_INLINE void execute(const Executor& exec, size_t n) const {
    // don't spawn a thread to process fewer than 1024 bytes (chosen by small amount of
    // experimentation)
    // TODO: make block_size a multiple of packet_size and align everything
    const size_t block_size = numext::maxi(static_cast<size_t>(1024), n / numThreads());
    const size_t block_count = n / block_size;
    eigen_assert(block_count <= numThreads());

    FixedSizeVector<Notification*> results(block_count);
    for (size_t block_idx = 0; block_idx < block_count; block_idx++) {
      results.push_back(enqueue(&Executor::run, &exec, block_idx * block_size, block_size));
    }

    if (block_count * block_size < n) {
      Executor::run(&exec, block_count * block_size, n - block_count * block_size);
    }

    // wait for threads to finish
    for (size_t block_idx = 0; block_idx < block_count; block_idx++) {
      results[block_idx]->WaitForNotification();
      delete results[block_idx];
    }
  }

  // todo: NUMA, ...
  size_t num_threads_;
  ThreadPoolInterface* pool_;
};
#endif


// GPU offloading
#ifdef EIGEN_USE_GPU

// An interface abstracting away device specific memory allocator.
class Allocator {
 public:
  virtual ~Allocator() {}
  EIGEN_DEVICE_FUNC virtual void* allocate(size_t num_bytes) const = 0;
  EIGEN_DEVICE_FUNC virtual void deallocate(void* buffer) const = 0;
};

#if !defined(__GCUDACC__) && !defined(__GCUDACC_HOST__)

// This defines an interface that GPUDevice can take to use
// CUDA streams underneath.
class StreamInterface {
 public:
  virtual ~StreamInterface() {}

  virtual const cudaStream_t& stream() const = 0;
  virtual const cudaDeviceProp& deviceProperties() const = 0;

  // Allocate memory on the actual device where the computation will run
  virtual void* allocate(size_t num_bytes) const = 0;
  virtual void deallocate(void* buffer) const = 0;
};

static cudaDeviceProp* m_deviceProperties;
static bool m_devicePropInitialized = false;
static tensorflow::mutex m_devicePropInitMutex(tensorflow::LINKER_INITIALIZED);

static void initializeDeviceProp() {
  if (!m_devicePropInitialized) {
    tensorflow::mutex_lock l(m_devicePropInitMutex);
    if (!m_devicePropInitialized) {
      int num_devices;
      cudaError_t status = cudaGetDeviceCount(&num_devices);
      eigen_check(status == cudaSuccess);
      m_deviceProperties = new cudaDeviceProp[num_devices];
      for (int i = 0; i < num_devices; ++i) {
        status = cudaGetDeviceProperties(&m_deviceProperties[i], i);
        eigen_check(status == cudaSuccess);
      }
      m_devicePropInitialized = true;
    }
  }
}

static const cudaStream_t default_stream = cudaStreamDefault;

class CudaStreamDevice : public StreamInterface {
 public:
  // Use the default stream on the current device
  CudaStreamDevice() : stream_(&default_stream) {
    cudaGetDevice(&device_);
    initializeDeviceProp();
  }
  // Use the default stream on the specified device
  CudaStreamDevice(int device) : stream_(&default_stream), device_(device) {
    initializeDeviceProp();
  }
  // Use the specified stream. Note that it's the
  // caller responsibility to ensure that the stream can run on
  // the specified device. If no device is specified the code
  // assumes that the stream is associated to the current gpu device.
  CudaStreamDevice(const cudaStream_t* stream, int device = -1)
      : stream_(stream), device_(device) {
    if (device < 0) {
      cudaGetDevice(&device_);
    } else {
      int num_devices;
      cudaError_t err = cudaGetDeviceCount(&num_devices);
      eigen_check(err == cudaSuccess);
      eigen_check(device < num_devices);
      device_ = device;
    }
    initializeDeviceProp();
  }

