aboutsummaryrefslogtreecommitdiffhomepage
path: root/third_party/eigen3/unsupported/Eigen/CXX11/src/Tensor/TensorContractionMappers.h
blob: b5b09bf41ea6ffcc2710ef7ed8c85e205c382dd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Eric Martin <eric@ericmart.in>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPERS_H
#define EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPERS_H

// NOTE: The file has strong column major bias/assumptions, which is pointed out
// in comments. As of right now, this code will only work the column major packing
// routines.

/*
 * A tensor contraction can be represented by a matrix multiplication. We don't
 * want to actually reshape the tensor into a matrix (because this involves a
 * full copy of the tensor), so the reshaping operation is implicit in a sense.
 * This means we need a collection of methods take a matrix index and return
 * the element of the tensor that would be at that index if we were to actually
 * reshape the matrix. This file consists of these methods.
 */

namespace Eigen {
namespace internal {

enum {
  Rhs = 0,
  Lhs = 1,
};

/*
 * Used to lookup the tensor index when working with the left and right
 * arguments to a tensor contraction.
 */
template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         size_t packet_size, bool inner_dim_contiguous>
class SimpleTensorContractionMapper {
  public:
  EIGEN_DEVICE_FUNC
  SimpleTensorContractionMapper(const Tensor& tensor,
                              const nocontract_t& nocontract_strides,
                              const nocontract_t& ij_strides,
                              const contract_t& contract_strides,
                              const contract_t& k_strides) :
      m_tensor(tensor),
      m_nocontract_strides(nocontract_strides),
      m_ij_strides(ij_strides),
      m_contract_strides(contract_strides),
      m_k_strides(k_strides) { }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE void prefetch(int i) { }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar operator()(Index row) const {
    // column major assumption
    return operator()(row, 0);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Scalar operator()(Index row, Index col) const {
    return m_tensor.coeff(computeIndex(row, col));
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Index computeIndex(Index row, Index col) const {
    const bool left = (side == Lhs);
    Index nocontract_val = left ? row : col;
    Index linidx = 0;
    for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
      const Index idx = nocontract_val / m_ij_strides[i];
      linidx += idx * m_nocontract_strides[i];
      nocontract_val -= idx * m_ij_strides[i];
    }
    if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
      if (side == Lhs && inner_dim_contiguous) {
        eigen_assert(m_nocontract_strides[0] == 1);
        linidx += nocontract_val;
      } else {
        linidx += nocontract_val * m_nocontract_strides[0];
      }
    }

    Index contract_val = left ? col : row;
    for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
      const Index idx = contract_val / m_k_strides[i];
      linidx += idx * m_contract_strides[i];
      contract_val -= idx * m_k_strides[i];
    }
    EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
    if (side == Rhs && inner_dim_contiguous) {
      eigen_assert(m_contract_strides[0] == 1);
      linidx += contract_val;
    } else {
      linidx += contract_val * m_contract_strides[0];
    }

    return linidx;
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE IndexPair<Index> computeIndexPair(Index row, Index col, const Index distance) const {
    const bool left = (side == Lhs);
    Index nocontract_val[2] = {left ? row : col, left ? row + distance : col};
    Index linidx[2] = {0, 0};
    for (int i = array_size<nocontract_t>::value - 1; i > 0; i--) {
      const Index idx0 = nocontract_val[0] / m_ij_strides[i];
      const Index idx1 = nocontract_val[1] / m_ij_strides[i];
      linidx[0] += idx0 * m_nocontract_strides[i];
      linidx[1] += idx1 * m_nocontract_strides[i];
      nocontract_val[0] -= idx0 * m_ij_strides[i];
      nocontract_val[1] -= idx1 * m_ij_strides[i];
    }
    if (array_size<typename Tensor::Dimensions>::value > array_size<contract_t>::value) {
      if (side == Lhs && inner_dim_contiguous) {
        eigen_assert(m_nocontract_strides[0] == 1);
        linidx[0] += nocontract_val[0];
        linidx[1] += nocontract_val[1];
      } else {
        linidx[0] += nocontract_val[0] * m_nocontract_strides[0];
        linidx[1] += nocontract_val[1] * m_nocontract_strides[0];
      }
    }