  const cudaStream_t& stream() const { return *stream_; }
  const cudaDeviceProp& deviceProperties() const {
    return m_deviceProperties[device_];
  }
  virtual void* allocate(size_t num_bytes) const {
    cudaError_t err = cudaSetDevice(device_);
    eigen_check(err == cudaSuccess);
    void* result;
    err = cudaMalloc(&result, num_bytes);
    eigen_check(err == cudaSuccess);
    eigen_check(result != NULL);
    return result;
  }
  virtual void deallocate(void* buffer) const {
    cudaError_t err = cudaSetDevice(device_);
    eigen_check(err == cudaSuccess);
    assert(buffer != NULL);
    err = cudaFree(buffer);
    assert(err == cudaSuccess);
  }

 private:
  const cudaStream_t* stream_;
  int device_;
};

static inline void setCudaSharedMemConfig(cudaSharedMemConfig config) {
  cudaError_t status = cudaDeviceSetSharedMemConfig(config);
  eigen_check(status == cudaSuccess);
}

struct GpuDevice {
  // Neither the cudastream nor the allocator is not owned: the caller is
  // responsible for their initialization and eventual destruction.
  explicit GpuDevice(const StreamInterface* stream) : stream_(stream) {
    eigen_assert(stream);
  }

  // TODO(bsteiner): This is an internal API, we should not expose it.
  EIGEN_STRONG_INLINE const cudaStream_t& stream() const {
    return stream_->stream();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
#ifndef __CUDA_ARCH__
    return stream_->allocate(num_bytes);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
    return NULL;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
#ifndef __CUDA_ARCH__
    stream_->deallocate(buffer);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice,
                                      stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err =
        cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err =
        cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef __CUDA_ARCH__
    cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream());
    assert(err == cudaSuccess);
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
    // FIXME
    return 32;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t memcpyThreshold() const {
    return 4 * 1024 * 1024;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    // FIXME
    return 48*1024;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // We won't try to take advantage of the l2 cache for the time being, and
    // there is no l3 cache on cuda devices.
    return firstLevelCacheSize();
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const {
#ifndef __CUDA_ARCH__
    cudaError_t err = cudaStreamSynchronize(stream_->stream());
    assert(err == cudaSuccess);
#else
    assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  inline int getNumCudaMultiProcessors() const {
    return stream_->deviceProperties().multiProcessorCount;
  }
  inline int maxCudaThreadsPerBlock() const {
    return stream_->deviceProperties().maxThreadsPerBlock;
  }
  inline int maxCudaThreadsPerMultiProcessor() const {
    return stream_->deviceProperties().maxThreadsPerMultiProcessor;
  }
  inline int sharedMemPerBlock() const {
    return stream_->deviceProperties().sharedMemPerBlock;
  }
  inline int majorDeviceVersion() const {
    return stream_->deviceProperties().major;
  }

  // This function checks if the CUDA runtime recorded an error for the
  // underlying stream device.
  inline bool ok() const {
    cudaError_t error = cudaStreamQuery(stream_->stream());
    return (error == cudaSuccess) || (error == cudaErrorNotReady);
  }

 private:
  const StreamInterface* stream_;
};

inline void assertCudaOk() {
  cudaError_t err = cudaGetLastError();