    Index contract_val[2] = {left ? col : row, left ? col : row + distance};
    for (int i = array_size<contract_t>::value - 1; i > 0; i--) {
      const Index idx0 = contract_val[0] / m_k_strides[i];
      const Index idx1 = contract_val[1] / m_k_strides[i];
      linidx[0] += idx0 * m_contract_strides[i];
      linidx[1] += idx1 * m_contract_strides[i];
      contract_val[0] -= idx0 * m_k_strides[i];
      contract_val[1] -= idx1 * m_k_strides[i];
    }
    EIGEN_STATIC_ASSERT(array_size<contract_t>::value > 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
    if (side == Rhs && inner_dim_contiguous) {
      eigen_assert(m_contract_strides[0] == 1);
      linidx[0] += contract_val[0];
      linidx[1] += contract_val[1];
    } else {
      linidx[0] += contract_val[0] * m_contract_strides[0];
      linidx[1] += contract_val[1] * m_contract_strides[0];
    }
    return IndexPair<Index>(linidx[0], linidx[1]);
  }

  Index firstAligned(Index size) const {
    return size;
  }
  Index stride() const {
    return 1;
  }

 protected:
  const Tensor m_tensor;
  const nocontract_t m_nocontract_strides;
  const nocontract_t m_ij_strides;
  const contract_t m_contract_strides;
  const contract_t m_k_strides;
};



template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         size_t packet_size, bool inner_dim_contiguous,
         bool inner_dim_reordered, int Alignment>
  class BaseTensorContractionMapper : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous>
{
 public:
  typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous> ParentMapper;

  EIGEN_DEVICE_FUNC
  BaseTensorContractionMapper(const Tensor& tensor,
                              const nocontract_t& nocontract_strides,
                              const nocontract_t& ij_strides,
                              const contract_t& contract_strides,
                              const contract_t& k_strides) :
  ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename packet_traits<Scalar>::half HalfPacket;

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
    // whole method makes column major assumption

    // don't need to add offsets for now (because operator handles that)
    // current code assumes packet size must be a multiple of 2
    EIGEN_STATIC_ASSERT(packet_size % 2 == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);

    if (Tensor::PacketAccess && inner_dim_contiguous && !inner_dim_reordered) {
      const Index index = this->computeIndex(i, j);
      eigen_assert(this->computeIndex(i+packet_size-1, j) == index + packet_size-1);
      return this->m_tensor.template packet<Alignment>(index);
    }

    const IndexPair<Index> indexPair = this->computeIndexPair(i, j, packet_size - 1);
    const Index first = indexPair.first;
    const Index last = indexPair.second;

    // We can always do optimized packet reads from left hand side right now, because
    // the vertical matrix dimension on the left hand side is never contracting.
    // On the right hand side we need to check if the contracting dimensions may have
    // been shuffled first.
    if (Tensor::PacketAccess &&
        (side == Lhs || internal::array_size<contract_t>::value <= 1 || !inner_dim_reordered) &&
        (last - first) == (packet_size - 1)) {

      return this->m_tensor.template packet<Alignment>(first);
    }

    EIGEN_ALIGN_DEFAULT Scalar data[packet_size];

    data[0] = this->m_tensor.coeff(first);
    for (Index k = 1; k < packet_size - 1; k += 2) {
      const IndexPair<Index> internal_pair = this->computeIndexPair(i + k, j, 1);
      data[k] = this->m_tensor.coeff(internal_pair.first);
      data[k + 1] = this->m_tensor.coeff(internal_pair.second);
    }
    data[packet_size - 1] = this->m_tensor.coeff(last);

    return pload<Packet>(data);
  }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE HalfPacket loadHalfPacket(Index i, Index j) const {
    // whole method makes column major assumption

    // don't need to add offsets for now (because operator handles that)
    const Index half_packet_size = unpacket_traits<HalfPacket>::size;
    if (half_packet_size == packet_size) {
      return loadPacket(i, j);
    }
    EIGEN_ALIGN_DEFAULT Scalar data[half_packet_size];
    for (Index k = 0; k < half_packet_size; k++) {
      data[k] = operator()(i + k, j);
    }
    return pload<HalfPacket>(data);
  }
};


template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         bool inner_dim_contiguous,
         bool inner_dim_reordered, int Alignment>
class BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous, inner_dim_reordered, Alignment> : public SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous>
{
 public:
  typedef SimpleTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, 1, inner_dim_contiguous> ParentMapper;

  EIGEN_DEVICE_FUNC
  BaseTensorContractionMapper(const Tensor& tensor,
                              const nocontract_t& nocontract_strides,
                              const nocontract_t& ij_strides,
                              const contract_t& contract_strides,
                              const contract_t& k_strides) :
  ParentMapper(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  typedef typename packet_traits<Scalar>::type Packet;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadPacket(Index i, Index j) const {
    EIGEN_ALIGN_DEFAULT Scalar data[1];
    data[0] = this->m_tensor.coeff(this->computeIndex(i, j));
    return pload<typename packet_traits<Scalar>::type>(data);
  }
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE Packet loadHalfPacket(Index i, Index j) const {
    return loadPacket(i, j);
  }
};

template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         size_t packet_size,
         bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionInputMapper;

template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         size_t packet_size,
         bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionSubMapper {
 public:
  typedef typename packet_traits<Scalar>::type Packet;
  typedef typename packet_traits<Scalar>::half HalfPacket;

  typedef TensorContractionInputMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
  typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
  typedef Self LinearMapper;

  EIGEN_DEVICE_FUNC TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
      : m_base_mapper(base_mapper), m_vert_offset(vert_offset), m_horiz_offset(horiz_offset) { }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
    return m_base_mapper(i + m_vert_offset, m_horiz_offset);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
    return m_base_mapper(i + m_vert_offset, j + m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
    return m_base_mapper.loadPacket(i + m_vert_offset, m_horiz_offset);
  }
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
   return m_base_mapper.loadPacket(i + m_vert_offset, j + m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE HalfPacket loadHalfPacket(Index i) const {
    return m_base_mapper.loadHalfPacket(i + m_vert_offset, m_horiz_offset);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void storePacket(Index i, Packet p) const {
    m_base_mapper.storePacket(i + m_vert_offset, m_horiz_offset, p);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
    return LinearMapper(m_base_mapper, i + m_vert_offset, j + m_horiz_offset);
  }

  template <typename PacketT, int AlignmentType>
  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE PacketT load(Index i) const {
    EIGEN_STATIC_ASSERT((internal::is_same<PacketT, Packet>::value), YOU_MADE_A_PROGRAMMING_MISTAKE);
    EIGEN_STATIC_ASSERT((AlignmentType == Aligned || Alignment == Unaligned), YOU_MADE_A_PROGRAMMING_MISTAKE);
    return loadPacket(i);
  }

  template <typename Packet>
  EIGEN_DEVICE_FUNC bool aligned(Index i) const {
    return false;
  }

 private:
  const ParentMapper& m_base_mapper;
  const Index m_vert_offset;
  const Index m_horiz_offset;
};


template<typename Scalar, typename Index, int side,
         typename Tensor,
         typename nocontract_t, typename contract_t,
         size_t packet_size,
         bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
class TensorContractionInputMapper
  : public BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> {

 public:
  typedef BaseTensorContractionMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Base;
  typedef TensorContractionSubMapper<Scalar, Index, side, Tensor, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
  typedef SubMapper VectorMapper;

  EIGEN_DEVICE_FUNC TensorContractionInputMapper(const Tensor& tensor,
                               const nocontract_t& nocontract_strides,
                               const nocontract_t& ij_strides,
                               const contract_t& contract_strides,
                               const contract_t& k_strides)
      : Base(tensor, nocontract_strides, ij_strides, contract_strides, k_strides) { }

  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
    return SubMapper(*this, i, j);
  }

  EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE VectorMapper getVectorMapper(Index i, Index j) const {
    return VectorMapper(*this, i, j);
  }
};


} // end namespace internal
} // end namespace Eigen

#endif // EIGEN_CXX11_TENSOR_TENSOR_CONTRACTION_MAPPERS_H