  assert(err != cudaErrorMissingConfiguration);
  assert(err != cudaErrorMemoryAllocation);
  assert(err != cudaErrorInitializationError);
  assert(err != cudaErrorLaunchFailure);
  assert(err != cudaErrorPriorLaunchFailure);
  assert(err != cudaErrorLaunchTimeout);
  assert(err != cudaErrorLaunchOutOfResources);
  assert(err != cudaErrorInvalidDeviceFunction);
  assert(err != cudaErrorInvalidConfiguration);
  assert(err != cudaErrorInvalidDevice);
  assert(err != cudaErrorInvalidValue);
  assert(err != cudaErrorInvalidPitchValue);
  assert(err != cudaErrorInvalidSymbol);
  assert(err != cudaErrorMapBufferObjectFailed);
  assert(err != cudaErrorUnmapBufferObjectFailed);
  assert(err != cudaErrorInvalidHostPointer);
  assert(err != cudaErrorInvalidDevicePointer);
  assert(err != cudaErrorInvalidTexture);
  assert(err != cudaErrorInvalidTextureBinding);
  assert(err != cudaErrorInvalidChannelDescriptor);
  assert(err != cudaErrorInvalidMemcpyDirection);
  assert(err != cudaErrorAddressOfConstant);
  assert(err != cudaErrorTextureFetchFailed);
  assert(err != cudaErrorTextureNotBound);
  assert(err != cudaErrorSynchronizationError);
  assert(err != cudaErrorInvalidFilterSetting);
  assert(err != cudaErrorInvalidNormSetting);
  assert(err != cudaErrorMixedDeviceExecution);
  assert(err != cudaErrorCudartUnloading);
  assert(err != cudaErrorUnknown);
  assert(err != cudaErrorNotYetImplemented);
  assert(err != cudaErrorMemoryValueTooLarge);
  assert(err != cudaErrorInvalidResourceHandle);
  assert(err != cudaErrorNotReady);
  assert(err != cudaErrorInsufficientDriver);
  assert(err != cudaErrorSetOnActiveProcess);
  assert(err != cudaErrorInvalidSurface);
  assert(err != cudaErrorNoDevice);
  assert(err != cudaErrorECCUncorrectable);
  assert(err != cudaErrorSharedObjectSymbolNotFound);
  assert(err != cudaErrorSharedObjectInitFailed);
  assert(err != cudaErrorUnsupportedLimit);
  assert(err != cudaErrorDuplicateVariableName);
  assert(err != cudaErrorDuplicateTextureName);
  assert(err != cudaErrorDuplicateSurfaceName);
  assert(err != cudaErrorDevicesUnavailable);
  assert(err != cudaErrorInvalidKernelImage);
  assert(err != cudaErrorNoKernelImageForDevice);
  assert(err != cudaErrorIncompatibleDriverContext);
  assert(err != cudaErrorPeerAccessAlreadyEnabled);
  assert(err != cudaErrorPeerAccessNotEnabled);
  assert(err != cudaErrorDeviceAlreadyInUse);
  assert(err != cudaErrorProfilerDisabled);
  assert(err != cudaErrorProfilerNotInitialized);
  assert(err != cudaErrorProfilerAlreadyStarted);
  assert(err != cudaErrorProfilerAlreadyStopped);
  assert(err != cudaErrorAssert);
  assert(err != cudaErrorTooManyPeers);
  assert(err != cudaErrorHostMemoryAlreadyRegistered);
  assert(err != cudaErrorHostMemoryNotRegistered);
  assert(err != cudaErrorOperatingSystem);
  assert(err != cudaErrorStartupFailure);
  assert(err != cudaErrorApiFailureBase);

  // catch errors types introduced after this function was written
  assert(err == cudaSuccess);
}

#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, \
                           ...)                                            \
  do {                                                                     \
    (kernel)<<<(gridsize), (blocksize), (sharedmem), (device).stream()>>>( \
        __VA_ARGS__);                                                      \
    assertCudaOk();                                                        \
  } while (false)

#else  // __GCUDACC__

// The following is the version of GpuDevice for StreamExecutor
// (go/gpuexecutor) a GPU runtime that supports both CUDA and OpenCL.
// StreamExecutor is being developed as an open-source replacement for the CUDA
// runtime and is the runtime used when compiling with gcudacc. Differences
// between the CUDA runtime and StreamExecutor are abstracted away behind
// GpuDevice.

// TODO(jpienaar): Temporary workaround until b/18409724 is addressed.
enum cudaSharedMemConfig
{
    cudaSharedMemBankSizeDefault   = 0,
    cudaSharedMemBankSizeFourByte  = 1,
    cudaSharedMemBankSizeEightByte = 2
};

static inline void setCudaSharedMemConfig(cudaSharedMemConfig cache_config) {
  // TODO(jpienaar): fix when implemented (b/18409724)
}

struct GpuDevice {
  GpuDevice()
      : stream_(perftools::gputools::MachineManager::singleton()->stream_for_device(0)),
        allocator_(nullptr),
        stream_exec_(stream_->parent()) {}

  GpuDevice(perftools::gputools::Stream* stream,
            const Allocator* alloc = nullptr)
      : stream_(stream), allocator_(alloc), stream_exec_(stream_->parent()) { }

  EIGEN_STRONG_INLINE perftools::gputools::Stream* stream() const {
    return stream_;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const {
    if (allocator_ != nullptr) return allocator_->allocate(num_bytes);
#ifndef __CUDA_ARCH__
    perftools::gputools::DeviceMemory<char> mem =
        stream_exec_->AllocateArray<char>(num_bytes);
    return mem.opaque();
#else
    assert(false &&
           "The default device should be used instead to generate kernel code");
    return nullptr;
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void deallocate(void* buffer) const {
    if (allocator_ != nullptr) {
      allocator_->deallocate(buffer);
      return;
    }
#ifndef __CUDA_ARCH__
    perftools::gputools::DeviceMemoryBase gpu_mem(buffer);
    stream_exec_->Deallocate(&gpu_mem);
#else
    assert(false &&
           "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src,
                                                    size_t n) const {
#ifndef __CUDA_ARCH__
    perftools::gputools::DeviceMemoryBase gpu_to(dst);
    if (!stream_->ThenMemcpy(&gpu_to, perftools::gputools::DeviceMemoryBase(
                                          const_cast<void*>(src)),
                             n).ok()) {
      assert(false &&
             "failed during enqueue of 'copy perftools::gputools to "
             "perftools::gputools'");
    }
#else
    assert(false &&
           "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    perftools::gputools::DeviceMemoryBase gpu_to(dst);
    if (!stream_->ThenMemcpy(&gpu_to, src, n).ok()) {
      assert(false && "failed while enqueuing memcpy from host to device");
    }
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const {
#ifndef __CUDA_ARCH__
    if (!stream_->ThenMemcpy(dst, perftools::gputools::DeviceMemoryBase(
                                      const_cast<void*>(src)),
                             n).ok()) {
      assert(false && "failed while enqueuing memcpy from device to host");
    }
#else
    eigen_assert(false && "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const {
#ifndef __CUDA_ARCH__
    perftools::gputools::DeviceMemoryBase gpu_buffer{buffer};
    if (!stream_exec_->Memset32(stream_, &gpu_buffer, c, n)) {
      assert(false && "GPU memset failed.");
    }
#else
    assert(false &&
           "The default device should be used instead to generate kernel code");
#endif
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t numThreads() const {
    // FIXME
    return 32;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t memcpyThreshold() const {
    return 4 * 1024 * 1024;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const {
    // FIXME
    return 48*1024;
  }

  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const {
    // We won't try to take advantage of the l2 cache for the time being, and
    // there is no l3 cache on cuda devices.
    return firstLevelCacheSize();
  }

  EIGEN_STRONG_INLINE void synchronize() const {
    stream_->BlockHostUntilDone();
  }

  // A gpu::DeviceDescription is cached inside a StreamExecutor, so these calls
  // aren't expensive/wasteful.
  EIGEN_DEVICE_FUNC inline int getNumCudaMultiProcessors() const {
    return stream_exec_->GetDeviceDescription().core_count();
  }

  EIGEN_DEVICE_FUNC inline int maxCudaThreadsPerBlock() const {
    return stream_exec_->GetDeviceDescription().threads_per_block_limit();
  }

  EIGEN_DEVICE_FUNC inline int maxCudaThreadsPerMultiProcessor() const {
    return stream_exec_->GetDeviceDescription().threads_per_core_limit();
  }

  EIGEN_DEVICE_FUNC inline int sharedMemPerBlock() const {
    return stream_exec_->GetDeviceDescription().shared_memory_per_block();
  }

  EIGEN_DEVICE_FUNC inline int majorDeviceVersion() const {
    int major, minor;
    if (stream_exec_->GetDeviceDescription().cuda_compute_capability(&major,
                                                                  &minor)) {
      return major;
    } else {
      return 0;
    }
  }

  inline bool ok() const { return stream_->ok(); }

 private:
  perftools::gputools::Stream* stream_;
  perftools::gputools::StreamExecutor* stream_exec_;
  const Allocator* allocator_;
};

#define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...)\
    (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__);  \
  CHECK((device).stream()->ok());
#endif  // __GCUDACC__

#endif  // EIGEN_USE_GPU
}  // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_TYPE_H